Exam 1 Solutions

(1) Let *V* be a vector space over a field \mathbb{F} . Let $w, x, y, z \in V$ and $a \in \mathbb{F}$. Show directly from the vector space axioms that if

$$((aw+x)+ay)+z=\vec{0}$$

then

$$a(w+y) = -(x+z).$$

Justify each step in your proof using one of the vector space axioms. You are not permitted to use any theorems in your solution.

Solution: We are given

$$((aw+x)+ay)+z=\vec{0}.$$

We transform the left hand side by applying several of the axioms:

(aw + (x + ay)) + z = 0	By VS2
$(aw + (ay + x)) + z = \vec{0}$	By VS1 applied to $x + ay$
$((aw+ay)+x)+z=\vec{0}$	By VS2
$(aw+ay) + (x+z) = \vec{0}$	By VS2

Now, by VS4 there exists an element -(x+z) so that $(x+z) + (-(x+z)) = \vec{0}$. Since the two sides of the last equation above are equal, their sums with -(x+z) are also equal, i.e.

$$((aw+ay)+(x+z))+(-(x+z))=0+(-(x+z))$$

In what follows we refer to the equation above as Equation *.

We consider the two sides of Equation * in turn. First, for the right hand side we have

$$\vec{0} + (-(x+z)) = (-(x+z)) + \vec{0}$$
 By VS1
= $-(x+z)$ By VS3

For the left hand side of Equation * we have

$$((aw + ay) + (x + z)) + -(x + z) = (aw + ay) + ((x + z) + (-(x + z)))$$
By VS1
$$= (aw + ay) + \vec{0}$$
By definition of $-(x + z)$
$$= aw + ay$$
By VS3
$$= a(w + y)$$
By VS7

Thus we have reduced Equation * to

$$a(w+y) = -(x+z)$$

as required. \Box

- (2) Let $S = \{(1,1,0), (0,1,1), (1,0,1)\}$, a subset of $(\mathbb{Z}_2)^3$. Consider $(\mathbb{Z}_2)^3$ as a vector space over \mathbb{Z}_2 .
 - (a) Is S linearly independent?
 - (b) Does *S* generate $(\mathbb{Z}_2)^3$?
 - (c) Is S a basis of $(\mathbb{Z}_2)^3$?
 - (d) What is the dimension of span(S)?

Solution:

(a) No. Because $1(1,1,0) + 1(0,1,1) + 1(1,0,1) = (0,0,0) = \vec{0}$ is a linear combination with not all coefficients zero, the set *S* is linearly dependent.

(b) No. In fact, we can show that (1,0,0) is not in the span of *S*, and thus span $(S) \neq (\mathbb{Z}_2)^3$. Suppose for contradiction that a(1,1,0) + b(0,1,1) + c(1,0,1) = (1,0,0). Then we have

$$a + c = 1$$
$$a + b = 0$$
$$b + c = 0$$

In \mathbb{Z}_2 we have 1 = -1, and so a + b = 0 implies a = b, and similarly b + c = 0 implies b = c. Thus a = b = c, and a + c = a + a. In \mathbb{Z}_2 , the sum of any element with itself is zero, hence a + c = 0. This contradicts the first equation above.

This contradiction shows that no such coefficients a, b, c exist, and (1,0,0) is not in the span of S. Thus S does not generate.

(c) No. By definition, a basis must be a generating set, and S is not a generating set.

(d) We claim that $\beta = \{(1,1,0), (0,1,1)\}$ is a basis of span(*S*), hence dim(span(*S*)) = 2.

First, β is linearly independent: If $a(1,1,0) + b(0,1,1) = \vec{0}$ then considering first and last entries gives a = 0 and b = 0.

Next, we show β generates span(S). Since $\beta \subset S$, span(S) is a subspace that contains β , hence by Theorem 1.5, span(β) \subset span(S).

On the other hand, 1(1,1,0) + 1(0,1,1) = (1,0,1) shows that $(1,0,1) \in \text{span}(S)$. Since $\beta \cup \{(1,0,1)\} = S$, this shows $S \subset \text{span}(\beta)$. By Theorem 1.5 we have $\text{span}(S) \subset \text{span}(\beta)$.

We have shown span(β) \subset span(S) and span(S) \subset span(β), and hence span(β) = span(S). That is, β generates span(S).

Since we have shown β is linearly independent and that it generates span(S), we find that β is a basis. \Box

(3) Let V be a vector space of dimension n over a field \mathbb{F} . Suppose that $\{v_1, \ldots, v_n\}$ generates V. Prove that $\{v_1, \ldots, v_n\}$ is linearly independent.

Solution: First, it is part of the definition of dimension that every basis of *V* has exactly *n* elements; however, this is also easily proved using Theorem 1.10: If β , γ are bases, then applying Theorem 1.10 with $G = \beta$, $L = \gamma$ gives $|\gamma| \le |\beta|$, while applying the same theorem with $G = \gamma$, $L = \beta$ gives $|\gamma| \ge |\beta|$. Thus $|\beta| = |\gamma|$.

By Theorem 1.9, some subset $\beta \subset \{v_1, \ldots, v_n\}$ is a basis. But then $|\beta| = n$, so $\beta = \{v_1, \ldots, v_n\}$ is a basis. In particular β is linearly independent. \Box

(4) Let *W* denote the set of all polynomials $p \in P_4(\mathbb{R})$ that satisfy p(1) = 0. Prove that *W* is a subspace of $P_4(\mathbb{R})$ and determine the dimension of *W*.

Solution: Recall $\vec{0} \in P_4(\mathbb{R})$ is the constant polynomial that is equal to zero. Thus $\vec{0}(1) = 0$, and $\vec{0} \in W$. Suppose $p, q \in W$. Then

$$(p+q)(1) = p(1) + q(1) = 0 + 0 = 0$$

which shows $p + q \in W$. Suppose $p \in W$ and $c \in \mathbb{R}$. Then

$$(cp)(1) = cp(1) = c0 = 0$$

which shows $cp \in W$. By Theorem 1.3, W is a subspace.

We claim $\beta = \{x - 1, x^2 - 1, x^3 - 1, x^4 - 1\}$ is a basis of *W*. Each of these polynomials satisfies p(1) = 0, so they are elements of *W*.

First, β is linearly independent. Suppose for contradiction that

$$b(x-1) + c(x^{2}-1) + d(x^{3}-1) + e(x^{4}-1) = \vec{0}$$

for some $b, c, d, e \in \mathbb{R}$. Then collecting terms of like degree in the left hand side we find

$$-(b+c+d+e) + bx + cx^{2} + dx^{3} + ex^{4} = \vec{0}$$

and so b = 0, c = 0, d = 0, e = 0. This shows β is linearly independent.

Next, we claim β generates W. Suppose $p \in W$ and $p = a + bx + cx^2 + dx^3 + ex^4$. Then

$$0 = p(1) = a + b + c + d + e$$

and so a = -(a+b+c+d). Thus

$$p = -(b+c+d+e) + bx + cx^{2} + dx^{3} + ex^{4}$$
$$= b(x-1) + c(x^{2}-1) + d(x^{3}-1) + e(x^{4}-1)$$

and $p \in \text{span}(\beta)$.

Since we have shown β is linearly independent and that it generates W, we have that β is a basis of W. Therefore dim $(W) = |\beta| = 4$.