# Math 210, Exam 2, Spring 2010 <br> Problem 1 Solution 

1. Find and classify the critical points of the function

$$
f(x, y)=x^{3}+3 x y-y^{3} .
$$

Solution: By definition, an interior point $(a, b)$ in the domain of $f$ is a critical point of $f$ if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of $f_{x}$ or $f_{y}$ does not exist at $(a, b)$.

The partial derivatives of $f(x, y)=x^{3}+3 x y-y^{3}$ are $f_{x}=3 x^{2}+3 y$ and $f_{y}=3 x-3 y^{2}$. These derivatives exist for all $(x, y)$ in $\mathbb{R}^{2}$. Thus, the critical points of $f$ are the solutions to the system of equations:

$$
\begin{align*}
& f_{x}=3 x^{2}+3 y=0  \tag{1}\\
& f_{y}=3 x-3 y^{2}=0 \tag{2}
\end{align*}
$$

Solving Equation (1) for $y$ we get:

$$
\begin{equation*}
y=-x^{2} \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for $x$ we get:

$$
\begin{aligned}
3 x-3 y^{2} & =0 \\
3 x-3\left(-x^{2}\right)^{2} & =0 \\
3 x-3 x^{4} & =0 \\
3 x\left(1-x^{3}\right) & =0
\end{aligned}
$$

We observe that the above equation is satisfied if either $x=0$ or $x^{3}-1=0 \Leftrightarrow x=1$. We find the corresponding $y$-values using Equation (3): $y=-x^{2}$.

- If $x=0$, then $y=-0^{2}=0$.
- If $x=1$, then $y=-(1)^{2}=-1$.

Thus, the critical points are $(0,0)$ and $(1,-1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of $f$ are:

$$
f_{x x}=6 x, \quad f_{y y}=-6 y, \quad f_{x y}=3
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(6 x)(-6 y)-(3)^{2} \\
& D(x, y)=-36 x y-9
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

| $(a, b)$ | $D(a, b)$ | $f_{x x}(a, b)$ | Conclusion |
| :--- | :---: | :---: | :--- |
| $(0,0)$ | -9 | 0 | Saddle Point |
| $(1,-1)$ | 27 | 6 | Local Minimum |

Recall that $(a, b)$ is a saddle point if $D(a, b)<0$ and that $(a, b)$ corresponds to a local minimum of $f$ if $D(a, b)>0$ and $f_{x x}(a, b)>0$.


Figure 1: Pictured above are level curves of $f(x, y)$. Darker colors correspond to smaller values of $f(x, y)$. It is apparent that $(0,0)$ is a saddle point and $(1,-1)$ corresponds to a local minimum.

## Math 210, Exam 2, Spring 2010 Problem 2 Solution

2. Sketch the region of integration and compute $\int_{0}^{1} \int_{0}^{y} e^{-y^{2}} d x d y$.

## Solution:



The integral is evaluated as follows:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} e^{-y^{2}} d x d y & =\int_{0}^{2}\left[x e^{-y^{2}}\right]_{0}^{y} d y \\
& =\int_{0}^{2} y e^{-y^{2}} d y \\
& =\left[-\frac{1}{2} e^{-y^{2}}\right]_{0}^{1} \\
& =\left[-\frac{1}{2} e^{-1}\right]-\left[-\frac{1}{2} e^{0}\right] \\
& =\frac{1}{2}-\frac{1}{2} e^{-1}
\end{aligned}
$$

## Math 210, Exam 2, Spring 2010 <br> Problem 3 Solution

3. Compute

$$
\iiint_{A} z d V
$$

where $A$ is the region inside the sphere $x^{2}+y^{2}+z^{2}=2$, inside the cylinder $x^{2}+y^{2}=1$, and above the $x y$-plane.

Solution: The region $A$ is plotted below.


We use Cylindrical Coordinates to evaluate the triple integral. The equations for the sphere and cylinder are then:

$$
\begin{aligned}
\text { Sphere }: & r^{2}+z^{2}=2 \Rightarrow z=\sqrt{2-r^{2}} \\
\text { Cylinder } & r^{2}=1 \Rightarrow r=1
\end{aligned}
$$

The surface that bounds $A$ from below is $z=0$ (the $x y$-plane) and the surface that bounds $A$ from above is $z=\sqrt{2-r^{2}}$ (the sphere). The projection of the region $A$ onto the $x y$-plane is the disk $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. Using the fact that $d V=r d z d r d \theta$ in Cylindrical Coordinates, the value of the triple integral is:

$$
\begin{aligned}
\iiint_{A} z d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{2-r^{2}}} z r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r\left[\frac{1}{2} z^{2}\right]_{0}^{\sqrt{2-r^{2}}} d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1} r\left(2-r^{2}\right) d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left[r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} \frac{3}{4} d \theta \\
& =\frac{3}{8}[\theta]_{0}^{2 \pi} \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

## Math 210, Exam 2, Spring 2010 <br> Problem 4 Solution

4. Compute the integral of the field $\overrightarrow{\mathbf{F}}(x, y)=(x+y) \hat{\mathbf{\imath}}+0 \hat{\mathbf{j}}$ along the curve $\overrightarrow{\mathbf{c}}(\theta)=$ $\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}}$.

Solution: By definition, the line integral of a vector field $\overrightarrow{\mathbf{F}}$ along a curve $\mathcal{C}$ with parameterization $\overrightarrow{\mathbf{c}}(\theta)=\langle x(\theta), y(\theta)\rangle, a \leq \theta \leq b$ is given by the formula:

$$
\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\int_{a}^{b} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{c}}^{\prime}(\theta) d \theta
$$

From the given parameterization $\overrightarrow{\mathbf{c}}(\theta)=\cos \theta \hat{\mathbf{\imath}}+\sin \theta \hat{\mathbf{j}}$ we have:

$$
\overrightarrow{\mathbf{c}}^{\prime}(\theta)=-\sin \theta \hat{\mathbf{\imath}}+\cos \theta \hat{\mathbf{j}}
$$

and, using the fact that $x(\theta)=\cos \theta$ and $y(\theta)=\sin \theta$, the function $\overrightarrow{\mathbf{F}}$ can be rewritten as:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=(x+y) \hat{\mathbf{\imath}}+0 \hat{\mathbf{j}} \\
& \overrightarrow{\mathbf{F}}=(\cos \theta+\sin \theta) \hat{\mathbf{\imath}}+0 \hat{\mathbf{j}}
\end{aligned}
$$

Assuming an interval $0 \leq \theta \leq 2 \pi$, the value of the line integral is then:

$$
\begin{aligned}
\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s & =\int_{a}^{b} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{c}}^{\prime}(\theta) d \theta \\
& =\int_{0}^{2 \pi}((\cos \theta+\sin \theta) \hat{\mathbf{1}}+0 \hat{\mathbf{j}}) \cdot(-\sin \theta \hat{\mathbf{\imath}}+\cos \theta \hat{\mathbf{j}}) d \theta \\
& =\int_{0}^{2 \pi}(\cos \theta+\sin \theta)(-\sin \theta) d \theta \\
& =\int_{0}^{2 \pi}\left(-\sin \theta \cos \theta-\sin ^{2} \theta\right) d \theta \\
& =\left[\frac{1}{2} \cos ^{2} \theta-\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)\right]_{0}^{2 \pi} \\
& =\left[\frac{1}{2} \cos ^{2}(2 \pi)-\frac{1}{2}(2 \pi)+\frac{1}{4} \sin (4 \pi)\right]-\left[\frac{1}{2} \cos ^{2} 0-\frac{1}{2}(0)+\frac{1}{4} \sin (0)\right] \\
& =-\pi
\end{aligned}
$$

## Math 210, Exam 2, Spring 2010 <br> Problem 5 Solution

5. Find the minimum and maximum of the function $f(x, y)=x+y^{2}$ subject to the condition $2 x^{2}+y^{2}=1$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $2 x^{2}+y^{2}=1$ is compact which guarantees the existence of absolute extrema of $f$. Then, let $g(x, y)=2 x^{2}+y^{2}=1$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=1
$$

which, when applied to our functions $f$ and $g$, give us:

$$
\begin{align*}
1 & =\lambda(4 x)  \tag{1}\\
2 y & =\lambda(2 y)  \tag{2}\\
2 x^{2}+y^{2} & =1 \tag{3}
\end{align*}
$$

We begin by noting that Equation (2) gives us:

$$
\begin{aligned}
2 y & =\lambda(2 y) \\
2 y-\lambda(2 y) & =0 \\
2 y(1-\lambda) & =0
\end{aligned}
$$

From this equation we either have $y=0$ or $\lambda=1$. Let's consider each case separately.
Case 1: Let $y=0$. We find the corresponding $x$-values using Equation (3).

$$
\begin{aligned}
2 x^{2}+y^{2} & =1 \\
2 x^{2}+0^{2} & =1 \\
x^{2} & =\frac{1}{2} \\
x & = \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

Thus, the points of interest are $\left(\frac{1}{\sqrt{2}}, 0\right)$ and $\left(-\frac{1}{\sqrt{2}}, 0\right)$.
Case 2: Let $\lambda=1$. Plugging this into Equation (1) we get:

$$
\begin{aligned}
& 1=\lambda(4 x) \\
& 1=1(4 x) \\
& x=\frac{1}{4}
\end{aligned}
$$

We find the corresponding $y$-values using Equation (3).

$$
\begin{aligned}
2 x^{2}+y^{2} & =1 \\
2\left(\frac{1}{4}\right)^{2}+y^{2} & =1 \\
\frac{1}{8}+y^{2} & =1 \\
y^{2} & =\frac{7}{8} \\
y & = \pm \sqrt{\frac{7}{8}}
\end{aligned}
$$

Thus, the points of interest are $\left(\frac{1}{4}, \sqrt{\frac{7}{8}}\right)$ and $\left(\frac{1}{4},-\sqrt{\frac{7}{8}}\right)$.
We now evaluate $f(x, y)=x+y^{2}$ at each point of interest obtained by Cases 1 and 2 .

$$
\begin{aligned}
f\left(\frac{1}{\sqrt{2}}, 0\right) & =\frac{1}{\sqrt{2}} \\
f\left(-\frac{1}{\sqrt{2}}, 0\right) & =-\frac{1}{\sqrt{2}} \\
f\left(\frac{1}{4}, \sqrt{\frac{7}{8}}\right) & =\frac{9}{8} \\
f\left(\frac{1}{4},-\sqrt{\frac{7}{8}}\right) & =\frac{9}{8}
\end{aligned}
$$

From the values above we observe that $f$ attains an absolute maximum of $\frac{9}{8}$ and an absolute minimum of $-\frac{1}{\sqrt{2}}$.


Figure 1: Shown in the figure are the level curves of $f(x, y)=x+y^{2}$ and the ellipse $2 x^{2}+y^{2}=1$ (thick, black curve). Darker colors correspond to smaller values of $f(x, y)$. Notice that (1) the parabola $f(x, y)=x+y^{2}=\frac{9}{8}$ is tangent to the ellipse at the points $\left(\frac{1}{4}, \sqrt{\frac{7}{8}}\right)$ and $\left(\frac{1}{4},-\sqrt{\frac{7}{8}}\right)$ which correspond to the absolute maximum and (2) the parabola $f(x, y)=x+y^{2}=-\frac{1}{\sqrt{2}}$ is tangent to the ellipse at the point $\left(-\frac{1}{\sqrt{2}}, 0\right)$ which corresponds to the absolute minimum.

## Math 210, Exam 2, Spring 2010 <br> Problem 6 Solution

6. For the vector field $\overrightarrow{\mathbf{F}}(x, y)=(x+y) \hat{\mathbf{\imath}}+(x-y) \hat{\mathbf{j}}$, find a function $\varphi(x, y)$ with $\operatorname{grad} \varphi=\overrightarrow{\mathbf{F}}$ or use the partial derivative test to show that such a function does not exist.

Solution: In order for the vector field $\overrightarrow{\mathbf{F}}=\langle f(x, y), g(x, y)\rangle$ to have a potential function $\varphi(x, y)$ such that $\operatorname{grad} \varphi=\overrightarrow{\mathbf{F}}$, it must be the case that:

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

Using $f(x, y)=x+y$ and $g(x, y)=x-y$ we get:

$$
\frac{\partial f}{\partial y}=1, \quad \frac{\partial g}{\partial x}=1
$$

which verifies the existence of a potential function for the given vector field.
If $\operatorname{grad} \varphi=\overrightarrow{\mathbf{F}}$, then it must be the case that:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=f(x, y)  \tag{1}\\
& \frac{\partial \varphi}{\partial y}=g(x, y) \tag{2}
\end{align*}
$$

Using $f(x, y)=x+y$ and integrating both sides of Equation (1) with respect to $x$ we get:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =f(x, y) \\
\frac{\partial \varphi}{\partial x} & =x+y \\
\int \frac{\partial \varphi}{\partial x} d x & =\int(x+y) d x \\
\varphi(x, y) & =\frac{1}{2} x^{2}+x y+h(y) \tag{3}
\end{align*}
$$

We obtain the function $h(y)$ using Equation (2). Using $g(x, y)=x-y$ we get the equation:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial y}=g(x, y) \\
& \frac{\partial \varphi}{\partial y}=x-y
\end{aligned}
$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(\frac{1}{2} x^{2}+x y+h(y)\right) & =x-y \\
x+h^{\prime}(y) & =x-y \\
h^{\prime}(y) & =-y
\end{aligned}
$$

Now integrate both sides with respect to $y$ to get:

$$
\begin{aligned}
\int h^{\prime}(y) d y & =\int-y d y \\
h(y) & =-\frac{1}{2} y^{2}+C
\end{aligned}
$$

Letting $C=0$, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$
\varphi(x, y)=\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}
$$

