Math 210, Final Exam, Spring 2010 Problem 1 Solution

1. The position vector

$$
\overrightarrow{\mathbf{r}}(t)=t^{3} \hat{\mathbf{i}}+18 t \hat{\mathbf{j}}+3 t^{-1} \hat{\mathbf{k}}, \quad 1 \leq t \leq 2
$$

describes the motion of a particle.
(a) Find the position at time $t=2$.
(b) Find the velocity at time $t=2$.
(c) Find the acceleration at time $t=2$.
(d) Find the length of the path traveled by the particle during the time $1 \leq t \leq 2$.

Solution:

(a) The position at time $t=2$ is:

$$
\overrightarrow{\mathbf{r}}(2)=2^{3} \hat{\mathbf{i}}+18(2) \hat{\mathbf{j}}+3(2)^{-1} \hat{\mathbf{k}}=8 \hat{\mathbf{i}}+36 \hat{\mathbf{j}}+\frac{3}{2} \hat{\mathbf{k}}
$$

(b) The velocity is the derivative of position.

$$
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=3 t^{2} \hat{\mathbf{i}}+18 \hat{\mathbf{j}}-3 t^{-2} \hat{\mathbf{k}}
$$

Therefore, the velocity at time $t=2$ is:

$$
\overrightarrow{\mathbf{v}}(2)=3(2)^{2} \hat{\mathbf{\imath}}+18 \hat{\mathbf{j}}-3(2)^{-2} \hat{\mathbf{k}}=12 \hat{\mathbf{i}}+18 \hat{\mathbf{j}}-\frac{3}{4} \hat{\mathbf{k}}
$$

(c) The acceleration is the derivative of velocity.

$$
\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{v}}^{\prime}(t)=6 t \hat{\mathbf{\imath}}+6 t^{-3} \hat{\mathbf{k}}
$$

Therefore, the acceleration at time $t=2$ is:

$$
\overrightarrow{\mathbf{a}}(2)=6(2) \hat{\mathbf{\imath}}+6(2)^{-3} \hat{\mathbf{k}}=12 \hat{\mathbf{\imath}}+\frac{3}{4} \hat{\mathbf{k}}
$$

(d) The length of the path traveled by the particle is:

$$
\begin{aligned}
L & =\int_{1}^{2}\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t \\
& =\int_{1}^{2} \sqrt{\left(3 t^{2}\right)^{2}+18^{2}+\left(-3 t^{-2}\right)^{2}} d t \\
& =\int_{1}^{2} \sqrt{9 t^{4}+324+9 t^{-4}} d t
\end{aligned}
$$

It turns out that a simple antiderivative of the integrand does not exist. There was a typo in the original problem. The $\hat{\mathbf{j}}$-component of $\overrightarrow{\mathbf{r}}(t)$ should have been $\sqrt{18} t$ not $18 t$.

Math 210, Final Exam, Spring 2010 Problem 2 Solution

2. (a) For $f(x, y)=e^{(x+1) y}$ find the derivatives:

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

(b) Find the gradient of f at the point $(2,3)$.

Solution:

(a) The first partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y e^{(x+1) y} \\
& \frac{\partial f}{\partial y}=(x+1) e^{(x+1) y}
\end{aligned}
$$

The second derivatives are:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial x} & =\frac{\partial}{\partial x}\left(y e^{(x+1) y}\right)=y^{2} e^{(x+1) y} \\
\frac{\partial^{2} f}{\partial y \partial y} & =\frac{\partial}{\partial y}\left((x+1) e^{(x+1) y}\right)=(x+1)^{2} e^{(x+1) y} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left((x+1) e^{(x+1) y}\right)=e^{(x+1) y}+y(x+1) e^{(x+1) y}
\end{aligned}
$$

(b) The gradient of f at $(2,3)$ is:

$$
\begin{aligned}
\vec{\nabla} f(2,3) & =\left\langle f_{x}(2,3), f_{y}(2,3)\right\rangle \\
& =\left\langle 3 e^{(2+1) 3},(2+1) e^{(2+1) 3}\right\rangle \\
& =\left\langle 3 e^{9}, 3 e^{9}\right\rangle
\end{aligned}
$$

Math 210, Final Exam, Spring 2010 Problem 3 Solution

3. (a) Find a potential function for the vector field

$$
\overrightarrow{\mathbf{F}}(x, y, z)=(1-z) \hat{\mathbf{1}}+y \hat{\mathbf{j}}-x \hat{\mathbf{k}}
$$

(b) Integrate $\overrightarrow{\mathbf{F}}$ over the straight line from $(1,0,1)$ to $(0,1,2)$.
[You may calculate this directly or you may use a potential function.]

Solution:

(a) By inspection, a potential function for the vector field $\overrightarrow{\mathbf{F}}$ is:

$$
\varphi(x, y, z)=x-x z+\frac{1}{2} y^{2}
$$

To verify, we calculate the gradient of φ :

$$
\begin{aligned}
\vec{\nabla} \varphi & =\varphi_{x} \hat{\mathbf{1}}+\varphi_{y} \hat{\mathbf{j}}+\varphi_{z} \hat{\mathbf{k}} \\
& =(1-z) \hat{\mathbf{i}}+y \hat{\mathbf{j}}-x \hat{\mathbf{k}} \\
& =\overrightarrow{\mathbf{F}}
\end{aligned}
$$

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

$$
\begin{aligned}
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\varphi(0,1,2)-\varphi(1,0,1) \\
& =\left[0-(0)(2)+\frac{1}{2}(1)^{2}\right]-\left[1-(1)(1)+\frac{1}{2}(0)^{2}\right] \\
& =\frac{1}{2}
\end{aligned}
$$

Math 210, Final Exam, Spring 2010 Problem 4 Solution

4. (a) Find the critical points of the function $f(x, y)=x^{3}-3 x-y^{2}$.
(b) Use the second derivative test to classify each critical point as a local maximum, local minimum, or saddle.

Solution:

(a) By definition, an interior point (a, b) in the domain of f is a critical point of f if either
(1) $f_{x}(a, b)=f_{y}(a, b)=0$, or
(2) one (or both) of f_{x} or f_{y} does not exist at (a, b).

The partial derivatives of $f(x, y)=x^{3}-3 x-y^{2}$ are $f_{x}=3 x^{2}-3$ and $f_{y}=-2 y$. These derivatives exist for all (x, y) in \mathbb{R}^{2}. Thus, the critical points of f are the solutions to the system of equations:

$$
\begin{array}{r}
f_{x}=3 x^{2}-3=0 \\
f_{y}=-2 y=0 \tag{2}
\end{array}
$$

The two solutions to Equation (1) are $x= \pm 1$. The only solution to Equation (2) is $y=0$. Thus, the critical points are $(1,0)$ and $(-1,0)$.
(b) We now use the Second Derivative Test to classify the critical points. The second derivatives of f are:

$$
f_{x x}=6 x, \quad f_{y y}=-2, \quad f_{x y}=0
$$

The discriminant function $D(x, y)$ is then:

$$
\begin{aligned}
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& D(x, y)=(6 x)(-2)-(0)^{2} \\
& D(x, y)=-12 x
\end{aligned}
$$

The values of $D(x, y)$ at the critical points and the conclusions of the Second Derivative Test are shown in the table below.

(a, b)	$D(a, b)$	$f_{x x}(a, b)$	Conclusion
$(1,0)$	-12	6	Saddle Point
$(-1,0)$	12	-6	Local Maximum

Recall that (a, b) is a saddle point if $D(a, b)<0$ and that (a, b) corresponds to a local maximum of f if $D(a, b)>0$ and $f_{x x}(a, b)<0$.

Math 210, Final Exam, Spring 2010 Problem 5 Solution

5. Find the maximum and minimum of the function $f(x, y)=(x-1)^{2}+y^{2}$ subject to the constraint:

$$
g(x, y)=\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

Solution: We find the minimum and maximum using the method of Lagrange Multipliers. First, we recognize that $\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$ is compact which guarantees the existence of absolute extrema of f. We look for solutions to the following system of equations:

$$
f_{x}=\lambda g_{x}, \quad f_{y}=\lambda g_{y}, \quad g(x, y)=1
$$

which, when applied to our functions f and g, give us:

$$
\begin{align*}
2(x-1) & =\lambda\left(\frac{2 x}{9}\right) \tag{1}\\
2 y & =\lambda\left(\frac{y}{2}\right) \tag{2}\\
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2} & =1 \tag{3}
\end{align*}
$$

From Equation (2) we observe that:

$$
\begin{aligned}
2 y & =\lambda\left(\frac{y}{2}\right) \\
4 y & =\lambda y \\
4 y-\lambda y & =0 \\
y(4-\lambda) & =0 \\
y=0, \quad \text { or } \lambda & =4
\end{aligned}
$$

If $y=0$ then Equation (3) gives us:

$$
\begin{aligned}
\left(\frac{x}{3}\right)^{2}+\left(\frac{0}{2}\right)^{2} & =1 \\
\frac{x^{2}}{9} & =1 \\
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

If $\lambda=4$ then Equation (1) gives us:

$$
\begin{aligned}
2(x-1) & =\lambda\left(\frac{2 x}{9}\right) \\
2(x-1) & =4\left(\frac{2 x}{9}\right) \\
x-1 & =\frac{4 x}{9} \\
\frac{5 x}{9} & =1 \\
x & =\frac{9}{5}
\end{aligned}
$$

which, when plugged into Equation (3), gives us:

$$
\begin{aligned}
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2} & =1 \\
\left(\frac{9 / 5}{3}\right)^{2}+\frac{y^{2}}{4} & =1 \\
\frac{9}{25}+\frac{y^{2}}{4} & =1 \\
\frac{y^{2}}{4} & =\frac{16}{25} \\
y^{2} & =\frac{64}{25} \\
y & = \pm \frac{8}{5}
\end{aligned}
$$

Thus, the points of interest are $(3,0),(-3,0),\left(\frac{9}{5}, \frac{8}{5}\right)$, and $\left(\frac{9}{5},-\frac{8}{5}\right)$.
We now evaluate $f(x, y)=(x-1)^{2}+y^{2}$ at each point of interest.

$$
\begin{aligned}
f(3,0) & =(3-1)^{2}+0^{2}=4 \\
f(-3,0) & =(-3-1)^{2}+0^{2}=16 \\
f\left(\frac{9}{5}, \frac{8}{5}\right) & =\left(\frac{9}{5}-1\right)^{2}+\left(\frac{8}{5}\right)^{2}=\frac{16}{5} \\
f\left(\frac{9}{5},-\frac{8}{5}\right) & =\left(\frac{9}{5}-1\right)^{2}+\left(-\frac{8}{5}\right)^{2}=\frac{16}{5}
\end{aligned}
$$

From the values above we observe that f attains an absolute maximum of 16 and an absolute minimum of $\frac{16}{5}$.

Math 210, Final Exam, Spring 2010 Problem 6 Solution

6. Compute the integral

$$
\iint_{R} x y d x d y
$$

over the quarter circle $R=\left\{(x, y): 0 \leq x, 0 \leq y, x^{2}+y^{2} \leq 1\right\}$. [You may use polar or Cartesian coordinates.]

Solution:

From the figure we see that the region D is bounded on the left by $x=0$ and on the right by $x=\sqrt{1-y^{2}}$. The projection of D onto the y-axis is the interval $0 \leq y \leq 1$. Using the order of integration $d x d y$ we have:

$$
\begin{aligned}
\iint_{R} x y d x d y & =\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} x y d x d y \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{2} y\right]_{0}^{\sqrt{1-y^{2}}} d y \\
& =\int_{0}^{1} \frac{1}{2}\left(\sqrt{1-y^{2}}\right)^{2} y d y \\
& =\frac{1}{2} \int_{0}^{1}\left(1-y^{2}\right) y d y \\
& =\frac{1}{2} \int_{0}^{1}\left(y-y^{3}\right) d y \\
& =\frac{1}{2}\left[\frac{1}{2} y^{2}-\frac{1}{4} y^{4}\right]_{0}^{1} \\
& =\frac{1}{2}\left[\frac{1}{2}(1)^{2}-\frac{1}{4}(1)^{4}\right] \\
& =\frac{1}{8}
\end{aligned}
$$

Math 210, Final Exam, Spring 2010
 Problem 7 Solution

7. Compute the integral

$$
\iiint_{R} 1 d x d y d z
$$

over the tetrahedron

$$
R=\{(x, y, z): 0 \leq x, 0 \leq y, 0 \leq z, x / 3+y / 5+z / 7 \leq 1\}
$$

Solution: The region of integration is shown below.

The volume of the tetrahedron is

$$
\begin{aligned}
V & =\iiint_{R} 1 d x d y d z \\
& =\int_{0}^{3} \int_{0}^{5-5 x / 3} \int_{0}^{7-7 x / 3-7 y / 5} 1 d z d y d x \\
& =\int_{0}^{3} \int_{0}^{5-5 x / 3}\left(7-\frac{7}{3} x-\frac{7}{5} y\right) d y d x \\
& =\int_{0}^{3}\left[7 y-\frac{7}{3} x y-\frac{7}{10} y^{2}\right]_{0}^{5-5 x / 3} d x \\
& =\int_{0}^{3}\left[7\left(5-\frac{5}{3} x\right)-\frac{7}{3} x\left(5-\frac{5}{3} x\right)-\frac{7}{10}\left(5-\frac{5}{3} x\right)^{2}\right] d x \\
& =\int_{0}^{3}\left(35-\frac{35}{3} x-\frac{35}{3} x+\frac{35}{9} x^{2}-\frac{35}{2}+\frac{35}{3} x+\frac{35}{18} x^{2}\right) d x \\
& =\int_{0}^{3}\left(\frac{35}{2}-\frac{35}{3} x+\frac{35}{18} x^{2}\right) d x \\
& =\left[\frac{35}{2} x-\frac{35}{6} x^{2}+\frac{35}{54} x^{3}\right]_{0}^{3} \\
& =\frac{35}{2}(3)-\frac{35}{6}(3)^{2}+\frac{35}{54}(3)^{3} \\
& =\frac{35}{2}
\end{aligned}
$$

Math 210, Final Exam, Spring 2010 Problem 8 Solution

8. Find an equation for the tangent plane to the surface defined by $x y^{2}+2 z^{2}=12$ at the point (1, 2, 2).

Solution: We use the following formula for the equation for the tangent plane:

$$
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0
$$

because the equation for the surface is given in implicit form. Note that $\overrightarrow{\mathbf{n}}=\vec{\nabla} f(a, b, c)=$ $\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle$ is a vector normal to the surface $f(x, y, z)=C$ and, thus, to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of $f(x, y, z)=x y^{2}+2 z^{2}$ are:

$$
\begin{aligned}
f_{x} & =y^{2} \\
f_{y} & =2 x y \\
f_{z} & =4 z
\end{aligned}
$$

Evaluating these derivatives at $(1,2,2)$ we get:

$$
\begin{aligned}
& f_{x}(1,2,2)=2^{2}=4 \\
& f_{y}(1,2,2)=2(1)(2)=4 \\
& f_{z}(1,2,2)=4(2)=8
\end{aligned}
$$

Thus, the tangent plane equation is:

$$
4(x-1)+4(y-2)+8(z-2)=0
$$

Math 210, Final Exam, Spring 2010 Problem 9 Solution

9. Compute the integral

$$
\oint_{C}\left(3 x^{2}+y\right) d x+\left(x^{2}+y^{3}\right) d y
$$

over the counterclockwise boundary of the rectangle

$$
R=\{(x, y): 0 \leq x \leq 3,0 \leq y \leq 2\}
$$

using Green's theorem or otherwise.
Solution: Green's Theorem states that

$$
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}}=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A
$$

where R is the region enclosed by C. The integrand of the double integral is:

$$
\begin{aligned}
\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y} & =\frac{\partial}{\partial x}\left(x^{2}+y^{3}\right)-\frac{\partial}{\partial y}\left(3 x^{2}+y\right) \\
& =2 x-1
\end{aligned}
$$

Thus, the value of the integral is:

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{s}} & =\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
& =\iint_{R}(2 x-1) d A \\
& =\int_{0}^{3} \int_{0}^{2}(2 x-1) d y d x \\
& =\int_{0}^{3}[2 x y-y]_{0}^{2} d x \\
& =\int_{0}^{3}(4 x-2) d x \\
& =\left[2 x^{2}-2 x\right]_{0}^{3} \\
& =2(3)^{2}-2(3) \\
& =12
\end{aligned}
$$

