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Abstract

Let V ⊂ PRn be an algebraic variety, such that its complexifi-
cation VC ⊂ Pn is irreducible of codimension m ≥ 1. We use
a sufficient condition on a linear space L ⊂ PRn of dimension
m + 2r to have a nonempty intersection with V , to show that
any six dimensional subspace of 5 × 5 real symmetric matrices
contains a nonzero matrix of rank at most 3.

1 Introduction

Let p(x) = xk + a1x
k−1 + ... + ak ∈ R[x]. Then the odd degree theorem

states that p(x) has a real root if k is odd. Let PRn and Pn := PCn be
the real and the complex projective space of dimension n respectively. For
F = R,C we view a linear space L ⊂ PFn of dimension m as an element
of the Grassmanian manifold Gr (m + 1, n + 1,F). Let V ⊂ PRn be an
algebraic variety, such that it complexification VC ⊂ Pn is irreducible and
has codimension m ≥ 1. If d = deg VC is odd then for any linear space
L ⊂ PRn of dimension m the intersection V ∩ L 6= ∅. Indeed, we have
B(V ) = V , where B : Pn → Pn is the involution z 7→ z̄. The set VC ∩ LC
consists of exactly d points. As this set is invariant under the involution B,
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we deduce that there exists z ∈ VC∩LC such that B(z) = z ⇒ z ∈ PRn. The
continuity argument yields that V ∩L 6= ∅ for any L ∈ Gr (m + 1, n + 1,R).

Consider now the case when d is even. Then it is not difficult to find
nontrivial examples where V ∩ L′ = ∅ for some L′ ∈ Gr (m + 1, n + 1,R).
We are interested in this paper in cases when V is a determinantal variety,
i.e. finding nonzero real matrices of rank at most k in linear families. The
examples such that for any integer k ∈ [0, p) there exists L′ ∈ Gr (m + k +
1, n + 1,R) satisfying V ∩ L′ = ∅, while V ∩ L 6= ∅ for any L ∈ Gr (m + p +
1, n + 1,R) can be found among determinantal varieties. (see §2).

Let Sn(F) be the space of n × n symmetric matrices with entries in
F = R,C. Let Vk,n(F) be the variety of all matrices in Sn(F) of rank k or less.
Then the projectivization PVk,n(F) is an irreducible variety of codimension(
n−k+1

2

)
in the projective space PSn(F). Note that Vk−1,n(F) is the variety

of the singular points of Vk,n(F) (e.g. [1, II]). Let d(n, k,F) be the smallest
integer ` such that every ` dimensional subspace of Sn(F) contains a nonzero
matrix whose rank is at most k. Then

d(n, k,C) =
(

n− k + 1
2

)
+ 1, (1.1)

and the problem is to determine d(n, k,R). The degree of PVk,n(C) was
computed by Harris and Tu in [9]

δk,n := deg PVk,n(C) =
n−k−1∏

j=0

(
n+j

n−k−j

)
(
2j+1

j

) . (1.2)

It was shown in [5] that δn−q,n is odd if

n ≡ ±q (mod 2dlog2 2qe). (1.3)

Then d(n, n− q,R) = d(n, n− q,C) for these values of n and q. It is conjec-
tured in [5] that if δn−q,n is odd then (1.3) holds.

In this paper we show that not only the degree of complexification but
also the Euler characteristic of the intersection of PVk,n(C) with a generic
linear space of dimension

(
n−k+1

2

)
+ 2r can be used to get an additional

information about d(n, k,R). Our estimate of d(n, k,R) from above uses the
following result proved in §2.

Corollary 1.1 Let V ⊂ PRn be an algebraic variety such that its complex-
ification VC ⊂ Pn is an irreducible variety of codimension m. Assume that
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deg VC is even and let r be a positive integer. Suppose that the codimension
of the variety of the singular points of VC in VC is at least 2r + 1. Suppose
furthermore that for a generic L ∈ Gr (m+2r+1, n+1,C) the Euler charac-
teristic of VC∩L is odd. Then V ∩L 6= ∅ for any L ∈ Gr (m+2r+1, n+1,R).

This corollary applies whenever one has an answer to the following prob-
lem:

Problem 1.1 Assume that δk,n is even. Find an integer r ≥ 1, preferably
the smallest possible, such that

2r <

(
n− k + 2

2

)
−

(
n− k + 1

2

)
, (1.4)

and the Euler characteristic of PVk,n(C) ∩ L is odd for a generic
L ∈ Gr (

(
n−k+1

2

)
+ 2r + 1,

(
n+1

2

)
,C).

For k = n− 1 there is no r which satisfies the conditions of Problem 1.1,
hence Corollary 1.1 is not applicable. This follows from the result that the
Euler characteristic of a smooth hypersurface of an even degree is even. Let
k = n − 2. The smallest n of interest is n = 5 [5]. In §6 we show that the
minimal solution to Problem 1.1 is r = 1. Hence d(5, 3,R) ≤ 6. A numerical
evidence supports the conjecture that d(5, 3,R) = 6 [5].

The contents of the paper are as follows. In §2 we give a generaliza-
tion of the odd degree theorem. It is a straightforward consequence of the
Lefschetz fixed point theorem, the Hodge decomposition and the Poincaré
duality. We also recall the exact value of the gap d(n, n−1,R)−d(n, n−1,C).
In §3 we recall some known results about the projectivized complex bun-
dles and the corresponding Chern classes of their tangent bundles. Next
we discuss a resolution of the singularities of Vk,n(C) and PVk,n(C). Let
τ, κ → Gr (k, n,C) be the tautological k-bundle and its quotient bundle
respectively. Then Sym2 τ, Sym2 κ are resolutions of Vk,n(C), Vn−k,n(C) re-
spectively. The projectivized bundle P(Sym2 τ), P(Sym2 κ) are resolutions
of PVk,n(C), PVn−k,n(C) respectively. In §4 we discuss P(Sym2 τ) for k = 1.
In §5 we discuss P(Sym2 τ) for k = 2 and mostly for n = 4. In §6 we discuss
P(Sym2 κ) for k = 2, n = 5 modulo 2.

2 Generalizations of the odd degree theorem

Lemma 2.1 Let W ⊂ PRn be an algebraic variety such that its complex-
ification WC ⊂ Pn is a smooth irreducible variety of (complex) dimension

3



m ≥ 1. Then for any nonnnegative integer r

trace(B∗|H2r+1(WC,R)) = 0,

trace(B∗|H2r(WC,R)) = trace(B∗|Hr,r(WC)) =

(−1)mtrace(B∗|Hm−r,m−r(WC))

(2.1)

where B is conjugation in Pn.

Proof. Since B∗(Hp,q(WC)) = Hq,p(WC) we have for p 6= q

trace(B∗|(Hp,q(WC)⊕Hq,p(WC)) = 0.

The Hodge decomposition of Hk(WC,R) yields the claim since B∗ reverses
the orientation of WC if m is odd and preserves the orientation of WC if m

is even. 2

Corollary 2.1 Let the assumptions of Lemma 2.1 hold. Then the Lefschetz
number λ(WC) of B|WC is given by

λ(WC) = 0, if m is odd,

λ(WC) = trace(B∗|Hm(WC)) + 2

m−2
2∑

r=0

trace(B∗|H2r(WC)) ∈ Z,

if m is even.

(2.2)

If λ(WC) 6= 0 then W ∩ PRn 6= ∅.

Proof. This is a consequence of the last lemma and the Lefschetz fixed
point theorem. 2

Corollary 2.2 Let W be as in Lemma 2.1. Suppose that m is even and
bm(WC) (equivalently the Euler characteristic χ(WC)) is odd. Then W ∩
PRn 6= ∅.

Proof. Since the eigenvalues of B∗|Hm(WC) are ±1 we have that
bm(WC) = λ(WC) mod 2. 2
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Theorem 2.1 Let V ⊂ PRn be an algebraic variety such that its complexi-
fication VC ⊂ Pn is an irreducible variety of codimension m. Suppose that
the codimension of the variety of the singular points of VC in VC is at least
k. Then for a generic L ∈ Gr (m + k, n + 1,R) λ(VC ∩ LC) is equal to zero
if k is even and is equal to bk−1(VC ∩ LC) mod 2 if k is odd. In particular,
if k = 2r + 1 and b2r(VC ∩ LC) is odd, or more generally λ(VC ∩ LC) 6= 0,
then V ∩ L 6= ∅ for any L ∈ Gr (m + 2r + 1, n + 1,R).

Proof. For k = 1 VC∩LC consists of deg VC distinct points for a generic
L and the theorem follows. Assume that k > 1. Let W = V ∩ L, WC =
VC ∩ LC. The assumptions of the theorem yield that for a generic L WC
is a smooth irreducible variety. Hence λ(B|WC) is given by Corollary 2.1.
Other claims of the theorem follow from Corollaries 2.1 and 2.2. 2

Clearly Corollary 1.1 follows from Theorem 2.1. The values of d(n, n −
1,R) were computed by Adams, Lax and Phillips in [3] using the work of
Adams [2] on the maximal number of linearly independent vector fields on
the n − 1 dimensional sphere Sn−1. Write n = (2a + 1)2c+4d, where a and
d are nonnegative integers, and c ∈ {0, 1, 2, 3}. Then ρ(n) = 2c + 8d is the
Radon-Hurwitz number. Let ρ(x) = 0 if x is not a positive integer.

Then
d(n, n− 1,R) = ρ(

n

2
) + 2.

Let
p := d(n, n− 1,R)− d(n, n− 1,C) = ρ(

n

2
). (2.3)

Note that either p is even or p = 1. Assume that n is even. Let V =
PVn−1,n(R). Then VC = PVn−1,n(C). The codimension of the variety of
singular points of VC in VC is 2. Then for any k < p there exists a linear
space L′ ∈ Gr (2 + k,

(
n+1

2

)
,R) such that V ∩ L′ = ∅. It is shown in [3] that

V ∩ L 6= ∅ for any L ∈ Gr (2 + p,
(
n+1

2

)
,R).

Let us consider d(n, k,R) for k = 1. We have PV1,n(C) ⊂ PSn(C) ∼
P(

n+1
2 )−1. The variety PV1,n(C) is biholomorphic to Pn−1. Indeed, identify

Pn−1 with the lines in Cn spanned by the nonzero column vectors x ∈ Cn.
Then

q : Pn−1 → PV1,n(C), q(x) = xxT (2.4)

is a biholomorphism.
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In [6] the linear subspace L0 ⊂ PSn(C) (of codimension 1) of matrices of
trace 0 was considered. Clearly PV1,n(R) ∩ L0 = ∅. Hence [6]

d(n, 1,R) =
(

n + 1
2

)
.

Corollary 1.1 yields that for any generic complex linear subspace L ⊂ PSn(C)
of codimension m, 1 ≤ m ≤ n− 1 the middle Betti number of L ∩ PV1,n(C)
is even. (Since L ∩ PV1,n(C) is biholomorphic to a nonsigular quadric this
Betti number is either 0 or 2 depending on parity of n.) Similarly for n > 1
PV1,n(R) ∩ L0 = ∅ yields that deg PV1,n(C) is even. (This fact follows also
from the formula (1.2).)

Since for an odd n the middle Betti number of PV1,n(C) is 1, we see that
the parity of the Euler characteristic of smooth variety in Pn is independent
of the parity of its degree. Though a complete intersection of even degree
has an even Euler characteristic.

3 Chern classes for desingularizations of determi-
nantal varieties.

In this section we shall collect the formulas for the Chern classes of projec-
tivizations of certain bundles. The main reference is [7]. We also specify
how such projectivizations come up as desingularizations of determinantal
varieties.

Let E be an `-bundle over smooth complex manifold M with the Chern
classes c1(E), ..., c`(E). Let ui, i = 1, ..., ` be the roots of the Chern poly-
nomial

c(E, t) =
∑̀

j=0

cj(E)tj

of E, i.e.

c(E, t) =
∏̀

i=1

(1 + uit)

We have (cf. [4, §4.20])

c(Sym2 E, t) =
∏

1≤i≤j≤`

(1 + (ui + uj)t). (3.1)
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Let P(E) be the projectivization of E. (As a set it consists of the pairs
(x, [v]), where x ∈ M and [v] is a line in E over x spanned by a nonzero
point v ∈ E over x.) Let Ẽ be the tautological line bundle over P(E) (given
by the line [v] over the point (x, [v])). Let E∗ be the pull back of E to P(E)
induced by the projection π1 : P(E) → M . Ẽ is a subbundle of E∗ (cf. [7,
B.5.5]).

Lemma 3.1 Let M be a complex manifold of dimension n. Let E → M

be a complex vector bundle vector of rank ` ≥ 1 and π : P(E) → M be
its projectivization. Let Ẽ be the tautological line bundle over P(E), and
q = c1(Ẽ) be its first Chern class (resp h = −q is the first Chern class
of Ẽ′, which is the dual to Ẽ). Then the cohomology ring H∗(P(E),C) is
H∗(M,C)[q] together with the relation

q` +
∑̀

i=1

(−1)ici(E)q`−i = 0. (3.2)

Let

c(TM , t) =
n∑

i=0

ci(TM )ti, c0(TM ) = 1

be the Chern polynomial of the tangent bundle of M . Then the Chern poly-
nomial of the tangent bundle of P(E) is given by

c(TP(E), t) = c(TM , t)(
∑̀

j=0

cj(E)tj(1− qt)`−j). (3.3)

Proof. For the proof of (3.2) see [10], [8, §4.6, pp. 606] or [4, §4.20].
On the other hand for the relative tangent bundle TP(E)/M , which fits into
exact sequence:

0 → π∗(TM ) → TP(E) → TP(E)/M → 0,

we have
TP(E)/M = Ẽ ⊗Q, (3.4)

where Q is the universal quotient bundle: E∗/Ẽ. (cf. [7, B.5.8]). This yileds
(3.3). 2
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For example if E is trivial and has rank m then P(E) = M × Pm−1 and
(3.3) becomes:

c(TP(E)) = c(TM )(1− qt)m, qm = 0. (3.5)

In the next sections the following situation will arise:

Lemma 3.2 Let M be a complex manifold of dimension n and E → M

be a trivial complex vector bundle vector of rank m ≥ 2. Denote by Ẽ′ the
dual to the tautological bundle Ẽ. Let U ⊂ P(E) be a connected complex
submanifold of dimension d. Consider hypersurfaces H̃i i = 1, ..., k in P(E)
each being the zero set of a generic section of Ẽ′. Let W = U ∩i=k

i=1 Hi and ι

be the embedding W in U . Then

c(TW , t) = ι∗c(TU |W, t)(1− tq)−k, (3.6)

and
χ(W ) = hdc(TU )(1− tq)−k[U ], (3.7)

where [U ] is the fundamental class of U and h is the restriction on U of the
first Chern class c1(Ẽ′).

Proof. (3.6) is a consequence of the exact sequence:

0 → TW → TU |W →
k∑

i=1

⊕NH̃i
|W → 0.

(3.7) is similar to [10, 9.3]. 2

Let E → M a trivial m-bundle, and F → M is an `-subbundle of E.
As above qE (resp. qF ) be the first Chern class of the tautological bundle
Ẽ (resp. F̃ ) on P(E) (resp. P(F )). Then P(F ) ⊂ P(E) and if ι is the
embedding then:

qF = ι∗qE . (3.8)

We describe now a smooth resolutions of Vk,n(C) and PVk,n(C) for 1 ≤
k ≤ n − 1. This construction is similar to the one described in [1, II]. We
have the following exact sequence of three bundles over Gr (k, n,C):

0 → τ → Cn → κ → 0. (3.9)

Here τ is the tautological k-bundle, Cn is the n-trivial bundle and κ := Cn/τ

the n− k quotient bundle.
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Lemma 3.3 Let 1 ≤ k < n. Then the bundles Sym2 τ and Sym2 κ are
smooth resolutions of Vk,n(C) and Vn−k,n(C) respectively. Furthermore the
projectivized bundles P(Sym2 τ) and P(Sym2 κ) are smooth resolutions of
PVk,n(C) and PVn−k,n(C) respectively.

Proof. Viewing A as a linear operator A : Cn → Cn yields the two linear
subspaces: Range A and Ker A of Cn, which are the range and kernel of the
operator A respectively. Note that if a ∈ C∗ then Range A =Range aA and
Ker A =Ker aA. Let

X := Sn(C)×Gr (k, n,C), X̃ := PSn(C)×Gr (k, n,C),

Y := {(A, V ) ∈ X : Range A ⊂ V },
Ỹ := {(A, V ) ∈ X̃ : Range A ⊂ V }, (3.10)

Z := {(B, V ) ∈ X : Kernel B ⊃ V },
Z̃ := {(B, V ) ∈ X̃ : Kernel B ⊃ V }.

Let π1 : X → Sn(C), π2 : X → Gr (k, n,C) be the projections on the
first and second coordinates respectively. Clearly

π1(Y ) = Vk,n(C), π2(Y ) = Gr (k, n,C),

π1(Z) = Vn−k,n(C), π2(Z) = Gr (k, n,C).

The map π1 is a resolution. Indeed it is birational of degree one since it
is 1− 1 on

π−1
1 (Vk,n(C)\Vk−1,n(C)) ⊂ Y and π−1

1 (Vn−k,n(C)\Vn−k−1,n(C)) ⊂ Z.

Similar situation takes place for π2

Finally the fiber of the projection of Y on Gr (k, n,C) over V can be
identified with the space of symmetric transformations of V which yields the
identification of Y with Sym2τ . Similarly Z can be identified with Sym2 κ.
Hence P(Sym2 τ) and P(Sym2 κ) are smooth resolutions of PVk,n(C) and
PVn−k,n(C) respectively. 2

We review now some known facts about the cohomology of Grassma-
nians used in the rest of the paper. Let c1, ..., ck and s1, ..., sn−k be the
Chern classes of τ and κ respecively. Denote by c(τ, t), c(κ, t) the Chern
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polynomials

c(τ, t) = 1 +
∞∑

i=1

cit
i, c(κ, t) = 1 +

∞∑

j=1

sjt
j ,

where ci = sj = 0 for i > k, j > n− k. Recall that

c(τ, t)c(κ, t) = 1. (3.11)

Then the cohomology ring of Gr (k, n,C) has the following representation
[7, Ex. 14.6.6] or [4, §4.23]

H∗(Gr (k, n,C),C) = C[(c1, ..., ck)]/(sn−k+1, ..., sn). (3.12)

Here we use the formula

c(κ, t) =
1

1 + c1t + ... + cktk
. (3.13)

With the help of these formulas we can compute the Chern classes of

Sym2 τ, Sym2 κ ⊂ E

as polynomials in c1, ..., ck and s1, ..., sn−k respectively. Here

E → Gr (k, n,C) is a trivial bundle with the fiber Sn(C) = Sym2 Cn.

(3.14)
Then P(E) is identified with PSn(C)×Gr (k, n,C). Furthermore, q = −h is
the tautological line bundle over P(E). Thus

H∗(PSn(C)×Gr (k, n,C),C) = H∗(Gr (k, n,C),C)[q], q(
n+1

2 ) = 0. (3.15)

From the proof of Lemma 3.3 it follows that P(Sym2 τ), P(Sym2 κ) are
subvarieties of P(E), which can be identified with the smooth subvarieties
Ỹ , Z̃ ⊂ PSn(C) × Gr (k, n). Then on Ỹ , Z̃ the generator q satisfies the
corresponding relation

q(
k+1
2 ) +

(k+1
2 )∑

i=1

(−1)ici(Sym2 τ)q(
k+1
2 )−i = 0, (3.16)

q(
n−k+1

2 ) +
(n−k+1

2 )∑

j=1

(−1)jcj(Sym2 κ)q(
n−k+1

2 )−j = 0.
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To find the Chern classes of the tangent bundles of TỸ , TZ̃ we use Lemma
3.1. To find the Chern class of the tangent bundle of Gr (k, n,C) recall the
following identity (cf. [7, §B.6]) :

TGr(k,n,C) ∼ κ⊗ τ ′ (3.17)

Then

c(τ ′, t) = 1 +
k∑

i=1

(−1)ici(τ)ti =
k∏

i=1

(1 + αit),

c(κ, t) = 1 +
n−k∑

j=1

sjt
j =

n−k∏

j=1

(1 + βjt), (3.18)

c(κ⊗ τ ′, t) =
k,n−k∏

i,j=1

(1 + (αi + βj)t) = 1 +
k(n−k)∑

`=1

v`t
`.

4 Gr (1, n, C)

As an illustration of the above formulas let us consider the case Gr (1, n,C) =
Pn−1. The Chern class of the tautological line bundle τ of Gr (1, n,C) is
c1. The basic relation is cn

1 = 0. Note that −c1 is the dual action of the
hyperplane section. So c(τ, t) = 1 + c1t. The Chern polynomial of TPn−1 is
(1− c1t)n, e.g. [8, §3.3]. Recall that Sym2 τ = PV1,n(C). Hence

c(PV1,n(C), t) = c(Sym2 τ, t) = 1 + w1t, w1 = 2c1.

Let q = −h be the tautological line bundle of P(E). Then −h = q|P(Sym2 τ)
satisfies the equation (3.2) which is−h = q = w1 = 2c1. Hence H∗(PV1,n(C),C)
is generated by c1. The equality (3.3) yields the obvious equality

c(TPV1,n(C)) = (1− c1t)n((1− tq) + w1t) = (1− c1t)n,

as PV1,n(C) ∼ Pn−1. We now compute the degree of PV1,n(C). It is equal to
the Chern number of the hyperplane section

hn−1 = (−q)n−1 = (−2c1)n−1 = 2n−1(−c1)n−1.

Since −c1 is the class of the hyperplane section in Pn−1 it follows that deg
PV1,n(C) = 2n−1, which agrees with the formula (1.2). We now compute
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the Euler characteristic of the intersection of PV1,n(C) with a generic linear
subspace of codimension k ≥ 1. Let U = P(Sym2 τ). Then by (3.6)

c(TW , t) = (1− c1t)n(1− 2c1t)−k.

Hence

cn−1−k(TW ) = (−c1)n−k−1
n−1−k∑

j=0

(
n

j

)( −k

n− 1− k − j

)
2n−1−k−j .

(3.6) yields

χ(W ) = 2k
n−1−k∑

j=0

(
n

j

)( −k

n− 1− k − j

)
2n−1−k−j .

For k = n− 2 W is a smooth curve with the Euler characteristic

χ(W ) = 2n−2(4− n).

5 Gr (2, 4, C)

We now consider Gr (2, n,C) for n ≥ 3. Then

c(τ, t) = 1 + c1t + c2t
2,

c(τ ′, t) = 1− c1t + c2t
2 = (1 + α1t)(1 + α2t),

α1 + α2 = −c1, α1α2 = c2,

c(κ, t) = 1 +
∞∑

j=1

sjt
j =

n−2∏

j=1

(1 + βjt) = (5.1)

1
1 + c1t + c2t2

=
1

(1− α1t)(1− α2t)
,

sp =
p∑

i=0

αi
1α

p−i
2 , p = 1, ...

A straightforward calculation shows

s1 = −c1, s2 = c2
1 − c2, s3 = −c3

1 + 2c1c2, (5.2)

s4 = c4
1 − 3c2

1c2 + c2
2, s5 = −c5

1 + 4c3
1c2 − 3c1c

2
2.
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Thus

H∗(Gr (2, 4,C),C) = C[c1, c2]/(−c3
1 + 2c1c2, c

4
1 − 3c2

1c2 + c2
2), (5.3)

H∗(Gr (2, 5,C),C) = C[c1, c2]/(c4
1 − 3c2

1c2 + c2
2,−c5

1 + 4c3
1c2 − 3c1c

2
2).

We now compute the four Chern classes v1, v2, v3, v4 of the tangent bundle
of Gr (2, 4,C) interms of c1, c2 using (3.18). Note that the power series
corresponding to terms contributed by only α and β respectively correspond
to the polynomials

(1− c1t + c2t
2)2 = 1− 2c1t + (c2

1 + 2c2)t2 − 2c1c2t
3 + c2

2t
4,

(1 + s1t + s2t
2)2 = 1 + 2s1t + (s2

1 + 2s2)t2 + 2s1s2t
3 + s2

2t
4.

Hence

v1 = 2(−c1 + s1) = −4c1,

v2 = c2
1 + 2c2 + s2

1 + 2s2 + 3(α1 + α2)(β1 + β2) = 7c2
1,

v3 = −2c1c2 + 2s1s2 + (5.4)

(α2
1 + α2

2 + 4α1α2)(β1 + β2) + (α1 + α2)(β2
1 + β2

2 + 4β1β3) = −6c3
1

v4 = c2
2 + s2

2 + α1α2(α1 + α2)(β1 + β2) + (α1 + α2)(β1 + β2)β1β2 +

(α2
1 + α2

2)β1β2 + α1α2(β2
1 + β2

2) + 2α1α2β1β2 = c4
1 + 4c2

2 = 3c4
1.

Here we used the two identities in H∗(Gr (2, 4,C),C) given in (5.3). This
agrees with the folowing well known computation of the tangent bundle of
Gr (2, 4,C). Recall the classical result that Gr (2, 4,C) imbeds as a smooth
quadric in P5. The tangent bundle of P5 is (1+h)6, while the normal bundle
of the quadric is (1 + 2h). Hence the tangent bundle of the quadric is given
by (1+h)6

(1+2h) . So c1 = −h.
We now consider the 3-bundle Sym2 τ . Let w1, w2, w3 be its Chern

classes. Then

c(Sym2 τ, t) = 1 +
3∑

i=1

wit
i = (1− 2α1t)(1− 2α2t)(1− (α1 + α2)t) =

(1 + 2c1t + 4c2t
2)(1 + c1t) = (1 + 3c1t + (2c2

1 + 4c2)t2 + 4c1c2t
3. (5.5)

Then the cohomology ring of P(Sym2 τ) is H∗(Gr (2, 4,C)[h] (h = −q) with
the relation

h3+3c1h
2+(2c2

1+4c2)h+4c1c2 = h3+3c1h
2+(2c2

1+4c2)h+2c3
1 = 0. (5.6)
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Use (3.4) to deduce that

c(TP(Sym2 τ)/Gr (2,4,C), t) = 1 + (3h + 3c1)t + (3h2 + 3c1h + 2c2
1 + 4c2)t2.

Hence

c(TP(Sym2 τ), t) = (1 + (3h + 3c1)t + (3h2 + 3c1h + 2c2
1 + 4c2)t2)×

(1− 4c1t + 7c2
1t

2 − 6c3
1t

3 + 3c4
1t

4). (5.7)

Observe also that any monomial in c1, c2 of total degree greater than 4 is
zero, since the dimension of Gr (2, 4,C) is 4. Consider the intersection of
PV2,4(C) with a linear subspace of codimension 6. This is equivalent to the
class of h6 in P(Sym2 τ). We want to find out the generator of the top
cohomology of P(Sym2 τ) and the class of h6 in terms of this generator.
Using the equation (5.6) we can express h6 in as a quadratic polynomial in
q with polynomial coefficients in c1, c2:

h3 = −3c1h
2 − (2c2

1 + 4c2)h− 2c3
1,

h4 = −3c1(−3c1h
2 − (2c2

1 + 4c2)h− 2c3
1)− (2c2

1 + 4c2)h2 − 2c3
1h =

(7c2
1 − 4c2)h2 + 10c3

1h + 6c4
1,

h5 = (7c2
1 − 4c2)(−3c1h

2 − (2c2
1 + 4c2)h− 2c3

1) + 10c3
1h

2 + 6c4
1h =

−5c3
1h

2 − 10c4
1h− 10c5

1 = −5c3
1h

2 − 10c4
1h,

h6 = −5c3
1(−3c1h

2 − (2c2
1 + 4c2)h− 2c3

1)− 10c4
1h

2 =

5c4
1h

2 = 10c2
1c2h

2 = 10c2
2h

2.

Mulitiply h5 by c1, h4 be c2
1 and h3 by c3

1 respectively to conclude the
following relations:

h6 = −c1h
5 = c2

1h
4 = 5c4

1h
2 = 10c2

1c2h
2 = 10c2

2h
2, c3

1h
3 = −3c4

1h
2. (5.8)

Recall the result of Harris and Tu [9] that the degree of PV2,4(C) is 10.
Hence c2

2h
2 is the generator in the top cohomology of P(Sym2 τ). (This can

be concluded directly.)
We now compute the Euler characteristic of the smooth curve W , ob-

tained by a generic plane section of codimension 5 with PV2,4(C). It is the
class of h5 times the first Chern class a (the coefficient of t) in the product

c(TP(Sym2 τ), t)(1 + ht)−5.
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A straightforward calculation shows a = −2h− c1. Hence

h5a = −2h6 − h5c1 = −h6,

and χ(W ) = −10.
We now compute the Euler characteristic of the smooth surface W ob-

tained by a generic plane section of codimension 4 with PV2,4(C). It is the
class of h4 times the second Chern class b (the coefficient of t) in the product

c(TP(Sym2 τ), t)(1 + ht)−4.

A straightforward calculation shows b = h2 − 5c1h− 3c2
1. Hence

h4b = h6 − 5c1h
5 − c2

1h
4 = 7h6,

and χ(W ) = 70.

Corollary 5.1 A generic linear space of codimension 5 in PS4(C) intersects
PV2,4(C) at a smooth curve of degree 10 and Euler characteristic −10. A
generic linear space of codimension 4 in PS4(C) intersects PV2,4(C) at a
smooth surface of degree 10 and Euler characteristic 70.

Hence we can not conclude from these resutls that any linear subspace
L ⊂ S4(R) of dimension 6 contains a nonzero matrix of rank 2 at most. In
[6] we show (using different topological methods) the sharp result that any
linear subspace L ⊂ S4(R) of dimension 5 contains a nonzero matrix of rank
2 at most. It is of interest to check if the conjugation map z → z̄, described
in the beginning of this paper, for L ∩ PV2,4(C), where L ⊂ PS4(C) is a
generic linear space of dimension 5, has a nonzero Lefschetz number.

6 Gr (2, 5, C) modulo 2

Theorem 6.1 Let L ⊂ PS5(C) be a generic linear space of dimension 5.
Then L ∩ PV3,5(C) is a smooth surface with an odd Euler characteristic.

Proof. Let τ, κ be the tautological and the quotient bundles of Gr (2, 5,C).
Then Sym2 κ → Gr (2, 5,C) is the subbundle of the trivial bundle E →
Gr (2, 5,C) given in (3.14). By Lemma 3.3

Z̃ = P(Sym2 κ) ⊂ P(E) = PS5(C)×Gr (2, 5,C)
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is a resolution of PV3,5(C). Then H∗(Z̃,C) = H∗(Gr (2, 5,C),C)[q]), where
q satisfied the second indentity of (3.16). Recall that the tangent bundle
of Gr (2, 5,C) is isomorphic to κ ⊗ τ ′. The tangent bundle of P(Sym2 κ) is
given by the formulas (3.3). As the singular points of PV3,5(C) is the variety
PV2,5(C) of codimension

(
4
2

)
= 6 it follows that L ∩ PV2,5(C) = ∅. Hence

L ∩ PV3,5(C) is a smooth surface. It then follows that

L ∩ PV3,5(C) = Z̃ ∩9
k=1 H̃i,

where H̃i, i = 1, ..., 9 are 9 linearly independent fiber hyperplanes in general
position, as in Lemma 3.2.

Let b be the coefficient of t2 in the product

c(κ⊗ τ ′, t)c(TP(Sym2 κ)/Gr (2,5,C), t)(1 + ht)−9 (6.1)

Then Lemma 3.2 yields that

χ(L ∩ PV3,5(C)) = h9b[Z̃]. (6.2)

Since we are interested in the parity of χ(L ∩ PV3,5(C)) we will do all the
computations modulo 2. (That is our computations are in H∗(Z̃,Z2).) This
will simplify our computations significantly.

We first consider H∗(Gr (2, 5,C),Z2). It is generated by c1, c2 with the
two simpler relations induced by the second part of (5.3)

c4
1 + c2

1c2 + c2
2 = 0, c5

1 = c1c
2
2. (6.3)

Muliply the first equality by c1 and use the second identity to deduce

c3
1c2 = 0 ⇒ c4

1c2 = 0. (6.4)

Multiply the first equality in (6.3) by c2 and use (6.4). Multilply the second
equality of (6.3) by c1. Then

c6
1 = c2

1c
2
2 = c3

2. (6.5)

Hence the generator of the top cohomology in H∗(Gr (2, 5,C),Z2) is any
6-form in the (6.5).

Recall (5.1) for n = 5. The equalites (5.2) modulo 2 yield

s1 = c1, s2 = c2
1 + c2, s3 = c3

1.
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We now compute the first two Chern classes of κ⊗ τ ′, which gives the first
two Chern classes v1, v2 of the tangent bundle of Gr (2, 5,C). Observe that
the terms in v1, v2, expressed either in terms of α or β are coming from
either c(τ ′, t)3 or c(κ, t)2:

c(τ ′, t)3 = (1− c1t + c2t
2)3 = 1− 3c1t + 3(c2 + c2

1)t
2 + higher order terms,

c(κ, t)2 = (1 + s1t + s2t
2 + s3t

3)2 =

1 + 2s1t + (2s2 + s2
1)t

2 + higher order terms.

Using the equalities in (5.2) we obtain.

v1 = −3c1 + 2s1 = −5c1,

v2 = 3(c2 + c2
1) + (2s2 + s2

1) + 5(α1 + α2)(β1 + β2 + β3) = c2 + c2
1.

The coefficient 5 in the product of α’s and β’s is obtaines as follows. Consider
the product α1β1. It comes twice from the terms (α1 +β1)(α1 +βi), i = 2, 3
and three times from the terms (α1 + βi)(α2 + β1), i = 1, 2, 3.

Modulo 2 we get
v1 = c1, v2 = c2 + c2

1. (6.6)

We next compute the Chern polynomial of Sym2 κ modulo 2. Then

c(Sym2 κ, t) =
∏

1≤i≤j≤3

(1 + (βi + βj)t) = c(κ, 2t)
∏

1≤i<j≤3

(1 + (βi + βj)t).

Hence modulo 2

c(Sym2 κ, t) =
∏

1≤i<j≤3

(1 + (βi + βj)t) = 1 + w1t + w2t
2 + w3t

3.

Then modulo 2

w1 = 2
3∑

i=1

βi = 0,

w2 = (β1 + β2)(β1 + β3 + β2 + β3) + (β1 + β3)(β2 + β3) =

β2
1 + β2

2 + β2
3 + s2 = s2

1 − s2 = c2,

w3 = (s1 − α1)(s1 − α2)(s− α3) = s3
1 − s1s

2
1 + s2s1 − s3 = c2c1.

Use (3.4) modulo 2 to get

c(TP(Sym2 κ)/Gr (2,5), t) = (1 + ht)6 + c2t
2(1 + ht)4 + c2c1t

3(1 + ht)3 =

1 + (c2 + h2)t2 + higher order terms.
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Then the coefficient b of t2 in (6.1) is equal modulo 2 to the coefficient of t2

in the product

(1 + c1t + (c2 + c2
1)t

2 + ...)(1 + (c2 + h2)t2 + ...)(1 + ht + h2t2 + ...) =

1 + (c1 + h)t + (c2
1 + c1h)t2 + ...

Hence modulo 2
b = c2

1 + c1h. (6.7)

We now consider the second identity of (3.16) for q = −h modulo 2.

h6 = c2h
4 + c2c1h

3. (6.8)

Multiply by h, h2, h3, h4, h5 the above equality, use (6.3-6.5) and the fact
that any form in c1, c2 of degree greater than 6 equals to 0 to obtain

h7 = c2h
5 + c2c1h

4,

h8 = c2h
6 + c2c1h

5 = c2(c2h
4 + c2c1h

3) + c2c1h
5 = c2c1h

5 + c2
2h

4 + c2
2c1h

3,

h9 = c2c1h
6 + c2

2h
5 + c2

2c1h
4 = c2c1(c2h

4 + c2c1h
3) + c2

2h
5 + c2

2c1h
4 = (6.9)

c2
2h

5 + c2
2c

2
1h

3,

h10 = c2
2h

6 + c2
2c

2
1h

4 = c2
2(c2h

4 + c2c1h
3) + c2

2c
2
1h

4 = 0,

h11 = 0.

The equality h11 = 0 (mod 2) means that h11[Z̃] is an even number. By
Harris-Tu this number, the degree of PV3,5(C), is equal to 20. We claim that
the generator of the top cohomology of H∗(Z̃,Z2) is

c6
1h

5 = c2
1c

2
2h

5 = c3
2h

5. (6.10)

First consider all the monomials in h, c1, c2 of degre 6 in h and total degree
11

c5
1h

6, c3
1c2h

6 = 0, c1c
2
2h

6.

We used here (6.4). Multiply (6.8) by c5
1 and c1c

2
2 respectively to deduce

c5
1h

6 = c3
1c2h

6 = c1c
2
2h

6 = 0.

Second consider all the monomial in h, c1, c2 of degre 7 in h and total degree
11

c4
1h

7, c2
1c2h

7, c2
2h

7.
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Multiply h7 in (6.9) by an appropriate monomial of c1, c2 to get

c4
1h

7 = 0, c2
1c2h

7 = c2
1c

2
2h

5, c2
2h

7 = c3
2h

5.

Hence all the nonzero terms are equal to the terms in (6.10). Third consider
all the monomial in h, c1, c2 of degre 8 in h and total degree 11

c3
1h

8, c1c2h
8.

Multiply h8 in (6.9) by an appropriate monomial of c1, c2 to get

c3
1h

8 = 0, c1c2h
8 = c2

1c
2
2h

5.

Thus the nonzero term is equal to the terms in (6.10). Fourth consider all
the monomial in h, c1, c2 of degre 9 in h and total degree 11

c2
1h

9, c2h
9.

Multiply h8 in (6.9) by an appropriate monomial of c2
1 and c2 to get

c2
1h

9 = c2
1c

2
2h

5, c2h
9 = c3

2h
5.

Hence all the terms are equal to the terms in (6.10). As h10 = 0 we deduce
that c2

1h
9 is the generator of the top cohomology in H∗(Z̃,Z2). Clearly, mod

2
h9b = c2

1h
9 + c1h

10 = c2
1h

9.

Hence χ(L ∩ PV3,5(C)) is odd. 2

Corollary 6.1 d(5, 3,R) ≤ 6. That is, every six dimensional real subspace
L′ ⊂ S5(R) contains a nonzero matrix of rank 3 or less.

In [5] the authors give an example of five dimenisonal subspace L1 ⊂
S5(R), for which a numerical evidence suggests that every nonzero matrix is
of rank 4 at least. Hence the above Corollary suggests that d(5, 3,R) = 6.

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of
Algebraic Curves, I, Grundlehren der math. Wissenschaften, vol. 267,
Springer, 1985.

19



[2] J.F. Adams, Vector fields on spheres, Annals of Math. 75 (1962), 603-
632.

[3] J.F. Adams, P.D. Lax and R.S. Phillips, On matrices whose real linear
combinations are nonsingular, Proc. AMS 16 (1965), 318-322.

[4] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Grad-
uate Texts, vol. 82, Springer, 1982.

[5] D. Falikman, S. Friedland and R. Loewy, On spaces of matrices contain-
ing a nonzero matrix of bounded rank, to appear in Pacific J. Math..

[6] S. Friedland and R. Loewy, Spaces of symmetric matrices containing
a nonzero matrix of bounded rank, Linear Algebra Appl., 287 (1999),
161-170.

[7] W. Fulton, Intersection Theory, Springer, 1984.

[8] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley
& Sons, 1978.

[9] J. Harris and L.W. Tu, On symmetric and skew-symmetric determi-
nantal varieties, Topology 23 (1984), 71-84.

[10] F. Hirzebruch, Topological Methods in Algebraic Geometry,
Grundlehren der math. Wissenschaften, vol. 131, Springer, 1966.

20


