Math 210, Final Exam, Fall 2007
 Problem 1 Solution

1. (a) Compute the integral $\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}$ where C is the circle $x^{2}+y^{2}=1$ of radius 1 centered at the origin, traversed counterclockwise, starting and ending at the point $(1,0)$ for

$$
\overrightarrow{\mathbf{F}}=\langle P, Q\rangle=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle
$$

(b) For the vector field in part (a), we know that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ (you are not to check this!. Is $\overrightarrow{\mathbf{F}}$ conservative? Explain your answer.

Solution: (a) We evaluate the vector line integral using the formula:

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}=\int_{a}^{b} \overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{r}}^{\prime}(t) d t
$$

A parameterization of C is $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t)\rangle, 0 \leq t \leq 2 \pi$. The derivative is $\overrightarrow{\mathbf{r}}^{\prime}(t)=$ $\langle-\sin (t), \cos (t)\rangle$. Using the fact that $x=\cos (t)$ and $y=\sin (t)$ from the parameterization, the vector field $\overrightarrow{\mathbf{F}}$ written in terms of t is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle \\
& \overrightarrow{\mathbf{F}}=\left\langle-\frac{\sin (t)}{\cos ^{2}(t)+\sin ^{2}(t)}, \frac{\cos (t)}{\cos ^{2}(t)+\sin ^{2}(t)}\right\rangle \\
& \overrightarrow{\mathbf{F}}=\langle-\sin (t), \cos (t)\rangle
\end{aligned}
$$

Thus, the value of the line integral is:

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\int_{0}^{2 \pi} \overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{r}}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\langle-\sin (t), \cos (t)\rangle \bullet\langle-\sin (t), \cos (t)\rangle d t \\
& =\int_{0}^{2 \pi}\left(\sin ^{2}(t)+\cos ^{2}(t)\right) d t \\
& =\int_{0}^{2 \pi} 1 d t \\
& =2 \pi
\end{aligned}
$$

(b) The vector field is NOT conservative. If it were, then the integral $\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}$ would be 0 . However, as we saw in part (a), the value of the integral is 2π.
In this problem, the vector field $\overrightarrow{\mathbf{F}}$ is undefined at the origin (0,0). Thus, the domain of $\overrightarrow{\mathbf{F}}$ is not simply connected which means that $\overrightarrow{\mathbf{F}}$ is not conservative.

Math 210, Final Exam, Fall 2007
 Problem 2 Solution

2. A particle is traveling in \mathbb{R}^{3}, with position given at time t, for $0 \leq t \leq 3$ by

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle 1+t, e^{t}, t^{2}\right\rangle
$$

(a) find the velocity of the particle at time t
(b) find the speed of the particle at time t
(c) find the acceleration of the particle at time t
(d) Write down an integral, but do NOT attempt to compute it, for the distance traveled by the particle between times $t=0$ and $t=3$.

Solution:

(a) The velocity is the derivative of position.

$$
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1, e^{t}, 2 t\right\rangle
$$

(b) The speed is the magnitude of velocity.

$$
\begin{aligned}
v(t) & =\|\overrightarrow{\mathbf{v}}(t)\| \\
v(t) & =\sqrt{1^{2}+\left(e^{t}\right)^{2}+(2 t)^{2}} \\
v(t) & =\sqrt{1+e^{2 t}+4 t^{2}}
\end{aligned}
$$

(c) The acceleration is the derivative of velocity.

$$
\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{v}}^{\prime}(t)=\left\langle 0, e^{t}, 2\right\rangle
$$

(d) The distance traveled by the particle is:

$$
\begin{gathered}
L=\int_{0}^{3}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
L=\int_{0}^{3} \sqrt{1+e^{2 t}+4 t^{2}} d t
\end{gathered}
$$

Math 210, Final Exam, Fall 2007
 Problem 3 Solution

3. (a) Find the equation of the tangent plane to the surface $z e^{x^{2}-y^{2}}=2$ at the point $(1,-1,2)$.
(b) If $f(x, y, z)=z e^{x^{2}-y^{2}}$ is the same function as in part (a), compute the directional derivative of f at the point $(1,-1,2)$ in the direction of $\langle 2,2,1\rangle$.

Solution: (a) We use the following formula for the equation for the tangent plane:

$$
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0
$$

because the surface equation is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} f(a, b, c)=$ $\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $f(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of $f(x, y, z)=z e^{x^{2}-y^{2}}$ are:

$$
\begin{aligned}
f_{x} & =2 x z e^{x^{2}-y^{2}} \\
f_{y} & =-2 y z e^{x^{2}-y^{2}} \\
f_{z} & =e^{x^{2}-y^{2}}
\end{aligned}
$$

Evaluating the partial derivatives at $(1,-1,2)$ we have:

$$
\begin{aligned}
& f_{x}(1,-1,2)=2(1)(2) e^{1^{2}-(-1)^{2}}=4 \\
& f_{y}(1,-1,2)=-2(-1)(2) e^{1^{2}-(-1)^{2}}=4 \\
& f_{z}(1,-1,2)=e^{1^{2}-(-1)^{2}}=1
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
4(x-1)+4(y+1)+(z-2)=0
$$

(b) By definition, the directional derivative of $f(x, y, z)$ at $(1,-1,2)$ in the direction of $\hat{\mathbf{u}}$ is:

$$
D_{\hat{\mathbf{u}}} f(1,-1,2)=\vec{\nabla} f(1,-1,2) \bullet \hat{\mathbf{u}}
$$

From part (b), we have $\vec{\nabla} f(1,-1,2)=\langle 4,4,1\rangle$. Recalling that $\hat{\mathbf{u}}$ must be a unit vector, we multiply $\langle 2,2,1\rangle$ by the reciprocal of its magnitude.

$$
\hat{\mathbf{u}}=\frac{1}{|\langle 2,2,1\rangle|}\langle 2,2,1\rangle=\frac{1}{3}\langle 2,2,1\rangle
$$

Therefore, the directional derivative is:

$$
\begin{aligned}
D_{\hat{\mathbf{u}}} f(1,-1,2) & =\vec{\nabla} f(1,-1,2) \bullet \hat{\mathbf{u}} \\
D_{\hat{\mathbf{u}}} f(1,-1,2) & =\langle 4,4,1\rangle \bullet \frac{1}{3}\langle 2,2,1\rangle \\
D_{\hat{\mathbf{u}}} f(1,-1,2) & =\frac{1}{3}[(4)(2)+(4)(2)+(1)(1)] \\
D_{\hat{\mathbf{u}}} f(1,-1,2) & =\frac{17}{3}
\end{aligned}
$$

Math 210, Final Exam, Fall 2007
 Problem 4 Solution

4. Find the critical points of the function $f(x, y)=x y-\frac{x^{2}}{2}+\frac{y^{3}}{3}-2 y$ and determine which are local maxima, local minima, or saddles.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x y-\frac{x^{2}}{2}+\frac{y^{3}}{3}-2 y$ are $f_{x}=y-x$ and $f_{y}=x+y^{2}-2$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=y-x=0 \\
f_{y}=x+y^{2}-2=0 \tag{2}
\end{array}
$$

Solving Equation (1) for y we get:

$$
\begin{equation*}
y=x \tag{3}
\end{equation*}
$$

Substituting this into Equation (2) and solving for x we get:

$$
\begin{aligned}
x+y^{2}-2 & =0 \\
x+(x)^{2}-2 & =0 \\
x^{2}+x-2 & =0 \\
(x+2)(x-1) & =0 \\
\Longleftrightarrow \quad x=-2 \text { or } x & =1
\end{aligned}
$$

We find the corresponding y-values using Equation (3): $y=x$.

- If $x=-2$, then $y=-2$.
- If $x=1$, then $y=1$.

Thus, the critical points are $(-2,-2)$ and $(1,1)$.
We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=-1, \quad f_{y y}=2 y, \quad f_{x y}=1
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(-1)(2 y)-(1)^{2} \\
& D(x, y)=-2 y-1
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(-2,-2)$	3	-1	Local Maximum
$(1,1)$	-3	-1	Saddle Point

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local maximum of f if $D(a, b)>0$ and $f_{x x}(a, b)<0$.

Math 210, Final Exam, Fall 2007
 Problem 5 Solution

5. Compute the integral $\iint_{D} e^{y^{3}} d A$ where D is the region in the 1 st quadrant of the $x y$ plane bounded by the y-axis, the parabola $x=y^{2}$, and the line $y=1$. (Hint: it makes a difference in which order you do this integral).

Solution:

From the figure we see that the region D is bounded on the left by $=0$ and on the right by $x=y^{2}$. The projection of D onto the y-axis is the interval $0 \leq y \leq 1$. Using the order of integration $d x d y$ we have:

$$
\begin{aligned}
\iint_{D} e^{y^{3}} d A & =\int_{0}^{1} \int_{0}^{y^{2}} e^{y^{3}} d x d y \\
& =\int_{0}^{1} e^{y^{3}}[x]_{0}^{y^{2}} d y \\
& =\int_{0}^{1} y^{2} e^{y^{3}} d y \\
& =\left.\frac{1}{3} e^{y^{3}}\right|_{0} ^{1} \\
& =\frac{1}{3} e^{1^{3}}-\frac{1}{3} e^{0^{3}} \\
& =\frac{1}{3}(e-1)
\end{aligned}
$$

Math 210, Final Exam, Fall 2007
 Problem 6 Solution

6. (a) Let P be the parallelogram in the $x y$ plane with vertices $A=(1,1), B=(2,3)$, $C=(1,4)$, and $D=(0,2)$. Compute the area of P.
(b) Let C be the closed curve which is the boundary of the parallelogram P of part (a), traversed counterclockwise, i.e. it consists of the directed line segments $A B, B C, C D, D A$. Use Green's theorem to compute $\oint_{C}-y d x+x d y$.

Solution:

(a) The area of a parallelogram spanned by two vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is, by definition:

$$
A=\|\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}\|
$$

Let $\overrightarrow{\mathbf{u}}=\overrightarrow{A B}=\langle 1,2\rangle$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{B C}=\langle-1,1\rangle$. The cross product of these two vectors is $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\langle 0,0,3\rangle$. Thus, the area of the parallelogram is

$$
A=\|\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}\|=\|\langle 0,0,3\rangle\|=3
$$

(b) Green's theorem states that:

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

In this problem we have $P=-y$ and $Q=x$ giving us:

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1-(-1)=2
$$

Thus, the line integral is:

$$
\begin{aligned}
\oint_{C}-y d x+x d y & =\iint_{D} 2 d A \\
& =2 \iint_{D} 1 d A \\
& =2 \times(\text { Area of } D) \\
& =2 \times 3 \\
& =6
\end{aligned}
$$

Math 210, Final Exam, Fall 2007
 Problem 7 Solution

7. Let B be the region in \mathbb{R}^{3} bounded by the paraboloid $z=x^{2}+y^{2}$, the plane $z=0$, and the cylinder $x^{2}+y^{2}=1$. Draw a sketch of the region and compute the integral $\iiint_{B} x^{2} d V$.

Solution: The region D is plotted below.

We use Cylindrical Coordinates to evaluate the triple integral. First, the integrand becomes:

$$
\begin{aligned}
f(x, y, z) & =x^{2} \\
f(r, \theta, z) & =(r \cos \theta)^{2}
\end{aligned}
$$

Next, the equations for the paraboloid and cylinder are then:

$$
\begin{aligned}
\text { Paraboloid : } & z=r^{2} \\
\text { Cylinder : } & r=1
\end{aligned}
$$

The surface that bounds D from below is $z=0$ (the $x y$-plane) and the surface that bounds D from above is $z=r^{2}$ (the paraboloid). The projection of the region D onto the $x y$-plane is the disk $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$.
Finally, using the fact that $d V=r d z d r d \theta$ in Cylindrical Coordinates, the value of the triple integral is:

$$
\begin{aligned}
\iiint_{D} x^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r^{2}}(r \cos \theta)^{2} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r^{2}} r^{3} \cos ^{2} \theta d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{3} \cos ^{2} \theta[z]_{0}^{r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{5} \cos ^{2} \theta d r d \theta \\
& =\int_{0}^{2 \pi} \cos ^{2} \theta\left[\frac{1}{6} r^{6}\right]_{0}^{1} d \theta \\
& =\frac{1}{6} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \\
& =\frac{1}{6}\left[\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)\right]_{0}^{2 \pi} \\
& =\frac{\pi}{6}
\end{aligned}
$$

Math 210, Final Exam, Fall 2007
 Problem 8 Solution

8. Consider the vector field $\overrightarrow{\mathbf{F}}=\left\langle x^{2} y, y z, z^{3}\right\rangle$.
(a) Compute $\operatorname{Curl}(\overrightarrow{\mathbf{F}})$.
(b) Is $\overrightarrow{\mathbf{F}}$ a conservative vector field? Explain your answer.
(c) Compute $\operatorname{Div}(\overrightarrow{\mathbf{F}})$.
(d) $\operatorname{Compute} \operatorname{Div}(\operatorname{Curl}(\overrightarrow{\mathbf{F}}))$.

Solution:

(a) The curl of the vector field is:

$$
\begin{aligned}
\vec{\nabla} \times \overrightarrow{\mathbf{F}} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & y z & z^{3}
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y} z^{3}-\frac{\partial}{\partial z} y z\right) \hat{\mathbf{i}}-\left(\frac{\partial}{\partial x} z^{3}-\frac{\partial}{\partial z} x^{2} y\right) \hat{\mathbf{j}}+\left(\frac{\partial}{\partial x} y z-\frac{\partial}{\partial y} x^{2} y\right) \hat{\mathbf{k}} \\
& =(0-y) \hat{\mathbf{1}}-(0-0) \hat{\mathbf{j}}+\left(0-x^{2}\right) \hat{\mathbf{k}} \\
& =\left\langle-y, 0,-x^{2}\right\rangle
\end{aligned}
$$

(b) Since $\vec{\nabla} \times \overrightarrow{\mathbf{F}} \neq \overrightarrow{\mathbf{0}}$, the vector field is not conservative.
(c) The divergence of the vector field is:

$$
\begin{aligned}
\vec{\nabla} \bullet \overrightarrow{\mathbf{F}} & =\frac{\partial}{\partial x} x^{2} y+\frac{\partial}{\partial y} y z+\frac{\partial}{\partial z} z^{3} \\
& =2 x y+z+3 z^{2}
\end{aligned}
$$

(d) The divergence of the curl of the vector field is:

$$
\begin{aligned}
\vec{\nabla} \bullet(\vec{\nabla} \times \overrightarrow{\mathbf{F}}) & =\vec{\nabla} \bullet\left\langle-y, 0,-x^{2}\right\rangle \\
& =\frac{\partial}{\partial x}(-y)+\frac{\partial}{\partial y}(0)+\frac{\partial}{\partial z}\left(-x^{2}\right) \\
& =0+0+0 \\
& =0
\end{aligned}
$$

Math 210, Final Exam, Fall 2007
 Problem 9 Solution

9. Let S be the surface which is the part of the plane $2 x-2 y+z=5$ above the square in the $x y$ plane with vertices $(0,0),(1,0),(1,1),(0,1)$. Compute the integral $\iint_{S} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}$ where $d \overrightarrow{\mathbf{S}}$ is the upward pointing normal and $\overrightarrow{\mathbf{F}}=\langle x, y, z\rangle$.

Solution: The formula we will use to compute the surface integral of the vector field $\overrightarrow{\mathbf{F}}$ is:

$$
\iint_{S} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}=\iint_{R} \overrightarrow{\mathbf{F}} \bullet\left(\overrightarrow{\mathbf{T}}_{u} \times \overrightarrow{\mathbf{T}}_{v}\right) d A
$$

where the function $\overrightarrow{\mathbf{r}}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ with domain R is a parameterization of the surface S and the vectors $\overrightarrow{\mathbf{T}}_{u}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}$ and $\overrightarrow{\mathbf{T}}_{v}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}$ are the tangent vectors.

We begin by finding a parameterization of the plane. Let $x=u$ and $y=v$. Then, $z=$ $5-2 u+2 v$ using the equation for the plane. Thus, we have $\overrightarrow{\mathbf{r}}(u, v)=\langle u, v, 5-2 u+2 v\rangle$. Furthermore, the domain R is the set of all points (u, v) satisfying $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Therefore, a parameterization of S is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}(u, v)=\langle u, v, 5-2 u+2 v\rangle \\
& R=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}
\end{aligned}
$$

The tangent vectors $\overrightarrow{\mathrm{T}}_{u}$ and $\overrightarrow{\mathrm{T}}_{v}$ are then:

$$
\begin{aligned}
& \overrightarrow{\mathbf{T}}_{u}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}=\langle 1,0,-2\rangle \\
& \overrightarrow{\mathbf{T}}_{v}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}=\langle 0,1,2\rangle
\end{aligned}
$$

The cross product of these vectors is:

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}_{u} \times \overrightarrow{\mathbf{T}}_{v} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 0 & -2 \\
0 & 1 & 2
\end{array}\right| \\
& =\langle 2,-2,1\rangle
\end{aligned}
$$

The vector field $\overrightarrow{\mathbf{F}}=\langle x, y, z\rangle$ written in terms of u and v is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=\langle x, y, z\rangle \\
& \overrightarrow{\mathbf{F}}=\langle u, v, 5-2 u+2 v\rangle
\end{aligned}
$$

Before computing the surface integral, we note that $\overrightarrow{\mathbf{T}}_{u} \times \overrightarrow{\mathbf{T}}_{v}$ points upward, as desired, since the third component of the vector is positive.

The value of the surface integral is:

$$
\begin{aligned}
\iint_{S} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}} & =\iint_{R} \overrightarrow{\mathbf{F}} \bullet\left(\overrightarrow{\mathbf{T}}_{u} \times \overrightarrow{\mathbf{T}}_{v}\right) d A \\
& =\iint_{R}\langle u, v, 5-2 u+2 v\rangle \bullet\langle 2,-2,1\rangle d A \\
& =\iint_{R}(2 u-2 v+5-2 u+2 v) d A \\
& =\iint_{R} 5 d A \\
& =5 \iint_{R} 1 d A \\
& =5 \times(\text { Area of } R) \\
& =5 \times 1 \\
& =5
\end{aligned}
$$

