
Summary of Lectures

Definition 1. A matching in a graph G is a set of non-loop edges with no shared

endpoints. The vertices incident to the edges of a matching M are saturated by M ;

the others are unsaturated (we say M -saturated and M -unsaturated). A perfect

matching in a graph is a matching that saturates every vertex.

Example 2 (Perfect matchings in Kn,n). Consider Kn,n with partite sets X =

{x1, . . . , xn} and Y = {y1, . . . , yn}. A perfect matching defines a bijection from X

to Y . Successively finding mates for x1, x2, . . . yields n! perfect matchings.

Each matching is represented by a permutation of [n], mapping i to j when xi is

matched to yj. We can express the matchings as matrices. With X and Y indexing

the rows and columns, we let position i, j be 1 for each edge xiyj in a matching M

to obtain the corresponding matrix. There is one 1 in each row and each column.
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0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


Definition 3. A maximal matching in a graph is a matching that cannot be

enlarged by adding an edge. A maximum matching is a matching of maximum

size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge already

in M . Every maximum matching is a maximal matching, but the converse need not

hold.

Example 4 (Maximal ̸= maximum). The smallest graph having a maximal match-

ing that is not a maximum matching is P4. If we take the middle edge, then we can

all no other, but the two end edges form a larger matching. Below we show this

phenomenon in P4 and in P6.

In Example 4, replacing the bold edges by the solid edges yields a larger matching.

This gives us a way to look for larger matchings.
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Definition 5. Given a matching M , an M -alternating path is a path that al-

ternates between edges in M and edges not in M . An M -alternating path whose

enpoints are unsaturated by M is an M -augmenting path.

Definition 6. If G and H are graphs with vertex set V , then the symmetric

defference G △ H is the graph with vertex set V whose edges are all those edges

appearing in exactly one of G and H. We also use this notation for sets of edges; in

particular, if M and M ′ are matchings, then M △ M ′ = (M −M ′) ∪ (M ′ −M).

Lemma 7. Every component of the symmetric difference of two matchings is a path

or an even cycle.

Proof. Let M and M ′ be matchings, and let F = M △ M ′. Since M and M ′ are

matchings, every vertex has at most one incident edge from each of them. Thus F

has at most two edges at each vertex. Since ∆(F ) ≤ 2, every component of F is

a path or a cycle. Furthermore, every path or cycle in F alternates between edges

of M −M ′ and edges of M ′ −M . Thus each cycle has even length, with an equal

number of edges from M and from M ′.

Theorem 8 (Berge [1957]). A matching M in a graph G is a maximum matching

in G if and only if G has no M -augmenting path.

Proof. We prove the contrapositive of each direction; G has a matching larger than

M if and only if G has an M -augmenting path. We have observed that an M -

augmenting path can be used to produce a matching larger than M .
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For the converse, let M ′ be a matching in G larger than M ; we costruct an

M -augmenting path. Let F = M △ M ′. By Lemma 7, F consists of paths and even

cycles; the cycles have the same number of edges from M and M ′. Since |M ′| > |M |,

F must have a component with more edges of M ′ than of M . Such a component can

only be a path that starts and ends with an edge of M ′; thus it is an M -augmenting

path in G.

Hall’s matching condition:

Consider an X,Y -bigraph (bipartite graph with bipartition X, Y ), we seek a match-

ing that satures X.

If a matching M satures X, then for every S ⊆ X, there must be at least |S|

vertices that have neighbors in S, because the vertices matched to S must be chosen

from that set. We use NG(S) or simply N(S) to denote the set of vertices having

neighbors in S. Thus |N(S)| ≥ |S| is a necessary condition. The condition “For all

S ⊆ X, |N(S)| ≥ |S|” is Hall’s Condition. Hall proved that this obvious necessary

condition is also sufficient.

Theorem 9 (Hall’s Theorem). An X,Y bigraph G has a matching that satures X

if and only if |N(S)| ≥ |S| for all S ⊆ X.

Proof. Necessity: The |S| vertices matched to S must lie in N(S).

Sufficiency: Assume to the cotrary, there is no matching that satures X. If M
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is a maximum matching in G, then it does not sature X. Let u ∈ X be a vertex

unsaturated by M . Define S the set of all vertices in X reachable from u by M -

alternating paths in G. Note that u ∈ S. Also define T the set of all vertices in

Y reachable from u by M -alternating paths in G. We claim that M matches T

with S − {u}. The M -alternating paths from u reach Y along edges not in M and

return to X along edges in M . Hence every vertex of S − {u} is reached by an

edge in M from a vertex in T . Since there is no M -augmenting path, every vertex

of T is saturated. (Note that the reason that there is no M -augmenting path is

immediate by Berge’s theorem, also the reason that every vertex of T is saturated is

that otherwise we get M -augmenting path). Thus an M -alternating path reaching

y ∈ T extends via M to a vertex of S. Hence these edges of M yield a bijection

from T to S − {u}, and we have |T | = |S − {u}|.

This implies |T | = |S − {u}|. The matching between T and S − {u} yields

T ⊆ N(S). In fact, T = N(S). Suppose that y ∈ Y − T has a neighbor v ∈ S. The

edge vy cannot be in M , since u is unsaturated and the rest of S is matched to T by

M . Thus adding vy to an M -alternating path reaching v yields an M -alternating

path to y. This contradicts y ̸∈ T , and hence vy cannot exist.

With T = N(S), we have proved |N(S)| = |T | = |S| − 1 < |S|, for this choice of

S. This completes the proof of the contrapositive.

When the sets of the bipartition have the same size, Hall’s Theorem is the Mar-
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riage Theorem, proved originally by Frobenius [1917]. The name arises from the

setting of the compatibility relation between a set of n men and a set of n women.

If every man is compatible with k women and every woman is compatible with k

men, then a perfect matching must exist. Again multiple edges are allowed, which

enlarge the scope of applications.

Theorem 10 (Marriage Theorem). Consider an X, Y -bigraph G with |X| = |Y |.

Then G has a perfect matching if and only if |S| ≤ |N(S)|, for any S ⊆ X.

Corollary 11. For k > 0, every k-regular bipartite graph has a perfect matching.

Proof. Let G be a k-regular X, Y -bigraph. Counting the edges by endpoints in X

and by endpoints in Y shows that k|X| = k|Y |, so |X| = |Y |. Hence it suffices to

verify Hall’s Condition; a matching that saturates X will also saturate Y and be a

perfect matching.

Consider S ⊆ X. Let m be the number of edges from S to N(S). Since G is

k-regular, m = k|S|. These m edges are incident to N(S), so m ≤ k|N(S)|. Hence

k|S| ≤ k|N(S)|, which yields |N(S)| ≥ |S|, when k > 0. Having chosen S ⊆ X

arbitrarily, we have established Hall’s Condition.

Definition 12. A vertex cover of a graph G is a set Q ⊆ V (G) that contains at

least one endpoint of every edge. The vertices in Q cover E(G).

Example 13 (Matchings and vertex covers). In the graph on the left below we mark

a vertex cover of size 2 and show a matching of size 2 in bold. The vertex cover of
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size 2 prohibits matchings with more than 2 edges, and illustrated on the right, the

optimal values differ by 1 for an odd cycle. The difference can be arbitrarily large.

Theorem 14 (König [1931], Egerváy [1931]). If G is a bipartite graph, then the

maximum size of a matching in G equals the minimum size of a vertex cover of G.

Proof. Let G be an X, Y -bigraph. Since distinct vertices must be used to cover the

edges of a matching, |Q| ≥ |M | whenever Q is a vertex cover and M is a matching

in G. Given a smallest vertex cover Q of G, we construct a matching of size |Q| to

prove that equality can always be achieved.

Partition Q by letting R = Q ∩ X and T = Q ∩ Y . Let H and H ′ be the

subgraphs of G induced by R ∪ (Y − T ) and T ∪ (X −R). We use Hall’s Theorem

to show that H has a matching that saturates R into Y −T and H ′ has a matching

that saturates T . Since H and H ′ are disjoint, the two matchings together form a

matching of size |Q| in G.

Since R ∪ T is a vertex cover, G has no edge from Y − T to X − R. For each

S ⊆ R, we consider NH(S), which is contained in Y − T . If |NH(S)| < |S|, then
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we can substitute NH(S) for S in Q to obtain a smaller vertex cover, since NH(S)

covers all edges incident to S that are not covered by T .

The minimality of Q thus yields Hall’s Condition in H, and hence H has a

matching that saturates R. Applying the same argument to H ′ yields the matching

that saturates T .

An application of Hall Theorem:

Recall that a permutation matrix is a square matrix that has exactly one entry of

1 in each row and each column and zero elsewhere. Now, we define a more general

family of matrices called doubly stochastic as mentioned in Section ??.

Definition 15. A matrix with no negative entries whose column (rows) sums are

1 is called a column stochastic (row stochastic) matrix. In some references column

stochastic (row stochastic) matrix is called a stochastic matrix. Both types of these

matrices are also called Markov matrices.
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Definition 16. A doubly stochastic matrix is a square matrix A = [aij] of non-

negative real entries, each of whose rows and columns sum 1, i.e.

∑
i

aij =
∑
j

aij = 1.

The set of all n × n doubly stochastic matrices is denoted by Ωn. If we denote all

n× n permutation matrices by Pn, then clearly Pn ⊂ Ωn.

Definition 17. A subset A of a real finite-dimensional vector space is said to be

convex if λx + (1− λ)y ∈ A, for all vectors x,y ∈ A and all scalars λ ∈ [0, 1]. Via

induction, this can be seen to be equivalent to the requirement that
∑n

i=1 λixi ∈ A,

for all vectors x1, . . . ,xn ∈ A and all scalars λ1, . . . , λn ⩾ 0 with
∑n

i=1 λi = 1.

A point x ∈ A is called an extreme point of A if y, z ∈ A, 0 < t < 1, and

x = ty+(1− t)z imply x = y = z. We denote by ext A the set of all extreme points

of A. With these restrictions on λi’s, an expression of the form
∑n

i=1 λixi is said to

be a convex combination of x1, . . . ,xn. The convex hull of a set B ⊂ V is defined as

{
∑

λixi : xi ∈ B, λi ≥ 0 and
∑

λi = 1}. The convex hull of B can also be defined

as the smallest convex set containing B. (Why?) It is denoted by conv B.

Theorem 18 (Krein-Milman). Let A ⊂ Rn be a nonempty compact convex set.

Then

1. The set of all extreme points of A is non-empty.

2. The convex hull of the set of all extreme points of A is A itself.
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The following theorem is a direct application of matching theory to express the

relation between two sets of matrices Pn and Ωn.

Theorem 19 (Birkhoff). Every doubly stochastic matrix can be written as a convex

combination of permutation matrices.

Proof. We use Philip Hall Theorem to prove this theorem. We associate to our

doubly stochastic matrix A = [aij] a bipartite graph as follows. We represent each

row and each column with a vertex and we connect the vertex representing row i

with the vertex representing row j if the entry aij is non-zero.

For example if A =


7
12

0 5
12

1
6

1
2

1
3

1
4

1
2

1
4

, the graph associated to A is given in the picture

below.

row 1 column 1

row 2 column 2

row 3 column 3

We claim that the associated graph of any doubly stochastic matrix has a perfect

matching. Assume to the contrary, A has no perfect matching. Then, by Philip

Hall Theorem there is a subset E of the vertices in one part such that the set R(E)

of all vertices connected to some vertex in E has strictly less than #E elements.

Without loss of generality, we may assume that A is a set of vertices representing

rows, the set R(A) consists then of vertices representing columns. Consider now the
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sum
∑

i∈E,j∈R(E) aij = #E, the sum of all entries located in columns belonging to

R(E). (by the definition of the associated graph). Thus

∑
i∈E,j∈R(E)

aij = #E.

Since the graph is doubly stochastic and the sum of elements located in any of given

#E rows is #E. On the other hand, the sum of all elements located in all columns

belonging to R(E) is at least
∑

i∈E,j∈R(E) aij, since the entries not belonging to a

row in E are non-negative. Since the matrix is doubly stochastic, the sum of all

elements located in all columns belonging to R(E) is also exactly #R(E). Thus, we

obtain ∑
i∈E,j∈R(E)

aij ≤ #R(E) < #E =
∑

i∈E,j∈R(E)

aij,

a contradiction. Then, A has a perfect matching.

Now, we are ready to prove the theorem. We proceed by induction on the number

of non-zero entries in the matrix. As we proved, associated graph of A has a perfect

matching. Underline the entries associated to the edges in the matching. For ex-

ample in the associated graph above, {(1, 3), (2, 1), (3, 2)} is a perfect matching so

we underline a13, a23 and a32. Thus, we underline exactly one element in each row

and each column. Let α0 be the minimum of the underlined entries. Let P0 be the

permutation matrix that has a 1 exactly at the position of the underlined elements.

If α0 = 1, then all underlined entries are 1, and A = P0 is a permutation matrix. If

α0 < 1, then the matrix A− α0P0 has non-negative entries, and the sum of the en-

tries in any row or any column is 1−α0. Dividing each entry by (1−α0) in A−α0P0
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gives a doubly stochastic matrix A1. Thus, we may write A = α0P0 + (1 − α0)A1,

where A1 is not only doubly stochastic but has less non-zero entries than A. By our

induction hypothesis, A1 may be written as A1 = α1P1+· · ·+αnPn, where P1, . . . , Pn

are permutation matrices, and α1P1+ · · ·+αnPn is a convex combination. But then

we have

A = α0P0 + (1− α0)α1P1 + · · ·+ (1− α0)αnPn,

where P0, P1, . . . , Pn are permutation matrices and we have a convex combination.

Since α0 ≥ 0, each (1− α0)αi is non-negative and we have

α0+(1−α0)α1+ · · ·+(1−α0)αn = α0+(1−α0)(α1+ . . .+αn) = α0+(1−α0) = 1.

In our example

P0 =


0 0 1

1 0 0

0 1 0


and α0 =

1
6
. Thus, we get

A1 =
1

1− 1
6

(
A− 1

6
P0

)
=

6

5


7
12

0 1
4

0 1
2

1
3

1
4

1
3

1
4

 =


7
10

0 3
10

0 3
5

2
5

3
10

2
5

3
10

 .

The graph associated to A1 is the following:

1 1

2 2

3 3
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A perfect matching is {(1, 1), (2, 2), (3, 3)}, the associated permutation matrix is

P1 =


1 0 0

0 1 0

0 0 1

 .
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