Math 210, Exam 2, Spring 2008
 Problem 1 Solution

1. Complete each of the following:
(a) Compute the directional derivative $D_{\hat{\mathbf{u}}}$ of the function $f(x, y)=x y^{2}+\ln (x y)$ at the point $(1,1)$ in the direction of $\overrightarrow{\mathbf{v}}=\langle 1,2\rangle$.
(b) Use the Chain Rule to compute $\frac{\partial w}{\partial s}$ when $s=1, t=2$ if

$$
w(x, y)=x+x^{2} y^{3}, x(s, t)=s t, y(s, t)=s^{2}
$$

Solution:

(a) By definition, the directional derivative of $f(x, y)$ at $(1,1)$ in the direction of $\hat{\mathbf{u}}$ is:

$$
D_{\hat{\mathbf{u}}} f(1,1)=\vec{\nabla} f(1,1) \cdot \hat{\mathbf{u}}
$$

The gradient of f is:

$$
\vec{\nabla} f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle y^{2}+\frac{1}{x}, 2 x y+\frac{1}{y}\right\rangle
$$

Evaluating at the point $(1,1)$ we get:

$$
\vec{\nabla} f(1,1)=\left\langle 1^{2}+\frac{1}{1}, 2(1)(1)+\frac{1}{1}\right\rangle=\langle 2,3\rangle
$$

Recalling that $\hat{\mathbf{u}}$ must be a unit vector, we multiply $\langle 1,2\rangle$ by the reciprocal of its magnitude.

$$
\hat{\mathbf{u}}=\frac{1}{|\overrightarrow{\mathbf{v}}|} \overrightarrow{\mathbf{v}}=\frac{1}{\sqrt{5}}\langle 1,2\rangle
$$

Therefore, the directional derivative is:

$$
\begin{aligned}
& D_{\hat{\mathbf{u}}} f(1,1)=\vec{\nabla} f(1,1) \cdot \hat{\mathbf{u}} \\
& D_{\hat{\mathbf{u}}} f(1,1)=\langle 2,3\rangle \cdot \frac{1}{\sqrt{5}}\langle 1,2\rangle \\
& D_{\hat{\mathbf{u}}} f(1,1)=\frac{1}{\sqrt{5}}[(2)(1)+(3)(2)] \\
& D_{\hat{\mathbf{u}}} f(1,1)=\frac{8}{\sqrt{5}}
\end{aligned}
$$

(b) Using the Chain Rule, the derivative $\frac{\partial w}{\partial s}$ can be expressed as follows:

$$
\begin{equation*}
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s} \tag{1}
\end{equation*}
$$

The partial derivatives on the right hand side of the above equation are:

$$
\begin{array}{ll}
\frac{\partial w}{\partial x}=1+2 x y^{3} & \frac{\partial x}{\partial s}=t \\
\frac{\partial w}{\partial y}=3 x^{2} y^{2} & \frac{\partial y}{\partial s}=2 s
\end{array}
$$

Plugging these into Equation (1) we get:

$$
\begin{aligned}
& \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial w}{\partial s}=\left(1+2 x y^{3}\right)(t)+\left(3 x^{2} y^{2}\right)(2 s)
\end{aligned}
$$

We must evaluate the derivative at $s=1$ and $t=2$. The values of x and y at this point are:

$$
x(1,2)=2, \quad y(1,2)=1
$$

Thus, the value of the derivative is:

$$
\begin{aligned}
& \left.\frac{\partial w}{\partial s}\right|_{s=1, t=2}=\left(1+2(2)(1)^{3}\right)(2)+\left(3(2)^{2}(1)^{2}\right)(2(1)) \\
& \left|\frac{\partial w}{\partial s}\right|_{s=1, t=2}=34
\end{aligned}
$$

Math 210, Exam 2, Spring 2008
 Problem 2 Solution

2. Consider the function

$$
f(x, y)=x^{2}-x y-y^{2}
$$

(a) Find the equation of the plane tangent to the surface $z=f(x, y)$ at the point $(1,1,-1)$.
(b) Use the linearization of $f(x, y)$ about $(1,1)$ to estimate $f(1.1,0.95)$.

Solution:

(a) We will use the following formula for the plane tangent to $f(x, y)=x^{2}-x y-y^{2}$ at the point $(1,1,-1)$:

$$
z=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)
$$

The first partial derivatives of f are:

$$
\begin{aligned}
f_{x} & =2 x-y \\
f_{y} & =-x-2 y
\end{aligned}
$$

At the point $(1,1)$ we have:

$$
\begin{aligned}
f(1,1) & =-1 \\
f_{x}(1,1) & =2(1)-1=1 \\
f_{y}(1,1) & =-1-2(1)=-3
\end{aligned}
$$

Thus, an equation for the tangent plane is:

$$
z=-1+(x-1)-3(y-1)
$$

(b) The linearization of $f(x, y)$ about $(1,1)$ has the exact same form as the equation for the tangent plane. That is,

$$
L(x, y)=-1+(x-1)-3(y-1)
$$

The value of $f(1.1,0.95)$ is estimated to be the value of $L(1.1,0.95)$:

$$
\begin{aligned}
& f(1.1,0.95) \approx L(1.1,0.95) \\
& f(1.1,0.95) \approx-1+(1.1-1)-3(0.95-1) \\
& f(1.1,0.95) \approx-0.75
\end{aligned}
$$

Math 210, Exam 2, Spring 2008
 Problem 3 Solution

3. Find the critical points of $f(x, y)$ and specify for each whether it corresponds to a local maximum, local minimum or saddle point, given that the partial derivatives of f are:

$$
f_{x}=2 x-4 y, \quad f_{y}=-4 x+5 y+3 y^{2}
$$

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives $f_{x}=2 x-4 y$ and $f_{y}=-4 x+5 y+3 y^{2}$ exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=2 x-4 y=0 \\
f_{y}=-4 x+5 y+3 y^{2}=0 \tag{2}
\end{array}
$$

Solving Equation (1) for x we get:

$$
\begin{equation*}
x=2 y \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for y we get:

$$
\begin{aligned}
-4 x+5 y+3 y^{2} & =0 \\
-4(2 y)+5 y+3 y^{2} & =0 \\
3 y^{2}-3 y & =0 \\
3 y(y-1) & =0 \\
\Longleftrightarrow y=0 \text { or } y & =1
\end{aligned}
$$

We find the corresponding x-values using Equation (3): $x=2 y$.

- If $y=0$, then $x=2(0)=0$.
- If $y=1$, then $x=2(1)=2$.

Thus, the critical points are $(0,0)$ and $(2,1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=2, \quad f_{y y}=5+6 y, \quad f_{x y}=-4
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(2)(5+6 y)-(-4)^{2} \\
& D(x, y)=12 y-6
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	-6	2	Saddle Point
$(2,1)$	6	2	Local Minimum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Math 210, Exam 2, Spring 2008
 Problem 4 Solution

4. For the following integral:

$$
\int_{0}^{2} \int_{y^{2}}^{4} \frac{y^{3}}{x} e^{x^{2}} d x d y
$$

sketch the region of integration, reverse the order of integration, and evaluate the resulting integral.

Solution: The region of integration \mathcal{R} is sketched below:

The region \mathcal{R} can be described as follows:

$$
\mathcal{R}=\{(x, y): 0 \leq y \leq \sqrt{x}, 0 \leq x \leq 4\}
$$

where $y=0$ is the bottom curve and $y=\sqrt{x}$ is the top curve, obtained by solving the equation $x=y^{2}$ for y in terms of x. The projection of \mathcal{R} onto the x-axis is the interval $0 \leq x \leq 4$. Therefore, the value of the integral is:

$$
\begin{aligned}
\int_{0}^{2} \int_{y^{2}}^{4} \frac{y^{3}}{x} e^{x^{2}} d x d y & =\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y^{3}}{x} e^{x^{2}} d x d y \\
& =\int_{0}^{4} \frac{1}{x} e^{x^{2}}\left[\frac{1}{4} y^{4}\right]_{0}^{\sqrt{x}} d x \\
& =\int_{0}^{4} \frac{1}{x} e^{x^{2}}\left[\frac{1}{4} x^{2}\right] d x \\
& =\frac{1}{4} \int_{0}^{4} x e^{x^{2}} d x \\
& =\frac{1}{4}\left[\frac{1}{2} e^{x^{2}}\right]_{0}^{4} \\
& =\frac{1}{4}\left[\frac{1}{2} e^{4^{2}}-\frac{1}{2} e^{0^{2}}\right] \\
& \left.=\frac{1}{8}\left(e^{16}-1\right)\right]
\end{aligned}
$$

Math 210, Exam 2, Spring 2008
 Problem 5 Solution

5. Find the volume of the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by the plane $z=1$. (Hint: use cylindrical coordinates)

Solution: The region is plotted below.

The hint tells us that we should consider finding the volume using a triple integral. Thus, we use the formula:

$$
V=\iiint_{D} 1 d V
$$

In cylindrical coordinates, the equation for the sphere is $z=\sqrt{4-r^{2}}$, taking the positive root because the region is above the $x y$-plane. The projection of the region onto the $x y$-plane is the disk $0 \leq r \leq \sqrt{3}, 0 \leq \theta \leq 2 \pi$, where the radius of the disk was obtained by finding the intersection of the plane $z=1$ with the sphere:

$$
\begin{aligned}
z & =z \\
1 & =\sqrt{4-r^{2}} \\
1 & =4-r^{2} \\
r^{2} & =3 \\
r & =\sqrt{3}
\end{aligned}
$$

Using the fact that $d V=r d z d r d \theta$ in cylindrical coordinates, the volume is:

$$
\begin{aligned}
V & =\iiint_{D} 1 d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r[z]_{1}^{\sqrt{4-r^{2}}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r\left(\sqrt{4-r^{2}}-1\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}-\frac{1}{2} r^{2}\right]_{0}^{\sqrt{3}} d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}(4-3)^{3 / 2}-\frac{1}{2}(3)+\frac{1}{3}(4-0)^{3 / 2}+\frac{1}{2}(0)\right] d \theta \\
& =\int_{0}^{2 \pi} \frac{5}{6} d \theta \\
& =\left[\frac{5}{6} \theta\right]_{0}^{2 \pi} \\
& =\frac{5 \pi}{3}
\end{aligned}
$$

