Grafting of Riemann Surfaces & Limits of Complex Projective

Structures

November 24, 2003

David Dumas (ddumas@math.harvard.edu) http://www.math.harvard.edu/~ddumas/

Motivation

Study complex projective geometry on Riemann surfaces and connections to Teichmüller theory and three-dimensional hyperbolic geometry.

Specifically, investigate the dual nature of complex projective surfaces as both holomorphic and geometric (\mathbb{H}^3) objects, and try to compare these perspectives.

Results include:

- Asymptotic formula for the change from complexanalytic to geometric coordinates.
- Geometric compactification of the deformation space of projective structures that is compatible with the foliation by underlying conformal structure.

Plan

- Grafting
- Thurston's theorem
- Complex Structures
- \bullet Limits of $\mathbb{C}\mathsf{P}^1$ structures

Grafting is a cut-and-paste operation on Riemann surfaces.

Start with Y, a hyperbolic RS, and γ , a simple closed hyperbolic geodesic. Now cut Y along γ and insert a Euclidean cylinder of length t.

The result is $\operatorname{gr}_{t\gamma} Y$, the grafting of Y along $t\gamma$.

Grafting extends continuously to limits of weighted simple closed geodesics, i.e. **measured laminations**. Intuitively, cut Y along $\lambda \in \mathcal{ML}$ and insert Euclidean strips along leaves of λ .

In the universal cover, this amounts to removing the lifts of geodesics in λ and replacing them with **lunes** (regions bounded by circular arcs),

because the Euclidean metric on the lunes is the product of hyperbolic arc length and angle measure:

5

The relationship between $\operatorname{gr}_{\lambda} Y$ and Y generalizes that between a domain $\Omega \subset \widehat{\mathbb{C}}$ and its convex hull boundary $\partial CH(\Omega) \subset \mathbb{H}^3$.

The universal cover of $\operatorname{gr}_{\lambda} Y$ naturally spreads out over $\widehat{\mathbb{C}}$, which is the boundary of hyperbolic space \mathbb{H}^3 . The boundary of the local convex hull is a locally convex pleated surface isometric to \widetilde{Y} bent along λ .

This map $f: gr_{\lambda}Y \to \widehat{\mathbb{C}}$ is uniquely determined up to composition with Möbius transformations, and intertwines the action of $\pi_1Y \simeq \pi_1(gr_{\lambda}Y)$ by deck transformations with the action of some representation $\eta(Y, \lambda) : \pi_1(Y) \to \mathsf{PSL}_2(\mathbb{C})$.

The representation $\eta(Y, \lambda)$ is sometimes called the **bending** of the Fuchsian group $\pi_1(Y)$.

The pair (f, η) define a **complex projective structure**, that is, an atlas of charts with values in $\hat{\mathbb{C}}$ and Möbius transition functions.

Note: this is a projective structure on $gr_{\lambda}Y$, not on Y. (This issue causes some headaches.)

Thurston has shown that every complex projective structure arises from grafting in a unique way, i.e. that

$\operatorname{Gr}: \mathscr{ML}(S) \times \mathscr{T}(S) \to \mathscr{P}(S)$

is a homeomorphism, where $\mathscr{T}(S)$ is the Teichmüller space, and $\mathscr{P}(S)$ is the space of (marked) complex projective structures.

The convex hull construction is the cornerstone of the proof; starting with a projective structure, one can then find the bending lamination and construct the inverse map Gr^{-1} .

Using this **Thurston parameterization** of $\mathscr{P}(S) \simeq \mathscr{ML}(S) \times \mathscr{T}(S)$, one can define a map

$$u:\mathscr{P}(S)\to\mathscr{T}(S)$$

that "forgets" the grafting coordinate. We call this the **ungrafting** or **convex hull** map.

The Thurston parameterization makes the connection between \mathbb{CP}^1 -geometry and three-dimensional hyperbolic geometry more transparent.

The fiber of the ungrafting map u over $Y \in \mathscr{T}(S)$ is the set of all projective structures obtained by grafting Y (or bending the Fuchsian group $\pi_1(Y)$).

Since Möbius transformations are holomorphic, a complex projective structure also determines a complex structure. Thus we have the forgetful map, or **projection**

 $\pi:\mathscr{P}(S)\to\mathscr{T}(S).$

The fiber of π over $X \in \mathscr{T}(S)$ is the set of all complex projective surfaces with underlying complex structure X.

However, it is not clear how the map π is related to the grafting coordinates for $\mathscr{P}(S)$.

Compare this to the case of Teichmüller space:

- symplectically natural coordinates (e.g. Fenchel-Nielsen)
- complex-analytic coordinates (e.g. Bers, horocyclic)
- Kähler structure ?

For projective structures, we have:

- \mathbb{H}^3 -natural coordinates (Thurston / grafting)
- complex-analytic coordinates (via π , ...)
- unified perspective?

The fiber $P(X) = \pi^{-1}(X)$ of the projection to $\mathscr{T}(S)$ can be described in terms of **holomorphic** quadratic differentials.

A complex projective structure on X gives a **developing map**

$$f: \tilde{X} \simeq \mathbb{H} \to \widehat{\mathbb{C}}.$$

For example, the identity gives the complex projective structure coming from the Fuchsian uniformization of X.

The Schwarzian derivative S(f) is a differential operator that measures the deviation of ffrom being Möbius; the result is a holomorphic quadratic differential $\phi \in Q(X)$:

$$\phi(z) = S(f(z)) = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2 dz^2$$

One can reverse this process; starting with $\phi \in Q(X)$, one can locally invert the Schwarzian (using only linear ODE!) to construct a developing map, and thus, a projective structure.

Hence P(X) can be identified with the complex vector space $Q(X) \simeq \mathbb{C}^{3g-3}$.

Together, the fibers $\{P(X) \mid X \in \mathscr{T}(S)\}$ foliate $\mathscr{P}(S)$ by properly holomorphically embedded copies of \mathbb{C}^{3g-3} .

Question: What does the fiber P(X) look like in the grafting coordinates?

Equivalently, what pairs (Y, λ) graft to give a Riemann surface isomorphic to X?

Compactify $\mathscr{P}(S) \simeq \mathscr{ML}(S) \times \mathscr{T}(S)$ by adding $\mathscr{PML}(S) \times \mathscr{PML}(S)$, where

- $PM\mathscr{L}(S)$ is adjoined to $\mathscr{T}(S)$ via the Thurston compactification, and
- $PM\mathscr{L}(S)$ is adjoined to $\mathscr{ML}(S)$ in the natural way.

The result is $\overline{\mathscr{P}(S)}$, the **geometric compactifi**cation.

Bring the complex structure into play as follows: For $X \in \mathscr{T}(S)$, define an involution

 $i_X : \mathscr{ML}(S) \to \mathscr{ML}(S)$

so that $i_X(\lambda) = \mu$ if λ and μ are measureequivalent to the **vertical** and **horizontal** measured foliations of a holomorphic quadratic differential ϕ on X.

(Also use i_X to denote the induced involution on $P\mathcal{ML}(S)$.)

This involution depends sensitively on X, as orthogonality of foliations is dependent upon the conformal structure.

Thm: The boundary of P(X) in the geometric compactification $\overline{\mathscr{P}(S)}$ is the graph of i_X :

 $\partial \overline{P(X)} = A_X = \{ ([\lambda], [i_X(\lambda)]) \} = \{ (\lambda, \mu) | i_X(\lambda) = \mu \}$

One can also state this in terms of limits:

Cor: Let $\lambda_i \in \mathscr{ML}$ be the grafting laminations of a divergent sequence in P(X). If

$$\lambda_i \to [\lambda] \in P\mathscr{ML}$$

then

$$Y_i \to [i_X(\lambda)] \in P\mathscr{ML},$$

where Y_i are the ungrafted surfaces, i.e. $gr_{\lambda_i}Y_i = X$.

Note that $P\mathscr{ML}(S)$ is homeomorphic to an odddimensional sphere, and i_X is a fixed-point-free involution. Thm A also implies that the boundary of each P(X) in $\overline{\mathscr{P}(S)}$ is a regularly embedded manifold

$$A_X \simeq S^{2k+1} \hookrightarrow P\mathcal{ML} \times P\mathcal{ML}.$$

However, while P(X) and P(X') are disjoint for distinct $X, X' \in \mathscr{T}(S)$, the boundaries A_X and $A_{X'}$ may intersect.

For example, this happens when X and X' are both "rectangular" punctured tori; in this case, the pair of foliations by parallels to the rectangle's edges always represent the same pair of laminations.

The geometry of this situation is reminiscent of a symmetric space M and its boundary ∂M . For each point $p \in M$, there is a **geodesic involution** $i_p : M \to M$. The set $M(p) \subset M \times M$ of pairs of points with midpoint p has boundary equal to the graph of i_p .

(One might say that grafting λ into Y is like taking the "midpoint" of λ and Y; fixing the result X forces λ and Y to move in opposite directions.) One thing missing from this discussion is the Schwarzian derivative, which is a holomorphic quadratic differential naturally attached to a projective surface.

As a sequence of projective structures on X degenerates, it approaches a pair of orthogonal laminations (λ, μ) . One might imagine that the Schwarzian is related to the quadratic differential whose vertical and horizontal laminations are (λ, μ) .

Conjecture: The Schwarzian derivative identifies the geometric compactification $\overline{\mathscr{P}(S)}$ with the compactification $\overline{\mathscr{Q}(S)}$ of the bundle of holomorphic quadratic differentials where $P^+Q(X)$ is adjoined to Q(X).

Sketch of the proof

- Start with a projective structure on X obtained by grafting, $X = gr_{\lambda}Y$.
- Examine the retraction map r : X → Y that collapses the grafted part back to λ; recall X has the Thurston metric that combines hyperbolic and Euclidean parts.
- The energy of r is (one half of) the squared L^2 norm of its derivative; r is distancenonincreasing, and always has an isometric direction, so the energy is the area.
- The hyperbolic part of X can be reassembled to get Y, hence its area is $2\pi |\chi|$.
- The Euclidean part of X is a thickened version of the lamination λ on Y, so its area is

$$\int_{Y} \mathrm{d}\ell \times \mathrm{d}m(\lambda) \stackrel{def}{=} \ell(\lambda, Y).$$

- $\mathscr{E}(r) = \frac{1}{2} \| \mathrm{d}r \|_2^2 = \frac{1}{2} (\ell(\lambda, Y) + 2\pi |\chi|)$
- Minsky's inequality:

 $\mathscr{E}(h: X \to Y) \ge \ell(\lambda, Y)^2/(2E(\lambda, X))$ where h is the harmonic (minimal energy) map.

• $E(\lambda, X)$ is the extremal length, the supremum of ℓ^2 /Area over conformal metrics. Restricting to a subsurface (e.g., the Euclidean part) only increases extremal length.

$$E(\lambda, X) \le E(\lambda, r^{-1}(\lambda)) = \ell(\lambda, Y)$$

• Substitute into Minsky's ineq:

$$\mathscr{E}(h:X\to Y) \ge \ell(\lambda,Y)^2/(2\ell(\lambda,Y)) = \frac{1}{2}\ell(\lambda,Y)$$

• Harmonic map has minimal energy, so $\frac{1}{2}(\ell(\lambda, Y) + 2\pi|\chi|) = \mathscr{E}(r) \ge \mathscr{E}(h) \ge \frac{1}{2}\ell(\lambda, Y)$

- Thus r is nearly harmonic (excess energy is O(1)).
- As $Y \to \infty$, we can rescale the metric on \tilde{Y} so that it converges (G-H) to the \mathbb{R} -tree T_{μ} , where $Y \to [\mu]$ (Paulin, Bestvina).
- After rescaling, $\mathscr{E}(r) \mathscr{E}(h) \to 0$.
- Harmonic maps machinery (Korevaar-Schoen):

 $(\Delta \mathscr{E} \to 0) \Rightarrow (W^{1,2} \text{ convergence})$

 The Hopf differential Φ of a harmonic map is the (2,0) part of its derivative; vertical foliation is most compressed and horizontal most expanded.

- Harmonic map to the R-tree T_μ collapses μ, so vertical foliation of Φ is equivalent to μ (Wolf).
- On the other hand, r compresses the direction orthogonal to λ and preserves the direction parallel to λ .
- Thus the Hopf differential of r, which converges to that of h, has **horizontal** foliation approaching λ .
- So in the limit, λ (grafting lamination) and μ (Thurston limit) are orthogonal.