Grafting of Riemann Surfaces

 \&
Limits of Complex Projective Structures

November 24, 2003

David Dumas (ddumas@math.harvard.edu) http://www.math.harvard.edu/~ddumas/

Motivation

Study complex projective geometry on Riemann surfaces and connections to Teichmüller theory and three-dimensional hyperbolic geometry.

Specifically, investigate the dual nature of complex projective surfaces as both holomorphic and geometric (\mathbb{H}^{3}) objects, and try to compare these perspectives.

Results include:

- Asymptotic formula for the change from complexanalytic to geometric coordinates.
- Geometric compactification of the deformation space of projective structures that is compatible with the foliation by underlying conformal structure.

Plan

- Grafting
- Thurston's theorem
- Complex Structures
- Limits of $\mathbb{C} P^{1}$ structures

Grafting is a cut-and-paste operation on Riemann surfaces.

Start with Y, a hyperbolic RS, and γ, a simple closed hyperbolic geodesic. Now cut Y along γ and insert a Euclidean cylinder of length t.

The result is $\operatorname{gr}_{t \gamma} Y$, the grafting of Y along $t \gamma$.

Grafting extends continuously to limits of weighted simple closed geodesics, i.e. measured laminations. Intuitively, cut Y along $\lambda \in \mathscr{M} \mathscr{L}$ and insert Euclidean strips along leaves of λ.

In the universal cover, this amounts to removing the lifts of geodesics in λ and replacing them with lunes (regions bounded by circular arcs),

because the Euclidean metric on the lunes is the product of hyperbolic arc length and angle measure:

R x I

The relationship between $\operatorname{gr}_{\lambda} Y$ and Y generalizes that between a domain $\Omega \subset \widehat{\mathbb{C}}$ and its convex hull boundary $\partial \mathrm{CH}(\Omega) \subset \mathbb{H}^{3}$.

The universal cover of $\mathrm{gr}_{\lambda} Y$ naturally spreads out over $\widehat{\mathbb{C}}$, which is the boundary of hyperbolic space \mathbb{H}^{3}. The boundary of the local convex hull is a locally convex pleated surface isometric to \tilde{Y} bent along λ.

This map $f: \widetilde{\operatorname{gr}_{\lambda} Y} \rightarrow \widehat{\mathbb{C}}$ is uniquely determined up to composition with Möbius transformations, and intertwines the action of $\pi_{1} Y \simeq \pi_{1}\left(\operatorname{gr}_{\lambda} Y\right)$ by deck transformations with the action of some representation $\eta(Y, \lambda): \pi_{1}(Y) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$.

The representation $\eta(Y, \lambda)$ is sometimes called the bending of the Fuchsian group $\pi_{1}(Y)$.

The pair (f, η) define a complex projective structure, that is, an atlas of charts with values in $\widehat{\mathbb{C}}$ and Möbius transition functions.

Note: this is a projective structure on $\operatorname{gr}_{\lambda} Y$, not on Y. (This issue causes some headaches.)

Thurston has shown that every complex projective structure arises from grafting in a unique way, i.e. that

$$
\mathrm{Gr}: \mathscr{M} \mathscr{L}(S) \times \mathscr{T}(S) \rightarrow \mathscr{P}(S)
$$

is a homeomorphism, where $\mathscr{T}(S)$ is the Teichmüller space, and $\mathscr{P}(S)$ is the space of (marked) complex projective structures.

The convex hull construction is the cornerstone of the proof; starting with a projective structure, one can then find the bending lamination and construct the inverse map Gr^{-1}.

Using this Thurston parameterization of $\mathscr{P}(S) \simeq$ $\mathscr{M} \mathscr{L}(S) \times \mathscr{T}(S)$, one can define a map

$$
u: \mathscr{P}(S) \rightarrow \mathscr{T}(S)
$$

that "forgets" the grafting coordinate. We call this the ungrafting or convex hull map.

The Thurston parameterization makes the connection between $\mathbb{C} P^{1}$-geometry and three-dimensional hyperbolic geometry more transparent.

The fiber of the ungrafting map u over $Y \in \mathscr{T}(S)$ is the set of all projective structures obtained by grafting Y (or bending the Fuchsian group $\pi_{1}(Y)$).

Since Möbius transformations are holomorphic, a complex projective structure also determines a complex structure. Thus we have the forgetful map, or projection

$$
\pi: \mathscr{P}(S) \rightarrow \mathscr{T}(S)
$$

The fiber of π over $X \in \mathscr{T}(S)$ is the set of all complex projective surfaces with underlying complex structure X.

However, it is not clear how the map π is related to the grafting coordinates for $\mathscr{P}(S)$.

Compare this to the case of Teichmüller space:

- symplectically natural coordinates (e.g. FenchelNielsen)
- complex-analytic coordinates (e.g. Bers, horocyclic)
- Kähler structure - ?

For projective structures, we have:

- \mathbb{H}^{3}-natural coordinates (Thurston / grafting)
- complex-analytic coordinates (via π, \ldots)
- unified perspective?

The fiber $P(X)=\pi^{-1}(X)$ of the projection to $\mathscr{T}(S)$ can be described in terms of holomorphic quadratic differentials.

A complex projective structure on X gives a developing map

$$
f: \tilde{X} \simeq \mathbb{H} \rightarrow \widehat{\mathbb{C}} .
$$

For example, the identity gives the complex projective structure coming from the Fuchsian uniformization of X.

The Schwarzian derivative $S(f)$ is a differential operator that measures the deviation of f from being Möbius; the result is a holomorphic quadratic differential $\phi \in Q(X)$:

$$
\phi(z)=S(f(z))=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2} d z^{2}
$$

One can reverse this process; starting with $\phi \in$ $Q(X)$, one can locally invert the Schwarzian (using only linear ODE!) to construct a developing map, and thus, a projective structure.

Hence $P(X)$ can be identified with the complex vector space $Q(X) \simeq \mathbb{C}^{3 g-3}$.

Together, the fibers $\{P(X) \mid X \in \mathscr{T}(S)\}$ foliate $\mathscr{P}(S)$ by properly holomorphically embedded copies of $\mathbb{C}^{3 g-3}$.

Question: What does the fiber $P(X)$ look like in the grafting coordinates?

Equivalently, what pairs (Y, λ) graft to give a Riemann surface isomorphic to X ?

Compactify $\mathscr{P}(S) \simeq \mathscr{M} \mathscr{L}(S) \times \mathscr{T}(S)$ by adding $P \mathscr{M} \mathscr{L}(S) \times P \mathscr{M} \mathscr{L}(S)$, where

- $P \mathscr{M} \mathscr{L}(S)$ is adjoined to $\mathscr{T}(S)$ via the Thurston compactification, and
- $P \mathscr{M} \mathscr{L}(S)$ is adjoined to $\mathscr{M} \mathscr{L}(S)$ in the natural way.
The result is $\overline{\mathscr{P}}(S)$, the geometric compactification.

Bring the complex structure into play as follows: For $X \in \mathscr{T}(S)$, define an involution

$$
i_{X}: \mathscr{M} \mathscr{L}(S) \rightarrow \mathscr{M} \mathscr{L}(S)
$$

so that $i_{X}(\lambda)=\mu$ if λ and μ are measureequivalent to the vertical and horizontal measured foliations of a holomorphic quadratic differential ϕ on X.
(Also use i_{X} to denote the induced involution on $P \mathscr{M} \mathscr{L}(S)$.

This involution depends sensitively on X, as orthogonality of foliations is dependent upon the conformal structure.

Thm: The boundary of $P(X)$ in the geometric compactification $\overline{\mathscr{P}(S)}$ is the graph of i_{X} :
$\partial \overline{P(X)}=A_{X}=\left\{\left([\lambda],\left[i_{X}(\lambda)\right]\right)\right\}=\left\{(\lambda, \mu) \mid i_{X}(\lambda)=\mu\right\}$

One can also state this in terms of limits:
Cor: Let $\lambda_{i} \in \mathscr{M} \mathscr{L}$ be the grafting laminations of a divergent sequence in $P(X)$. If

$$
\lambda_{i} \rightarrow[\lambda] \in P \mathscr{M} \mathscr{L}
$$

then

$$
Y_{i} \rightarrow\left[i_{X}(\lambda)\right] \in P \mathscr{M} \mathscr{L},
$$

where Y_{i} are the ungrafted surfaces, i.e. $\operatorname{gr}_{\lambda_{i}} Y_{i}=$ X.

Note that $P \mathscr{M} \mathscr{L}(S)$ is homeomorphic to an odddimensional sphere, and i_{X} is a fixed-point-free involution. Thm A also implies that the boundary of each $P(X)$ in $\overline{\mathscr{P}(S)}$ is a regularly embedded manifold

$$
A_{X} \simeq S^{2 k+1} \hookrightarrow P \mathscr{M} \mathscr{L} \times P \mathscr{M} \mathscr{L}
$$

However, while $P(X)$ and $P\left(X^{\prime}\right)$ are disjoint for distinct $X, X^{\prime} \in \mathscr{T}(S)$, the boundaries A_{X} and $A_{X^{\prime}}$ may intersect.

For example, this happens when X and X^{\prime} are both "rectangular" punctured tori; in this case, the pair of foliations by parallels to the rectangle's edges always represent the same pair of Iaminations.

The geometry of this situation is reminiscent of a symmetric space M and its boundary ∂M. For each point $p \in M$, there is a geodesic involution $i_{p}: M \rightarrow M$. The set $M(p) \subset M \times M$ of pairs of points with midpoint p has boundary equal to the graph of i_{p}.
(One might say that grafting λ into Y is like taking the "midpoint" of λ and Y; fixing the result X forces λ and Y to move in opposite directions.)

One thing missing from this discussion is the Schwarzian derivative, which is a holomorphic quadratic differential naturally attached to a projective surface.

As a sequence of projective structures on X degenerates, it approaches a pair of orthogonal laminations (λ, μ). One might imagine that the Schwarzian is related to the quadratic differential whose vertical and horizontal laminations are (λ, μ).

Conjecture: The Schwarzian derivative identifies the geometric compactification $\overline{\mathscr{P}(S)}$ with the compactification $\overline{2(S)}$ of the bundle of holomorphic quadratic differentials where $P^{+} Q(X)$ is adjoined to $Q(X)$.

Sketch of the proof

- Start with a projective structure on X obtained by grafting, $X=\operatorname{gr}_{\lambda} Y$.
- Examine the retraction map $r: X \rightarrow Y$ that collapses the grafted part back to λ; recall X has the Thurston metric that combines hyperbolic and Euclidean parts.
- The energy of r is (one half of) the squared L^{2} norm of its derivative; r is distancenonincreasing, and always has an isometric direction, so the energy is the area.
- The hyperbolic part of X can be reassembled to get Y, hence its area is $2 \pi|\chi|$.
- The Euclidean part of X is a thickened version of the lamination λ on Y, so its area is

$$
\int_{Y} \mathrm{~d} \ell \times \mathrm{d} m(\lambda) \stackrel{\text { def }}{=} \ell(\lambda, Y)
$$

- $\mathscr{E}(r)=\frac{1}{2}\|\mathrm{~d} r\|_{2}^{2}=\frac{1}{2}(\ell(\lambda, Y)+2 \pi|\chi|)$
- Minsky's inequality:

$$
\mathscr{E}(h: X \rightarrow Y) \geq \ell(\lambda, Y)^{2} /(2 E(\lambda, X))
$$

where h is the harmonic (minimal energy) map.

- $E(\lambda, X)$ is the extremal length, the supremum of $\ell^{2} /$ Area over conformal metrics. Restricting to a subsurface (e.g., the Euclidean part) only increases extremal length.

$$
E(\lambda, X) \leq E\left(\lambda, r^{-1}(\lambda)\right)=\ell(\lambda, Y)
$$

- Substitute into Minsky's ineq:

$$
\mathscr{E}(h: X \rightarrow Y) \geq \ell(\lambda, Y)^{2} /(2 \ell(\lambda, Y))=\frac{1}{2} \ell(\lambda, Y)
$$

- Harmonic map has minimal energy, so

$$
\frac{1}{2}(\ell(\lambda, Y)+2 \pi|\chi|)=\mathscr{E}(r) \geq \mathscr{E}(h) \geq \frac{1}{2} \ell(\lambda, Y)
$$

- Thus r is nearly harmonic (excess energy is $O(1)$).
- As $Y \rightarrow \infty$, we can rescale the metric on \tilde{Y} so that it converges (G-H) to the \mathbb{R}-tree T_{μ}, where $Y \rightarrow[\mu]$ (Paulin, Bestvina).
- After rescaling, $\mathscr{E}(r)-\mathscr{E}(h) \rightarrow 0$.
- Harmonic maps machinery (Korevaar-Schoen):

$$
(\Delta \mathscr{E} \rightarrow 0) \Rightarrow\left(W^{1,2} \text { convergence }\right)
$$

- The Hopf differential Φ of a harmonic map is the $(2,0)$ part of its derivative; vertical foliation is most compressed and horizontal most expanded.
- Harmonic map to the \mathbb{R}-tree T_{μ} collapses μ, so vertical foliation of Φ is equivalent to μ (Wolf).
- On the other hand, r compresses the direction orthogonal to λ and preserves the direction parallel to λ.
- Thus the Hopf differential of r, which converges to that of h, has horizontal foliation approaching λ.
- So in the limit, λ (grafting lamination) and μ (Thurston limit) are orthogonal.

