Some open problems in matchings in graphs

Shmuel Friedland
Univ. Illinois at Chicago

Stability, hyperbolicity, and zero localization of functions, AIM workshop, Palo Alto, December 9, 2011

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs and graphs as permanents and haffnians
- Upper bounds on permanents and haffnians: results and conjectures.
- Lower bounds on permanents and haffnians: results and conjectures.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \Longleftrightarrow no monomers.
- M is k-matching $\Longleftrightarrow \# M=k$.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ are real nonpositive Heilmann-Lieb 1972.

Newton inequalities hold

- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Examples:

$\Phi_{K_{2 r}}(x)=\sum_{k=0}^{r}\binom{2 r}{2 k} \frac{\prod_{j=0}^{k-1}\binom{2 k-2 j}{2}}{k!} x^{k}=\sum_{k=0}^{r} \frac{(2 r)!}{(2 r-2 k)!2^{k} k!} x^{k}$
$\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}$
$\mathcal{G}(r, 2 n) \supset \mathcal{G B}(r, 2 n)$ set of r-regular and regular bipartite graphs on $2 n$ vertices, respectively
$q K_{r, r} \in \mathcal{G B}(r, 2 r q)$ a union of q copies of $K_{r, r}$.
$\Phi_{q K_{r, r}}=\Phi_{K_{r, r}}^{q}$

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,
represented by bipartite adjacency matrix
$B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.
Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$.
The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.
Computing $\phi(n, G)$ is \#P-complete problem Valiant 1979
For $G=(\langle 2 n\rangle, E)$ bipartite $G \in \mathcal{G B}(r, 2 n) \Longleftrightarrow \frac{1}{r} B(G) \in \Omega_{n} \Longleftrightarrow$ G is a disjoint (edge) union of r perfect matchings

Matching on nonbipartite graphs

$$
\begin{aligned}
& G=(V, E),|V|=2 n, \\
& A(G)=\left[a_{i j}\right] \in S_{0}(2 n,\{0,1\}) \text { - adjacency matrix of } G \\
& \phi(n, G)=\operatorname{haf}(A(G))=\sum_{M \in \mathcal{M}\left(K_{2 n} n\right.} \prod_{(i, j) \in M} a_{i j} \\
& \mathcal{M}\left(K_{2 n}\right) \text { the set of perfect matchings in } K_{2 n} \\
& \phi(k, G)=\operatorname{haf}_{k}(A(G))=\sum_{M \in \mathcal{M}_{k}\left(K_{2 n}\right)} \prod_{(i, j) \in M} a_{i j} \\
& \mathcal{M}_{k}\left(K_{2 n}\right) \text { the set of } k \text { matchings in } K_{2 n}
\end{aligned}
$$

Claim $\operatorname{perm}(A(G)) \geq \operatorname{haf}(A(G))^{2}$. Equality holds if G is bipartite.

Main problems

Find good estimates on
$s_{n}(k, r):=\min _{G \in \mathcal{G}(r, 2 n)} \phi(k, G) \leq t_{n}(k, r):=\min _{G \in \mathcal{G B}(r, 2 n)} \phi(k, G)$
$S_{n}(k . r):=\max _{G \in \mathcal{G}(r, 2 n)} \phi(k, G) \geq T_{n}(k, r):=\max _{G \in \mathcal{G B}(r, 2 n)} \phi(k, G)$
Completely solved case $r=2$ [8]
$S_{n}(k, 2)=T_{n}(k, 2)$ achieved only for $G=m K_{2,2}$ or $G=m K_{2,2} \cup C_{6}$.
$t_{n}(k, 2)$ achieved only for $C_{2 n}$
$s_{n}(k, 2)$ achieved only for $m C_{3}, m C_{3} \cup C_{4}$ or $m C_{3} \cup C_{5}$.

The upper bound conjecture

$S_{q r}(k, r)=T_{q r}(k, r)=\phi\left(k, q K_{r, r}\right)$
$k=q r$ Follows from Bregman's inequality (see also [3]) $\operatorname{perm} \boldsymbol{A} \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
$A=\left[a_{i j}\right] \in\{0,1\}^{n \times n} r_{i}=\sum_{j=1}^{n}, i=1, \ldots, n$
Egorichev-Alon-Friedland for $G=(V, E),|V|=2 n$
$\phi(n, G) \leq \prod_{v \in V}(\operatorname{deg}(v)!)^{\frac{1}{2 \operatorname{deg}(v)}}$
Equality holds iff G a union of complete bipartite graphs
$S_{n}(k, r) \leq\binom{ 2 n}{2 k}(r!)^{\frac{k}{r}}$
$T_{n}(k, r) \leq \min \left(\binom{n}{k}^{2}(r!)^{\frac{k}{r}},\binom{n}{k} r^{k}\right)$
Friedland-Krop-Lundow-Markström [7]

The lower bounds: Bipartite case

$r^{k} \min _{C \in \Omega_{n}} \operatorname{perm}_{k} C \leq \phi(k, G)$ for any $G \in \mathcal{G B}(r, 2 n)$
$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices
van der Waerden permanent conjecture 1926:

$$
\min _{C \in \Omega_{n}} \operatorname{perm} C=\operatorname{perm} \frac{1}{n} J_{n}\left(=\frac{n!}{n^{n}} \approx \sqrt{2 \pi n} e^{-n}\right)
$$

Tverberg permanent conjecture 1963:

$$
\min _{C \in \Omega_{n}} \operatorname{perm}_{k} C=\operatorname{perm}_{k} \frac{1}{n} J_{n}\left(=\binom{n}{k}^{2} \frac{k!}{n^{k}}\right)
$$

for all $k=1, \ldots, n$.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968, Voorhoeve 1979.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
- 82 proof uses methods of 81 proofs with extra ingredients
- There are new simple proofs using nonnegative hyperbolic polynomials e.g. Gurvits, Friedland-Gurvits

Lower matching bounds for bipartite graphs

Voorhoeve-1979 $(r=3)$ Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G B}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\text { Cor : } \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Con FKM 2006 : $\phi(k, G) \geq\binom{ n}{k}^{2}\left(\frac{n r-k}{n r}\right)^{n r-k}\left(\frac{k r}{n}\right)^{k}, G \in \mathcal{G B}(r, 2 n)$
F-G 2008 showed weaker inequalities

Positive hyperbolic polynomials

A polynomial $p=p(\mathbf{x})=p\left(x_{1}, \ldots, x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called positive hyperbolic if
p is a homogeneous polynomial of degree $m \geq 0$.
$p(\mathbf{x})>0$ for all $\mathbf{x}>0$.
$\phi(t):=p(\mathbf{x}+t \mathbf{u})$, for $t \in \mathbb{R}$, has m-real t-roots for each $\mathbf{u}>\mathbf{0}$ and each
\mathbf{x}.
Ex. 1: $A=\left(a_{i j}\right)_{i=j=1}^{m, n} \in \mathbb{R}_{+}^{m \times n}$
$p_{k, A}(\mathbf{x}):=\sum_{1 \leq i_{1}<\ldots i_{k} \leq m} \prod_{j=1}^{k}(A \mathbf{x})_{i_{j}}, \mathbf{x} \in \mathbb{R}^{n}$
Ex. 2: $A_{1}, \ldots, A_{n} \in \mathbb{C}^{m \times m}$ hermitian, nonnegative definite matrices such that $A_{1}+\ldots+A_{n}$ is a positive definite matrix. Let $p(\mathbf{x})=\operatorname{det} \sum_{i=1}^{n} x_{i} A_{i}$. Then $p(\mathbf{x})$ is positive hyperbolic.
Ex. 3: $B \in \mathbb{R}_{+}^{m \times m}$ symmetric. Then $\mathbf{x}^{\top} B \mathbf{x}$ positive hyperbolic iff B has exactly on positive eigenvalue.

Capacity

$p(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ positive hyperbolic polynomial of degree $m \geq 1$.
Gurvits Cap $p:=\inf _{\mathbf{x}>0, x_{1} \ldots x_{n}=1} p(\mathbf{x})$
$A \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic. Then Cap $p_{k, A}=\binom{n}{k}$.
Let $B=D_{1} A D_{2}, D_{1}, D_{2}$ positive diagonal, A doubly stochastic matrix. Let $p_{n, B}$ be defined as above. Then Cap $p_{n, B}=\frac{1}{\operatorname{det} D_{1} D_{2}}$.
Lemma: $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ positive hyperbolic of degree $m \geq 1$. Assume that Cap $p>0$. Then $\operatorname{deg}_{i} p \geq 1$ for $i=1, \ldots, n$. For $m=n \geq 2$ Cap $\frac{\partial p}{\partial x_{i}}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) \geq\left(\frac{\operatorname{deg}_{i} p-1}{\operatorname{deg}_{i} p}\right)^{\operatorname{deg}_{i} p-1}$ Cap p for $i=$ $1, \ldots, n$, where $0^{0}=1$.

Friedland-Gurvits inequality

Let $p: R^{n} \rightarrow \mathbb{R}$ be positive hyperbolic of degree $m \in[1, n]$. Assume that $\operatorname{deg}_{i} p \leq r_{i} \in[1, m]$ for $i=1, \ldots, n$. Rearrange the sequence r_{1}, \ldots, r_{n} in an increasing order $1 \leq r_{1}^{*} \leq r_{2}^{*} \leq \ldots \leq r_{n}^{*}$. Let $k \in[1, n]$ be the smallest integer such that $r_{k}^{*}>m-k$. Then

$$
\begin{array}{r}
\sum_{\substack{1 \leq i_{1}<\ldots<i_{m} \leq n}} \frac{\partial^{m} p}{\partial x_{i_{1}} \ldots \partial x_{i_{m}}}(\mathbf{0}) \geq \\
\frac{n^{n-m}}{(n-m)!} \frac{(n-k+1)!}{(n-k+1)^{n-k+1}} \prod_{j=1}^{k-1}\left(\frac{r_{j}^{*}+n-m-1}{r_{j}^{*}+n-m}\right)^{r_{j}^{*}+n-m-1} \operatorname{Cap} p . \tag{0.1}
\end{array}
$$

(Here $0^{0}=1$, and the empty product for $k=1$ is assumed to be 1.) If Cap >0 and $r_{i}=m$ for $i=1, \ldots, m$ equality holds if and only if $p=C\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)^{m}$ for each $C>0$.

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

and total matching entropy, (monomer-dimer entropy)

$$
h_{G}=\sup _{\text {on all sequences }} \limsup _{I \rightarrow \infty} \frac{\log \sum_{k=0}^{0.5\left(\# V_{l}\right)} \phi\left(k, G_{l}\right)}{\# V_{l}},
$$

$G_{l}=\left(E_{l}, V_{I}\right), I \in \mathbb{N}$ a sequence of finite graphs converging to G, and

$$
\lim _{1 \rightarrow \infty} \frac{2 k_{1}}{\# V_{l}}=p
$$

$h_{G}=\max _{p \in[0,1]} h_{G}(p)$

Asymptotic versions

$$
\begin{aligned}
& S a(p, r)=\lim \sup _{n_{j} \rightarrow \infty, \frac{k_{i}}{n_{j}} \rightarrow p \in[0,1]} \frac{\log s_{n_{j}\left(k_{j}, r\right)}^{2}}{2 n_{j}} \\
& \operatorname{Ta}(p, r)=\lim \sup _{n_{j} \rightarrow \infty, \frac{k_{j}}{n_{j}} \rightarrow p \in[0,1]} \frac{\log T_{n_{j}\left(k_{j}, r\right)}^{2 n_{j}}}{\log s_{n_{j}\left(k_{j}, r\right)}} \\
& \operatorname{sa}(p, r)=\liminf _{n_{j} \rightarrow \infty, \frac{k_{j}}{n_{j} \rightarrow p \in[0,1]}}^{22} \frac{\log n_{j}\left(k_{j}, r\right)}{2} \\
& \operatorname{ta}(p, r)=\liminf _{n_{j} \rightarrow \infty, \frac{k_{j}}{n_{j}} \rightarrow p \in[0,1]}^{2 n_{j}}
\end{aligned}
$$

Next slide gives the graphs of AUMC and the upper bounds for $T a(p, 4)$.

Expected values of k-matchings for bipartite graphs

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G B}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$
number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G B}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$
- FKM 06:
$\left.\left.E(k, n, r):=\mathrm{E}(\phi(k, G))=\binom{n}{k}^{2} r^{2 k} k!(n r-k)!\right)(n r)!\right)^{-1}$, $k=1, \ldots, n$
- $1 \leq k_{l} \leq n_{l}, l=1, \ldots$, increasing sequences of integers s.t.
$\lim _{l \rightarrow \infty} \frac{k_{l}}{n_{l}}=p \in[0,1]$. Then

$$
\lim _{l \rightarrow \infty} \frac{\log E\left(k_{l}, n_{l}, r\right)}{2 n_{k}}=f(p, r)
$$

$f(p, r):=\frac{1}{2}\left(p \log r-p \log p-2(1-p) \log (1-p)+(r-p) \log \left(1-\frac{p}{r}\right)\right)$

Asymptotic Lower and Upper Matching conjectures

FKLM JOSS 08 :
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{I \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{I \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$$
\begin{array}{r}
P_{r}(t):=\frac{\log \sum_{k=0}^{r}\binom{r}{k}^{2} k!e^{2 k t}}{2 r}, t \in \mathbb{R}, \\
p(t):=P_{r}^{\prime}(t) \in(0,1), \quad h_{K(r)}(p(t)):=P_{r}(t)-t p(t)
\end{array}
$$

$r=4$

$r=6$

$r=4$ upper bounds

Figure: $h_{K(4)}$-green, upp $_{4,1}$-blue, upp $_{4,2}$-orange

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2 n)$

- Cor: r-ALMC holds for $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$,
- Con: under Thm assumptions

$$
\liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant f(r, p)-\frac{p}{2} \log r
$$

- For $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$, conjecture holds

Lower bounds for matchings in regular non-bipartite graphs

Petersen's THM: A bridgeless cubic graph has a perfect match
Problem: Find the minimum of the biggest match in $\mathcal{G}(r, 2 n)$ for $r>2$.
Does every $G \in \mathcal{G}(r, 2 n)$ has a match of size $\left\lfloor\frac{2 n}{3}\right\rfloor$? (True for $r=2$.)
Esperet-Kardos-King-Král-Norine:
Every cubic bridgeless graph has at least $2^{\frac{|V|}{3656}}$ perfect matchings
Cygan-Pilipczuk-Skrekovski:
\exists inf-family of cubic 3-colored connected graphs $G=(V, E)$ s.t.
$\operatorname{haf}(A(G)) \approx c_{F}|V|\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{|V|}{12}},|V|=12 k+4, k=1,2, \ldots$.

An analog the van der Waerden conjecture

THM Edmonds 1965: A symmetric doubly stochastic matrix with zero diagonal of even order $A=\left[a_{i j}\right]_{i, j=1}^{2 n}$ is a convex combination of symmetric permutation matrices with zero diagonal if and only if
$\sum_{i, j \in S} a_{i j} \leq|S|-1$ for any odd subset $S \subset\{1, \ldots, 2 n\}$ (*)
Denote by $\Psi_{2 n}$ the subset of all symmetric doubly stochastic matrices of the above form

Problem: Find $\mu_{n, n}:=\min \operatorname{haf}(A), A \in \Psi_{2 n}$
FALSE CONJECTURE: The minimum is achieved only for the matrix $\frac{1}{2 n-1} A\left(K_{2 n}\right)$
$\operatorname{haf}\left(\frac{1}{2 n-1} A\left(K_{2 n}\right)\right) \approx e^{-n} \sqrt{2 e}<\operatorname{haf}\left(\frac{1}{n} A\left(K_{n, n}\right)\right) \approx e^{-n} \sqrt{2 \pi n}$
CONJECTURE: $\mu:=\lim _{n \rightarrow \infty} \frac{\log \mu_{n, n}}{n}>-\infty$
C-P-S $\mu \leq \frac{\log \frac{1+\sqrt{5}}{2}}{6}-\log 3$

Hyperbolic polynomials

THM: Good lower bounds hold for $\operatorname{haf}_{k}(A)$ if $A \in \Psi_{2 n} n-1 n-1$ eigenvalues of A are nonpositive

Outline of proof: Fact $\mathbf{x}^{\top} \boldsymbol{A} \mathbf{x}$ is a hyperbolic polynomial for a nonnegative symmetric matrix iff A has all but one nonpositive eigenvalues [5]
$\operatorname{haf}_{k} A=\left(2^{k} k!\right)^{-1} \sum_{1 \leq i_{1}<\ldots<i_{2 k} \leq 2 n} \frac{\partial^{2 k}}{\partial x_{i_{1}} \ldots \partial x_{i_{2 k}}}\left(\mathbf{x}^{\top} A \mathbf{x}\right)^{k}$
Use the arguments of [2] to show
$\operatorname{haf}_{n}(B) \geq\left(\frac{n-1}{n}\right)^{(n-1) n} \approx e^{-n} \sqrt{e}$
$\operatorname{haf}_{k}(B) \geq \frac{(2 n)^{2 n-2 k}(2 n-k)!(2 n)^{k}}{(2 n-2 k)!(2 n-k)^{2 n-k} 2^{k} k!}\left(\frac{(2 n-k-1)}{2 n-k}\right)^{(2 n-k-1) k}$

References

围
R．J．Baxter，Dimers on a rectangular lattice，J．Math．Phys． 9 （1968），650－654．
L．M．Bregman，Some properties of nonnegative matrices and their permanents，Soviet Math．Dokl． 14 （1973），945－949．

M．Cygan，M．Pilipczuk and R．Skrekovski，A bound on the number of perfect matchings in Klee－graphs，University of Ljubljana，Preprint series，vol． 47 （2009），1105， http：／／www．imfm．si／preprinti／PDF／01105．pdf．
T．G．P．Egorichev，Proof of the van der Waerden conjecture for permanents，Siberian Math．J． 22 （1981），854－859．

P．Erdös and A．Rényi，On random matrices，II，Studia Math．Hungar． 3 （1968），459－464．
L．Esperet，F．Kardos，A．King，D．Kral and S．Norine，Exponentially many perfect matchings in cubic graphs，arXiv：1012．2878．

D．I．Falikman，Proof of the van der Waerden conjecture regarding the permanent of doubly stochastic matrix，Math．Notes Acad．Sci．USSR 29 （1981），475－479．

M．E．Fisher，Statistical mechanics of dimers on a plane lattice，Phys．Rev． 124 （1961）， 1664－1672．
R．H．Fowler and G．S．Rushbrooke，Statistical theory of perfect solutions，Trans．Faraday Soc． 33 （1937），1272－1294．

References

盖
S．Friedland，A lower bound for the permanent of doubly stochastic matrices，Ann．of Math． 110 （1979），167－176．

S．Friedland，A proof of a generalized van der Waerden conjecture on permanents，Lin． Multilin．Algebra 11 （1982），107－120．

S．Friedland，FPRAS for computing a lower bound for weighted matching polynomial of graphs，arXiv：cs／0703029．

S．Friedland，Analogs of the van der Waerden and Tverberg conjectures for haffnians， arXiv：1102．2542．

S．Friedland and L．Gurvits，Generalized Friedland－Tverberg inequality：applications and extensions，arXiv：math／0603410v2．
S．Friedland and L．Gurvits，Lower bounds for partial matchings in regular bipartite graphs and applications to the monomer－dimer entropy，Combinatorics，Probability and Computing， 2008，15pp．
S．Friedland，E．Krop，P．H．Lundow and K．Markström，Validations of the Asymptotic Matching Conjectures，Journal of Statistical Physics， 133 （2008），513－533， arXiv：math／0603001v3．

S．Friedland，E．Krop and K．Markström，On the Number of Matchings in Regular Graphs， The Electronic Journal of Combinatorics， 15 （2008），\＃R110，1－28，arXiv：0801．2256v1 ［math．Co］ 15 Jan 2008.

References

S．Friedland and U．N．Peled，Theory of Computation of Multidimensional Entropy with an Application to the Monomer－Dimer Problem，Advances of Applied Math．34（2005），486－522．

L．Gurvits，Hyperbolic polynomials approach to van der Waerden／Schrijver－Valiant like conjectures，STOC＇06：Proceedings of the 38th Annual ACM Symposium on Theory of Computing，417－426，ACM，New York， 2006.
圆
J．Hammersley and V．Menon，A lower bound for the monomer－dimer problem，J．Inst．Math． Applic． 6 （1970），341－364．

O．J．Heilmann and E．H．Lieb，Theory of monomer－dimer systems．，Comm．Math．Phys． 25 （1972），190－232．

P．W．Kasteleyn，The statistics of dimers on a lattice，Physica 27 （1961），1209－1225．
L．Lovász and M．D．Plummer，Matching Theory，North－Holland Mathematical Studies，vol． 121，North－Holland，Amsterdam， 1986.

宣
P．H．Lundow，Compression of transfer matrices，Discrete Math． 231 （2001），321－329．

References

C．Niculescu，A new look and Newton＇inequalties，J．Inequal．Pure Appl．Math． 1 （2000）， Article 17.

L．Pauling，J．Amer．Chem．Soc． 57 （1935），2680－．
J．Radhakrishnan，An Entropy Proof of Bregman＇s Theorem，J．Combin．Theory Ser．A 77 （1997），161－164．

A．Schrijver，Counting 1－factors in regular bipartite graphs，J．Comb．Theory B 72 （1998）， 122－135．
H．Tverberg，On the permanent of bistochastic matrix，Math．Scand． 12 （1963），25－35．
L．G．Valiant，The complexity of computing the permanent，Theoretical Computer Science 8 （1979），189－201．

M．Voorhoeve，A lower bound for the permanents of certain（0，1）－matrices，Neder．Akad． Wetensch．Indag．Math． 41 （1979），83－86．

B．L．van der Waerden，Aufgabe 45，Jber Deutsch．Math．－Vrein． 35 （1926）， 117.

