Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution

1. A triangle has vertices at the points

$$
A=(1,1,1), B=(1,-3,4), \text { and } C=(2,-1,3)
$$

(a) Find the cosine of the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) Find an equation of the plane containing the triangle.

Solution:

(a) By definition, the angle between two vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ is:

$$
\cos \theta=\frac{\overrightarrow{A B} \bullet \overrightarrow{A C}}{\|\overrightarrow{A B}\|\|\overrightarrow{A C}\|}
$$

The vectors are $\overrightarrow{A B}=\langle 0,-4,3\rangle$ and $\overrightarrow{A C}=\langle 1,-2,2\rangle$. Thus, the cosine of the angle between them is:

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{A B} \bullet \overrightarrow{B C}}{\|\overrightarrow{A B}\|\|\overrightarrow{B C}\|} \\
& =\frac{\langle 0,-4,3\rangle \bullet\langle 1,-2,2\rangle}{\|\langle 0,-4,3\rangle\|\|\langle 1,2,-1\rangle\|} \\
& =\frac{(0)(1)+(-4)(-2)+(3)(2)}{\sqrt{0^{2}+(-4)^{2}+3^{2}} \sqrt{1^{2}+(-2)^{2}+2^{2}}} \\
& =\frac{14}{15}
\end{aligned}
$$

(b) A vector perpendicular to the plane is the cross product of $\overrightarrow{A B}$ and $\overrightarrow{A C}$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{A C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0 & -4 & 3 \\
1 & -2 & 2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{ll}
-4 & 3 \\
-2 & 2
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
0 & 3 \\
1 & 2
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
0 & -4 \\
1 & -2
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(-4)(2)-(3)(-2)]-\hat{\mathbf{j}}[(0)(2)-(3)(1)]+\hat{\mathbf{k}}[(0)(-2)-(-4)(1)] \\
& \overrightarrow{\mathbf{n}}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle-2,3,4\rangle
\end{aligned}
$$

Using $A=(1,1,1)$ as a point on the plane, we have:

$$
-2(x-1)+3(y-1)-4(z-1)=0
$$

Math 210, Final Exam, Practice Fall 2009 Problem 2 Solution

2. Find the critical points of the function $f(x, y)=x^{2}+y^{2}+x^{2} y+1$ and classify each point as corresponding to either a saddle point, a local minimum, or a local maximum.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x^{2}+y^{2}+x^{2} y+1$ are $f_{x}=2 x+2 x y$ and $f_{y}=2 y+x^{2}$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=2 x+2 x y=0 \\
f_{y}=2 y+x^{2}=0 \tag{2}
\end{array}
$$

Factoring Equation (1) gives us:

$$
\begin{aligned}
& 2 x+2 x y=0 \\
& 2 x(1+y)=0 \\
& x=0, \text { or } y=-1
\end{aligned}
$$

If $x=0$ then Equation (2) gives us $y=0$. If $y=-1$ then Equation (2) gives us:

$$
\begin{aligned}
2(-1)+x^{2} & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

Thus, the critical points are $(0,0),(\sqrt{2},-1)$, and $(-\sqrt{2},-1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=2+2 y, \quad f_{y y}=2, \quad f_{x y}=2 x
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(2+2 y)(2)-(2 x)^{2} \\
& D(x, y)=4+4 y-4 x^{2}
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(0,0)$	4	2	Local Minimum
$(\sqrt{2},-1)$	-8	0	Saddle Point
$(-\sqrt{2},-1)$	-8	0	Saddle Point

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local minimum of f if $D(a, b)>0$ and $f_{x x}(a, b)>0$.

Math 210, Final Exam, Practice Fall 2009 Problem 3 Solution

3. Find the directional derivative of the function $f(x, y)=e^{x} \sin (x y)$ at the point $(0, \pi)$ in the direction of $\overrightarrow{\mathbf{v}}=\langle 1,0\rangle$. In the direction of which unit vector is f increasing most rapidly at the point $(0, \pi)$?

Solution: By definition, the directional derivative of f at (a, b) in the direction of $\hat{\mathbf{u}}$ is:

$$
D_{\mathbf{u}} f(a, b)=\vec{\nabla} f(a, b) \bullet \hat{\mathbf{u}}
$$

The gradient of $f(x, y)=e^{x} \sin (x y)$ is:

$$
\begin{aligned}
\vec{\nabla} f & =\left\langle f_{x}, f_{y}\right\rangle \\
\vec{\nabla} f & =\left\langle e^{x} \sin (x y)+y e^{x} \cos (x y), x e^{x} \cos (x y)\right\rangle
\end{aligned}
$$

At the point $(0, \pi)$ we have:

$$
\begin{aligned}
& \vec{\nabla} f(0, \pi)=\left\langle e^{0} \sin (0 \cdot \pi)+\pi e^{0} \cos (0 \cdot \pi), 0 \cdot e^{0} \cos (0 \cdot \pi)\right\rangle \\
& \vec{\nabla} f(0, \pi)=\langle\pi, 0\rangle
\end{aligned}
$$

The vector $\overrightarrow{\mathbf{v}}=\langle 1,0\rangle$ is already a unit vector. Therefore, the directional derivative is:

$$
\begin{aligned}
D_{\mathbf{v}} f(0, \pi) & =\vec{\nabla} f(0, \pi) \bullet \overrightarrow{\mathbf{v}} \\
& =\langle\pi, 0\rangle \bullet\langle 1,0\rangle \\
& =\pi
\end{aligned}
$$

The direction of steepest ascent is:

$$
\begin{aligned}
\hat{\mathbf{u}} & =\frac{1}{\|\vec{\nabla} f(0, \pi)\|} \vec{\nabla} f(0, \pi) \\
& =\frac{1}{\pi}\langle\pi, 0\rangle \\
& =\langle 1,0\rangle
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 4 Solution

4. Consider a space curve whose parameterization is given by:

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle\cos (\pi t), t^{2}, 1\right\rangle
$$

Find the unit tangent vector and curvature when $t=2$.
Solution: The first two derivatives of $\overrightarrow{\mathbf{r}}(t)$ are:

$$
\begin{aligned}
\overrightarrow{\mathbf{r}}^{\prime}(t) & =\langle-\pi \sin (\pi t), 2 t, 0\rangle \\
\overrightarrow{\mathbf{r}}^{\prime \prime}(t) & =\left\langle-\pi^{2} \cos (\pi t), 2,0\right\rangle
\end{aligned}
$$

The unit tangent vector at $t=2$ is:

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}(2) & =\frac{\overrightarrow{\mathbf{r}}^{\prime}(2)}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(2)\right\|} \\
& =\frac{\langle-\pi \sin (2 \pi), 2(2), 0\rangle}{\|\langle-\pi \sin (2 \pi), 2(2), 0\rangle\|} \\
& =\frac{\langle 0,4,0\rangle}{\|\langle 0,4,0\rangle\|} \\
& =\frac{\langle 0,4,0\rangle}{4} \\
& =\langle 0,1,0\rangle
\end{aligned}
$$

The curvature at $t=2$ is:

$$
\begin{aligned}
\kappa(2) & =\frac{\left\|\overrightarrow{\mathbf{r}}^{\prime}(2) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(2)\right\|}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(2)\right\|^{3}} \\
& =\frac{\left\|\langle-\pi \sin (2 \pi), 4,0\rangle \times\left\langle-\pi^{2} \cos (2 \pi), 2,0\right\rangle\right\|}{\|\langle-\pi \sin (2 \pi), 4,0\rangle\|^{3}} \\
& =\frac{\left\|\langle 0,4,0\rangle \times\left\langle-\pi^{2}, 2,0\right\rangle\right\|}{\|\langle 0,4,0\rangle\|^{3}} \\
& =\frac{\left\|\left\langle 0,0,4 \pi^{2}\right\rangle\right\|}{4^{3}} \\
& =\frac{4 \pi^{2}}{64} \\
& =\frac{\pi^{2}}{16}
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 5 Solution

5. Evaluate $\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d A$ where $D=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$.

Solution:

From the figure we see that the region D is bounded above by $y=\sqrt{1-x^{2}}$ and below by $y=0$. The projection of D onto the x-axis is the interval $0 \leq x \leq 1$. Since the region is a quarter-disk of radius 1 , we will use polar coordinates to evaluate the integral. The region D is described in polar coordinates as $D=\left\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}\right\}$. The value of the integral is then:

$$
\begin{aligned}
\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d A & =\int_{0}^{\pi / 2} \int_{0}^{1} e^{-r^{2}} r d r d \theta \\
& =\int_{0}^{\pi / 2}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{1} d \theta \\
& =\int_{0}^{\pi / 2}\left[-\frac{1}{2} e^{-1^{2}}+\frac{1}{2} e^{-0^{2}}\right] d \theta \\
& =\int_{0}^{\pi / 2}\left(\frac{1}{2}-\frac{1}{2} e^{-1}\right) d \theta \\
& =\left(\frac{1}{2}-\frac{1}{2} e^{-1}\right)[\theta]_{0}^{\pi / 2} \\
& =\frac{\pi}{2}\left(\frac{1}{2}-\frac{1}{2} e^{-1}\right) \\
& =\frac{\pi}{4}\left(1-e^{-1}\right)
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 6 Solution

6. Evaluate $\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}$ where $\overrightarrow{\mathbf{F}}=\langle y+z, z+x, x+y\rangle$ and C is the line segment from $(1,1,0)$ to $(2,0,-1)$.

Solution: We note that the vector field $\overrightarrow{\mathbf{F}}$ is conservative. Letting $f=y+z, g=z+x$, and $h=x+y$ we have:

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}=1 \\
& \frac{\partial f}{\partial z}=\frac{\partial h}{\partial x}=1 \\
& \frac{\partial g}{\partial z}=\frac{\partial h}{\partial y}=1
\end{aligned}
$$

By inspection, a potential function for the vector field is:

$$
\varphi(x, y, z)=x y+x z+y z
$$

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$
\begin{aligned}
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\varphi(2,0,-1)-\varphi(1,1,0) \\
& =[(2)(0)+(2)(-1)+(0)(-1)]-[(1)(1)+(1)(0)+(1)(0)] \\
& =-3
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 7 Solution

7. Consider the paraboloid $z=4-x^{2}-y^{2}$.
(a) Find an equation for the tangent plane to the paraboloid at the point $(1,2,-1)$.
(b) Find the volume that is bounded by the paraboloid and the plane $z=0$.

Solution:

(a) We use the following formula for the equation for the tangent plane:

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

because the equation for the surface is given in explicit form. The partial derivatives of $f(x, y)=4-x^{2}-y^{2}$ are:

$$
f_{x}=-2 x, \quad f_{y}=-2 y
$$

Evaluating these derivatives at $(1,2)$ we get:

$$
f_{x}(1,2)=-2, \quad f_{y}(1,2)=-4
$$

Thus, the tangent plane equation is:

$$
z=-1-2(x-1)-4(y-2)
$$

(b) The region of integration is shown below.

The volume of the region can be obtained using either a double or a triple integral. In either case, we must be able to visualize the projection of the region onto the $x y$-plane. This region is the disk $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$, the boundary of which is the intersection of the paraboloid $z=4-x^{2}-y^{2}$ and the plane $z=0$.

The double integral representing the volume is:

$$
\text { Volume }=\iint_{D}(\text { top surface }- \text { bottom surface }) d A
$$

We will use polar coordinates to set up and evaluate the double integral. The top surface is then $z=4-r^{2}$ and the bottom surface is $z=0$. The region D described in polar coordinates is $D=\{(r, \theta): 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\}$. Thus, the volume is:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}-0\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r-r^{3}\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi} 4 d \theta \\
& =4 \theta \\
& =8 \pi
\end{aligned}
$$

The triple integral representing the volume is:

$$
\text { Volume }=\iiint_{R} 1 d V
$$

Using cylindrical coordinates we have:

$$
\text { Volume }=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} 1 r d z d r d \theta
$$

which evaluates to 8π.

Math 210, Final Exam, Practice Fall 2009 Problem 8 Solution

8. Let B be a constant and consider the vector field defined by:

$$
\overrightarrow{\mathbf{F}}=\left\langle B x y+1, x^{2}+2 y\right\rangle
$$

(a) For what value of B can we write $\overrightarrow{\mathbf{F}}=\vec{\nabla} \varphi$ for some scalar function φ ? Find such a function φ in this case.
(b) Using the value of B you found in part (a), evaluate the line integral of $\overrightarrow{\mathbf{F}}$ along any curve from $(1,0)$ to $(-1,0)$.

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{F}}=\langle f(x, y), g(x, y)\rangle$ to be conservative, it must be the case that:

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

Using $f(x, y)=B x y+1$ and $g(x, y)=x^{2}+2 y$ we get:

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial g}{\partial x} \\
B x & =2 x \\
B & =2
\end{aligned}
$$

If $\overrightarrow{\mathbf{F}}=\vec{\nabla} \varphi$, then it must be the case that:

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=f(x, y) \tag{1}\\
& \frac{\partial \varphi}{\partial y}=g(x, y) \tag{2}
\end{align*}
$$

Using $f(x, y)=2 x y+1$ and integrating both sides of Equation (1) with respect to x we get:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =f(x, y) \\
\frac{\partial \varphi}{\partial x} & =2 x y+1 \\
\int \frac{\partial \varphi}{\partial x} d x & =\int(2 x y+1) d x \\
\varphi(x, y) & =x^{2} y+x+h(y) \tag{3}
\end{align*}
$$

We obtain the function $h(y)$ using Equation (2). Using $g(x, y)=x^{2}+2 y$ we get the equation:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial y}=g(x, y) \\
& \frac{\partial \varphi}{\partial y}=x^{2}+2 y
\end{aligned}
$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(x^{2} y+x+h(y)\right) & =x^{2}+2 y \\
x^{2}+h^{\prime}(y) & =x^{2}+2 y \\
h^{\prime}(y) & =2 y
\end{aligned}
$$

Now integrate both sides with respect to y to get:

$$
\begin{aligned}
\int h^{\prime}(y) d y & =\int 2 y d y \\
h(y) & =y^{2}+C
\end{aligned}
$$

Letting $C=0$, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$
\varphi(x, y)=x^{2} y+x+y^{2}
$$

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$
\begin{aligned}
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}} & =\varphi(-1,0)-\varphi(1,0) \\
& =\left[(-1)^{2}(0)+(-1)+0^{2}\right]-\left[(1)^{2}(0)+1+0^{2}\right] \\
& =-2
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 9 Solution

9. Consider $f(x, y)=x \sin (x+2 y)$.
(a) Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$, and $f_{y y}$.
(b) If $x=s^{2}+t$ and $y=2 s+t^{2}$, compute the partials f_{s} and f_{t}.

Solution:

(a) The first and second partial derivatives are:

$$
\begin{aligned}
f_{x} & =\sin (x+2 y)+x \cos (x+2 y) \\
f_{y} & =2 x \cos (x+2 y) \\
f_{x x} & =\cos (x+2 y)+\cos (x+2 y)-x \sin (x+2 y) \\
f_{x y} & =2 \cos (x+2 y)-2 x \sin (x+2 y) \\
f_{y y} & =-4 x \sin (x+2 y)
\end{aligned}
$$

(b) Using the Chain Rule, the partial derivatives f_{s} and f_{t} are:

$$
\begin{aligned}
f_{s}= & f_{x} \frac{\partial x}{\partial s}+f_{y} \frac{\partial y}{\partial s} \\
= & {[\sin (x+2 y)+x \cos (x+2 y)](2 s)+[2 x \cos (x+2 y)](2) } \\
= & {\left[\sin \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)+\left(s^{2}+t\right) \cos \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)\right](2 s)+} \\
& {\left[2\left(s^{2}+t\right) \cos \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)\right](2) } \\
f_{t}= & f_{x} \frac{\partial x}{\partial t}+f_{y} \frac{\partial y}{\partial t} \\
= & {[\sin (x+2 y)+x \cos (x+2 y)](1)+[2 x \cos (x+2 y)](2 t) } \\
= & {\left[\sin \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)+\left(s^{2}+t\right) \cos \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)\right]+} \\
& \quad\left[2\left(s^{2}+t\right) \cos \left(s^{2}+t+2\left(2 s+t^{2}\right)\right)\right](2 t)
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 10 Solution

10. Find the points on the ellipse $x^{2}+x y+y^{2}=9$ where the distance from the origin is maximal and minimal. (Hint: Let $f(x, y)=x^{2}+y^{2}$ be the function you want to extremize where (x, y) is a point on the ellipse.)

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^{2}+x y+y^{2}=9$ is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y)=x^{2}+x y+y^{2}=9$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=9
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
2 x & =\lambda(2 x+y) \tag{1}\\
2 y & =\lambda(x+2 y) \tag{2}\\
x^{2}+x y+y^{2} & =9 \tag{3}
\end{align*}
$$

We begin by diving Equation (1) by Equation (2) to give us:

$$
\begin{aligned}
\frac{2 x}{2 y} & =\frac{\lambda(2 x+y)}{\lambda(x+2 y)} \\
\frac{x}{y} & =\frac{2 x+y}{x+2 y} \\
x(x+2 y) & =y(2 x+y) \\
x^{2}+2 x y & =2 x y+y^{2} \\
x^{2} & =y^{2} \\
x & = \pm y
\end{aligned}
$$

If $x=y$ then Equation (3) gives us:

$$
\begin{aligned}
(y)^{2}+(y) y+y^{2} & =9 \\
y^{2}+y^{2}+y^{2} & =9 \\
3 y^{2} & =9 \\
y^{2} & =3 \\
y & = \pm \sqrt{3}
\end{aligned}
$$

Since $x=y$ we have $(\sqrt{3}, \sqrt{3})$ and $(-\sqrt{3},-\sqrt{3})$ as points of interest.
If $x=-y$ then Equation (3) gives us:

$$
\begin{aligned}
(-y)^{2}+(-y) y+y^{2} & =9 \\
y^{2}-y^{2}+y^{2} & =9 \\
y^{2} & =9 \\
y & = \pm 3
\end{aligned}
$$

Since $x=-y$ we have $(3,-3)$ and $(-3,3)$ as points of interest.
We now evaluate $f(x, y)=x^{2}+y^{2}$ at each point of interest.

$$
\begin{aligned}
f(\sqrt{3}, \sqrt{3}) & =(\sqrt{3})^{2}+(\sqrt{3})^{2}=6 \\
f(-\sqrt{3},-\sqrt{3}) & =(-\sqrt{3})^{2}+(-\sqrt{3})^{2}=6 \\
f(3,-3) & =3^{2}+(-3)^{2}=18 \\
f(-3,3) & =(-3)^{2}+3^{2}=18
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of 18 and an absolute minimum of 6 .

Math 210, Final Exam, Practice Fall 2009 Problem 11 Solution

11. Sketch the region of integration for the integral below and evaluate the integral.

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

Solution:

From the figure we see that the region D is bounded above by $y=x$ and below by $y=0$. The projection of D onto the x-axis is the interval $0 \leq x \leq 1$. Using the order of integration $d y d x$ we have:

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y & =\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x \\
& =\int_{0}^{1} e^{-x^{2}}[y]_{0}^{x} d x \\
& =\int_{0}^{1} x e^{-x^{2}} d x \\
& =\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{1} \\
& =\left[-\frac{1}{2} e^{-1^{2}}\right]-\left[-\frac{1}{2} e^{-0^{2}}\right] \\
& =\frac{1}{2}-\frac{1}{2} e^{-1}
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 12 Solution

12. Evaluate $\int_{C} f(x, y, z) d s$ where $f(x, y, z)=z \sqrt{x^{2}+y^{2}}$ and C is the helix $\overrightarrow{\mathbf{c}}(t)=$ $(4 \cos t, 4 \sin t, 3 t)$ for $0 \leq t \leq 2 \pi$.

Solution: We use the following formula to evaluate the integral:

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\overrightarrow{\mathbf{c}}^{\prime}(t)\right| d t
$$

Using the fact that $x=4 \cos t, y=4 \sin t$, and $z=3 t$, the function $f(x, y, z)$ can be rewritten as:

$$
\begin{aligned}
f(x(t), y(t), z(t)) & =z(t) \sqrt{x(t)^{2}+y(t)^{2}} \\
& =(3 t) \sqrt{(4 \cos t)+(4 \sin t)^{2}} \\
& =3 t \sqrt{16 \cos ^{2} t+16 \sin ^{2} t} \\
& =3 t \cdot 4 \\
& =12 t
\end{aligned}
$$

The derivative $\overrightarrow{\mathbf{c}}^{\prime}(t)$ and its magnitude are:

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}^{\prime}(t) & =\langle-4 \sin t, 4 \cos t, 3\rangle \\
\left|\overrightarrow{\mathbf{c}}^{\prime}(t)\right| & =\sqrt{(-4 \sin t)^{2}+(4 \cos t)^{2}+3^{2}} \\
& =5
\end{aligned}
$$

Therefore, the value of the line integral is:

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{a}^{b} f(x(t), y(t), z(t))\left|\overrightarrow{\mathbf{c}}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} 12 t \cdot 5 d t \\
& =\int_{0}^{2 \pi} 60 t d t \\
& =\left[30 t^{2}\right]_{0}^{2 \pi} \\
& =120 \pi^{2}
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 13 Solution

13. Consider the vectors $\overrightarrow{\mathrm{v}}=\langle 1,2, a\rangle$ and $\overrightarrow{\mathrm{w}}=\langle 1,1,1\rangle$.
(a) Find the value of a such that \vec{v} is perpendicular to $\overrightarrow{\mathrm{w}}$.
(b) Find the two values of a such that the area of the parallelogram determined by $\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ is equal to $\sqrt{6}$.

Solution:

(a) By definition, two vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ are perpendicular if and only if the dot product of the vectors is equal to zero.

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} \bullet \overrightarrow{\mathbf{w}} & =0 \\
\langle 1,2, a\rangle \bullet\langle 1,1,1\rangle & =0 \\
1+2+a & =0 \\
a & =-3
\end{aligned}
$$

(b) By definition, the area of a parallelogram spanned by the vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is:

$$
A=\|\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathbf{w}}\|
$$

The cross product of $\overrightarrow{\mathbf{v}}=\langle 1,2, a\rangle$ and $\overrightarrow{\mathbf{w}}=\langle 1,1,1\rangle$ is:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & a \\
1 & 1 & 1
\end{array}\right| \\
& =\langle 2-a, a-1,-1\rangle
\end{aligned}
$$

The area of the parallelogram is then:

$$
\begin{aligned}
A & =\|\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}\| \\
& =\|\langle 2-a, a-1,-1\rangle\| \\
& =\sqrt{(2-a)^{2}+(a-1)^{2}+(-1)^{2}} \\
& =\sqrt{(a-2)^{2}+(a-1)^{2}+1}
\end{aligned}
$$

In order for the area to be $\sqrt{6}$ it must be the case that:

$$
\begin{aligned}
\sqrt{(a-2)^{2}+(a-1)^{2}+1} & =\sqrt{6} \\
(a-2)^{2}+(a-1)^{2}+1 & =6 \\
a^{2}-4 a+4+a^{2}-2 a+1+1 & =6 \\
2 a^{2}-6 a+6 & =6 \\
2 a^{2}-6 a & =0 \\
2 a(a-3) & =0 \\
a=0 \text { or } a & =3
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009 Problem 14 Solution

14. Consider a particle whose position vector is given by

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle\sin (\pi t), t^{2}, t+1\right\rangle
$$

(a) Find the velocity $\overrightarrow{\mathbf{r}}^{\prime}(t)$ and the acceleration $\overrightarrow{\mathbf{r}}^{\prime \prime}(t)$.
(b) Set up the integral you would compute to find the distance traveled by the particle from $t=0$ to $t=4$. Do not attempt to compute the integral.

Solution:

(a) The velocity and acceleration vectors are:

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle\pi \cos (\pi t), 2 t, 1\rangle \\
& \overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{v}}^{\prime}(t)=\left\langle-\pi^{2} \sin (\pi t), 2,0\right\rangle
\end{aligned}
$$

(b) The distance traveled by the particle is:

$$
\begin{aligned}
L & =\int_{0}^{4}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
& =\int_{0}^{4} \sqrt{(\pi \cos (\pi t))^{2}+(2 t)^{2}+1^{2}} d t \\
& =\int_{0}^{4} \sqrt{\pi^{2} \cos ^{2}(\pi t)+4 t^{2}+1} d t
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 15 Solution

15. Find the volume of the region enclosed by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=4$.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral formula for computing the volume of a region R bounded above by the surface $z=f(x, y)$ and below by the surface $z=g(x, y)$ with projection D onto the $x y$-plane is:

$$
V=\iint_{D}(f(x, y)-g(x, y)) d A
$$

In this case, the top surface is $z=4-y=4-r \sin \theta$ in polar coordinates and the bottom surface is $z=0$. The projection of R onto the $x y$-plane is a disk of radius 2 , described in polar coordinates as $D=\{(r, \theta): 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\}$. Thus, the volume formula is:

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{2}(4-r \sin \theta-0) r d r d \theta \tag{1}
\end{equation*}
$$

The triple integral formula for computing the volume of R is:

$$
V=\iint_{D}\left(\int_{g(x, y)}^{f(x, y)} 1 d z\right) d A
$$

Using cylindrical coordinates we have:

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r \sin \theta} 1 r d z d r d \theta \tag{2}
\end{equation*}
$$

Evaluating Equation (1) we get:

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{2}(4-r \sin \theta-0) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{3} r^{3} \sin \theta\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi}\left(8-\frac{8}{3} \sin \theta\right) d \theta \\
& =\left[8 \theta+\frac{8}{3} \cos \theta\right]_{0}^{2 \pi} \\
& =\left[(8)(2 \pi)+\frac{8}{3} \cos 2 \pi\right]-\left[(8)(0)+\frac{8}{3} \cos 0\right] \\
& =16 \pi
\end{aligned}
$$

Note that Equation (2) will evaluate to the same answer.

Math 210, Final Exam, Practice Fall 2009
 Problem 16 Solution

16. Use Green's Theorem to compute $\oint_{C} x y d x+y^{5} d y$ where C is the boundary of the triangle with vertices at $(0,0),(2,0),(2,1)$, oriented counterclockwise.

Solution: Green's Theorem states that

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}=\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A
$$

where D is the region enclosed by C. The integrand of the double integral is:

$$
\begin{aligned}
\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y} & =\frac{\partial}{\partial x} y^{5}-\frac{\partial}{\partial y} x y \\
& =0-x \\
& =-x
\end{aligned}
$$

Thus, the value of the integral is:

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\iint_{D}(-x) d A \\
& =-\int_{0}^{2} \int_{0}^{x / 2} x d y d x \\
& =-\int_{0}^{2}[x y]_{0}^{x / 2} d x \\
& =-\int_{0}^{2} \frac{1}{2} x^{2} d x \\
& =-\left[\frac{1}{6} x^{3}\right]_{0}^{2} \\
& =-\frac{1}{6}(2)^{3} \\
& =-\frac{4}{3}
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 17 Solution

17. Consider the plane P containing the points $A=(1,0,0), B=(2,1,1)$, and $C=(1,0,2)$.
(a) Find a unit vector perpendicular to P.
(b) Find the intersection of P with the line perpendicular to P that contains the point $D=(1,1,1)$.

Solution:

(a) A vector perpendicular to the plane is the cross product of $\overrightarrow{A B}=\langle 1,1,1\rangle$ and $\overrightarrow{B C}=$ $\langle-1,-1,1\rangle$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{A B} \times \overrightarrow{B C} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{\imath}}\left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(1)(1)-(1)(-1)]-\hat{\mathbf{j}}[(1)(1)-(1)(-1)]+\hat{\mathbf{k}}[(1)(-1)-(1)(-1)] \\
& \overrightarrow{\mathbf{n}}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+0 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 2,-2,0\rangle
\end{aligned}
$$

To make $\overrightarrow{\mathbf{n}}$ a unit vector we multiply by the reciprocal of its magnitude to get:

$$
\begin{aligned}
\hat{\mathbf{n}} & =\frac{1}{\|\overrightarrow{\mathbf{n}}\|} \overrightarrow{\mathbf{n}} \\
& =\frac{1}{\sqrt{8}}\langle 2,-2,0\rangle \\
& =\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right\rangle
\end{aligned}
$$

(b) To find the intersection of the plane P and the line perpendicular to P through $D=$ $(1,1,1)$, we must form an equation for the plane and a set of parametric equations for the line. Using A as a point on the plane and the vector $\overrightarrow{\mathbf{n}}=\langle 2,-2,0\rangle$ which is perpendicular to plane, we have:

$$
2(x-1)-2(y-0)-0(z-0)=0
$$

as an equation for the plane and:

$$
x=1+2 t, \quad y=1-2 t, \quad z=1-0 t
$$

as a set of parametric equations for the line. Cleaning up the plane equation and substituting the parametric equations of the line for x, y, and z we get:

$$
\begin{aligned}
2(x-1)-2(y-0)-0(z-0) & =0 \\
2 x-2-2 y & =0 \\
2 x-2 y & =2 \\
x-y & =1 \\
(1+2 t)-(1-2 t) & =1 \\
1+2 t-1+2 t & =1 \\
4 t & =1 \\
t & =\frac{1}{4}
\end{aligned}
$$

Substituting this value of t into the parametric equations for the line gives us:

$$
\begin{aligned}
& x=1+2 t=1+2\left(\frac{1}{4}\right)=\frac{3}{2} \\
& y=1-2 t=1-2\left(\frac{1}{4}\right)=\frac{1}{2} \\
& z=1
\end{aligned}
$$

Thus, the point of intersection is $\left(\frac{3}{2}, \frac{1}{2}, 1\right)$.

Math 210, Final Exam, Practice Fall 2009 Problem 18 Solution

18. Use a triple integral to compute the volume of the region below the sphere $x^{2}+y^{2}+z^{2}=4$ and above the disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane.

Solution: The region of integration is shown below.

The equation for the sphere in cylindrical coordinates is $r^{2}+z^{2}=4 \quad \Longrightarrow \quad z=\sqrt{4-r^{2}}$ since the region is above the $x y$-plane. Furthermore, the disk in the $x y$-plane is described by $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ in cylindrical coordinates. Thus, the volume of the region is:

$$
\begin{aligned}
V & =\iiint_{R} 1 d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} 1 r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r \sqrt{4-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}\right]_{0}^{1} d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(4-1^{2}\right)^{3 / 2}+\frac{1}{3}\left(4-0^{2}\right)^{3 / 2}\right] d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3}(8-3 \sqrt{3}) d \theta \\
& =\frac{2 \pi}{3}(8-3 \sqrt{3})
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 19 Solution

19. Consider the cone $z=\sqrt{x^{2}+y^{2}}$ for $0 \leq z \leq 4$.
(a) Write a parameterization $\Phi(u, v)$ for the cone, clearly indicating the domain of Φ.
(b) Find the surface area of the cone.

Solution:

(a) We begin by finding a parameterization of the paraboloid. Let $x=u \cos (v)$ and $y=u \sin (v)$, where we define u to be nonnegative. Then,

$$
\begin{aligned}
& z=\sqrt{x^{2}+y^{2}} \\
& z=\sqrt{(u \cos (v))^{2}+(u \sin (v))^{2}} \\
& z=\sqrt{u^{2} \cos ^{2}(v)+u^{2} \sin ^{2}(v)} \\
& z=\sqrt{u^{2}} \\
& z=u
\end{aligned}
$$

Thus, we have $\overrightarrow{\mathbf{r}}(u, v)=\langle u \cos (v), u \sin (v), u\rangle$. To find the domain \mathcal{R}, we must determine the curve of intersection of the paraboloid and the plane $z=4$. We do this by plugging $z=4$ into the equation for the paraboloid to get:

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =z \\
\sqrt{x^{2}+y^{2}} & =4 \\
x^{2}+y^{2} & =16
\end{aligned}
$$

which describes a circle of radius 4 . Thus, the domain \mathcal{R} is the set of all points (x, y) satisfying $x^{2}+y^{2} \leq 4$. Using the fact that $x=u \cos (v)$ and $y=u \sin (v)$, this inequality becomes:

$$
\begin{aligned}
x^{2}+y^{2} & \leq 16 \\
(u \cos (v))^{2}+(u \sin (v))^{2} & \leq 16 \\
u^{2} & \leq 16 \\
0 \leq u & \leq 4
\end{aligned}
$$

noting that, by definition, u must be nonnegative. The range of v-values is $0 \leq v \leq 2 \pi$. Therefore, a parameterization of \mathcal{S} is:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}(u, v)=\langle u \cos (v), u \sin (v), u\rangle \\
& \mathcal{R}=\{(u, v) \mid 0 \leq u \leq 4,0 \leq v \leq 2 \pi\}
\end{aligned}
$$

(b) The formula for surface area we will use is:

$$
S=\iint_{\mathcal{S}} d S=\iint_{\mathcal{R}}\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| d A
$$

where the function $\overrightarrow{\mathbf{r}}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ with domain \mathcal{R} is a parameterization of the surface \mathcal{S} and the vectors $\overrightarrow{\mathbf{t}}_{u}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}$ and $\overrightarrow{\mathbf{t}}_{v}=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}$ are the tangent vectors.

The tangent vectors $\overrightarrow{\mathbf{t}}_{u}$ and $\overrightarrow{\mathbf{t}}_{v}$ are then:

$$
\begin{aligned}
\overrightarrow{\mathbf{t}}_{u} & =\frac{\partial \overrightarrow{\mathbf{r}}}{\partial u}=\langle\cos (v), \sin (v), 1\rangle \\
\overrightarrow{\mathbf{t}}_{v} & =\frac{\partial \overrightarrow{\mathbf{r}}}{\partial v}=\langle-u \sin (v), u \cos (v), 0\rangle
\end{aligned}
$$

The cross product of these vectors is:

$$
\begin{aligned}
\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\cos (v) & \sin (v) & 1 \\
-u \sin (v) & u \cos (v) & 0
\end{array}\right| \\
& =-u \cos (v) \hat{\mathbf{1}}-u \sin (v) \hat{\mathbf{j}}+u \hat{\mathbf{k}} \\
& =\langle-u \cos (v),-u \sin (v), u\rangle
\end{aligned}
$$

The magnitude of the cross product is:

$$
\begin{aligned}
\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| & =\sqrt{(-u \cos (v))^{2}+(-u \sin (v))^{2}+u^{2}} \\
& =\sqrt{u^{2} \cos ^{2}(v)+u^{2} \sin ^{2}(v)+u^{2}} \\
& =\sqrt{u^{2}+u^{2}} \\
& =u \sqrt{2}
\end{aligned}
$$

We can now compute the surface area.

$$
\begin{aligned}
S & =\iint_{\mathcal{R}}\left|\overrightarrow{\mathbf{t}}_{u} \times \overrightarrow{\mathbf{t}}_{v}\right| d A \\
& =\int_{0}^{4} \int_{0}^{2 \pi} u \sqrt{2} d v d u \\
& =\int_{0}^{4}[u v \sqrt{2}]_{0}^{2 \pi} d u \\
& =\int_{0}^{4} 2 \pi \sqrt{2} u d u \\
& =\left[\pi \sqrt{2} u^{2}\right]_{0}^{4} \\
& =16 \pi \sqrt{2}
\end{aligned}
$$

Math 210, Final Exam, Practice Fall 2009
 Problem 20 Solution

20. Calculate $\int_{C} y d x+(x+z) d y+y d z$ along the curve given by $\overrightarrow{\mathbf{c}}(t)=\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$.

Solution: We note that the vector field $\overrightarrow{\mathbf{F}}$ is conservative. Letting $f=y, g=x+z$, and $h=y$ we have:

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}=1 \\
& \frac{\partial f}{\partial z}=\frac{\partial h}{\partial x}=0 \\
& \frac{\partial g}{\partial z}=\frac{\partial h}{\partial y}=1
\end{aligned}
$$

By inspection, a potential function for the vector field is:

$$
\varphi(x, y, z)=x y+y z
$$

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$
\begin{aligned}
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\varphi(1,1,1)-\varphi(0,0,0) \\
& =[(1)(1)+(1)(1)]-[(0)(0)+(0)(0)] \\
& =2
\end{aligned}
$$

Note that the points $(1,1,1)$ and $(0,0,0)$ were obtained by plugging the endpoints of the interval $0 \leq t \leq 1$ into $\overrightarrow{\mathbf{c}}(t)$.

