
Math 320 – Linear Algebra – David Dumas – Fall 2018

Exam 1 Solutions

(1) Let V be a vector space over a field F. Let w,x,y,z ∈V and a ∈ F. Show directly from
the vector space axioms that if

((aw+ x)+ay)+ z =~0

then
a(w+ y) =−(x+ z).

Justify each step in your proof using one of the vector space axioms. You are not
permitted to use any theorems in your solution.

Solution: We are given
((aw+ x)+ay)+ z =~0.

We transform the left hand side by applying several of the axioms:

(aw+(x+ay))+ z =~0 By VS2

(aw+(ay+ x))+ z =~0 By VS1 applied to x+ay

((aw+ay)+ x)+ z =~0 By VS2

(aw+ay)+(x+ z) =~0 By VS2

Now, by VS4 there exists an element −(x+ z) so that (x+ z)+ (−(x+ z)) =~0. Since the
two sides of the last equation above are equal, their sums with −(x+ z) are also equal, i.e.

((aw+ay)+(x+ z))+(−(x+ z)) =~0+(−(x+ z))

In what follows we refer to the equation above as Equation *.
We consider the two sides of Equation * in turn. First, for the right hand side we have

~0+(−(x+ z)) = (−(x+ z))+~0 By VS1

=−(x+ z) By VS3

For the left hand side of Equation * we have

((aw+ay)+(x+ z))+−(x+ z) = (aw+ay)+((x+ z)+(−(x+ z))) By VS1

= (aw+ay)+~0 By definition of − (x+ z)
= aw+ay By VS3

= a(w+ y) By VS7

Thus we have reduced Equation * to

a(w+ y) =−(x+ z)

as required. �



(2) Let S = {(1,1,0),(0,1,1),(1,0,1)}, a subset of (Z2)
3. Consider (Z2)

3 as a vector
space over Z2.
(a) Is S linearly independent?
(b) Does S generate (Z2)

3?
(c) Is S a basis of (Z2)

3?
(d) What is the dimension of span(S)?

Solution:
(a) No. Because 1(1,1,0)+ 1(0,1,1)+ 1(1,0,1) = (0,0,0) =~0 is a linear combination
with not all coefficients zero, the set S is linearly dependent.
(b) No. In fact, we can show that (1,0,0) is not in the span of S, and thus span(S) 6= (Z2)

3.
Suppose for contradiction that a(1,1,0)+b(0,1,1)+c(1,0,1) = (1,0,0). Then we have

a+ c = 1
a+b = 0
b+ c = 0

In Z2 we have 1 = −1, and so a+ b = 0 implies a = b, and similarly b+ c = 0 implies
b = c. Thus a = b = c, and a+c = a+a. In Z2, the sum of any element with itself is zero,
hence a+ c = 0. This contradicts the first equation above.

This contradiction shows that no such coefficients a,b,c exist, and (1,0,0) is not in the
span of S. Thus S does not generate.
(c) No. By definition, a basis must be a generating set, and S is not a generating set.
(d) We claim that β = {(1,1,0),(0,1,1)} is a basis of span(S), hence dim(span(S)) = 2.

First, β is linearly independent: If a(1,1,0)+ b(0,1,1) =~0 then considering first and
last entries gives a = 0 and b = 0.

Next, we show β generates span(S). Since β ⊂ S, span(S) is a subspace that contains β ,
hence by Theorem 1.5, span(β )⊂ span(S).

On the other hand, 1(1,1,0)+1(0,1,1) = (1,0,1) shows that (1,0,1) ∈ span(S). Since
β ∪{(1,0,1)}= S, this shows S⊂ span(β ). By Theorem 1.5 we have span(S)⊂ span(β ).

We have shown span(β )⊂ span(S) and span(S)⊂ span(β ), and hence span(β )= span(S).
That is, β generates span(S).

Since we have shown β is linearly independent and that it generates span(S), we find
that β is a basis. �

(3) Let V be a vector space of dimension n over a field F. Suppose that {v1, . . . ,vn} gener-
ates V . Prove that {v1, . . . ,vn} is linearly independent.

Solution: First, it is part of the definition of dimension that every basis of V has exactly
n elements; however, this is also easily proved using Theorem 1.10: If β ,γ are bases, then
applying Theorem 1.10 with G= β , L= γ gives |γ| ≤ |β |, while applying the same theorem
with G = γ , L = β gives |γ| ≥ |β |. Thus |β |= |γ|.

By Theorem 1.9, some subset β ⊂ {v1, . . . ,vn} is a basis. But then |β | = n, so β =
{v1, . . . ,vn} is a basis. In particular β is linearly independent. �



(4) Let W denote the set of all polynomials p ∈ P4(R) that satisfy p(1) = 0. Prove that W
is a subspace of P4(R) and determine the dimension of W .

Solution: Recall~0 ∈ P4(R) is the constant polynomial that is equal to zero. Thus~0(1) = 0,
and~0 ∈W . Suppose p,q ∈W . Then

(p+q)(1) = p(1)+q(1) = 0+0 = 0

which shows p+q ∈W . Suppose p ∈W and c ∈ R. Then

(cp)(1) = c p(1) = c0 = 0

which shows cp ∈W . By Theorem 1.3, W is a subspace.
We claim β = {x−1,x2−1,x3−1,x4−1} is a basis of W . Each of these polynomials

satisfies p(1) = 0, so they are elements of W .
First, β is linearly independent. Suppose for contradiction that

b(x−1)+ c(x2−1)+d(x3−1)+ e(x4−1) =~0

for some b,c,d,e ∈ R. Then collecting terms of like degree in the left hand side we find

−(b+ c+d + e)+bx+ cx2 +dx3 + ex4 =~0

and so b = 0, c = 0, d = 0, e = 0. This shows β is linearly independent.
Next, we claim β generates W . Suppose p ∈W and p = a+bx+ cx2 +dx3 + ex4. Then

0 = p(1) = a+b+ c+d + e

and so a =−(a+b+ c+d). Thus

p =−(b+ c+d + e)+bx+ cx2 +dx3 + ex4

= b(x−1)+ c(x2−1)+d(x3−1)+ e(x4−1)

and p ∈ span(β ).
Since we have shown β is linearly independent and that it generates W , we have that β

is a basis of W . Therefore dim(W ) = |β |= 4.


