Math 210, Final Exam, Spring 2009 Problem 1 Solution

1. Let $f(x, y, z)=\left(x^{2}+y\right) z+x \cos \left(y^{2}-z\right)$.
(a) Find the gradient $\vec{\nabla} f$ at the point $P=(0,1,1)$.
(b) Find the directional derivative $D_{\mathbf{v}} f(0,1,1)$ where $\overrightarrow{\mathbf{v}}$ is the unit vector from P towards $Q=(2,3,0)$.

Solution:

(a) The gradient of f is:

$$
\begin{aligned}
\vec{\nabla} f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\left\langle 2 x z+\cos \left(y^{2}-z\right), z-2 x y \sin \left(y^{2}-z\right), x^{2}+y+x \sin \left(y^{2}-z\right)\right\rangle
\end{aligned}
$$

At the point $P=(0,1,1)$ we have:

$$
\begin{aligned}
\vec{\nabla} f(0,1,1) & =\left\langle 2(0)(1)+\cos \left(1^{2}-1\right), 1-2(0)(1) \sin \left(1^{1}-1\right), 0^{2}+1+(0) \sin \left(1^{1}-1\right)\right\rangle \\
& =\langle 1,1,1\rangle
\end{aligned}
$$

(b) The unit vector $\overrightarrow{\mathbf{v}}$ that points from $P=(0,1,1)$ towards $Q=(2,3,0)$ is:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} & =\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|} \\
& =\frac{\langle 2,2,-1\rangle}{\|\langle 2,2,-1\rangle\|} \\
& =\frac{\langle 2,2,-1\rangle}{3} \\
& =\left\langle\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle
\end{aligned}
$$

Thus, the directional derivative $D_{\mathbf{v}} f(0,1,1)$ is:

$$
\begin{aligned}
D_{\mathbf{v}} f(0,1,1) & =\vec{\nabla} f(0,1,1) \bullet \overrightarrow{\mathbf{v}} \\
& =\langle 1,1,1\rangle \bullet\left\langle\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle \\
& =\frac{2}{3}+\frac{2}{3}-\frac{1}{3} \\
& =1
\end{aligned}
$$

Math 210, Final Exam, Spring 2009 Problem 2 Solution

2. Consider the vector fields $\overrightarrow{\mathbf{F}}=\left\langle y e^{x y}+y^{2}, x e^{x y}+2 x y\right\rangle$ and $\overrightarrow{\mathbf{G}}=\left\langle x e^{x y}, y e^{x y}\right\rangle$.
(a) Which of the two vector fields is conservative and which is not? (justify)
(b) Find a potential function ϕ for the conservative among the vector fields.

Solution:

(a) In order for the vector field $\overrightarrow{\mathbf{H}}=\langle f(x, y), g(x, y)\rangle$ to be conservative, it must be the case that:

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

- $\overrightarrow{\mathbf{F}}: \operatorname{Using} f(x, y)=y e^{x y}+y^{2}$ and $g(x, y)=x e^{x y}+2 x y$ we have:

$$
\frac{\partial f}{\partial y}=e^{x y}+x y e^{x y}+2 y, \quad \frac{\partial g}{\partial x}=e^{x y}+x y e^{x y}+2 y
$$

verifying that $\overrightarrow{\mathbf{F}}$ is conservative.

- $\overrightarrow{\mathbf{G}}$: Using $f(x, y)=x e^{x y}$ and $g(x, y)=y e^{x y}$ we have:

$$
\frac{\partial f}{\partial y}=x^{2} e^{x y}, \quad \frac{\partial g}{\partial x}=y^{2} e^{x y}
$$

verifying that $\overrightarrow{\mathbf{G}}$ is not conservative.
(b) If $\overrightarrow{\mathbf{F}}=\vec{\nabla} \phi$, then it must be the case that:

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=f(x, y) \tag{1}\\
& \frac{\partial \phi}{\partial y}=g(x, y) \tag{2}
\end{align*}
$$

Using $f(x, y)=y e^{x y}+y^{2}$ and integrating both sides of Equation (1) with respect to x we get:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =f(x, y) \\
\frac{\partial \varphi}{\partial x} & =y e^{x y}+y^{2} \\
\int \frac{\partial \varphi}{\partial x} d x & =\int\left(y e^{x y}+y^{2}\right) d x \\
\varphi(x, y) & =e^{x y}+x y^{2}+h(y) \tag{3}
\end{align*}
$$

We obtain the function $h(y)$ using Equation (2). Using $g(x, y)=x e^{x y}+2 x y$ we get the equation:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial y}=g(x, y) \\
& \frac{\partial \varphi}{\partial y}=x e^{x y}+2 x y
\end{aligned}
$$

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we get:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(e^{x y}+x y^{2}+h(y)\right) & =x e^{x y}+2 x y \\
x e^{x y}+2 x y+h^{\prime}(y) & =x e^{x y}+2 x y \\
h^{\prime}(y) & =0
\end{aligned}
$$

which gives us $h(y)=C$. Letting $C=0$, we find that a potential function for $\overrightarrow{\mathbf{F}}$ is:

$$
\phi(x, y)=e^{x y}+x y^{2}
$$

Math 210, Final Exam, Spring 2009 Problem 3 Solution

3. Use Green's theorem to compute

$$
\oint_{C} x y^{2} d x+(x-y) d y
$$

where C traces the triangle with vertices $(0,0),(1,0),(0,2)$ traversed in this order.
Solution: Green's Theorem states that

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}=\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A
$$

where D is the region enclosed by C. The integrand of the double integral is:

$$
\begin{aligned}
\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y} & =\frac{\partial}{\partial x}(x-y)-\frac{\partial}{\partial y} x y^{2} \\
& =1-2 x y
\end{aligned}
$$

Thus, the value of the integral is:

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\iint_{D}(1-2 x y) d A \\
& =\int_{0}^{1} \int_{0}^{-2 x+2}(1-2 x y) d y d x \\
& =\int_{0}^{1}\left[y-x y^{2}\right]_{0}^{-2 x+2} d x \\
& =\int_{0}^{1}\left[(-2 x+2)-x(-2 x+2)^{2}\right] d x \\
& =\int_{0}^{1}\left(-2 x+2-4 x^{3}+8 x^{2}-4 x\right) d x \\
& =\int_{0}^{1}\left(-4 x^{3}+8 x^{2}-6 x+2\right) d x \\
& =\left[-x^{4}+\frac{8}{3} x^{3}-3 x^{2}+2 x\right]_{0}^{1} \\
& =-1+\frac{8}{3}-3+2 \\
& =\frac{2}{3}
\end{aligned}
$$

Math 210, Final Exam, Spring 2009 Problem 4 Solution

4. Let $\overrightarrow{\mathbf{u}}=\langle 1,2,3\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 2,-1,0\rangle$.
(a) What can be said about the angle between $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathrm{v}}$: acute/obtuse/right?
(b) Find an equation for the plane through $(1,1,1)$ containing $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

Solution:

(a) The angle is determined by the dot product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$:

$$
\overrightarrow{\mathbf{u}} \bullet \overrightarrow{\mathbf{v}}=\langle 1,2,3\rangle \bullet\langle 2,-1,0\rangle=(1)(2)+(2)(-1)+(3)(0)=0
$$

Since the dot product is zero, the vectors are perpendicular. Thus, the angle between the two vectors is a right angle.
(b) A vector perpendicular to the plane is the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ which both lie in the plane.

$$
\begin{aligned}
& \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \\
& \overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 2 & 3 \\
2 & -1 & 0
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}\left|\begin{array}{cc}
2 & 3 \\
-1 & 0
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right| \\
& \overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}[(2)(0)-(3)(-1)]-\hat{\mathbf{j}}[(1)(0)-(3)(2)]+\hat{\mathbf{k}}[(1)(-1)-(2)(2)] \\
& \overrightarrow{\mathbf{n}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-5 \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{n}}=\langle 3,6,-5\rangle
\end{aligned}
$$

Using $(1,1,1)$ as a point on the plane, we have:

$$
3(x-1)+6(y-1)-5(z-1)=0
$$

Math 210, Final Exam, Spring 2009 Problem 5 Solution

5. Find the equation of the tangent plane to the level surface $e^{x z}+(x+y)^{3}-y z=3$ at the point ($0,2,3$).

Solution: We use the following formula for the equation for the tangent plane:

$$
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0
$$

because the equation for the surface is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} f(a, b, c)=$ $\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $f(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of $f(x, y, z)=e^{x z}+(x+y)^{3}-y z$ are:

$$
\begin{aligned}
f_{x} & =z e^{x z}+3(x+y)^{2} \\
f_{y} & =3(x+y)^{2}-z \\
f_{z} & =x e^{x z}-y
\end{aligned}
$$

Evaluating these derivatives at $(0,2,3)$ we get:

$$
\begin{aligned}
f_{x}(0,2,3) & =3 e^{(0)(3)}+3(0+2)^{2}=15 \\
f_{y}(0,2,3) & =3(0+2)^{2}-3=9 \\
f_{z}(0,2,3) & =(0) e^{(0)(3)}-2=-2
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
15(x-0)+9(y-2)-2(z-3)=0
$$

Math 210, Final Exam, Spring 2009
 Problem 6 Solution

6. Use the method of Lagrange multipliers to find points where $f(x, y)=x+6 y-7$ attains its maximum and minimum on the ellipse $x^{2}+3 y^{2}=13$.

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $x^{2}+3 y^{2}=13$ is compact which guarantees the existence of absolute extrema of f. Then, let $g(x, y)=x^{2}+3 y^{2}=13$. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=13
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
1 & =\lambda(2 x) \tag{1}\\
6 & =\lambda(6 y) \tag{2}\\
x^{2}+3 y^{2} & =13 \tag{3}
\end{align*}
$$

We begin by noting that Equation (1) gives us:

$$
\begin{aligned}
& 1=\lambda(2 x) \\
& x=\frac{1}{2 \lambda}
\end{aligned}
$$

and Equation (2) gives us:

$$
\begin{aligned}
& 6=\lambda(6 y) \\
& y=\frac{1}{\lambda}
\end{aligned}
$$

Plugging the above expressions for x and y into Equation (3) and solving for λ we get:

$$
\begin{aligned}
x^{2}+3 y^{2} & =13 \\
\left(\frac{1}{2 \lambda}\right)^{2}+3\left(\frac{1}{\lambda}\right)^{2} & =13 \\
\frac{1}{4 \lambda^{2}}+\frac{3}{\lambda^{2}} & =13 \\
\frac{1}{4 \lambda^{2}}+\frac{12}{4 \lambda^{2}} & =13 \\
1+12 & =13\left(4 \lambda^{2}\right) \\
52 \lambda^{2} & =13 \\
\lambda^{2} & =\frac{1}{4} \\
\lambda & = \pm \frac{1}{2}
\end{aligned}
$$

When $\lambda=\frac{1}{2}$ we get $x=1$ and $y=2$. When $\lambda=-\frac{1}{2}$ we get $x=-1$ and $y=-2$. Thus, the points of interest are $(1,2)$ and $(-1,-2)$.

We now evaluate $f(x, y)=x+6 y-7$ at each point of interest.

$$
\begin{aligned}
f(1,2) & =6 \\
f(-1,-2) & =-20
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of 6 and an absolute minimum of -20 .

Math 210, Final Exam, Spring 2009 Problem 7 Solution

7. Find all critical values of $f(x, y)=x^{3}+2 x y-2 y^{2}-10 x$ and classify them into local maxima, local minima, and saddle points.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x^{3}+2 x y-2 y^{2}-10 x$ are $f_{x}=3 x^{2}+2 y-10$ and $f_{y}=2 x-4 y$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=3 x^{2}+2 y-10=0 \\
f_{y}=2 x-4 y=0 \tag{2}
\end{array}
$$

Solving Equation (2) for x we get:

$$
\begin{equation*}
x=2 y \tag{3}
\end{equation*}
$$

Substituting this into Equation (1) and solving for y we get:

$$
\begin{aligned}
3 x^{2}+2 y-10 & =0 \\
3(2 y)^{2}+2 y-10 & =0 \\
12 y^{2}+2 y-10 & =0 \\
6 y^{2}+y-5 & =0 \\
(6 y-5)(y+1) & =0 \\
\Longleftrightarrow y=\frac{5}{6} \text { or } y & =-1
\end{aligned}
$$

We find the corresponding x-values using Equation (3): $x=2 y$.

- If $y=\frac{5}{6}$, then $x=\frac{5}{3}$.
- If $y=-1$, then $x=-2$.

Thus, the critical points are $\left(\frac{5}{3}, \frac{5}{6}\right)$ and $(-2,-1)$.

We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=6 x, \quad f_{y y}=-4, \quad f_{x y}=2
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(6 x)(-4)-(2)^{2} \\
& D(x, y)=-24 x-4
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$\left(\frac{5}{3}, \frac{5}{6}\right)$	-44	10	Saddle Point
$(-2,-1)$	44	-12	Local Maximum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local maximum of f if $D(a, b)>0$ and $f_{x x}(a, b)<0$.

Math 210, Final Exam, Spring 2009 Problem 8 Solution

8. Let C be the curve parameterized by $\overrightarrow{\mathbf{c}}(t)=\langle 3 t, 2 \cos (t), 2 \sin (t)\rangle$ for $0 \leq t \leq 2 \pi$.
(a) Find $\overrightarrow{\mathbf{c}}^{\prime}(t)$ and $\overrightarrow{\mathbf{c}}^{\prime \prime}(t)$.
(b) Find the length of the curve.

Solution:

(a) The first two derivatives of $\overrightarrow{\mathbf{c}}(t)$ are:

$$
\begin{aligned}
\overrightarrow{\mathbf{c}}^{\prime}(t) & =\langle 3,-2 \sin (t), 2 \cos (t)\rangle \\
\overrightarrow{\mathbf{c}}^{\prime \prime}(t) & =\langle 0,-2 \cos (t),-2 \sin (t)\rangle
\end{aligned}
$$

(b) The length of the curve is:

$$
\begin{aligned}
L & =\int_{0}^{2 \pi}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
& =\int_{0}^{2 \pi} \sqrt{3^{2}+(-2 \sin (t))^{2}+(2 \cos (t))^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{9+4 \sin ^{2}(t)+4 \cos ^{2}(t)} d t \\
& =\int_{0}^{2 \pi} \sqrt{9+4} d t \\
& =\int_{0}^{2 \pi} \sqrt{13} d t \\
& =2 \pi \sqrt{13}
\end{aligned}
$$

Math 210, Final Exam, Spring 2009
 Problem 9 Solution

9. Let H be the upper semi-ball $x^{2}+y^{2}+z^{2} \leq 4, z \geq 0$. Compute

$$
\iiint_{H} z d V
$$

Solution: The region of integration is shown below.

The inequality describing the ball in cylindrical coordinates is $r^{2}+z^{2} \leq 4 \Longrightarrow z \geq \sqrt{4-r^{2}}$ since the region is above the $x y$-plane. The projection of H onto the $x y$-plane is the disk $0 \leq r \leq 2,0 \leq \theta \leq 2 \pi$. Thus, the value of the integral is:

$$
\begin{aligned}
V & =\iiint_{H} z d V \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{\sqrt{4-r^{2}}} z r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r\left[\frac{1}{2} z^{2}\right]_{0}^{\sqrt{4-r^{2}}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \frac{1}{2} r\left(4-r^{2}\right) d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2}\left(4 r-r^{3}\right) d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(2(2)^{2}-\frac{1}{4}(2)^{4}\right) d \theta \\
& =2 \int_{0}^{2 \pi} d \theta \\
& =4 \pi
\end{aligned}
$$

Math 210, Final Exam, Spring 2009
 Problem 10 Solution

10. Change the order of integration and evaluate the iterated integral:

$$
\int_{0}^{1} \int_{y^{1 / 3}}^{1}\left(x y+\sin \left(x^{4}\right)\right) d x d y
$$

Solution:

From the figure we see that the region D is bounded above by $y=x^{3}$ and below by $y=0$. The projection of D onto the x-axis is the interval $0 \leq x \leq 1$. Using the order of integration $d y d x$ we have:

$$
\begin{aligned}
\int_{0}^{1} \int_{y^{1 / 3}}^{1}\left(x y+\sin \left(x^{4}\right)\right) d x d y & =\int_{0}^{1} \int_{0}^{x^{3}}\left(x y+\sin \left(x^{4}\right)\right) d y d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x y^{2}+y \sin \left(x^{4}\right)\right]_{0}^{x^{3}} d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x\left(x^{3}\right)^{2}+x^{3} \sin \left(x^{4}\right)\right] d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{7}+x^{3} \sin \left(x^{4}\right)\right] d x \\
& =\left[\frac{1}{16} x^{8}-\frac{1}{4} \cos \left(x^{4}\right)\right]_{0}^{1} \\
& =\left[\frac{1}{16}(1)^{8}-\frac{1}{4} \cos \left(1^{4}\right)\right]-\left[\frac{1}{16}(0)^{8}-\frac{1}{4} \cos \left(0^{4}\right)\right] \\
& =\frac{1}{16}-\frac{1}{4} \cos (1)+\frac{1}{4} \\
& =\frac{5}{16}-\frac{1}{4} \cos (1)
\end{aligned}
$$

