Math 210, Final Exam, Fall 2010
 Problem 1 Solution

1. Let $\overrightarrow{\mathbf{u}}=\langle 1,-1,0\rangle$ and $\overrightarrow{\mathrm{v}}=\langle 2,1,3\rangle$.
(a) Is the angle between $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathrm{v}}$ acute, obtuse, or right?
(b) Find an equation for the plane through $(1,-1,2)$ containing $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

Solution:

(a) The cosine of the angle between $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is:

$$
\cos \theta=\frac{\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\|}
$$

Since the magnitudes of the vectors are positive, the sign of the dot product will determine whether the angle is acute, obtuse, or right. The dot product is:

$$
\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}}=\langle 1,-1,0\rangle \bullet\langle 2,1,3\rangle=1
$$

Since the dot product is positive we know that $\cos \theta>0$ and, thus, the angle is acute.
(b) A vector perpendicular to the plane is the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 0 \\
2 & 1 & 3
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{cc}
-1 & 0 \\
1 & 3
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
1 & 0 \\
2 & 3
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(-1)(3)-(0)(1)]-\hat{\mathbf{j}}[(1)(3)-(0)(2)]+\hat{\mathbf{k}}[(1)(1)-(-1)(2)] \\
& \overrightarrow{\mathbf{n}}=-3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle-3,-3,3\rangle
\end{aligned}
$$

Using $(1,-1,2)$ as a point on the plane, we have:

$$
-3(x-1)-3(y+1)+3(z-2)=0
$$

Math 210, Final Exam, Fall 2010
 Problem 2 Solution

2. The curve $\overrightarrow{\mathbf{r}}(t)=\langle 2 \sin (t), 2 \cos (t),-t\rangle$ describes the movement of a particle in \mathbb{R}^{3}.
(a) Find the velocity and the acceleration of the particle as a function of t.
(b) Find the tangent line to the curve at time $t=\pi / 4$.
(c) Find the distance traveled between time $t=0$ and $t=\pi$.

Solution:

(a) The velocity and acceleration vectors are:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}(t) & =\overrightarrow{\mathbf{r}}^{\prime}(t) \\
\overrightarrow{\mathbf{a}}(t) & =\langle 2 \cos (t),-2 \sin (t),-1\rangle \\
\overrightarrow{\mathbf{v}}^{\prime}(t) & =\langle-2 \sin (t),-2 \cos (t), 0\rangle
\end{aligned}
$$

(b) A vector equation for the line tangent to $\overrightarrow{\mathbf{r}}(t)$ at t_{0} is:

$$
\overrightarrow{\mathbf{L}}(t)=\overrightarrow{\mathbf{r}}\left(t_{0}\right)+\overrightarrow{\mathbf{r}}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)
$$

Applying this formula to our vectors $\overrightarrow{\mathbf{r}}(t)$ and $\overrightarrow{\mathbf{r}}^{\prime}(t)$ at $t_{0}=\pi / 4$ we have:

$$
\begin{aligned}
& \overrightarrow{\mathbf{L}}(t)=\overrightarrow{\mathbf{r}}\left(\frac{\pi}{4}\right)+\overrightarrow{\mathbf{r}}^{\prime}\left(\frac{\pi}{4}\right)\left(t-\frac{\pi}{4}\right) \\
& \overrightarrow{\mathbf{L}}(t)=\left\langle 2 \sin \left(\frac{\pi}{4}\right), 2 \cos \left(\frac{\pi}{4}\right),-\frac{\pi}{4}\right\rangle+\left\langle 2 \cos \left(\frac{\pi}{4}\right),-2 \sin \left(\frac{\pi}{4}\right),-1\right\rangle\left(t-\frac{\pi}{4}\right) \\
& \overrightarrow{\mathbf{L}}(t)=\left\langle\sqrt{2}, \sqrt{2},-\frac{\pi}{4}\right\rangle+\langle\sqrt{2},-\sqrt{2},-1\rangle\left(t-\frac{\pi}{4}\right)
\end{aligned}
$$

(c) The distance traveled by the particle is:

$$
\begin{aligned}
L & =\int_{0}^{\pi}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
& =\int_{0}^{\pi} \sqrt{(2 \cos (t))^{2}+(-2 \sin (t))^{2}+(-1)^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{4 \cos ^{2}(t)+4 \sin ^{2}(t)+1} d t \\
& =\int_{0}^{\pi} \sqrt{4+1} d t \\
& =\int_{0}^{\pi} \sqrt{5} d t \\
& =\pi \sqrt{5}
\end{aligned}
$$

Math 210, Final Exam, Fall 2010
 Problem 3 Solution

3. Use Green's Theorem to compute $\oint_{C} y d x+x^{2} y d y$ where C traces the triangle with vertices $(0,0),(2,0),(1,1)$ traversed in this order.

Solution: Green's Theorem states that

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}=\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A
$$

where D is the region enclosed by C. The integrand of the double integral is:

$$
\begin{aligned}
\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y} & =\frac{\partial}{\partial x} x^{2} y-\frac{\partial}{\partial y} y \\
& =2 x y-1
\end{aligned}
$$

Thus, the value of the integral is:

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\iint_{D}(2 x y-1) d A \\
& =\int_{0}^{1} \int_{y}^{-y+2}(2 x y-1) d x d y \\
& =\int_{0}^{1}\left[x^{2} y-x\right]_{y}^{-y+2} d y \\
& =\int_{0}^{1}\left[\left((-y+2)^{2} y-(-y+2)\right)-\left((y)^{2} y-y\right)\right] d y \\
& =\int_{0}^{1}\left(y^{3}-4 y^{2}+4 y+y-2-y^{3}+y\right) d y \\
& =\int_{0}^{1}\left(-4 y^{2}+6 y-2\right) d y \\
& =\left[-\frac{4}{3} y^{3}+3 y^{2}-2 y\right]_{0}^{1} \\
& =-\frac{4}{3}+3-2 \\
& =-\frac{1}{3}
\end{aligned}
$$

Math 210, Final Exam, Fall 2010
 Problem 4 Solution

4. Find the critical points of $z=x^{3}+x^{2}+y^{2}-2 x y-12 x$ and use the second derivative test to classify them as local maxima, local minima or saddles.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x^{3}+x^{2}+y^{2}-2 x y-12 x$ are $f_{x}=3 x^{2}+2 x-2 y-12$ and $f_{y}=2 y-2 x$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=3 x^{2}+2 x-2 y-12=0 \\
f_{y}=2 y-2 x=0 \tag{2}
\end{array}
$$

Solving Equation (2) for y we get:

$$
\begin{equation*}
y=x \tag{3}
\end{equation*}
$$

Substituting this into Equation (1) and solving for x we get:

$$
\begin{aligned}
3 x^{2}+2 x-2 y-12 & =0 \\
3 x^{2}+2 x-2 x-12 & =0 \\
3 x^{2} & =12 \\
x^{2} & =4 \\
\Longleftrightarrow x=-2 \text { or } x & =2
\end{aligned}
$$

We find the corresponding y-values using Equation (3): $y=x$.

- If $x=2$, then $y=2$.
- If $x=-2$, then $y=-2$.

Thus, the critical points are $(2,2)$ and $(-2,-2)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=6 x+2, \quad f_{y y}=2, \quad f_{x y}=-2
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(6 x+2)(2)-(-2)^{2} \\
& D(x, y)=12 x
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(2,2)$	24	14	Local Minimum
$(-2,-2)$	-24	-10	Saddle Point

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Math 210, Final Exam, Fall 2010
 Problem 5 Solution

5. Consider the vector field $\overrightarrow{\mathbf{F}}=\left\langle c x^{2} y^{2}-e^{y}, 2 x^{3} y-x e^{y}\right\rangle$ on \mathbb{R}^{2} where c is a constant.
(a) Find the value for c that makes $\overrightarrow{\mathbf{F}}$ a conservative vector field.
(b) With c as in (a) find a function $\phi(x, y)$ so that $\overrightarrow{\mathbf{F}}=\vec{\nabla} \phi$.

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{F}}=\langle f(x, y), g(x, y)\rangle$ to be conservative, it must be the case that:

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

Using $f(x, y)=c x^{2} y^{2}-e^{y}$ and $g(x, y)=2 x^{3} y-x e^{y}$ we get:

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial g}{\partial x} \\
2 c x^{2} y-e^{y} & =6 x^{2} y-e^{y} \\
2 c x^{2} y & =6 x^{2} y \\
c & =3
\end{aligned}
$$

(b) If $\overrightarrow{\mathbf{F}}=\vec{\nabla} \varphi$, then it must be the case that:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=f(x, y) \tag{1}\\
& \frac{\partial \varphi}{\partial y}=g(x, y) \tag{2}
\end{align*}
$$

Using $f(x, y)=3 x^{2} y^{2}-e^{y}$ and integrating both sides of Equation (1) with respect to x we get:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =f(x, y) \\
\frac{\partial \varphi}{\partial x} & =3 x^{2} y^{2}-e^{y} \\
\int \frac{\partial \varphi}{\partial x} d x & =\int\left(3 x^{2} y^{2}-e^{y}\right) d x \\
\varphi(x, y) & =x^{3} y^{2}-x e^{y}+h(y) \tag{3}
\end{align*}
$$

We obtain the function $h(y)$ using Equation (2). Using $g(x, y)=2 x^{3} y-x e^{y}$ we get the equation:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial y}=g(x, y) \\
& \frac{\partial \varphi}{\partial y}=2 x^{3} y-x e^{y}
\end{aligned}
$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(x^{3} y^{2}-x e^{y}+h(y)\right) & =2 x^{3} y-x e^{y} \\
2 x^{3} y-x e^{y}+h^{\prime}(y) & =2 x^{3} y-x e^{y} \\
h^{\prime}(y) & =0
\end{aligned}
$$

which implies that $h(y)=0$. Letting $C=0$, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$
\varphi(x, y)=x^{3} y^{2}-x e^{y}
$$

Math 210, Final Exam, Fall 2010 Problem 6 Solution

6. Compute the volume of the region in \mathbb{R}^{3} bounded by the paraboloid $z=x^{2}+y^{2}$, the cylinder $x^{2}+y^{2}=9$, and the plane $z=0$.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral formula for computing the volume of a region R bounded above by the surface $z=f(x, y)$ and below by the surface $z=g(x, y)$ with projection D onto the $x y$-plane is:

$$
V=\iint_{D}(f(x, y)-g(x, y)) d A
$$

In this case, the top surface is $z=x^{2}+y^{2}=r^{2}$ in polar coordinates and the bottom surface is $z=0$. The projection of R onto the $x y$-plane is a disk of radius 3 , described in polar coordinates as $D=\{(r, \theta): 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi\}$. Thus, the volume formula is:

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{3}\left(r^{2}-0\right) r d r d \theta \tag{1}
\end{equation*}
$$

The triple integral formula for computing the volume of R is:

$$
V=\iint_{D}\left(\int_{g(x, y)}^{f(x, y)} 1 d z\right) d A
$$

Using cylindrical coordinates we have:

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{r^{2}} 1 r d z d r d \theta \tag{2}
\end{equation*}
$$

Evaluating Equation (1) we get:

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{3}\left(r^{2}-0\right) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{0}^{3} d \theta \\
& =\int_{0}^{2 \pi} \frac{81}{4} d \theta \\
& =\left[\frac{81}{4}\right]_{0}^{2 \pi} \\
& =\frac{81 \pi}{2}
\end{aligned}
$$

Note that Equation (2) will evaluate to the same answer.

Math 210, Final Exam, Fall 2010
 Problem 7 Solution

7. Given the function $f(x, y)=x y^{2}+y \cos (x)$ find:
(a) the gradient $\vec{\nabla} f$ at the point $P=(0,1)$.
(b) the directional derivative $D_{\mathbf{v}} f(0,1)$, where $\overrightarrow{\mathbf{f}}$ is the unit vector from $P=(0,1)$ towards $Q=(2,3)$.

Solution:

(a) The gradient of f is:

$$
\begin{aligned}
\vec{\nabla} f & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle y^{2}-y \sin (x), 2 x y+\cos (x)\right\rangle
\end{aligned}
$$

At the point $P=(0,1)$ we have:

$$
\begin{aligned}
\vec{\nabla} f(0,1) & =\left\langle 1^{2}-(1) \sin (0), 2(0)(1)+\cos (0)\right\rangle \\
& =\langle 1,1\rangle
\end{aligned}
$$

(b) The unit vector $\overrightarrow{\mathbf{v}}$ that points from $P=(0,1)$ towards $Q=(2,3)$ is:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} & =\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|} \\
& =\frac{\langle 2,2\rangle}{\|\langle 2,2\rangle\|} \\
& =\frac{\langle 2,2\rangle}{2 \sqrt{2}} \\
& =\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

Thus, the directional derivative $D_{\mathbf{v}} f(0,1)$ is:

$$
\begin{aligned}
D_{\mathbf{v}} f(0,1) & =\vec{\nabla} f(0,1) \bullet \overrightarrow{\mathbf{v}} \\
& =\langle 1,1\rangle \bullet\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& =\sqrt{2}
\end{aligned}
$$

Math 210, Final Exam, Fall 2010
 Problem 8 Solution

8. Use the method of Lagrange multipliers to find points where $f(x, y)=x y$ attains its maximum and minimum subject to the constraint: $x^{2}+4 y^{2}=2$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^{2}+4 y^{2}=2$ is compact which guarantees the existence of absolute extrema of f. Then let $g(x, y)=x^{2}+4 y^{2}$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=2
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
y & =\lambda(2 x) \tag{1}\\
x & =\lambda(8 y) \tag{2}\\
x^{2}+4 y^{2} & =2 \tag{3}
\end{align*}
$$

Dividing Equation (1) by Equation (2) gives us:

$$
\begin{aligned}
\frac{y}{x} & =\frac{\lambda(2 x)}{\lambda(8 y)} \\
\frac{y}{x} & =\frac{x}{4 y} \\
4 y^{2} & =x^{2}
\end{aligned}
$$

Combining this result with Equation (3) and solving for x gives us:

$$
\begin{aligned}
x^{2}+4 y^{2} & =2 \\
x^{2}+x^{2} & =2 \\
2 x^{2} & =2 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

When $x=1$ we have:

$$
\begin{aligned}
4 y^{2} & =x^{2} \\
4 y^{2} & =1^{2} \\
y^{2} & =\frac{1}{4} \\
y & = \pm \frac{1}{2}
\end{aligned}
$$

We obtain the same values of y when $x=-1$. Therefore, the points of interest are $\left(1, \frac{1}{2}\right)$, $\left(1,-\frac{1}{2}\right),\left(1,-\frac{1}{2}\right)$, and $\left(-1,-\frac{1}{2}\right)$.

We now evaluate $f(x, y)=x y$ at each point of interest.

$$
\begin{aligned}
f\left(1, \frac{1}{2}\right) & =(1)\left(\frac{1}{2}\right)=\frac{1}{2} \\
f\left(1,-\frac{1}{2}\right) & =(1)\left(-\frac{1}{2}\right)=-\frac{1}{2} \\
f\left(-1, \frac{1}{2}\right) & =(-1)\left(\frac{1}{2}\right)=-\frac{1}{2} \\
f\left(-1,-\frac{1}{2}\right) & =(-1)\left(-\frac{1}{2}\right)=\frac{1}{2}
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of $\frac{1}{2}$ and an absolute minimum of $-\frac{1}{2}$.

Math 210, Final Exam, Fall 2010 Problem 9 Solution

9. Given the function $f(x, y)=x e^{x y}$ compute the partial derivatives:

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial^{2} f}{\partial x \partial x}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y \partial y}
$$

Solution: The first partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=e^{x y}+x y e^{x y}=e^{x y}(1+x y) \\
& \frac{\partial f}{\partial y}=x^{2} e^{x y}
\end{aligned}
$$

The second derivatives are:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial x} & =\frac{\partial}{\partial x}\left(e^{x y}(1+x y)\right)=y e^{x y}(1+x y)+y e^{x y} \\
\frac{\partial^{2} f}{\partial y \partial y} & =\frac{\partial}{\partial y}\left(x^{2} e^{x y}\right)=x^{3} e^{x y} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(x^{2} e^{x y}\right)=2 x e^{x y}+x^{2} y e^{x y}
\end{aligned}
$$

