Math 320 - Linear Algebra - David Dumas - Fall 2018

Exam 1 Solutions

(1) Let V be a vector space over a field \mathbb{F}. Let $w, x, y, z \in V$ and $a \in \mathbb{F}$. Show directly from the vector space axioms that if

$$
((a w+x)+a y)+z=\overrightarrow{0}
$$

then

$$
a(w+y)=-(x+z) .
$$

Justify each step in your proof using one of the vector space axioms. You are not permitted to use any theorems in your solution.

Solution: We are given

$$
((a w+x)+a y)+z=\overrightarrow{0} .
$$

We transform the left hand side by applying several of the axioms:

$$
\begin{array}{rr}
(a w+(x+a y))+z=\overrightarrow{0} & \text { By VS2 } \\
(a w+(a y+x))+z=\overrightarrow{0} & \text { By VS1 applied to } x+a y \\
((a w+a y)+x)+z=\overrightarrow{0} & \text { By VS2 } \\
(a w+a y)+(x+z)=\overrightarrow{0} & \text { By VS2 }
\end{array}
$$

Now, by VS4 there exists an element $-(x+z)$ so that $(x+z)+(-(x+z))=\overrightarrow{0}$. Since the two sides of the last equation above are equal, their sums with $-(x+z)$ are also equal, i.e.

$$
((a w+a y)+(x+z))+(-(x+z))=\overrightarrow{0}+(-(x+z))
$$

In what follows we refer to the equation above as Equation *.
We consider the two sides of Equation * in turn. First, for the right hand side we have

$$
\begin{aligned}
\overrightarrow{0}+(-(x+z)) & =(-(x+z))+\overrightarrow{0} & & \text { By VS1 } \\
& =-(x+z) & & \text { By VS3 }
\end{aligned}
$$

For the left hand side of Equation * we have

$$
\begin{aligned}
((a w+a y)+(x+z))+-(x+z) & =(a w+a y)+((x+z)+(-(x+z))) & & \text { By VS1 } \\
& =(a w+a y)+\overrightarrow{0} & & \text { By definition of }-(x+z) \\
& =a w+a y & & \text { By VS3 } \\
& =a(w+y) & & \text { By VS7 }
\end{aligned}
$$

Thus we have reduced Equation * to

$$
a(w+y)=-(x+z)
$$

as required.
(2) Let $S=\{(1,1,0),(0,1,1),(1,0,1)\}$, a subset of $\left(\mathbb{Z}_{2}\right)^{3}$. Consider $\left(\mathbb{Z}_{2}\right)^{3}$ as a vector space over \mathbb{Z}_{2}.
(a) Is S linearly independent?
(b) Does S generate $\left(\mathbb{Z}_{2}\right)^{3}$?
(c) Is S a basis of $\left(\mathbb{Z}_{2}\right)^{3}$?
(d) What is the dimension of $\operatorname{span}(S)$?

Solution:

(a) No. Because $1(1,1,0)+1(0,1,1)+1(1,0,1)=(0,0,0)=\overrightarrow{0}$ is a linear combination with not all coefficients zero, the set S is linearly dependent.
(b) No. In fact, we can show that $(1,0,0)$ is not in the span of S, and thus span $(S) \neq\left(\mathbb{Z}_{2}\right)^{3}$.

Suppose for contradiction that $a(1,1,0)+b(0,1,1)+c(1,0,1)=(1,0,0)$. Then we have

$$
\begin{aligned}
a+c & =1 \\
a+b & =0 \\
b+c & =0
\end{aligned}
$$

In \mathbb{Z}_{2} we have $1=-1$, and so $a+b=0$ implies $a=b$, and similarly $b+c=0$ implies $b=c$. Thus $a=b=c$, and $a+c=a+a$. In \mathbb{Z}_{2}, the sum of any element with itself is zero, hence $a+c=0$. This contradicts the first equation above.

This contradiction shows that no such coefficients a, b, c exist, and $(1,0,0)$ is not in the span of S. Thus S does not generate.
(c) No. By definition, a basis must be a generating set, and S is not a generating set.
(d) We claim that $\beta=\{(1,1,0),(0,1,1)\}$ is a basis of $\operatorname{span}(S)$, hence $\operatorname{dim}(\operatorname{span}(S))=2$.

First, β is linearly independent: If $a(1,1,0)+b(0,1,1)=\overrightarrow{0}$ then considering first and last entries gives $a=0$ and $b=0$.

Next, we show β generates $\operatorname{span}(S)$. Since $\beta \subset S, \operatorname{span}(S)$ is a subspace that contains β, hence by Theorem 1.5, $\operatorname{span}(\beta) \subset \operatorname{span}(S)$.

On the other hand, $1(1,1,0)+1(0,1,1)=(1,0,1)$ shows that $(1,0,1) \in \operatorname{span}(S)$. Since $\beta \cup\{(1,0,1)\}=S$, this shows $S \subset \operatorname{span}(\beta)$. By Theorem 1.5 we have span $(S) \subset \operatorname{span}(\beta)$.

We have shown $\operatorname{span}(\beta) \subset \operatorname{span}(S)$ and $\operatorname{span}(S) \subset \operatorname{span}(\beta)$, and hence $\operatorname{span}(\beta)=\operatorname{span}(S)$. That is, β generates $\operatorname{span}(S)$.

Since we have shown β is linearly independent and that it generates $\operatorname{span}(S)$, we find that β is a basis.
(3) Let V be a vector space of dimension n over a field \mathbb{F}. Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ generates V. Prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.

Solution: First, it is part of the definition of dimension that every basis of V has exactly n elements; however, this is also easily proved using Theorem 1.10: If β, γ are bases, then applying Theorem 1.10 with $G=\beta, L=\gamma$ gives $|\gamma| \leq|\beta|$, while applying the same theorem with $G=\gamma, L=\beta$ gives $|\gamma| \geq|\beta|$. Thus $|\beta|=|\gamma|$.

By Theorem 1.9, some subset $\beta \subset\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis. But then $|\beta|=n$, so $\beta=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis. In particular β is linearly independent.
(4) Let W denote the set of all polynomials $p \in P_{4}(\mathbb{R})$ that satisfy $p(1)=0$. Prove that W is a subspace of $P_{4}(\mathbb{R})$ and determine the dimension of W.

Solution: Recall $\overrightarrow{0} \in P_{4}(\mathbb{R})$ is the constant polynomial that is equal to zero. Thus $\overrightarrow{0}(1)=0$, and $\overrightarrow{0} \in W$. Suppose $p, q \in W$. Then

$$
(p+q)(1)=p(1)+q(1)=0+0=0
$$

which shows $p+q \in W$. Suppose $p \in W$ and $c \in \mathbb{R}$. Then

$$
(c p)(1)=c p(1)=c 0=0
$$

which shows $c p \in W$. By Theorem 1.3, W is a subspace.
We claim $\beta=\left\{x-1, x^{2}-1, x^{3}-1, x^{4}-1\right\}$ is a basis of W. Each of these polynomials satisfies $p(1)=0$, so they are elements of W.

First, β is linearly independent. Suppose for contradiction that

$$
b(x-1)+c\left(x^{2}-1\right)+d\left(x^{3}-1\right)+e\left(x^{4}-1\right)=\overrightarrow{0}
$$

for some $b, c, d, e \in \mathbb{R}$. Then collecting terms of like degree in the left hand side we find

$$
-(b+c+d+e)+b x+c x^{2}+d x^{3}+e x^{4}=\overrightarrow{0}
$$

and so $b=0, c=0, d=0, e=0$. This shows β is linearly independent.
Next, we claim β generates W. Suppose $p \in W$ and $p=a+b x+c x^{2}+d x^{3}+e x^{4}$. Then

$$
0=p(1)=a+b+c+d+e
$$

and so $a=-(a+b+c+d)$. Thus

$$
\begin{aligned}
p & =-(b+c+d+e)+b x+c x^{2}+d x^{3}+e x^{4} \\
& =b(x-1)+c\left(x^{2}-1\right)+d\left(x^{3}-1\right)+e\left(x^{4}-1\right)
\end{aligned}
$$

and $p \in \operatorname{span}(\beta)$.
Since we have shown β is linearly independent and that it generates W, we have that β is a basis of W. Therefore $\operatorname{dim}(W)=|\beta|=4$.

