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Motivation

Study complex projective geometry on Riemann

surfaces and connections to Teichmüller theory

and three-dimensional hyperbolic geometry.

Specifically, investigate the dual nature of complex

projective surfaces as both holomorphic and ge-

ometric (H3) objects, and try to compare these

perspectives.

Results include:

• Asymptotic formula for the change from complex-

analytic to geometric coordinates.

• Geometric compactification of the deforma-

tion space of projective structures that is

compatible with the foliation by underlying

conformal structure.
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Plan

• Grafting

• Thurston’s theorem

• Complex Structures

• Limits of CP1 structures
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Grafting is a cut-and-paste operation on Rie-

mann surfaces.

Start with Y , a hyperbolic RS, and γ, a simple

closed hyperbolic geodesic. Now cut Y along γ

and insert a Euclidean cylinder of length t.

The result is grtγ Y , the grafting of Y along tγ.

Grafting extends continuously to limits of weighted

simple closed geodesics, i.e. measured laminations.

Intuitively, cut Y along λ ∈ ML and insert

Euclidean strips along leaves of λ.
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In the universal cover, this amounts to removing

the lifts of geodesics in λ and replacing them with

lunes (regions bounded by circular arcs),

because the Euclidean metric on the lunes is

the product of hyperbolic arc length and angle

measure:
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The relationship between grλ Y and Y generalizes
that between a domain Ω ⊂ Ĉ and its convex hull
boundary ∂CH(Ω) ⊂ H3.

The universal cover of grλ Y naturally spreads out
over Ĉ, which is the boundary of hyperbolic space
H3. The boundary of the local convex hull is a
locally convex pleated surface isometric to Ỹ
bent along λ.
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This map f : g̃rλ Y → Ĉ is uniquely determined

up to composition with Möbius transformations,

and intertwines the action of π1Y ' π1(grλ Y )

by deck transformations with the action of some

representation η(Y, λ) : π1(Y ) → PSL2(C).

The representation η(Y, λ) is sometimes called the

bending of the Fuchsian group π1(Y ).

The pair (f, η) define a complex projective

structure, that is, an atlas of charts with values

in Ĉ and Möbius transition functions.

Note: this is a projective structure on grλ Y , not

on Y . (This issue causes some headaches.)
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Thurston has shown that every complex projec-

tive structure arises from grafting in a unique way,

i.e. that

Gr : ML (S)× T (S) → P(S)

is a homeomorphism, where T (S) is the Te-

ichmüller space, and P(S) is the space of (marked)

complex projective structures.

The convex hull construction is the cornerstone

of the proof; starting with a projective structure,

one can then find the bending lamination and

construct the inverse map Gr−1.

Using this Thurston parameterization of P(S) '
ML (S)× T (S), one can define a map

u : P(S) → T (S)

that “forgets” the grafting coordinate. We call

this the ungrafting or convex hull map.
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The Thurston parameterization makes the con-

nection between CP1-geometry and three-dimensional

hyperbolic geometry more transparent.

The fiber of the ungrafting map u over Y ∈ T (S)

is the set of all projective structures obtained

by grafting Y (or bending the Fuchsian group

π1(Y )).

—

Since Möbius transformations are holomorphic, a

complex projective structure also determines a

complex structure. Thus we have the forgetful

map, or projection

π : P(S) → T (S).

The fiber of π over X ∈ T (S) is the set of

all complex projective surfaces with underlying

complex structure X.

However, it is not clear how the map π is related

to the grafting coordinates for P(S).
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Compare this to the case of Teichmüller space:

• symplectically natural coordinates (e.g. Fenchel-

Nielsen)

• complex-analytic coordinates (e.g. Bers, horo-

cyclic)

• Kähler structure – ?

For projective structures, we have:

• H3-natural coordinates (Thurston / grafting)

• complex-analytic coordinates (via π, . . . )

• unified perspective?
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The fiber P (X) = π−1(X) of the projection to

T (S) can be described in terms of holomorphic

quadratic differentials.

A complex projective structure on X gives a

developing map

f : X̃ ' H → Ĉ.

For example, the identity gives the complex

projective structure coming from the Fuchsian

uniformization of X.

The Schwarzian derivative S(f) is a differen-

tial operator that measures the deviation of f

from being Möbius; the result is a holomorphic

quadratic differential φ ∈ Q(X):

φ(z) = S(f(z)) =

(
f ′′(z)

f ′(z)

)′
−

1

2

(
f ′′(z)

f ′(z)

)2

dz2
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One can reverse this process; starting with φ ∈
Q(X), one can locally invert the Schwarzian (us-

ing only linear ODE!) to construct a developing

map, and thus, a projective structure.

Hence P (X) can be identified with the complex

vector space Q(X) ' C3g−3.

Together, the fibers {P (X) | X ∈ T (S)} foli-

ate P(S) by properly holomorphically embedded

copies of C3g−3.

Question: What does the fiber P (X) look like in

the grafting coordinates?

Equivalently, what pairs (Y, λ) graft to give a

Riemann surface isomorphic to X?
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Compactify P(S) ' ML (S) × T (S) by adding
PML (S)× PML (S), where

• PML (S) is adjoined to T (S) via the Thurston
compactification, and

• PML (S) is adjoined to ML (S) in the natural
way.

The result is P(S), the geometric compactifi-

cation.

Bring the complex structure into play as follows:
For X ∈ T (S), define an involution

iX : ML (S) → ML (S)

so that iX(λ) = µ if λ and µ are measure-
equivalent to the vertical and horizontal measured
foliations of a holomorphic quadratic differential
φ on X.

(Also use iX to denote the induced involution on
PML (S).)

This involution depends sensitively on X, as
orthogonality of foliations is dependent upon the
conformal structure.
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Thm: The boundary of P (X) in the geometric
compactification P(S) is the graph of iX:

∂P (X) = AX = {([λ], [iX(λ)])} = {(λ, µ)|iX(λ) = µ}

One can also state this in terms of limits:

Cor: Let λi ∈ ML be the grafting laminations
of a divergent sequence in P (X). If

λi → [λ] ∈ PML

then

Yi → [iX(λ)] ∈ PML ,

where Yi are the ungrafted surfaces, i.e. grλi
Yi =

X.

Note that PML (S) is homeomorphic to an odd-
dimensional sphere, and iX is a fixed-point-free
involution. Thm A also implies that the boundary
of each P (X) in P(S) is a regularly embedded
manifold

AX ' S2k+1 ↪→ PML × PML .
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However, while P (X) and P (X ′) are disjoint for

distinct X, X ′ ∈ T (S), the boundaries AX and AX ′

may intersect.

For example, this happens when X and X ′

are both “rectangular” punctured tori; in this

case, the pair of foliations by parallels to the

rectangle’s edges always represent the same pair

of laminations.

The geometry of this situation is reminiscent of

a symmetric space M and its boundary ∂M . For

each point p ∈ M , there is a geodesic involution

ip : M → M . The set M(p) ⊂ M ×M of pairs of

points with midpoint p has boundary equal to the

graph of ip.

(One might say that grafting λ into Y is like

taking the “midpoint” of λ and Y ; fixing the result

X forces λ and Y to move in opposite directions.)
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One thing missing from this discussion is the

Schwarzian derivative, which is a holomorphic

quadratic differential naturally attached to a pro-

jective surface.

As a sequence of projective structures on X

degenerates, it approaches a pair of orthogonal

laminations (λ, µ). One might imagine that the

Schwarzian is related to the quadratic differential

whose vertical and horizontal laminations are

(λ, µ).

Conjecture: The Schwarzian derivative identi-

fies the geometric compactification P(S) with

the compactification Q(S) of the bundle of holo-

morphic quadratic differentials where P+Q(X) is

adjoined to Q(X).
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Sketch of the proof

• Start with a projective structure on X ob-
tained by grafting, X = grλ Y .

• Examine the retraction map r : X → Y that
collapses the grafted part back to λ; recall
X has the Thurston metric that combines
hyperbolic and Euclidean parts.

• The energy of r is (one half of) the squared
L2 norm of its derivative; r is distance-
nonincreasing, and always has an isometric
direction, so the energy is the area.

• The hyperbolic part of X can be reassembled
to get Y , hence its area is 2π|χ|.

• The Euclidean part of X is a thickened version
of the lamination λ on Y , so its area is∫

Y
d`× dm(λ)

def
= `(λ, Y ).
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• E (r) = 1
2‖dr‖22 = 1

2(`(λ, Y ) + 2π|χ|)

• Minsky’s inequality:

E (h : X → Y ) ≥ `(λ, Y )2/(2E(λ, X))

where h is the harmonic (minimal energy)
map.

• E(λ, X) is the extremal length, the supremum
of `2/Area over conformal metrics. Restrict-
ing to a subsurface (e.g., the Euclidean part)
only increases extremal length.

E(λ, X) ≤ E(λ, r−1(λ)) = `(λ, Y )

• Substitute into Minsky’s ineq:

E (h : X → Y ) ≥ `(λ, Y )2/(2`(λ, Y )) =
1

2
`(λ, Y )

• Harmonic map has minimal energy, so

1

2
(`(λ, Y ) + 2π|χ|) = E (r) ≥ E (h) ≥

1

2
`(λ, Y )
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• Thus r is nearly harmonic (excess energy is

O(1)).

• As Y → ∞, we can rescale the metric on Ỹ

so that it converges (G-H) to the R-tree Tµ,

where Y → [µ] (Paulin, Bestvina).

• After rescaling, E (r)− E (h) → 0.

• Harmonic maps machinery (Korevaar-Schoen):

(∆E → 0) ⇒ (W1,2 convergence)

• The Hopf differential Φ of a harmonic map

is the (2,0) part of its derivative; vertical

foliation is most compressed and horizontal

most expanded.
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• Harmonic map to the R-tree Tµ collapses µ,

so vertical foliation of Φ is equivalent to µ

(Wolf).

• On the other hand, r compresses the direction

orthogonal to λ and preserves the direction

parallel to λ.

• Thus the Hopf differential of r, which con-

verges to that of h, has horizontal foliation

approaching λ.

• So in the limit, λ (grafting lamination) and µ

(Thurston limit) are orthogonal.

�
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