# Math 52 Homework 13 Answers <br> David Dumas 

The answers for problems 7.1.12, 7.2.6, and 7.2.21 appear in the back of the textbook.

## - Problem 7.1.3

(a) Linear
(b) Linear
(c) Linear
(d) Not linear (because $T(\mathbf{0}) \neq \mathbf{0})$.

- Problem 7.1.6
(a) Satisfies neither.
(b) Satisfies both (linear).
(c) Satisfies both (linear).
(d) Satisfies neither.
- Problem 7.2.5
$A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$
- Problem 7.2.22
(a) Change of basis from v's to w's:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

(b) Change of basis from w's to v's:

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right)
$$

- Problem 7.2.29
(a) $\left(\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- Problem 7.2.33

False. A similar true statement would read, "If we know $T(\mathbf{v})$ for $n$ linearly independent vectors in $\mathbb{R}^{n}$, then we know $T(\mathbf{v})$ for every vector in $\mathbb{R}^{n}$."

