## Math 52 Exam 2

Fall 2005
David Dumas

Name (print legibly!): $\qquad$

| Answer the questions in the spaces provided on the question sheets. If you run out |
| :---: |
| of room, continue on the back of the page. |
| Show your work and circle your final answer. |

The exam has $\mathbf{4}$ questions and $\mathbf{9}$ pages, including this cover page.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 28 |  |
| 2 | 25 |  |
| 3 | 20 |  |
| 4 | 24 |  |
| Total: | 97 |  |

Do not open the exam until you are told to do so!

1. Consider the $3 \times 4$ matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

In this problem you will need to find bases for the four subspaces of $A$ and solve a linear system $A \mathrm{x}=\mathrm{b}$.
(a) (4 points) Which subspaces are the same for $A$ and its reduced row echelon matrix $R$ ? Circle the statement(s) that are true.
i. $C(A)=C(R)$
ii. $N(A)=N(R)$
iii. $C\left(A^{T}\right)=C\left(R^{T}\right)$
iv. $N\left(A^{T}\right)=N\left(R^{T}\right)$
(b) (5 points) Compute the rank of $A$ and the dimensions of the four subspaces. Put your answers in this table:

| $\operatorname{rank}(A)$ | $\operatorname{dim} C(A)$ | $\operatorname{dim} N(A)$ | $\operatorname{dim} C\left(A^{T}\right)$ | $\operatorname{dim} N\left(A^{T}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

This page is a continuation of problem 1.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

(c) (4 points) Find a basis for $C(A)$.
(d) (4 points) Find a basis for $N(A)$.
(e) (4 points) Find a basis for $C\left(A^{T}\right)$.
(f) (4 points) Find a basis for $N\left(A^{T}\right)$.

This page is a continuation of problem 1.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

(g) (3 points) Find the general solution to $A \mathbf{x}=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$. If there are no solutions at all, write "no solutions".
2. Let $V$ be the subspace of $\mathbb{R}^{4}$ spanned by the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
(a) (5 points) What is the dimension of $V$ ?
(b) (5 points) Find a basis for $V$.
(c) (5 points) Find a basis for the orthogonal complement $V^{\perp}$.

This page continues problem $2 ; V$ is the span of $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
(d) (5 points) Find the projection of $\mathbf{b}=\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right)$ onto $V$.
(e) (5 points) Find the projection of $\mathbf{b}=\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right)$ onto $V^{\perp}$.
3. Let $A=\left(\begin{array}{cc}-2 & 4 \\ 1 & 1 \\ 2 & -1\end{array}\right)$.
(a) (10 points) Use the Gram-Schmidt algorithm to find an orthonormal basis $\mathbf{q}_{1}, \mathbf{q}_{2}$ for the column space of $A$.
(b) (10 points) There is no solution to $A \mathbf{x}=\mathbf{b}$ when $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Find the best approximate solution $\hat{\mathbf{x}}$, which minimizes $\|A \hat{\mathbf{x}}-\mathbf{b}\|$.
4. Using cofactors, the big formula, pivots, or any other (valid) method, compute the following:
(a) (4 points) $\left|\begin{array}{ccccc}0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0\end{array}\right|$
(b) (4 points) $\left|\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right|$
(c) (4 points) $\left|\begin{array}{ccc}1 & 2 & 1 \\ 3 & 1 & 3 \\ 1 & -2 & 1\end{array}\right|$

This page is a continuation of problem 4.
(d) (4 points) $A=\left(\begin{array}{ccc}0 & 3 & 0 \\ 2 & 0 & 2 \\ -2 & 0 & 2\end{array}\right)$. What is $\left|A^{-1}\right|$ ?
(e) (4 points) $A$ is invertible. What is $\left|A^{T}\left(A^{-1}\right)^{2} A^{T}\right|$ ?
(f) (4 points) $Q$ is orthogonal. What is $\left|Q^{2006}\right|$ ?

