Summary of Lectures

Definition 1. A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M; the others are unsaturated (we say M-saturated and M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex.

Example 2 (Perfect matchings in $K_{n, n}$). Consider $K_{n, n}$ with partite sets $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. A perfect matching defines a bijection from X to Y. Successively finding mates for x_{1}, x_{2}, \ldots yields n ! perfect matchings.

Each matching is represented by a permutation of $[n]$, mapping i to j when x_{i} is matched to y_{j}. We can express the matchings as matrices. With X and Y indexing the rows and columns, we let position i, j be 1 for each edge $x_{i} y_{j}$ in a matching M to obtain the corresponding matrix. There is one 1 in each row and each column.

Definition 3. A maximal matching in a graph is a matching that cannot be enlarged by adding an edge. A maximum matching is a matching of maximum size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge already in M. Every maximum matching is a maximal matching, but the converse need not hold.

Example 4 (Maximal \neq maximum). The smallest graph having a maximal matching that is not a maximum matching is P_{4}. If we take the middle edge, then we can all no other, but the two end edges form a larger matching. Below we show this phenomenon in P_{4} and in P_{6}.

In Example 4, replacing the bold edges by the solid edges yields a larger matching. This gives us a way to look for larger matchings.

Definition 5. Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M. An M-alternating path whose enpoints are unsaturated by M is an M-augmenting path.

Definition 6. If G and H are graphs with vertex set V, then the symmetric defference $G \Delta H$ is the graph with vertex set V whose edges are all those edges appearing in exactly one of G and H. We also use this notation for sets of edges; in particular, if M and M^{\prime} are matchings, then $M \Delta M^{\prime}=\left(M-M^{\prime}\right) \cup\left(M^{\prime}-M\right)$.

Lemma 7. Every component of the symmetric difference of two matchings is a path or an even cycle.

Proof. Let M and M^{\prime} be matchings, and let $F=M \Delta M^{\prime}$. Since M and M^{\prime} are matchings, every vertex has at most one incident edge from each of them. Thus F has at most two edges at each vertex. Since $\Delta(F) \leq 2$, every component of F is a path or a cycle. Furthermore, every path or cycle in F alternates between edges of $M-M^{\prime}$ and edges of $M^{\prime}-M$. Thus each cycle has even length, with an equal number of edges from M and from M^{\prime}.

Theorem 8 (Berge [1957]). A matching M in a graph G is a maximum matching in G if and only if G has no M-augmenting path.

Proof. We prove the contrapositive of each direction; G has a matching larger than M if and only if G has an M-augmenting path. We have observed that an M augmenting path can be used to produce a matching larger than M.

For the converse, let M^{\prime} be a matching in G larger than M; we costruct an M-augmenting path. Let $F=M \Delta M^{\prime}$. By Lemma $7, F$ consists of paths and even cycles; the cycles have the same number of edges from M and M^{\prime}. Since $\left|M^{\prime}\right|>|M|$, F must have a component with more edges of M^{\prime} than of M. Such a component can only be a path that starts and ends with an edge of M^{\prime}; thus it is an M-augmenting path in G.

Hall's matching condition:

Consider an X, Y-bigraph (bipartite graph with bipartition X, Y), we seek a matching that satures X.

If a matching M satures X, then for every $S \subseteq X$, there must be at least $|S|$ vertices that have neighbors in S, because the vertices matched to S must be chosen from that set. We use $N_{G}(S)$ or simply $N(S)$ to denote the set of vertices having neighbors in S. Thus $|N(S)| \geq|S|$ is a necessary condition. The condition"For all $S \subseteq X,|N(S)| \geq|S| "$ is Hall's Condition. Hall proved that this obvious necessary condition is also sufficient.

Theorem 9 (Hall's Theorem). An X, Y bigraph G has a matching that satures X if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$.

Proof. Necessity: The $|S|$ vertices matched to S must lie in $N(S)$.

Sufficiency: Assume to the cotrary, there is no matching that satures X. If M
is a maximum matching in G, then it does not sature X. Let $u \in X$ be a vertex unsaturated by M. Define S the set of all vertices in X reachable from u by M alternating paths in G. Note that $u \in S$. Also define T the set of all vertices in Y reachable from u by M-alternating paths in G. We claim that M matches T with $S-\{u\}$. The M-alternating paths from u reach Y along edges not in M and return to X along edges in M. Hence every vertex of $S-\{u\}$ is reached by an edge in M from a vertex in T. Since there is no M-augmenting path, every vertex of T is saturated. (Note that the reason that there is no M-augmenting path is immediate by Berge's theorem, also the reason that every vertex of T is saturated is that otherwise we get M-augmenting path). Thus an M-alternating path reaching $y \in T$ extends via M to a vertex of S. Hence these edges of M yield a bijection from T to $S-\{u\}$, and we have $|T|=|S-\{u\}|$.

This implies $|T|=|S-\{u\}|$. The matching between T and $S-\{u\}$ yields $T \subseteq N(S)$. In fact, $T=N(S)$. Suppose that $y \in Y-T$ has a neighbor $v \in S$. The edge $v y$ cannot be in M, since u is unsaturated and the rest of S is matched to T by M. Thus adding $v y$ to an M-alternating path reaching v yields an M-alternating path to y. This contradicts $y \notin T$, and hence $v y$ cannot exist.

With $T=N(S)$, we have proved $|N(S)|=|T|=|S|-1<|S|$, for this choice of S. This completes the proof of the contrapositive.

When the sets of the bipartition have the same size, Hall's Theorem is the Mar-
riage Theorem, proved originally by Frobenius [1917]. The name arises from the setting of the compatibility relation between a set of n men and a set of n women. If every man is compatible with k women and every woman is compatible with k men, then a perfect matching must exist. Again multiple edges are allowed, which enlarge the scope of applications.

Theorem 10 (Marriage Theorem). Consider an X, Y-bigraph G with $|X|=|Y|$. Then G has a perfect matching if and only if $|S| \leq|N(S)|$, for any $S \subseteq X$.

Corollary 11. For $k>0$, every k-regular bipartite graph has a perfect matching.

Proof. Let G be a k-regular X, Y-bigraph. Counting the edges by endpoints in X and by endpoints in Y shows that $k|X|=k|Y|$, so $|X|=|Y|$. Hence it suffices to verify Hall's Condition; a matching that saturates X will also saturate Y and be a perfect matching.

Consider $S \subseteq X$. Let m be the number of edges from S to $N(S)$. Since G is k-regular, $m=k|S|$. These m edges are incident to $N(S)$, so $m \leq k|N(S)|$. Hence $k|S| \leq k|N(S)|$, which yields $|N(S)| \geq|S|$, when $k>0$. Having chosen $S \subseteq X$ arbitrarily, we have established Hall's Condition.

Definition 12. A vertex cover of a graph G is a set $Q \subseteq V(G)$ that contains at least one endpoint of every edge. The vertices in Q cover $E(G)$.

Example 13 (Matchings and vertex covers). In the graph on the left below we mark a vertex cover of size 2 and show a matching of size 2 in bold. The vertex cover of
size 2 prohibits matchings with more than 2 edges, and illustrated on the right, the optimal values differ by 1 for an odd cycle. The difference can be arbitrarily large.

Theorem 14 (König [1931], Egerváy [1931]). If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.

Proof. Let G be an X, Y-bigraph. Since distinct vertices must be used to cover the edges of a matching, $|Q| \geq|M|$ whenever Q is a vertex cover and M is a matching in G. Given a smallest vertex cover Q of G, we construct a matching of size $|Q|$ to prove that equality can always be achieved

Partition Q by letting $R=Q \cap X$ and $T=Q \cap Y$. Let H and H^{\prime} be the subgraphs of G induced by $R \cup(Y-T)$ and $T \cup(X-R)$. We use Hall's Theorem to show that H has a matching that saturates R into $Y-T$ and H^{\prime} has a matching that saturates T. Since H and H^{\prime} are disjoint, the two matchings together form a matching of size $|Q|$ in G.

Since $R \cup T$ is a vertex cover, G has no edge from $Y-T$ to $X-R$. For each $S \subseteq R$, we consider $N_{H}(S)$, which is contained in $Y-T$. If $\left|N_{H}(S)\right|<|S|$, then
we can substitute $N_{H}(S)$ for S in Q to obtain a smaller vertex cover, since $N_{H}(S)$ covers all edges incident to S that are not covered by T.

The minimality of Q thus yields Hall's Condition in H, and hence H has a matching that saturates R. Applying the same argument to H^{\prime} yields the matching that saturates T.

An application of Hall Theorem:

Recall that a permutation matrix is a square matrix that has exactly one entry of 1 in each row and each column and zero elsewhere. Now, we define a more general family of matrices called doubly stochastic as mentioned in Section ??.

Definition 15. A matrix with no negative entries whose column (rows) sums are 1 is called a column stochastic (row stochastic) matrix. In some references column stochastic (row stochastic) matrix is called a stochastic matrix. Both types of these matrices are also called Markov matrices.

Definition 16. A doubly stochastic matrix is a square matrix $A=\left[a_{i j}\right]$ of nonnegative real entries, each of whose rows and columns sum 1, i.e.

$$
\sum_{i} a_{i j}=\sum_{j} a_{i j}=1
$$

The set of all $n \times n$ doubly stochastic matrices is denoted by Ω_{n}. If we denote all $n \times n$ permutation matrices by \mathcal{P}_{n}, then clearly $\mathcal{P}_{n} \subset \Omega_{n}$.

Definition 17. A subset A of a real finite-dimensional vector space is said to be convex if $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in A$, for all vectors $\mathbf{x}, \mathbf{y} \in A$ and all scalars $\lambda \in[0,1]$. Via induction, this can be seen to be equivalent to the requirement that $\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \in A$, for all vectors $\mathrm{x}_{1}, \ldots, \mathbf{x}_{n} \in A$ and all scalars $\lambda_{1}, \ldots, \lambda_{n} \geqslant 0$ with $\sum_{i=1}^{n} \lambda_{i}=1$. A point $\mathbf{x} \in A$ is called an extreme point of A if $\mathbf{y}, \mathbf{z} \in A, 0<t<1$, and $\mathbf{x}=t \mathbf{y}+(1-t) \mathbf{z}$ imply $\mathbf{x}=\mathbf{y}=\mathbf{z}$. We denote by ext A the set of all extreme points of A. With these restrictions on λ_{i} 's, an expression of the form $\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}$ is said to be a convex combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. The convex hull of a set $B \subset \mathbf{V}$ is defined as $\left\{\sum \lambda_{i} \mathbf{x}_{i}: \mathbf{x}_{i} \in B, \lambda_{i} \geq 0\right.$ and $\left.\sum \lambda_{i}=1\right\}$. The convex hull of B can also be defined as the smallest convex set containing B. (Why?) It is denoted by conv B.

Theorem 18 (Krein-Milman). Let $A \subset \mathbb{R}^{n}$ be a nonempty compact convex set. Then

1. The set of all extreme points of A is non-empty.
2. The convex hull of the set of all extreme points of A is A itself.

The following theorem is a direct application of matching theory to express the relation between two sets of matrices \mathcal{P}_{n} and Ω_{n}.

Theorem 19 (Birkhoff). Every doubly stochastic matrix can be written as a convex combination of permutation matrices.

Proof. We use Philip Hall Theorem to prove this theorem. We associate to our doubly stochastic matrix $A=\left[a_{i j}\right]$ a bipartite graph as follows. We represent each row and each column with a vertex and we connect the vertex representing row i with the vertex representing row j if the entry $a_{i j}$ is non-zero.
For example if $A=\left[\begin{array}{ccc}\frac{7}{12} & 0 & \frac{5}{12} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right]$, the graph associated to A is given in the picture below.

We claim that the associated graph of any doubly stochastic matrix has a perfect matching. Assume to the contrary, A has no perfect matching. Then, by Philip Hall Theorem there is a subset E of the vertices in one part such that the set $R(E)$ of all vertices connected to some vertex in E has strictly less than $\# E$ elements. Without loss of generality, we may assume that A is a set of vertices representing rows, the set $R(A)$ consists then of vertices representing columns. Consider now the
sum $\sum_{i \in E, j \in R(E)} a_{i j}=\# E$, the sum of all entries located in columns belonging to $R(E)$. (by the definition of the associated graph). Thus

$$
\sum_{i \in E, j \in R(E)} a_{i j}=\# E .
$$

Since the graph is doubly stochastic and the sum of elements located in any of given $\# E$ rows is $\# E$. On the other hand, the sum of all elements located in all columns belonging to $R(E)$ is at least $\sum_{i \in E, j \in R(E)} a_{i j}$, since the entries not belonging to a row in E are non-negative. Since the matrix is doubly stochastic, the sum of all elements located in all columns belonging to $R(E)$ is also exactly $\# R(E)$. Thus, we obtain

$$
\sum_{i \in E, j \in R(E)} a_{i j} \leq \# R(E)<\# E=\sum_{i \in E, j \in R(E)} a_{i j},
$$

a contradiction. Then, A has a perfect matching.
Now, we are ready to prove the theorem. We proceed by induction on the number of non-zero entries in the matrix. As we proved, associated graph of A has a perfect matching. Underline the entries associated to the edges in the matching. For example in the associated graph above, $\{(1,3),(2,1),(3,2)\}$ is a perfect matching so we underline a_{13}, a_{23} and a_{32}. Thus, we underline exactly one element in each row and each column. Let α_{0} be the minimum of the underlined entries. Let P_{0} be the permutation matrix that has a 1 exactly at the position of the underlined elements. If $\alpha_{0}=1$, then all underlined entries are 1 , and $A=P_{0}$ is a permutation matrix. If $\alpha_{0}<1$, then the matrix $A-\alpha_{0} P_{0}$ has non-negative entries, and the sum of the entries in any row or any column is $1-\alpha_{0}$. Dividing each entry by $\left(1-\alpha_{0}\right)$ in $A-\alpha_{0} P_{0}$
gives a doubly stochastic matrix A_{1}. Thus, we may write $A=\alpha_{0} P_{0}+\left(1-\alpha_{0}\right) A_{1}$, where A_{1} is not only doubly stochastic but has less non-zero entries than A. By our induction hypothesis, A_{1} may be written as $A_{1}=\alpha_{1} P_{1}+\cdots+\alpha_{n} P_{n}$, where P_{1}, \ldots, P_{n} are permutation matrices, and $\alpha_{1} P_{1}+\cdots+\alpha_{n} P_{n}$ is a convex combination. But then we have

$$
A=\alpha_{0} P_{0}+\left(1-\alpha_{0}\right) \alpha_{1} P_{1}+\cdots+\left(1-\alpha_{0}\right) \alpha_{n} P_{n}
$$

where $P_{0}, P_{1}, \ldots, P_{n}$ are permutation matrices and we have a convex combination. Since $\alpha_{0} \geq 0$, each $\left(1-\alpha_{0}\right) \alpha_{i}$ is non-negative and we have $\alpha_{0}+\left(1-\alpha_{0}\right) \alpha_{1}+\cdots+\left(1-\alpha_{0}\right) \alpha_{n}=\alpha_{0}+\left(1-\alpha_{0}\right)\left(\alpha_{1}+\ldots+\alpha_{n}\right)=\alpha_{0}+\left(1-\alpha_{0}\right)=1$.

In our example

$$
P_{0}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

and $\alpha_{0}=\frac{1}{6}$. Thus, we get

$$
A_{1}=\frac{1}{1-\frac{1}{6}}\left(A-\frac{1}{6} P_{0}\right)=\frac{6}{5}\left[\begin{array}{ccc}
\frac{7}{12} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{4}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{7}{10} & 0 & \frac{3}{10} \\
0 & \frac{3}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{2}{5} & \frac{3}{10}
\end{array}\right] .
$$

The graph associated to A_{1} is the following:

A perfect matching is $\{(1,1),(2,2),(3,3)\}$, the associated permutation matrix is

$$
P_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

