Math 210, Final Exam, Fall 2010 Problem 1 Solution

- 1. Let $\overrightarrow{\mathbf{u}} = \langle 1, -1, 0 \rangle$ and $\overrightarrow{\mathbf{v}} = \langle 2, 1, 3 \rangle$.
 - (a) Is the angle between $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ acute, obtuse, or right?
 - (b) Find an equation for the plane through (1, -1, 2) containing $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

Solution:

(a) The cosine of the angle between $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is:

$$\cos \theta = \frac{\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}}}{\left|\left|\overrightarrow{\mathbf{u}}\right|\right| \left|\left|\overrightarrow{\mathbf{v}}\right|\right|}$$

Since the magnitudes of the vectors are positive, the sign of the dot product will determine whether the angle is acute, obtuse, or right. The dot product is:

$$\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}} = \langle 1, -1, 0 \rangle \bullet \langle 2, 1, 3 \rangle = 1$$

Since the dot product is positive we know that $\cos \theta > 0$ and, thus, the angle is **acute**.

(b) A vector perpendicular to the plane is the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ which both lie in the plane.

$$\vec{\mathbf{n}} = \vec{\mathbf{u}} \times \vec{\mathbf{v}}$$

$$\vec{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 0 \\ 2 & 1 & 3 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} \begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} [(-1)(3) - (0)(1)] - \hat{\mathbf{j}} [(1)(3) - (0)(2)] + \hat{\mathbf{k}} [(1)(1) - (-1)(2)]$$

$$\vec{\mathbf{n}} = -3\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$

$$\vec{\mathbf{n}} = \langle -3, -3, 3 \rangle$$

Using (1, -1, 2) as a point on the plane, we have:

$$-3(x-1) - 3(y+1) + 3(z-2) = 0$$

Math 210, Final Exam, Fall 2010 Problem 2 Solution

- 2. The curve $\overrightarrow{\mathbf{r}}(t) = \langle 2\sin(t), 2\cos(t), -t \rangle$ describes the movement of a particle in \mathbb{R}^3 .
 - (a) Find the velocity and the acceleration of the particle as a function of t.
 - (b) Find the tangent line to the curve at time $t = \pi/4$.
 - (c) Find the distance traveled between time t = 0 and $t = \pi$.

Solution:

(a) The velocity and acceleration vectors are:

$$\overrightarrow{\mathbf{v}}(t) = \overrightarrow{\mathbf{r}}'(t) = \langle 2\cos(t), -2\sin(t), -1 \rangle$$

$$\overrightarrow{\mathbf{a}}(t) = \overrightarrow{\mathbf{v}}'(t) = \langle -2\sin(t), -2\cos(t), 0 \rangle$$

(b) A vector equation for the line tangent to $\overrightarrow{\mathbf{r}}(t)$ at t_0 is:

$$\overrightarrow{\mathbf{L}}(t) = \overrightarrow{\mathbf{r}}(t_0) + \overrightarrow{\mathbf{r}}'(t_0)(t-t_0)$$

Applying this formula to our vectors $\overrightarrow{\mathbf{r}}(t)$ and $\overrightarrow{\mathbf{r}}'(t)$ at $t_0 = \pi/4$ we have:

$$\vec{\mathbf{L}}(t) = \vec{\mathbf{r}} \left(\frac{\pi}{4}\right) + \vec{\mathbf{r}}' \left(\frac{\pi}{4}\right) \left(t - \frac{\pi}{4}\right)$$
$$\vec{\mathbf{L}}(t) = \left\langle 2\sin\left(\frac{\pi}{4}\right), 2\cos\left(\frac{\pi}{4}\right), -\frac{\pi}{4}\right\rangle + \left\langle 2\cos\left(\frac{\pi}{4}\right), -2\sin\left(\frac{\pi}{4}\right), -1\right\rangle \left(t - \frac{\pi}{4}\right)$$
$$\vec{\mathbf{L}}(t) = \left\langle \sqrt{2}, \sqrt{2}, -\frac{\pi}{4}\right\rangle + \left\langle \sqrt{2}, -\sqrt{2}, -1\right\rangle \left(t - \frac{\pi}{4}\right)$$

(c) The distance traveled by the particle is:

$$\begin{split} L &= \int_0^{\pi} \left| \left| \vec{\mathbf{r}}'(t) \right| \right| \, dt \\ &= \int_0^{\pi} \sqrt{(2\cos(t))^2 + (-2\sin(t))^2 + (-1)^2} \, dt \\ &= \int_0^{\pi} \sqrt{4\cos^2(t) + 4\sin^2(t) + 1} \, dt \\ &= \int_0^{\pi} \sqrt{4 + 1} \, dt \\ &= \int_0^{\pi} \sqrt{5} \, dt \\ &= \left[\pi \sqrt{5} \right] \end{split}$$

Math 210, Final Exam, Fall 2010 Problem 3 Solution

3. Use Green's Theorem to compute $\oint_C y \, dx + x^2 y \, dy$ where C traces the triangle with vertices (0,0), (2,0), (1,1) traversed in this order.

Solution: Green's Theorem states that

$$\oint_C \overrightarrow{\mathbf{F}} \bullet d\overrightarrow{\mathbf{s}} = \iint_D \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) \, dA$$

where D is the region enclosed by C. The integrand of the double integral is:

$$\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} x^2 y - \frac{\partial}{\partial y} y$$
$$= 2xy - 1$$

Thus, the value of the integral is:

$$\begin{split} \oint_C \overrightarrow{\mathbf{F}} \bullet d\overrightarrow{\mathbf{s}} &= \iint_D \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dA \\ &= \iint_D (2xy - 1) dA \\ &= \int_0^1 \int_y^{-y+2} (2xy - 1) dx dy \\ &= \int_0^1 \left[x^2y - x\right]_y^{-y+2} dy \\ &= \int_0^1 \left[\left((-y + 2)^2y - (-y + 2)\right) - \left((y)^2y - y\right)\right] dy \\ &= \int_0^1 \left(y^3 - 4y^2 + 4y + y - 2 - y^3 + y\right) dy \\ &= \int_0^1 \left(-4y^2 + 6y - 2\right) dy \\ &= \left[-\frac{4}{3}y^3 + 3y^2 - 2y\right]_0^1 \\ &= -\frac{4}{3} + 3 - 2 \\ &= \left[-\frac{1}{3}\right] \end{split}$$

Math 210, Final Exam, Fall 2010 Problem 4 Solution

4. Find the critical points of $z = x^3 + x^2 + y^2 - 2xy - 12x$ and use the second derivative test to classify them as local maxima, local minima or saddles.

Solution: By definition, an interior point (a, b) in the domain of f is a **critical point** of f if either

- (1) $f_x(a,b) = f_y(a,b) = 0$, or
- (2) one (or both) of f_x or f_y does not exist at (a, b).

The partial derivatives of $f(x, y) = x^3 + x^2 + y^2 - 2xy - 12x$ are $f_x = 3x^2 + 2x - 2y - 12$ and $f_y = 2y - 2x$. These derivatives exist for all (x, y) in \mathbb{R}^2 . Thus, the critical points of fare the solutions to the system of equations:

$$f_x = 3x^2 + 2x - 2y - 12 = 0 \tag{1}$$

$$f_y = 2y - 2x = 0 \tag{2}$$

Solving Equation (2) for y we get:

$$y = x \tag{3}$$

Substituting this into Equation (1) and solving for x we get:

$$3x^{2} + 2x - 2y - 12 = 0$$

$$3x^{2} + 2x - 2x - 12 = 0$$

$$3x^{2} = 12$$

$$x^{2} = 4$$

$$\iff x = -2 \text{ or } x = 2$$

We find the corresponding y-values using Equation (3): y = x.

- If x = 2, then y = 2.
- If x = -2, then y = -2.

Thus, the critical points are (2,2) and (-2,-2)

We now use the **Second Derivative Test** to classify the critical points. The second derivatives of f are:

$$f_{xx} = 6x + 2, \quad f_{yy} = 2, \quad f_{xy} = -2$$

The discriminant function D(x, y) is then:

$$D(x, y) = f_{xx}f_{yy} - f_{xy}^2$$

$$D(x, y) = (6x + 2)(2) - (-2)^2$$

$$D(x, y) = 12x$$

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a,b)	D(a, b)	$f_{xx}(a,b)$	Conclusion
(2, 2)	24	14	Local Minimum
(-2, -2)	-24	-10	Saddle Point

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local minimum of f if D(a, b) > 0 and $f_{xx}(a, b) > 0$.

Math 210, Final Exam, Fall 2010 Problem 5 Solution

5. Consider the vector field $\overrightarrow{\mathbf{F}} = \langle cx^2y^2 - e^y, 2x^3y - xe^y \rangle$ on \mathbb{R}^2 where c is a constant.

- (a) Find the value for c that makes $\overrightarrow{\mathbf{F}}$ a conservative vector field.
- (b) With c as in (a) find a function $\phi(x, y)$ so that $\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla} \phi$.

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{F}} = \langle f(x,y), g(x,y) \rangle$ to be conservative, it must be the case that: $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x}$

Using
$$f(x,y) = cx^2y^2 - e^y$$
 and $g(x,y) = 2x^3y - xe^y$ we get:
 $\partial f \quad \partial g$

$$\frac{\partial y}{\partial y} = \frac{\partial y}{\partial x}$$
$$2cx^2y - e^y = 6x^2y - e^y$$
$$2cx^2y = 6x^2y$$
$$c = 3$$

(b) If $\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla} \varphi$, then it must be the case that:

$$\frac{\partial\varphi}{\partial x} = f(x,y) \tag{1}$$

$$\frac{\partial \varphi}{\partial y} = g(x, y) \tag{2}$$

Using $f(x, y) = 3x^2y^2 - e^y$ and integrating both sides of Equation (1) with respect to x we get:

$$\frac{\partial \varphi}{\partial x} = f(x, y)$$

$$\frac{\partial \varphi}{\partial x} = 3x^2 y^2 - e^y$$

$$\int \frac{\partial \varphi}{\partial x} dx = \int \left(3x^2 y^2 - e^y\right) dx$$

$$\varphi(x, y) = x^3 y^2 - xe^y + h(y)$$
(3)

We obtain the function h(y) using Equation (2). Using $g(x, y) = 2x^3y - xe^y$ we get the equation:

$$\frac{\partial \varphi}{\partial y} = g(x, y)$$
$$\frac{\partial \varphi}{\partial y} = 2x^3y - xe^y$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$\frac{\partial}{\partial y} \left(x^3 y^2 - x e^y + h(y) \right) = 2x^3 y - x e^y$$
$$2x^3 y - x e^y + h'(y) = 2x^3 y - x e^y$$
$$h'(y) = 0$$

which implies that h(y) = 0. Letting C = 0, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$\varphi(x,y) = x^3 y^2 - x e^y$$

Math 210, Final Exam, Fall 2010 Problem 6 Solution

6. Compute the volume of the region in \mathbb{R}^3 bounded by the paraboloid $z = x^2 + y^2$, the cylinder $x^2 + y^2 = 9$, and the plane z = 0.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral formula for computing the volume of a region R bounded above by the surface z = f(x, y) and below by the surface z = g(x, y) with projection D onto the xy-plane is:

$$V = \iint_D (f(x,y) - g(x,y)) \, dA$$

In this case, the top surface is $z = x^2 + y^2 = r^2$ in polar coordinates and the bottom surface is z = 0. The projection of R onto the xy-plane is a disk of radius 3, described in polar coordinates as $D = \{(r, \theta) : 0 \le r \le 3, 0 \le \theta \le 2\pi\}$. Thus, the volume formula is:

$$V = \int_0^{2\pi} \int_0^3 \left(r^2 - 0 \right) \, r \, dr \, d\theta \tag{1}$$

The triple integral formula for computing the volume of R is:

$$V = \iint_D \left(\int_{g(x,y)}^{f(x,y)} 1 \, dz \right) \, dA$$

Using cylindrical coordinates we have:

$$V = \int_0^{2\pi} \int_0^3 \int_0^{r^2} 1 r \, dz \, dr \, d\theta \tag{2}$$

Evaluating Equation (1) we get:

$$V = \int_0^{2\pi} \int_0^3 (r^2 - 0) r \, dr \, d\theta$$
$$= \int_0^{2\pi} \left[\frac{1}{4} r^4 \right]_0^3 d\theta$$
$$= \int_0^{2\pi} \frac{81}{4} \, d\theta$$
$$= \left[\frac{81}{4} \right]_0^{2\pi}$$
$$= \left[\frac{81\pi}{2} \right]$$

Note that Equation (2) will evaluate to the same answer.

Math 210, Final Exam, Fall 2010 Problem 7 Solution

- 7. Given the function $f(x, y) = xy^2 + y\cos(x)$ find:
 - (a) the gradient $\overrightarrow{\nabla} f$ at the point P = (0, 1).
 - (b) the directional derivative $D_{\mathbf{v}}f(0,1)$, where $\overrightarrow{\mathbf{f}}$ is the unit vector from P = (0,1) towards Q = (2,3).

Solution:

(a) The gradient of f is:

$$\overrightarrow{\nabla} f = \langle f_x, f_y \rangle$$
$$= \langle y^2 - y \sin(x), 2xy + \cos(x) \rangle$$

At the point P = (0, 1) we have:

$$\overrightarrow{\nabla} f(0,1) = \left\langle 1^2 - (1)\sin(0), 2(0)(1) + \cos(0) \right\rangle$$
$$= \boxed{\langle 1,1 \rangle}$$

(b) The unit vector $\overrightarrow{\mathbf{v}}$ that points from P = (0, 1) towards Q = (2, 3) is:

$$\vec{\mathbf{v}} = \frac{\overrightarrow{PQ}}{\left|\left|\overrightarrow{PQ}\right|\right|} \\ = \frac{\langle 2, 2 \rangle}{\left|\left|\langle 2, 2 \rangle\right|\right|} \\ = \frac{\langle 2, 2 \rangle}{2\sqrt{2}} \\ = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

Thus, the directional derivative $D_{\mathbf{v}}f(0,1)$ is:

$$D_{\mathbf{v}}f(0,1) = \overrightarrow{\nabla}f(0,1) \bullet \overrightarrow{\mathbf{v}}$$
$$= \langle 1,1 \rangle \bullet \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$
$$= \boxed{\sqrt{2}}$$

Math 210, Final Exam, Fall 2010 Problem 8 Solution

8. Use the method of Lagrange multipliers to find points where f(x, y) = xy attains its maximum and minimum subject to the constraint: $x^2 + 4y^2 = 2$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^2 + 4y^2 = 2$ is compact which guarantees the existence of absolute extrema of f. Then let $g(x, y) = x^2 + 4y^2$. We look for solutions to the following system of equations:

$$f_x = \lambda g_x, \quad f_y = \lambda g_y, \quad g(x, y) = 2$$

which, when applied to our functions f and g, give us:

$$y = \lambda \left(2x\right) \tag{1}$$

$$x = \lambda \left(8y \right) \tag{2}$$

$$x^2 + 4y^2 = 2 \tag{3}$$

Dividing Equation (1) by Equation (2) gives us:

$$\frac{y}{x} = \frac{\lambda(2x)}{\lambda(8y)}$$
$$\frac{y}{x} = \frac{x}{4y}$$
$$4y^2 = x^2$$

Combining this result with Equation (3) and solving for x gives us:

$$x^{2} + 4y^{2} = 2$$
$$x^{2} + x^{2} = 2$$
$$2x^{2} = 2$$
$$x^{2} = 1$$
$$x = \pm 1$$

When x = 1 we have:

$$4y^{2} = x^{2}$$
$$4y^{2} = 1^{2}$$
$$y^{2} = \frac{1}{4}$$
$$y = \pm \frac{1}{2}$$

We obtain the same values of y when x = -1. Therefore, the points of interest are $(1, \frac{1}{2})$, $(1, -\frac{1}{2})$, $(1, -\frac{1}{2})$, and $(-1, -\frac{1}{2})$.

We now evaluate f(x, y) = xy at each point of interest.

$$f(1, \frac{1}{2}) = (1)(\frac{1}{2}) = \frac{1}{2}$$

$$f(1, -\frac{1}{2}) = (1)(-\frac{1}{2}) = -\frac{1}{2}$$

$$f(-1, \frac{1}{2}) = (-1)(\frac{1}{2}) = -\frac{1}{2}$$

$$f(-1, -\frac{1}{2}) = (-1)(-\frac{1}{2}) = \frac{1}{2}$$

From the values above we observe that f attains an absolute maximum of $\frac{1}{2}$ and an absolute minimum of $-\frac{1}{2}$.

Math 210, Final Exam, Fall 2010 Problem 9 Solution

9. Given the function $f(x, y) = xe^{xy}$ compute the partial derivatives:

$$\frac{\partial f}{\partial x}, \qquad \frac{\partial f}{\partial y}, \qquad \frac{\partial^2 f}{\partial x \partial x}, \qquad \frac{\partial^2 f}{\partial x \partial y}, \qquad \frac{\partial^2 f}{\partial y \partial y}$$

Solution: The first partial derivatives of f(x, y) are

$$\frac{\partial f}{\partial x} = e^{xy} + xye^{xy} = e^{xy}(1+xy)$$
$$\frac{\partial f}{\partial y} = x^2 e^{xy}$$

The second derivatives are:

$$\frac{\partial^2 f}{\partial x \partial x} = \frac{\partial}{\partial x} \left(e^{xy} (1 + xy) \right) = y e^{xy} (1 + xy) + y e^{xy}$$
$$\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial}{\partial y} \left(x^2 e^{xy} \right) = x^3 e^{xy}$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(x^2 e^{xy} \right) = 2x e^{xy} + x^2 y e^{xy}$$