Math 210, Exam 2, Spring 2012
 Problem 1 Solution

1. Consider the integral $\iint_{R}\left(x^{2}+y^{2}\right)^{3 / 2} d A$ where $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4, y \geq 0\right\}$.
(a) Rewrite this as an integral in polar coordinates.
(b) Compute the integral.

Solution:

(a) The region R is described as $\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi\}$ in polar coordinates. Therefore, the integral becomes

$$
\iint_{R}\left(x^{2}+y^{2}\right)^{3 / 2} d A=\int_{0}^{\pi} \int_{1}^{2}\left(r^{2}\right)^{3 / 2} r d r d \theta
$$

(b) The value of the integral is

$$
\begin{aligned}
\int_{0}^{\pi} \int_{1}^{2}\left(r^{2}\right)^{3 / 2} r d r d \theta & =\int_{0}^{\pi} \int_{1}^{2} r^{4} d r d \theta \\
& =\pi\left[\frac{r^{5}}{5}\right]_{1}^{2} \\
& =\frac{31 \pi}{5}
\end{aligned}
$$

Math 210, Exam 2, Spring 2012
 Problem 2 Solution

2. Let $f(x, y)=\frac{x+1}{y+1}$.
(a) Compute the gradient $\nabla f(x, y)$.
(b) Compute the directional derivative of f at the point $(2,0)$ in the direction of the unit vector $u=\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$.
(c) Find the equation of the tangent plane of the surface $z=f(x, y)$ at the point $(1,1,1)$.

Solution:

(a) The first partial derivatives of f are

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x} \frac{x+1}{y+1} & f_{y} & =\frac{\partial}{\partial y} \frac{x+1}{y+1} \\
f_{x} & =\frac{1}{y+1} \frac{\partial}{\partial x}(x+1) & f_{y} & =(x+1) \frac{\partial}{\partial y} \frac{1}{y+1} \\
f_{x} & =\frac{1}{y+1} & f_{y} & =-\frac{x+1}{(y+1)^{2}} .
\end{aligned}
$$

Therefore, the gradient of f is

$$
\vec{\nabla} f=\left\langle\frac{1}{y+1},-\frac{x+1}{(y+1)^{2}}\right\rangle
$$

(b) By definition, the directional derivative of a function $f(x, y)$ at the point (a, b) in the direction of the unit vector $\hat{\mathbf{u}}$ is

$$
D_{\hat{\mathbf{u}}} f(a, b)=\vec{\nabla} f(a, b) \bullet \hat{\mathbf{u}}
$$

The gradient of f evaluated at $(2,0)$ is

$$
\vec{\nabla} f(2,0)=\left\langle\frac{1}{0+1},-\frac{2+1}{(0+1)^{2}}\right\rangle=\langle 1,-3\rangle
$$

Thus, the directional derivative is

$$
D_{\hat{\mathbf{u}}} f(2,0)=\langle 1,-3\rangle \bullet\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle=-\frac{1}{2}+\frac{3 \sqrt{3}}{2}
$$

(c) For the surface $z=f(x, y)$, an equation for the tangent plane at $(x, y)=(a, b)$ is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

The partial derivatives evaluated at $(1,1)$ are

$$
f_{x}(1,1)=\frac{1}{2}, \quad f_{y}(1,1)=-\frac{1}{2}
$$

Therefore, an equation for the tangent plane is

$$
z=1+\frac{1}{2}(x-1)-\frac{1}{2}(y-1)
$$

Math 210, Exam 2, Spring 2012
 Problem 3 Solution

3. (a) Write a double integral that represents the volume below the surface $z=e^{-x^{2}}$ and above the triangle in the $x y$-plane with vertices at $(0,0),(1,0)$, and $(1,1)$.
(b) Compute the integral from part (a).

Solution:

(a) The volume of the region below the surface $z=f(x, y)$ and above the region D in the $x y$-plane is given by the double integral

$$
V=\iint_{D} f(x, y) d A
$$

In this problem, the region D is described as $\{(x, y): 0 \leq y \leq x, 0 \leq x \leq 1\}$. Therefore, the volume integral is

$$
V=\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x
$$

Note that D can also be described as $\{(x, y): y \leq x \leq 1,0 \leq y \leq 1\}$. However, the corresponding volume integral

$$
V=\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

cannot be evaluated easily.
(b) We evaluate the first integral found in part (a).

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x \\
V & =\int_{0}^{1} e^{-x^{2}}[y]_{0}^{x} d x \\
V & =\int_{0}^{1} x e^{-x^{2}} d x \\
V & =\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{1} \\
V & =\frac{1}{2}\left(1-e^{-1}\right)
\end{aligned}
$$

Math 210, Exam 2, Spring 2012
 Problem 4 Solution

4. Compute the triple integral $\int_{1}^{2} \int_{0}^{1} \int_{1}^{e^{y}} \frac{e^{y}}{x z^{2}} d x d y d z$

Solution: The value of the integral is computed as follows:

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{1} \int_{1}^{e^{y}} \frac{e^{y}}{x z^{2}} d x d y d z & =\int_{1}^{2} \int_{0}^{1} \frac{e^{y}}{z^{2}}[\ln (x)]_{1}^{e^{y}} d y d z \\
& =\int_{1}^{2} \int_{0}^{1} \frac{e^{y}}{z^{2}}\left[\ln \left(e^{y}\right)-\ln (1)\right] d y d z \\
& =\int_{1}^{2} \int_{0}^{1} \frac{e^{y}}{z^{2}} \cdot y d y d z \\
& =\int_{1}^{2} \frac{1}{z^{2}}\left[y e^{y}-e^{y}\right]_{0}^{1} d z \\
& =\int_{1}^{2} \frac{1}{z^{2}} d z \\
& =\left[-\frac{1}{z}\right]_{1}^{2} \\
& =\frac{1}{2}
\end{aligned}
$$

Math 210, Exam 2, Spring 2012
 Problem 5 Solution

5. Consider the function $f(x, y)=2+x^{2}-y^{2}-y$.
(a) Find the critical points of f and classify each one as a local maximum, local minimum, or saddle point.
(b) Find the absolute maximum and minimum values of f on the disk

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

and the points where these extreme values occur.

Solution:

(a) The critical points of f are the set of points (a, b) that satisfy $f_{x}(a, b)=0$ and $f_{y}(a, b)=$ 0 simultaneously. The system of equations

$$
\begin{array}{r}
f_{x}=2 x=0, \\
f_{y}=-2 y-1=0
\end{array}
$$

has the solution $x=0, y=-\frac{1}{2}$. Therefore, $\left(0,-\frac{1}{2}\right)$ is the only critical point. We classify this point using the Second Derivative Test. The second partial derivatives of f are

$$
f_{x x}=2, \quad f_{y y}=-2, \quad f_{x y}=0
$$

Therefore, the discriminant function $D(x, y)$ is

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=-4
$$

Since $D\left(0,-\frac{1}{2}\right)=-4<0$, we know that $\left(0,-\frac{1}{2}\right)$ corresponds to a saddle point.
(b) The absolute extrema will occur either at a critical point in the interior of D or on the boundary. We've already found the critical point in part (a). We must now consider the boundary which is the curve $x^{2}+y^{2}=1$.

We can proceed in one of two ways: (1) solve the boundary equation for x^{2} and plug into the function f to reduce it to a function of one variable or (2) use Lagrange Multpliers. We'll use the former method.

The boundary equation gives us $x^{2}=1-y^{2}$. Plugging into f we find that

$$
f(y)=2+\left(1-y^{2}\right)-y^{2}-y=3-y-2 y^{2}
$$

where $y \in[-1,1]$. The critical points of f in its domain are found by solving the equation $f^{\prime}(y)=0$.

$$
f^{\prime}(y)=-1-4 y=0 \quad \Longleftrightarrow \quad y=-\frac{1}{4}
$$

The value of f at the critical point $y=-\frac{1}{4}$ and at the endpoints of the domain are

$$
f\left(-\frac{1}{4}\right)=\frac{25}{8}, \quad f(-1)=2, \quad f(1)=0
$$

The value of f at the critical point in the interior of D is

$$
f\left(0,-\frac{1}{2}\right)=\frac{9}{4}
$$

The largest of the above values of the function is $\frac{25}{8}$ (the absolute maximum) while the smallest is 0 (the absolute minimum). The corresponding points are $\left(\pm \frac{\sqrt{15}}{4},-\frac{1}{4}\right)$ and $(0,1)$.

