Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution

1. A triangle has vertices at the points

A = (1, 1, 1), B = (1, -3, 4), and C = (2, -1, 3)

- (a) Find the cosine of the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} .
- (b) Find an equation of the plane containing the triangle.

Solution:

(a) By definition, the angle between two vectors \overrightarrow{AB} and \overrightarrow{AC} is:

$$\cos \theta = \frac{\overrightarrow{AB} \bullet \overrightarrow{AC}}{\left|\left|\overrightarrow{AB}\right|\right| \left|\left|\overrightarrow{AC}\right|\right|}$$

The vectors are $\overrightarrow{AB} = \langle 0, -4, 3 \rangle$ and $\overrightarrow{AC} = \langle 1, -2, 2 \rangle$. Thus, the cosine of the angle between them is:

$$\cos \theta = \frac{\overrightarrow{AB} \bullet \overrightarrow{BC}}{||\overrightarrow{AB}|| ||\overrightarrow{BC}||}$$

= $\frac{\langle 0, -4, 3 \rangle \bullet \langle 1, -2, 2 \rangle}{||\langle 0, -4, 3 \rangle|| ||\langle 1, 2, -1 \rangle||}$
= $\frac{(0)(1) + (-4)(-2) + (3)(2)}{\sqrt{0^2 + (-4)^2 + 3^2}\sqrt{1^2 + (-2)^2 + 2^2}}$
= $\frac{14}{15}$

(b) A vector perpendicular to the plane is the cross product of \overrightarrow{AB} and \overrightarrow{AC} which both lie in the plane.

$$\vec{\mathbf{n}} = \vec{AB} \times \vec{AC}$$

$$\vec{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & -4 & 3 \\ 1 & -2 & 2 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} \begin{vmatrix} -4 & 3 \\ -2 & 2 \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} 0 & 3 \\ 1 & 2 \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} 0 & -4 \\ 1 & -2 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} [(-4)(2) - (3)(-2)] - \hat{\mathbf{j}} [(0)(2) - (3)(1)] + \hat{\mathbf{k}} [(0)(-2) - (-4)(1)]$$

$$\vec{\mathbf{n}} = -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$

$$\vec{\mathbf{n}} = \langle -2, 3, 4 \rangle$$

Using A = (1, 1, 1) as a point on the plane, we have:

$$-2(x-1) + 3(y-1) - 4(z-1) = 0$$

Math 210, Final Exam, Practice Fall 2009 Problem 2 Solution

2. Find the critical points of the function $f(x, y) = x^2 + y^2 + x^2y + 1$ and classify each point as corresponding to either a saddle point, a local minimum, or a local maximum.

Solution: By definition, an interior point (a, b) in the domain of f is a **critical point** of f if either

- (1) $f_x(a,b) = f_y(a,b) = 0$, or
- (2) one (or both) of f_x or f_y does not exist at (a, b).

The partial derivatives of $f(x, y) = x^2 + y^2 + x^2y + 1$ are $f_x = 2x + 2xy$ and $f_y = 2y + x^2$. These derivatives exist for all (x, y) in \mathbb{R}^2 . Thus, the critical points of f are the solutions to the system of equations:

$$f_x = 2x + 2xy = 0 \tag{1}$$

$$f_y = 2y + x^2 = 0 (2)$$

Factoring Equation (1) gives us:

$$2x + 2xy = 0$$
$$2x(1+y) = 0$$
$$x = 0, \text{ or } y = -1$$

If x = 0 then Equation (2) gives us y = 0. If y = -1 then Equation (2) gives us:

$$2(-1) + x^{2} = 0$$

$$x^{2} = 2$$

$$x = \pm \sqrt{2}$$
Thus, the critical points are (0,0), (\sqrt{2},-1), and (-\sqrt{2},-1)

We now use the **Second Derivative Test** to classify the critical points. The second derivatives of f are:

$$f_{xx} = 2 + 2y, \quad f_{yy} = 2, \quad f_{xy} = 2x$$

The discriminant function D(x, y) is then:

$$D(x, y) = f_{xx}f_{yy} - f_{xy}^2$$

$$D(x, y) = (2 + 2y)(2) - (2x)^2$$

$$D(x, y) = 4 + 4y - 4x^2$$

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a,b)	D(a, b)	$f_{xx}(a,b)$	Conclusion
(0, 0)	4	2	Local Minimum
$(\sqrt{2}, -1)$	-8	0	Saddle Point
$(-\sqrt{2},-1)$	-8	0	Saddle Point

Recall that (a,b) is a saddle point if D(a,b) < 0 and that (a,b) corresponds to a local minimum of f if D(a,b) > 0 and $f_{xx}(a,b) > 0$.

Math 210, Final Exam, Practice Fall 2009 Problem 3 Solution

3. Find the directional derivative of the function $f(x, y) = e^x \sin(xy)$ at the point $(0, \pi)$ in the direction of $\vec{\mathbf{v}} = \langle 1, 0 \rangle$. In the direction of which unit vector is f increasing most rapidly at the point $(0, \pi)$?

Solution: By definition, the directional derivative of f at (a, b) in the direction of $\hat{\mathbf{u}}$ is:

$$D_{\mathbf{u}}f(a,b) = \overrightarrow{\nabla}f(a,b) \bullet \hat{\mathbf{u}}$$

The gradient of $f(x, y) = e^x \sin(xy)$ is:

、

$$\overrightarrow{\nabla} f = \langle f_x, f_y \rangle$$

$$\overrightarrow{\nabla} f = \langle e^x \sin(xy) + y e^x \cos(xy), x e^x \cos(xy) \rangle$$

At the point $(0, \pi)$ we have:

$$\vec{\nabla} f(0,\pi) = \left\langle e^0 \sin(0 \cdot \pi) + \pi e^0 \cos(0 \cdot \pi), 0 \cdot e^0 \cos(0 \cdot \pi) \right\rangle$$

$$\vec{\nabla} f(0,\pi) = \left\langle \pi, 0 \right\rangle$$

The vector $\vec{\mathbf{v}} = \langle 1, 0 \rangle$ is already a unit vector. Therefore, the directional derivative is:

$$D_{\mathbf{v}}f(0,\pi) = \overrightarrow{\nabla}f(0,\pi) \bullet \overrightarrow{\mathbf{v}}$$
$$= \langle \pi, 0 \rangle \bullet \langle 1, 0 \rangle$$
$$= \boxed{\pi}$$

The direction of steepest ascent is:

$$\hat{\mathbf{u}} = \frac{1}{\left|\left|\overrightarrow{\nabla}f(0,\pi)\right|\right|} \overrightarrow{\nabla}f(0,\pi)$$
$$= \frac{1}{\pi} \langle \pi, 0 \rangle$$
$$= \boxed{\langle 1, 0 \rangle}$$

Math 210, Final Exam, Practice Fall 2009 Problem 4 Solution

4. Consider a space curve whose parameterization is given by:

$$\overrightarrow{\mathbf{r}}(t) = \left\langle \cos(\pi t), t^2, 1 \right\rangle$$

Find the unit tangent vector and curvature when t = 2.

Solution: The first two derivatives of $\overrightarrow{\mathbf{r}}(t)$ are:

$$\overrightarrow{\mathbf{r}}'(t) = \langle -\pi \sin(\pi t), 2t, 0 \rangle$$

$$\overrightarrow{\mathbf{r}}''(t) = \langle -\pi^2 \cos(\pi t), 2, 0 \rangle$$

The unit tangent vector at t = 2 is:

$$\vec{\mathbf{T}}(2) = \frac{\vec{\mathbf{r}}'(2)}{||\vec{\mathbf{r}}'(2)||}$$
$$= \frac{\langle -\pi \sin(2\pi), 2(2), 0 \rangle}{||\langle -\pi \sin(2\pi), 2(2), 0 \rangle||}$$
$$= \frac{\langle 0, 4, 0 \rangle}{||\langle 0, 4, 0 \rangle||}$$
$$= \frac{\langle 0, 4, 0 \rangle}{4}$$
$$= \boxed{\langle 0, 1, 0 \rangle}$$

The curvature at t = 2 is:

$$\kappa(2) = \frac{\left|\left|\vec{\mathbf{r}}'(2) \times \vec{\mathbf{r}}''(2)\right|\right|^{3}}{\left|\left|\vec{\mathbf{r}}'(2)\right|\right|^{3}}$$

$$= \frac{\left|\left|\langle -\pi \sin(2\pi), 4, 0 \rangle \times \langle -\pi^{2} \cos(2\pi), 2, 0 \rangle\right|\right|}{\left|\left|\langle -\pi \sin(2\pi), 4, 0 \rangle\right|\right|^{3}}$$

$$= \frac{\left|\left|\langle 0, 4, 0 \rangle \times \langle -\pi^{2}, 2, 0 \rangle\right|\right|}{\left|\left|\langle 0, 4, 0 \rangle\right|\right|^{3}}$$

$$= \frac{\left|\left|\langle 0, 0, 4\pi^{2} \rangle\right|\right|}{4^{3}}$$

$$= \frac{4\pi^{2}}{64}$$

$$= \left[\frac{\pi^{2}}{16}\right]$$

Math 210, Final Exam, Practice Fall 2009 Problem 5 Solution

From the figure we see that the region D is bounded above by $y = \sqrt{1 - x^2}$ and below by y = 0. The projection of D onto the x-axis is the interval $0 \le x \le 1$. Since the region is a quarter-disk of radius 1, we will use polar coordinates to evaluate the integral. The region D is described in polar coordinates as $D = \{(r, \theta) : 0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2}\}$. The value of the integral is then:

$$\iint_{D} e^{-(x^{2}+y^{2})} dA = \int_{0}^{\pi/2} \int_{0}^{1} e^{-r^{2}} r \, dr \, d\theta$$
$$= \int_{0}^{\pi/2} \left[-\frac{1}{2} e^{-r^{2}} \right]_{0}^{1} d\theta$$
$$= \int_{0}^{\pi/2} \left[-\frac{1}{2} e^{-1^{2}} + \frac{1}{2} e^{-0^{2}} \right] d\theta$$
$$= \int_{0}^{\pi/2} \left(\frac{1}{2} - \frac{1}{2} e^{-1} \right) \, d\theta$$
$$= \left(\frac{1}{2} - \frac{1}{2} e^{-1} \right) \left[\theta \right]_{0}^{\pi/2}$$
$$= \frac{\pi}{2} \left(\frac{1}{2} - \frac{1}{2} e^{-1} \right)$$
$$= \left[\frac{\pi}{4} \left(1 - e^{-1} \right) \right]$$

Math 210, Final Exam, Practice Fall 2009 Problem 6 Solution

6. Evaluate $\int_C \overrightarrow{\mathbf{F}} \bullet d\overrightarrow{\mathbf{s}}$ where $\overrightarrow{\mathbf{F}} = \langle y + z, z + x, x + y \rangle$ and C is the line segment from (1, 1, 0) to (2, 0, -1).

Solution: We note that the vector field $\overrightarrow{\mathbf{F}}$ is conservative. Letting f = y + z, g = z + x, and h = x + y we have:

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} = 1$$
$$\frac{\partial f}{\partial z} = \frac{\partial h}{\partial x} = 1$$
$$\frac{\partial g}{\partial z} = \frac{\partial h}{\partial y} = 1$$

By inspection, a potential function for the vector field is:

$$\varphi(x, y, z) = xy + xz + yz$$

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$\int_{C} \vec{\mathbf{F}} \bullet d\vec{\mathbf{s}} = \varphi(2, 0, -1) - \varphi(1, 1, 0)$$

= [(2)(0) + (2)(-1) + (0)(-1)] - [(1)(1) + (1)(0) + (1)(0)]
= -3

Math 210, Final Exam, Practice Fall 2009 Problem 7 Solution

- 7. Consider the paraboloid $z = 4 x^2 y^2$.
 - (a) Find an equation for the tangent plane to the paraboloid at the point (1, 2, -1).
 - (b) Find the volume that is bounded by the paraboloid and the plane z = 0.

Solution:

(a) We use the following formula for the equation for the tangent plane:

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

because the equation for the surface is given in **explicit** form. The partial derivatives of $f(x, y) = 4 - x^2 - y^2$ are:

$$f_x = -2x, \qquad f_y = -2y$$

Evaluating these derivatives at (1, 2) we get:

$$f_x(1,2) = -2, \qquad f_y(1,2) = -4$$

Thus, the tangent plane equation is:

$$z = -1 - 2(x - 1) - 4(y - 2)$$

(b) The region of integration is shown below.

The volume of the region can be obtained using either a double or a triple integral. In either case, we must be able to visualize the projection of the region onto the xy-plane. This region is the disk $D = \{(x, y) : x^2 + y^2 \leq 4\}$, the boundary of which is the intersection of the paraboloid $z = 4 - x^2 - y^2$ and the plane z = 0.

The double integral representing the volume is:

Volume =
$$\iint_D$$
 (top surface – bottom surface) dA

We will use polar coordinates to set up and evaluate the double integral. The top surface is then $z = 4 - r^2$ and the bottom surface is z = 0. The region D described in polar coordinates is $D = \{(r, \theta) : 0 \le r \le 2, 0 \le \theta \le 2\pi\}$. Thus, the volume is:

$$Volume = \int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2} - 0) r dr d\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{2} (4r - r^{3}) dr d\theta$$
$$= \int_{0}^{2\pi} \left[2r^{2} - \frac{1}{4}r^{4} \right]_{0}^{2} d\theta$$
$$= \int_{0}^{2\pi} 4 d\theta$$
$$= 4\theta \Big|_{0}^{2\pi}$$
$$= 8\pi$$

The triple integral representing the volume is:

$$Volume = \iiint_R 1 \, dV$$

Using cylindrical coordinates we have:

Volume =
$$\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} 1 r \, dz \, dr \, d\theta$$

which evaluates to 8π .

Math 210, Final Exam, Practice Fall 2009 Problem 8 Solution

8. Let B be a constant and consider the vector field defined by:

$$\overrightarrow{\mathbf{F}} = \left\langle B \, xy + 1, x^2 + 2y \right\rangle$$

- (a) For what value of B can we write $\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla} \varphi$ for some scalar function φ ? Find such a function φ in this case.
- (b) Using the value of B you found in part (a), evaluate the line integral of $\overrightarrow{\mathbf{F}}$ along any curve from (1,0) to (-1,0).

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{F}} = \langle f(x,y), g(x,y) \rangle$ to be conservative, it must be the case that:

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$$

Using f(x, y) = B xy + 1 and $g(x, y) = x^2 + 2y$ we get:

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$$
$$Bx = 2x$$
$$B = 2$$

If $\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla} \varphi$, then it must be the case that:

$$\frac{\partial\varphi}{\partial x} = f(x,y) \tag{1}$$

$$\frac{\partial \varphi}{\partial y} = g(x, y) \tag{2}$$

Using f(x, y) = 2xy + 1 and integrating both sides of Equation (1) with respect to x we get:

$$\frac{\partial \varphi}{\partial x} = f(x, y)$$

$$\frac{\partial \varphi}{\partial x} = 2xy + 1$$

$$\int \frac{\partial \varphi}{\partial x} dx = \int (2xy + 1) dx$$

$$\varphi(x, y) = x^2y + x + h(y)$$
(3)

We obtain the function h(y) using Equation (2). Using $g(x, y) = x^2 + 2y$ we get the equation:

$$\frac{\partial \varphi}{\partial y} = g(x, y)$$
$$\frac{\partial \varphi}{\partial y} = x^2 + 2y$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$\frac{\partial}{\partial y} \left(x^2 y + x + h(y) \right) = x^2 + 2y$$
$$x^2 + h'(y) = x^2 + 2y$$
$$h'(y) = 2y$$

Now integrate both sides with respect to y to get:

$$\int h'(y) \, dy = \int 2y \, dy$$
$$h(y) = y^2 + C$$

Letting C = 0, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$\varphi(x,y) = x^2y + x + y^2$$

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$\int_{C} \vec{\mathbf{F}} \bullet d\vec{\mathbf{s}} = \varphi(-1,0) - \varphi(1,0)$$
$$= \left[(-1)^{2}(0) + (-1) + 0^{2} \right] - \left[(1)^{2}(0) + 1 + 0^{2} \right]$$
$$= \boxed{-2}$$

Math 210, Final Exam, Practice Fall 2009 Problem 9 Solution

9. Consider $f(x, y) = x \sin(x + 2y)$.

- (a) Compute the partial derivatives f_x , f_y , f_{xx} , f_{xy} , and f_{yy} .
- (b) If $x = s^2 + t$ and $y = 2s + t^2$, compute the partials f_s and f_t .

Solution:

(a) The first and second partial derivatives are:

$$f_x = \sin(x + 2y) + x\cos(x + 2y)$$

$$f_y = 2x\cos(x + 2y)$$

$$f_{xx} = \cos(x + 2y) + \cos(x + 2y) - x\sin(x + 2y)$$

$$f_{xy} = 2\cos(x + 2y) - 2x\sin(x + 2y)$$

$$f_{yy} = -4x\sin(x + 2y)$$

(b) Using the Chain Rule, the partial derivatives f_s and f_t are:

$$\begin{split} f_s &= f_x \frac{\partial x}{\partial s} + f_y \frac{\partial y}{\partial s} \\ &= [\sin(x+2y) + x\cos(x+2y)] \left(2s\right) + [2x\cos(x+2y)] \left(2\right) \\ &= \left[\sin(s^2 + t + 2(2s + t^2)) + (s^2 + t)\cos(s^2 + t + 2(2s + t^2))\right] \left(2s\right) + \\ &\left[2(s^2 + t)\cos(s^2 + t + 2(2s + t^2))\right] \left(2\right) \\ f_t &= f_x \frac{\partial x}{\partial t} + f_y \frac{\partial y}{\partial t} \\ &= \left[\sin(x+2y) + x\cos(x+2y)\right] \left(1\right) + \left[2x\cos(x+2y)\right] \left(2t\right) \\ &= \left[\sin(s^2 + t + 2(2s + t^2)) + (s^2 + t)\cos(s^2 + t + 2(2s + t^2))\right] + \\ &\left[2(s^2 + t)\cos(s^2 + t + 2(2s + t^2))\right] \left(2t\right) \end{split}$$

Math 210, Final Exam, Practice Fall 2009 Problem 10 Solution

10. Find the points on the ellipse $x^2 + xy + y^2 = 9$ where the distance from the origin is maximal and minimal. (Hint: Let $f(x, y) = x^2 + y^2$ be the function you want to extremize where (x, y) is a point on the ellipse.)

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^2 + xy + y^2 = 9$ is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y) = x^2 + xy + y^2 = 9$. We look for solutions to the following system of equations:

$$f_x = \lambda g_x, \quad f_y = \lambda g_y, \quad g(x, y) = 9$$

which, when applied to our functions f and g, give us:

$$2x = \lambda \left(2x + y\right) \tag{1}$$

$$2y = \lambda \left(x + 2y \right) \tag{2}$$

$$2y = \lambda (x + 2y) \tag{2}$$
$$x^2 + xy + y^2 = 9 \tag{3}$$

We begin by diving Equation (1) by Equation (2) to give us:

$$\frac{2x}{2y} = \frac{\lambda(2x+y)}{\lambda(x+2y)}$$
$$\frac{x}{y} = \frac{2x+y}{x+2y}$$
$$x(x+2y) = y(2x+y)$$
$$x^2 + 2xy = 2xy + y^2$$
$$x^2 = y^2$$
$$x = \pm y$$

If x = y then Equation (3) gives us:

$$(y)^{2} + (y)y + y^{2} = 9$$
$$y^{2} + y^{2} + y^{2} = 9$$
$$3y^{2} = 9$$
$$y^{2} = 3$$
$$y = \pm\sqrt{3}$$

Since x = y we have $(\sqrt{3}, \sqrt{3})$ and $(-\sqrt{3}, -\sqrt{3})$ as points of interest. If x = -y then Equation (3) gives us:

$$(-y)^{2} + (-y)y + y^{2} = 9$$

 $y^{2} - y^{2} + y^{2} = 9$
 $y^{2} = 9$
 $y = \pm 3$

Since x = -y we have (3, -3) and (-3, 3) as points of interest.

We now evaluate $f(x, y) = x^2 + y^2$ at each point of interest.

$$f(\sqrt{3}, \sqrt{3}) = (\sqrt{3})^2 + (\sqrt{3})^2 = 6$$

$$f(-\sqrt{3}, -\sqrt{3}) = (-\sqrt{3})^2 + (-\sqrt{3})^2 = 6$$

$$f(3, -3) = 3^2 + (-3)^2 = 18$$

$$f(-3, 3) = (-3)^2 + 3^2 = 18$$

From the values above we observe that f attains an absolute maximum of 18 and an absolute minimum of 6.

Math 210, Final Exam, Practice Fall 2009 Problem 11 Solution

11. Sketch the region of integration for the integral below and evaluate the integral.

Solution:

From the figure we see that the region D is bounded above by y = x and below by y = 0. The projection of D onto the x-axis is the interval $0 \le x \le 1$. Using the order of integration dy dx we have:

$$\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} dx dy = \int_{0}^{1} \int_{0}^{x} e^{-x^{2}} dy dx$$
$$= \int_{0}^{1} e^{-x^{2}} \left[y \right]_{0}^{x} dx$$
$$= \int_{0}^{1} x e^{-x^{2}} dx$$
$$= \left[-\frac{1}{2} e^{-x^{2}} \right]_{0}^{1}$$
$$= \left[-\frac{1}{2} e^{-1^{2}} \right] - \left[-\frac{1}{2} e^{-0^{2}} \right]$$
$$= \left[\frac{1}{2} - \frac{1}{2} e^{-1} \right]$$

Math 210, Final Exam, Practice Fall 2009 Problem 12 Solution

12. Evaluate $\int_C f(x, y, z) ds$ where $f(x, y, z) = z\sqrt{x^2 + y^2}$ and C is the helix $\overrightarrow{\mathbf{c}}(t) = (4\cos t, 4\sin t, 3t)$ for $0 \le t \le 2\pi$.

Solution: We use the following formula to evaluate the integral:

$$\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \left| \overrightarrow{\mathbf{c}}'(t) \right| \, dt$$

Using the fact that $x = 4 \cos t$, $y = 4 \sin t$, and z = 3t, the function f(x, y, z) can be rewritten as:

$$f(x(t), y(t), z(t)) = z(t)\sqrt{x(t)^2 + y(t)^2}$$

= $(3t)\sqrt{(4\cos t) + (4\sin t)^2}$
= $3t\sqrt{16\cos^2 t + 16\sin^2 t}$
= $3t \cdot 4$
= $12t$

The derivative $\overrightarrow{c}'(t)$ and its magnitude are:

$$\overrightarrow{\mathbf{c}}'(t) = \langle -4\sin t, 4\cos t, 3 \rangle$$
$$\left| \overrightarrow{\mathbf{c}}'(t) \right| = \sqrt{(-4\sin t)^2 + (4\cos t)^2 + 3^2}$$
$$= 5$$

Therefore, the value of the line integral is:

$$\int_C f(x, y, z) ds = \int_a^b f(x(t), y(t), z(t)) \left| \overrightarrow{\mathbf{c}}'(t) \right| dt$$
$$= \int_0^{2\pi} 12t \cdot 5 dt$$
$$= \int_0^{2\pi} 60t dt$$
$$= \left[30t^2 \right]_0^{2\pi}$$
$$= \boxed{120\pi^2}$$

Math 210, Final Exam, Practice Fall 2009 Problem 13 Solution

- 13. Consider the vectors $\overrightarrow{\mathbf{v}} = \langle 1, 2, a \rangle$ and $\overrightarrow{\mathbf{w}} = \langle 1, 1, 1 \rangle$.
 - (a) Find the value of a such that $\overrightarrow{\mathbf{v}}$ is perpendicular to $\overrightarrow{\mathbf{w}}$.
 - (b) Find the two values of a such that the area of the parallelogram determined by $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ is equal to $\sqrt{6}$.

Solution:

(a) By definition, two vectors $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ are perpendicular if and only if the dot product of the vectors is equal to zero.

$$\overrightarrow{\mathbf{v}} \bullet \overrightarrow{\mathbf{w}} = 0$$
$$\langle 1, 2, a \rangle \bullet \langle 1, 1, 1 \rangle = 0$$
$$1 + 2 + a = 0$$
$$a = -3$$

(b) By definition, the area of a parallelogram spanned by the vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is:

$$A = ||\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}||$$

The cross product of $\overrightarrow{\mathbf{v}} = \langle 1, 2, a \rangle$ and $\overrightarrow{\mathbf{w}} = \langle 1, 1, 1 \rangle$ is:

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ 1 & 2 & a \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \langle 2 - a, a - 1, -1 \rangle$$

The area of the parallelogram is then:

$$A = ||\vec{\mathbf{v}} \times \vec{\mathbf{w}}||$$

= ||\lappa 2 - a, a - 1, -1\rangle||
= \sqrt{(2-a)^2 + (a - 1)^2 + (-1)^2}
= \sqrt{(a - 2)^2 + (a - 1)^2 + 1}

In order for the area to be $\sqrt{6}$ it must be the case that:

$$\sqrt{(a-2)^2 + (a-1)^2 + 1} = \sqrt{6}$$
$$(a-2)^2 + (a-1)^2 + 1 = 6$$
$$a^2 - 4a + 4 + a^2 - 2a + 1 + 1 = 6$$
$$2a^2 - 6a + 6 = 6$$
$$2a^2 - 6a = 0$$
$$2a(a-3) = 0$$
$$a = 0 \text{ or } a = 3$$

Math 210, Final Exam, Practice Fall 2009 Problem 14 Solution

14. Consider a particle whose position vector is given by

$$\overrightarrow{\mathbf{r}}(t) = \left\langle \sin(\pi t), t^2, t+1 \right\rangle$$

- (a) Find the velocity $\overrightarrow{\mathbf{r}}'(t)$ and the acceleration $\overrightarrow{\mathbf{r}}''(t)$.
- (b) Set up the integral you would compute to find the distance traveled by the particle from t = 0 to t = 4. Do not attempt to compute the integral.

Solution:

(a) The velocity and acceleration vectors are:

$$\vec{\mathbf{v}}(t) = \vec{\mathbf{r}}'(t) = \langle \pi \cos(\pi t), 2t, 1 \rangle$$
$$\vec{\mathbf{a}}(t) = \vec{\mathbf{v}}'(t) = \langle -\pi^2 \sin(\pi t), 2, 0 \rangle$$

(b) The distance traveled by the particle is:

$$L = \int_0^4 \left| \left| \overrightarrow{\mathbf{r}}'(t) \right| \right| dt$$

= $\int_0^4 \sqrt{(\pi \cos(\pi t))^2 + (2t)^2 + 1^2} dt$
= $\int_0^4 \sqrt{\pi^2 \cos^2(\pi t) + 4t^2 + 1} dt$

Math 210, Final Exam, Practice Fall 2009 Problem 15 Solution

15. Find the volume of the region enclosed by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 4.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral formula for computing the volume of a region R bounded above by the surface z = f(x, y) and below by the surface z = g(x, y) with projection D onto the xy-plane is:

$$V = \iint_D (f(x,y) - g(x,y)) \, dA$$

In this case, the top surface is $z = 4 - y = 4 - r \sin \theta$ in polar coordinates and the bottom surface is z = 0. The projection of R onto the xy-plane is a disk of radius 2, described in polar coordinates as $D = \{(r, \theta) : 0 \le r \le 2, 0 \le \theta \le 2\pi\}$. Thus, the volume formula is:

$$V = \int_0^{2\pi} \int_0^2 (4 - r\sin\theta - 0) \ r \, dr \, d\theta \tag{1}$$

The triple integral formula for computing the volume of R is:

$$V = \iint_D \left(\int_{g(x,y)}^{f(x,y)} 1 \, dz \right) \, dA$$

Using cylindrical coordinates we have:

$$V = \int_0^{2\pi} \int_0^2 \int_0^{4-r\sin\theta} 1 \, r \, dz \, dr \, d\theta \tag{2}$$

Evaluating Equation (1) we get:

$$V = \int_{0}^{2\pi} \int_{0}^{2} (4 - r\sin\theta - 0) r \, dr \, d\theta$$

= $\int_{0}^{2\pi} \left[2r^2 - \frac{1}{3}r^3\sin\theta \right]_{0}^{2} d\theta$
= $\int_{0}^{2\pi} \left(8 - \frac{8}{3}\sin\theta \right) \, d\theta$
= $\left[8\theta + \frac{8}{3}\cos\theta \right]_{0}^{2\pi}$
= $\left[(8)(2\pi) + \frac{8}{3}\cos 2\pi \right] - \left[(8)(0) + \frac{8}{3}\cos0 \right]$
= $\boxed{16\pi}$

Note that Equation (2) will evaluate to the same answer.

Math 210, Final Exam, Practice Fall 2009 Problem 16 Solution

16. Use Green's Theorem to compute $\oint_C xy \, dx + y^5 \, dy$ where C is the boundary of the triangle with vertices at (0,0), (2,0), (2,1), oriented counterclockwise.

Solution: Green's Theorem states that

$$\oint_C \overrightarrow{\mathbf{F}} \bullet d\overrightarrow{\mathbf{s}} = \iint_D \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dA$$

where D is the region enclosed by C. The integrand of the double integral is:

$$\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = \frac{\partial}{\partial x}y^5 - \frac{\partial}{\partial y}xy$$
$$= 0 - x$$
$$= -x$$

Thus, the value of the integral is:

$$\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{s}} = \iint_D \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dA$$
$$= \iint_D (-x) dA$$
$$= -\int_0^2 \int_0^{x/2} x \, dy \, dx$$
$$= -\int_0^2 \left[xy\right]_0^{x/2} dx$$
$$= -\int_0^2 \frac{1}{2}x^2 \, dx$$
$$= -\left[\frac{1}{6}x^3\right]_0^2$$
$$= -\frac{1}{6}(2)^3$$
$$= \left[-\frac{4}{3}\right]$$

Math 210, Final Exam, Practice Fall 2009 Problem 17 Solution

17. Consider the plane P containing the points A = (1, 0, 0), B = (2, 1, 1), and C = (1, 0, 2).

- (a) Find a unit vector perpendicular to P.
- (b) Find the intersection of P with the line perpendicular to P that contains the point D = (1, 1, 1).

Solution:

(a) A vector perpendicular to the plane is the cross product of $\overrightarrow{AB} = \langle 1, 1, 1 \rangle$ and $\overrightarrow{BC} = \langle -1, -1, 1 \rangle$ which both lie in the plane.

$$\vec{\mathbf{n}} = \vec{AB} \times \vec{BC}$$

$$\vec{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{i}} [(1)(1) - (1)(-1)] - \hat{\mathbf{j}} [(1)(1) - (1)(-1)] + \hat{\mathbf{k}} [(1)(-1) - (1)(-1)]$$

$$\vec{\mathbf{n}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 0\hat{\mathbf{k}}$$

$$\vec{\mathbf{n}} = \langle 2, -2, 0 \rangle$$

To make $\overrightarrow{\mathbf{n}}$ a unit vector we multiply by the reciprocal of its magnitude to get:

$$\hat{\mathbf{n}} = \frac{1}{||\overrightarrow{\mathbf{n}}||} \overrightarrow{\mathbf{n}}$$
$$= \frac{1}{\sqrt{8}} \langle 2, -2, 0 \rangle$$
$$= \boxed{\left\langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right\rangle}$$

(b) To find the intersection of the plane P and the line perpendicular to P through D = (1, 1, 1), we must form an equation for the plane and a set of parametric equations for the line. Using A as a point on the plane and the vector $\vec{\mathbf{n}} = \langle 2, -2, 0 \rangle$ which is perpendicular to plane, we have:

$$2(x-1) - 2(y-0) - 0(z-0) = 0$$

as an equation for the plane and:

$$x = 1 + 2t$$
, $y = 1 - 2t$, $z = 1 - 0t$

as a set of parametric equations for the line. Cleaning up the plane equation and substituting the parametric equations of the line for x, y, and z we get:

$$2(x-1) - 2(y-0) - 0(z-0) = 0$$

$$2x - 2 - 2y = 0$$

$$2x - 2y = 2$$

$$x - y = 1$$

$$(1 + 2t) - (1 - 2t) = 1$$

$$1 + 2t - 1 + 2t = 1$$

$$4t = 1$$

$$t = \frac{1}{4}$$

Substituting this value of t into the parametric equations for the line gives us:

$$x = 1 + 2t = 1 + 2\left(\frac{1}{4}\right) = \frac{3}{2}$$
$$y = 1 - 2t = 1 - 2\left(\frac{1}{4}\right) = \frac{1}{2}$$
$$z = 1$$
ersection is
$$\boxed{\left(\frac{3}{2}, \frac{1}{2}, 1\right)}.$$

Thus, the point of intersection is

Math 210, Final Exam, Practice Fall 2009 Problem 18 Solution

18. Use a triple integral to compute the volume of the region below the sphere $x^2 + y^2 + z^2 = 4$ and above the disk $x^2 + y^2 \le 1$ in the *xy*-plane.

Solution: The region of integration is shown below.

The equation for the sphere in cylindrical coordinates is $r^2 + z^2 = 4 \implies z = \sqrt{4 - r^2}$ since the region is above the *xy*-plane. Furthermore, the disk in the *xy*-plane is described by $0 \le r \le 1, 0 \le \theta \le 2\pi$ in cylindrical coordinates. Thus, the volume of the region is:

$$V = \iiint_{R} 1 \, dV$$

= $\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} 1 \, r \, dz \, dr \, d\theta$
= $\int_{0}^{2\pi} \int_{0}^{1} r \sqrt{4-r^{2}} \, dr \, d\theta$
= $\int_{0}^{2\pi} \left[-\frac{1}{3} \left(4-r^{2}\right)^{3/2} \right]_{0}^{1} \, d\theta$
= $\int_{0}^{2\pi} \left[-\frac{1}{3} \left(4-1^{2}\right)^{3/2} + \frac{1}{3} \left(4-0^{2}\right)^{3/2} \right] \, d\theta$
= $\int_{0}^{2\pi} \frac{1}{3} \left(8-3\sqrt{3}\right) \, d\theta$
= $\left[\frac{2\pi}{3} \left(8-3\sqrt{3}\right) \right]$

Math 210, Final Exam, Practice Fall 2009 Problem 19 Solution

19. Consider the cone $z = \sqrt{x^2 + y^2}$ for $0 \le z \le 4$.

- (a) Write a parameterization $\Phi(u, v)$ for the cone, clearly indicating the domain of Φ .
- (b) Find the surface area of the cone.

Solution:

(a) We begin by finding a parameterization of the paraboloid. Let $x = u \cos(v)$ and $y = u \sin(v)$, where we define u to be nonnegative. Then,

$$z = \sqrt{x^2 + y^2}$$

$$z = \sqrt{(u\cos(v))^2 + (u\sin(v))^2}$$

$$z = \sqrt{u^2\cos^2(v) + u^2\sin^2(v)}$$

$$z = \sqrt{u^2}$$

$$z = u$$

Thus, we have $\overrightarrow{\mathbf{r}}(u, v) = \langle u \cos(v), u \sin(v), u \rangle$. To find the domain \mathcal{R} , we must determine the curve of intersection of the paraboloid and the plane z = 4. We do this by plugging z = 4 into the equation for the paraboloid to get:

$$\sqrt{x^2 + y^2} = z$$
$$\sqrt{x^2 + y^2} = 4$$
$$x^2 + y^2 = 16$$

which describes a circle of radius 4. Thus, the domain \mathcal{R} is the set of all points (x, y) satisfying $x^2 + y^2 \leq 4$. Using the fact that $x = u \cos(v)$ and $y = u \sin(v)$, this inequality becomes:

$$x^{2} + y^{2} \le 16$$
$$(u\cos(v))^{2} + (u\sin(v))^{2} \le 16$$
$$u^{2} \le 16$$
$$0 \le u \le 4$$

noting that, by definition, u must be nonnegative. The range of v-values is $0 \le v \le 2\pi$. Therefore, a parameterization of S is:

$$\vec{\mathbf{r}}(u,v) = \langle u\cos(v), u\sin(v), u \rangle,
\mathcal{R} = \left\{ (u,v) \left| 0 \le u \le 4, \ 0 \le v \le 2\pi \right\} \right\}$$

(b) The formula for surface area we will use is:

$$S = \iint_{\mathcal{S}} dS = \iint_{\mathcal{R}} \left| \overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v} \right| \, dA$$

where the function $\overrightarrow{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$ with domain \mathcal{R} is a parameterization of the surface \mathcal{S} and the vectors $\overrightarrow{\mathbf{t}}_{u} = \frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}$ and $\overrightarrow{\mathbf{t}}_{v} = \frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}$ are the tangent vectors.

The tangent vectors $\overrightarrow{\mathbf{t}}_u$ and $\overrightarrow{\mathbf{t}}_v$ are then:

$$\vec{\mathbf{t}}_{u} = \frac{\partial \vec{\mathbf{r}}}{\partial u} = \langle \cos(v), \sin(v), 1 \rangle$$
$$\vec{\mathbf{t}}_{v} = \frac{\partial \vec{\mathbf{r}}}{\partial v} = \langle -u\sin(v), u\cos(v), 0 \rangle$$

The cross product of these vectors is:

$$\vec{\mathbf{t}}_{u} \times \vec{\mathbf{t}}_{v} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \cos(v) & \sin(v) & 1 \\ -u\sin(v) & u\cos(v) & 0 \end{vmatrix}$$
$$= -u\cos(v)\,\hat{\mathbf{i}} - u\sin(v)\,\hat{\mathbf{j}} + u\,\hat{\mathbf{k}}$$
$$= \langle -u\cos(v), -u\sin(v), u \rangle$$

The magnitude of the cross product is:

$$\begin{vmatrix} \overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v} \end{vmatrix} = \sqrt{(-u\cos(v))^{2} + (-u\sin(v))^{2} + u^{2}} \\ = \sqrt{u^{2}\cos^{2}(v) + u^{2}\sin^{2}(v) + u^{2}} \\ = \sqrt{u^{2} + u^{2}} \\ = u\sqrt{2} \end{aligned}$$

We can now compute the surface area.

$$S = \iint_{\mathcal{R}} \left| \overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v} \right| dA$$
$$= \int_{0}^{4} \int_{0}^{2\pi} u\sqrt{2} \, dv \, du$$
$$= \int_{0}^{4} \left[uv\sqrt{2} \right]_{0}^{2\pi} du$$
$$= \int_{0}^{4} 2\pi\sqrt{2}u \, du$$
$$= \left[\pi\sqrt{2}u^{2} \right]_{0}^{4}$$
$$= \left[16\pi\sqrt{2} \right]$$

Math 210, Final Exam, Practice Fall 2009 Problem 20 Solution

20. Calculate $\int_C y \, dx + (x+z) \, dy + y \, dz$ along the curve given by $\overrightarrow{\mathbf{c}}(t) = (t, t^2, t^3)$ for $0 \le t \le 1$.

Solution: We note that the vector field $\overrightarrow{\mathbf{F}}$ is conservative. Letting f = y, g = x + z, and h = y we have:

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} = 1$$
$$\frac{\partial f}{\partial z} = \frac{\partial h}{\partial x} = 0$$
$$\frac{\partial g}{\partial z} = \frac{\partial h}{\partial y} = 1$$

By inspection, a potential function for the vector field is:

$$\varphi(x, y, z) = xy + yz$$

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$\int_C \overrightarrow{\mathbf{F}} \bullet d\overrightarrow{\mathbf{s}} = \varphi(1,1,1) - \varphi(0,0,0)$$
$$= [(1)(1) + (1)(1)] - [(0)(0) + (0)(0)]$$
$$= \boxed{2}$$

Note that the points (1, 1, 1) and (0, 0, 0) were obtained by plugging the endpoints of the interval $0 \le t \le 1$ into $\overrightarrow{\mathbf{c}}(t)$.