The maximum number of perfect matchings in graphs with a given degree sequence

Noga Alon* Shmuel Friedland ${ }^{\dagger \ddagger}$

Abstract

We show that the number of perfect matchings in a simple graph G with an even number of vertices and degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ is at most $\prod_{i=1}^{n}\left(d_{i}!\right)^{\frac{1}{2 d_{i}}}$. This bound is sharp if and only if G is a union of complete balanced bipartite graphs.

2000 Mathematics Subject Classification: 05A15, 05C70.
Keywords and phrases: Perfect matchings, permanents.

1 Introduction

Let $G=(V, E)$ be an undirected simple graph. For a vertex $v \in V$, let $\operatorname{deg} v$ denote its degree. Assume that $|V|$ is even, and let perfmat G denote the number of perfect matchings in G. The main result of this short note is:

Theorem 1.1

$$
\begin{equation*}
\operatorname{perfmat} G \leq \prod_{v \in V}((\operatorname{deg} v)!)^{\frac{1}{2 \operatorname{deg} v}}, \tag{1.1}
\end{equation*}
$$

where $0^{\frac{1}{0}}=0$. If G has no isolated vertices then equality holds if and only if G is a disjoint union of complete balanced bipartite graphs.

For bipartite graphs the above inequality follows from the Bregman-Minc Inequality for permanents of $(0,1)$ matrices, mentioned below.

The inequality (1.1) was known to Kahn and Lovász, c.f. [3, (7)], but their proof was never published, and it was recently stated and proved independently by the second author in [5]. Here we show that it is a simple consequence of the Bregman-Minc Inequality.

After our note was published [1], it was pointed out to us that the inequality that permanent of the adjacency matrix dominates the square of the number of perfect matching is due to Gibson [6], and the inequality (1.1) appears in [4, (3.6), p'136].

[^0]
2 The proof

Let A be an $n \times n(0,1)$ matrix, i.e. $A=\left[a_{i j}\right]_{i, j=1}^{n} \in\{0,1\}^{n \times n}$. Denote $r_{i}=$ $\sum_{j=1}^{n} a_{i j}, i=1, \ldots, n$. The celebrated Bregman-Minc inequality, conjectured by Minc (7) and proved by Bregman [2], states

$$
\begin{equation*}
\operatorname{perm} A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}, \tag{2.1}
\end{equation*}
$$

where equality holds (if no r_{i} is zero) iff up to permutation of rows and columns A is a block diagonal matrix in which each block is a square all- 1 matrix.

Proof of Theorem 1.1; The square of the number of perfect matchings of G counts ordered pairs of such matchings. We claim that this is the number of spanning 2regular subgraphs H of G consisting of even cycles (including cycles of length 2 which are the same edge taken twice), where each such H is counted 2^{s} times, with s being the number of components (that is, cycles) of H with more than 2 vertices. Indeed, every union of a pair of perfect matchings M_{1}, M_{2} is a 2 -regular spanning subgraph H as above, and for every cycle of length exceeding 2 in H there are two ways to decide which edges came from M_{1} and which from M_{2}.

The permanent of the adjacency matrix A of G also counts the number of spanning 2-regular subgraphs H^{\prime} of G, where now we allow odd cycles and cycles of length 2 as well. Here, too, each such H^{\prime} is counted 2^{s} times, where s is the number of cycles of H^{\prime} with more than 2 vertices, (as there are 2 ways to orient each such cycle as a directed cycle and get a contribution to the permanent). Thus the square of the number of perfect matchings is at most the permanent of the adjacency matrix, and the desired inequality follows from Bregman-Minc by taking the square root of (2.1), where the numbers r_{i} are the degrees of the vertices of G.

It is clear that if G is a vertex-disjoint union of balanced complete bipartite graphs then equality holds in (1.1). Conversely, if G has no isolated vertices and equality holds, then equality holds in (2.1), and no r_{i} is zero. Therefore, after permuting the rows and columns of the adjacency matrix of G it is a block diagonal matrix in which every block is an all-1 square matrix, and as our graph G has no loops, this means that it is a union of complete balanced bipartite graphs, completing the proof.

References

[1] Noga Alon and Shmuel Friedland, The Maximum Number of Perfect Matchings in Graphs with a Given Degree Sequence, The Electronic Journal of Combinatorics, 15 (2008), \#N13.
[2] L.M. Bregman, Some properties of nonnegative matrices and their permanents, Soviet Math. Dokl. 14 (1973), 945-949.
[3] B. Cuckler and J. Kahn, Entropy bounds for perfect matchings and Hamiltonian cycles, to appear.
[4] G.P. Egorychev, Permanents, Book in Series of Discrete Mathematics,(in Russian), Krasnoyarsk, SFU, 2007.
[5] S. Friedland, An upper bound for the number of perfect matchings in graphs, arXiv: 0803.0864v1, 6 March 2008.
[6] P.M. Gibson, Combinatorial matrix functions and 1-factors of graphs. SIAM J. Appl. Math. 19 (1970), 330-333.
[7] H. Minc, Upper bounds for permanents of (0,1)-matrices, Bull. Amer. Math. Soc. 69 (1963), 789-791.

[^0]: *School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, and IAS, Princeton, NJ 08540, USA, e-mail: nogaa@post.tau.ac.il. Research supported in part by the Israel Science Foundation and by a USA-Israeli BSF grant.
 ${ }^{\dagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA, e-mail friedlan@uic.edu
 ${ }^{\ddagger}$ Visiting Professor, Fall 2007 - Winter 2008, Berlin Mathematical School, Berlin, Germany

