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Motivation

Study complex projective geometry on Riemann
surfaces and connections to Teichmuller theory
and three-dimensional hyperbolic geometry.

Specifically, investigate the dual nature of complex
projective surfaces as both holomorphic and ge-
ometric (H3) objects, and try to compare these
perspectives.

Results include:

e Asymptotic formula for the change from complex-
analytic to geometric coordinates.

e Geometric compactification of the deforma-
tion space of projective structures that is
compatible with the foliation by underlying
conformal structure.



Plan

Grafting

Thurston’s theorem

Complex Structures

Limits of CP! structures



Grafting is a cut-and-paste operation on Rie-
mann surfaces.

Start with Y, a hyperbolic RS, and ~, a simple
closed hyperbolic geodesic. Now cut Y along ~
and insert a Euclidean cylinder of length t.
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The result is gryy Y, the grafting of Y along ¢~.

Grafting extends continuously to limits of weighted
simple closed geodesics, i.e. measured laminations.
Intuitively, cut Y along A\ € #Z% and insert
Euclidean strips along leaves of .

B lY




In the universal cover, this amounts to removing
the lifts of geodesics in A and replacing them with
lunes (regions bounded by circular arcs),
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because the Euclidean metric on the lunes is
the product of hyperbolic arc length and angle
measure:
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The relationship between gr, Y and Y generalizes
that between a domain 2 C C and its convex hull
boundary CH(2) C H3.
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T he universal cover of gr, Y naturally spreads out
over C, which is the boundary of hyperbolic space
H3. The boundary of the local convex hull is a
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locally convex pleated surface isometric to Y

bent along .




This map f :gr,Y — C is uniquely determined
up to composition with Mobius transformations,
and intertwines the action of mY ~ mw1(gr,Y)
by deck transformations with the action of some
representation n(Y, ) : m1(Y) — PSL»(C).

The representation n(Y, \) is sometimes called the
bending of the Fuchsian group w1 (Y).

The pair (f,n) define a complex projective
structure, that is, an atlas of charts with values
in C and M&bius transition functions.

Note: this is a projective structure on gr, Y, not
on Y. (This issue causes some headaches.)



T hurston has shown that every complex projec-
tive structure arises from grafting in a unique way,
i.e. that

Gr: #L(S) x T(S) — A(S)

is @ homeomorphism, where 7(S) is the Te-
ichmiller space, and £2(S) is the space of (marked)
complex projective structures.

The convex hull construction is the cornerstone
of the proof; starting with a projective structure,
one can then find the bending lamination and
construct the inverse map Gr—1,

Using this Thurston parameterization of #(S) ~
ML (S) x 7(S), one can define a map

u: A(S) — T(S)

that ‘“forgets” the grafting coordinate. We call
this the ungrafting or convex hull map.



The Thurston parameterization makes the con-
nection between (CPl—geometry and three-dimensional
hyperbolic geometry more transparent.

The fiber of the ungrafting map v over Y € .7(S)
is the set of all projective structures obtained
by grafting Y (or bending the Fuchsian group

m1(Y)).

Since Mobius transformations are holomorphic, a
complex projective structure also determines a
complex structure. Thus we have the forgetful
map, or projection

w: P(S) — T(5).

The fiber of # over X € Z(S) is the set of
all complex projective surfaces with underlying
complex structure X.

However, it is not clear how the map =« is related
to the grafting coordinates for £2(S).



Compare this to the case of Teichmuller space:

e symplectically natural coordinates (e.g. Fenchel-
Nielsen)

e complex-analytic coordinates (e.g. Bers, horo-
cyclic)

e Kahler structure — 7

For projective structures, we have:

e H3-natural coordinates (Thurston / grafting)
e complex-analytic coordinates (via =, ...)

e unified perspective?
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The fiber P(X) = 7~ 1(X) of the projection to
7 (S) can be described in terms of holomorphic
quadratic differentials.

A complex projective structure on X gives a
developing map

f: X~H-—C.

For example, the identity gives the complex
projective structure coming from the Fuchsian
uniformization of X.

The Schwarzian derivative S(f) is a differen-
tial operator that measures the deviation of f
from being MODbius; the result is a holomorphic
quadratic differential ¢ € Q(X):
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One can reverse this process; starting with ¢ €
Q(X), one can locally invert the Schwarzian (us-
ing only linear ODE!) to construct a developing
map, and thus, a projective structure.

Hence P(X) can be identified with the complex
vector space Q(X) ~ C39-3,

Together, the fibers {P(X) | X € Z(S)} foli-
ate #(S) by properly holomorphically embedded

copies of C39-3,

Question: What does the fiber P(X) look like in
the grafting coordinates?

Equivalently, what pairs (Y,\) graft to give a
Riemann surface isomorphic to X7

12



Compactify Z(S) ~ #.L(S) x 7(S) by adding
P L(S) x P#HZL(S), where

o P# ¥ (S)is adjoined to 7 (S) via the Thurston
compactification, and

o P# ¥(S) isadjoined to .Z.£(S) in the natural
way.

The result is Z(S), the geometric compactifi-
cation.

Bring the complex structure into play as follows:
For X € .7(S), define an involution

ix  MLS) — ML(S)

so that ix(A\) = p if A and p are measure-
equivalent to the vertical and horizontal measured
foliations of a holomorphic quadratic differential
¢ on X.

(Also use iy to denote the induced involution on
P#2(S).)

This involution depends sensitively on X, as
orthogonality of foliations is dependent upon the
conformal structure.
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Thm: The boundary of P(X) in the geometric
compactification &2(S) is the graph of ix:

OP(X) = Ax = {(IAL lix(MD} ={ wlix(X) = p}

One can also state this in terms of limits:

Cor: Let \; € #4.ZL be the grafting laminations
of a divergent sequence in P(X). If

N — [N €e PHL
then
Y; = [ix(N)] € PHL,

where Y; are the ungrafted surfaces, i.e. ary, Y, =
X.

Note that P#Z £ (S) is homeomorphic to an odd-
dimensional sphere, and 2y is a fixed-point-free
involution. Thm A also implies that the boundary
of each P(X) in #(S) is a regularly embedded
manifold

Ay~ St pr v« Pue.
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However, while P(X) and P(X’) are disjoint for
distinct X, X’ € .7(S), the boundaries Ax and Ay
may intersect.

For example, this happens when X and X’
are both ‘“rectangular” punctured tori; in this
case, the pair of foliations by parallels to the
rectangle’'s edges always represent the same pair
of laminations.

The geometry of this situation is reminiscent of
a symmetric space M and its boundary oM. For
each point p € M, there is a geodesic involution
ip: M — M. The set M(p) C M x M of pairs of
points with midpoint p has boundary equal to the
graph of .

(One might say that grafting X into Y is like

taking the “midpoint” of A and Y'; fixing the result
X forces A and Y to move in opposite directions.)
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One thing missing from this discussion is the
Schwarzian derivative, which is a holomorphic
quadratic differential naturally attached to a pro-
jective surface.

As a sequence of projective structures on X
degenerates, it approaches a pair of orthogonal
laminations (A, ). One might imagine that the
Schwarzian is related to the quadratic differential
whose vertical and horizontal laminations are

(A, ).

Conjecture: The Schwarzian derivative identi-
fies the geometric compactification £(S) with
the compactification 2(S) of the bundle of holo-
morphic quadratic differentials where PTQ(X) is
adjoined to Q(X).
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Sketch of the proof

Start with a projective structure on X ob-
tained by grafting, X =gr,Y.

Examine the retraction map r : X — Y that
collapses the grafted part back to \; recall
X has the Thurston metric that combines
hyperbolic and Euclidean parts.

The energy of r is (one half of) the squared
L? norm of its derivative; r is distance-
nonincreasing, and always has an isometric
direction, so the energy is the area.

The hyperbolic part of X can be reassembled
to get Y, hence its area is 2x|x]|.

The Euclidean part of X is a thickened version
of the lamination A on Y, so its area is

/Y de x dm(\) < o(x v).
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&(r) = 3|ldr(|3 = 36\, Y) + 27|x])

Minsky's inequality:
E(h: X =>Y)>0\Y)?/(2E(\, X))

where h is the harmonic (minimal energy)
map.

E()\, X) is the extremal length, the supremum
of ¢2/Area over conformal metrics. Restrict-
ing to a subsurface (e.g., the Euclidean part)
only increases extremal length.

E\X)<EMNr I() =40\ Y)

Substitute into Minsky's ineq:

E(h:X = Y) > 0N Y)2 /(26N Y)) = %m, )

Harmonic map has minimal energy, so

SUOY) +2m) = E() > () > 1Y)
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Thus r is nearly harmonic (excess energy is

O(1)).

~

As Y — oo, we can rescale the metric on Y
so that it converges (G-H) to the R-tree T,
where Y — [u] (Paulin, Bestvina).

After rescaling, &(r) — &(h) — O.

Harmonic maps machinery (Korevaar-Schoen):

(A& — 0) = (W12 convergence)

The Hopf differential & of a harmonic map
is the (2,0) part of its derivative; vertical
foliation is most compressed and horizontal
Most expanded.
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Harmonic map to the R-tree T), collapses p,
so vertical foliation of & is equivalent to u
(Wolf).

On the other hand, »r compresses the direction
orthogonal to A and preserves the direction
parallel to \.

Thus the Hopf differential of r, which con-
verges to that of kA, has horizontal foliation
approaching \.

So in the limit, A (grafting lamination) and u
(Thurston limit) are orthogonal.
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