Math 320 - Linear Algebra - David Dumas - Fall 2018
 Homework 9
 Due Monday October 29

From the textbook:

- Section 3.2 (problem begin on p165): 2bef, 5cd, 6ab, 7, 14, 17

Note: Label every row or column operation you perform, like this:

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 3 \\
1 & 0 & 0
\end{array}\right) \xrightarrow{\text { Exchange rows } 2,3}\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 0 \\
0 & 2 & 3
\end{array}\right)
$$

Additional problem:

For the next problem, recall that:

- If W is a subspace of V, then the quotient map is the linear transformation $\pi: V \rightarrow$ V / W given by $\pi(x)=x+W$.
- If $T: V \rightarrow W$ is a linear transformation, and if V^{\prime} is a subspace of V, then we can define a linear transformation $\left.T\right|_{V^{\prime}}: V^{\prime} \rightarrow W$ by restricting T to V^{\prime}.
(P1) Let V be a vector space and let W and Z be subspaces of V. Let $\pi: V \rightarrow V / W$ be the quotient map. Show that $\left.\pi\right|_{Z}$ is an isomorphism if and only if $V=W \oplus Z$.

