Math 210, Final Exam, Fall 2011
 Problem 1 Solution

1. Find an equation of the plane passing through the following three points: $P=(2,-1,4)$, $Q=(1,1,-1), R=(-4,1,1)$.

Solution: Let $\overrightarrow{\mathbf{u}}=\overrightarrow{P Q}=\langle-1,2,-5\rangle$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{Q R}=\langle-5,0,2\rangle$. The cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ results in a vector normal to the plane containing P, Q, and R.

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\langle 4,27,10\rangle
$$

A plane containing a point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\langle a, b, c\rangle$ has the equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

Using $P=(2,-1,4)$ as a point in the plane we have

$$
4(x-2)+27(y+1)+10(z-4)=0
$$

Math 210, Final Exam, Fall 2011
 Problem 2 Solution

2. Let the position vector be given by $\overrightarrow{\mathbf{r}}(t)=2 t^{3} \hat{\mathbf{i}}+\left(t^{2}-t\right) \hat{\mathbf{j}}-8 t \hat{\mathbf{k}}$. Find the angle between the velocity and acceleration vectors at time $t=0$.

Solution: The velocity and acceleration vectors are the first and second derivatives of $\overrightarrow{\mathbf{r}}(t)$, respectively.

$$
\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 6 t^{2}, 2 t-1,-8\right\rangle, \quad \overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle 12 t, 2,0\rangle
$$

The vectors evaluated at $t=0$ are

$$
\overrightarrow{\mathbf{r}}^{\prime}(0)=\langle 0,-1,-8\rangle, \quad \overrightarrow{\mathbf{r}}^{\prime \prime}(0)=\langle 0,2,0\rangle .
$$

The angle between two vectors can be computed via the dot product. That is,

$$
\cos \theta=\frac{\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\|}
$$

Letting $\overrightarrow{\mathbf{u}}=\langle 0,-1,-8\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 0,2,0\rangle$ we find that

$$
\cos \theta=\frac{-2}{2 \sqrt{65}} \Longleftrightarrow \theta=\arccos \left(-\frac{1}{\sqrt{65}}\right)
$$

Math 210, Final Exam, Fall 2011
 Problem 3 Solution

3. Let $z=\sin x \cos y$, where $x=s+t, y=s-t$. Use the chain rule to compute the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Solution: The Chain Rule formulas for a function $z=z(x, y)$ where $x=x(s, t)$ and $y=y(s, t)$ are

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Using the fact that $z=\sin x \cos y$ we have

$$
\frac{\partial z}{\partial x}=\cos x \cos y, \quad \frac{\partial z}{\partial y}=-\sin x \sin y
$$

Furthermore, since $x=s+t$ and $y=s-t$ we have

$$
\frac{\partial x}{\partial s}=1, \quad \frac{\partial x}{\partial t}=1, \quad \frac{\partial y}{\partial s}=1, \quad \frac{\partial y}{\partial t}=-1
$$

Using the Chain Rule formulas we get

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\cos x \cos y-\sin x \sin y=\cos (x+y) \\
& \frac{\partial z}{\partial t}=\cos x \cos y+\sin x \sin y=\cos (x-y)
\end{aligned}
$$

Using the fact that $x+y=2 s$ and $x-y=2 t$ we arrive at our answers in terms of s and t

$$
\frac{\partial z}{\partial s}=\cos (2 s), \quad \frac{\partial z}{\partial t}=\cos (2 t)
$$

Math 210, Final Exam, Fall 2011
 Problem 4 Solution

4. Let $f(x, y)=\ln (2 x+y)$.
(a) Write the equation of the tangent plane to the graph of $f(x, y)$ at $(-1,3)$.
(b) Use part (a) to estimate $f(-1.1,2.9)$.

Solution:

(a) For a function written explicitly as a function of x and y we have the following formula for the tangent plane at the point $\left(x_{0}, y_{0}\right)$:

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

The first partial derivatives of $f(x, y)$ are

$$
f_{x}=\frac{2}{2 x+y}, \quad f_{y}=\frac{1}{2 x+y} .
$$

The values of f and the first partial derivatives of f at $(-1,3)$ are

$$
f(-1,3)=0, \quad f_{x}(-1,3)=2, \quad f_{y}(-1,3)=1
$$

Thus, an equation for the tangent plane at $(-1,3)$ is

$$
z=2(x+1)+(y-3)
$$

(b) An estimate for $f(a, b)$ may be taken as the value of $L(a, b)$, the linearization of $f(x, y)$ at a point near (a, b). Since the linearization and the tangent plane are one in the same, we know that

$$
L(x, y)=2(x+1)+(y-3)
$$

Evaluating L at $(-1.1,2.9)$ we get

$$
L(-1.1,2.9)=2(-1.1+1)+(2.9-3)=-0.3
$$

Math 210, Final Exam, Fall 2011
 Problem 5 Solution

5. Evaluate the triple integral

$$
\iiint_{D} y d V
$$

where D is the region inside the cylinder $x^{2}+y^{2}=9$ above the plane $z=x-2$ and below the plane $z=2-x$.

Solution: The region D can be described in Cartesian coordinates as follows:

$$
D=\left\{(x, y, z): x-2 \leq x \leq 2-x,-\sqrt{9-x^{2}} \leq y \leq \sqrt{9-x^{2}},-3 \leq x \leq 2\right\}
$$

The inequalities that describe x and y are determined by the projection of D onto the $x y$-plane, which is pictured below.

Thus, the integral is set up and evaluated as follows:

$$
\begin{aligned}
\iiint_{D} y d V & =\int_{-3}^{2} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{x-2}^{2-x} y d z d y d x \\
& =\int_{-3}^{2} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} y[z]_{x-2}^{2-x} d y d z \\
& =\int_{-3}^{2} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} y(4-2 x) d y d x \\
& =\int_{-3}^{2}(4-2 x)\left[\frac{1}{2} y^{2}\right]_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} d x \\
& =\int_{-3}^{2}(4-2 x)\left[\frac{1}{2}\left(9-x^{2}\right)-\frac{1}{2}\left(9-x^{2}\right)\right] d x \\
& =0
\end{aligned}
$$

Math 210, Final Exam, Fall 2011 Problem 6 Solution

6. Find a potential function for the vector field $\overrightarrow{\mathbf{F}}(x, y)=x e^{x^{2}+y^{2}} \hat{\mathbf{i}}+y e^{x^{2}+y^{2}} \hat{\mathbf{j}}$. Compute the line integral of $\overrightarrow{\mathbf{F}}$ along any path from $(0,1)$ to $(1,2)$.

Solution: By inspection, a potential function for $\overrightarrow{\mathbf{F}}$ is

$$
\varphi(x, y)=\frac{1}{2} e^{x^{2}+y^{2}}
$$

Using the Fundamental Theorem of Line Integrals, the line integral of $\overrightarrow{\mathbf{F}}$ along any path from $(0,1)$ to $(1,2)$ has the value

$$
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{r}}=\varphi(1,2)-\varphi(0,1)=\frac{1}{2} e^{5}-\frac{1}{2} e^{1}=\frac{1}{2} e\left(e^{4}-1\right)
$$

Math 210, Final Exam, Fall 2011
 Problem 7 Solution

7. Let $R=\left\{(x, y): x^{2} \leq y \leq x\right\}$. Compute the following integral, using Green's theorem or otherwise

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{r}}
$$

where $\overrightarrow{\mathbf{F}}=x^{3} \hat{\mathbf{i}}+x y^{2} \hat{\mathbf{j}}$, and C is a counterclockwise oriented boundary of R.
Solution: Using Green's Theorem we have

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{r}} & =\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{x^{2}}^{x}\left(\frac{\partial}{\partial x} x y^{2}-\frac{\partial}{\partial y} x^{3}\right) d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{x} y^{2} d y d x \\
& =\int_{0}^{1}\left[\frac{1}{3} y^{3}\right]_{x^{2}}^{x} d x \\
& =\frac{1}{3} \int_{0}^{1}\left(x^{3}-x^{6}\right) d x \\
& =\frac{1}{3}\left[\frac{1}{4} x^{4}-\frac{1}{7} x^{7}\right]_{0}^{1} \\
& =\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right) \\
& =\frac{1}{28}
\end{aligned}
$$

Math 210, Final Exam, Fall 2011
 Problem 8 Solution

8. Consider the region $R=\{(x, y): x+y \geq 0, y \leq 0, x \leq 1\}$ and the transformation

$$
T: u=x+y, v=x \text {. }
$$

(a) Compute the Jacobian $J(u, v)$.
(b) Find the image of R in the $u v$-plane under the transformation T.
(c) Using (a) and (b) evaluate

$$
\iint_{R} x^{3} \sqrt{x+y} d A
$$

Solution:

(a) The Jacobian of the transformation is

$$
J(u, v)=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=--1 .
$$

(b) The region R is a triangle with vertices at $(0,0),(1,0)$, and $(1,-1)$. Since T is a linear transformation and the boundary of R consists of line segments, we know that the image of R may be determined by finding the images of the vertices of R.

$$
\begin{aligned}
T(0,0) & =(0+0,0)=(0,0) \\
T(1,0) & =(1+0,1)=(1,1) \\
T(1,-1) & =(1-1,1)=(0,1)
\end{aligned}
$$

Thus, the image of R is the triangular region with vertices at $(0,0),(1,1)$, and $(0,1)$, i.e.

$$
D=\operatorname{Image}(R)=\{(u, v): 0 \leq u \leq v, 0 \leq v \leq 1\}
$$

(c) The Change of Variables formula for computing a double integral is

$$
\iint_{R} f(x, y) d A=\iint_{D} f(x(u, v), y(u, v))|J(u, v)| d u d v
$$

Since $f(x, y)=x^{3} \sqrt{x+y}$ we have

$$
f(x(u, v), y(u, v))=v^{3} \sqrt{u}
$$

Thus, the integral has the value

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\iint_{D} f(x(u, v), y(u, v))|J(u, v)| d u d v \\
& =\int_{0}^{1} \int_{0}^{v} v^{3} \sqrt{u}|-1| d u d v \\
& =\int_{0}^{1} v^{3}\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{v} d v \\
& =\frac{2}{3} \int_{0}^{1} v^{3} \cdot v^{3 / 2} d v \\
& =\frac{2}{3} \int_{0}^{1} v^{9 / 2} d v \\
& =\frac{2}{3}\left[\frac{2}{11} v^{11 / 2}\right]_{0}^{1} \\
& =\frac{4}{33}
\end{aligned}
$$

