Topics in Tensors I Ranks of 3-tensors

A Summer School by Shmuel Friedland ${ }^{1}$ July 6-8, 2011 given in Department of Mathematics University of Coimbra, Portugal

${ }^{1}$ Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA, e-mail:friedlan@uic.edu

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of $\mathbb{U}: \quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of \mathbb{U} : $\quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,
$\tau=\sum_{i_{1}=i_{2}=i_{3}=1}^{m_{1}} t_{i_{1}, i_{2}, i_{2}} \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}$

Ranks of tensors

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}:$
dimension of row or column subspace spanned in direction 1

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}:$
dimension of row or column subspace spanned in direction 1

$$
T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}
$$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3
$\operatorname{rank} \mathcal{T}$ minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3
$\operatorname{rank} \mathcal{T}$ minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
(CANDEC, PARFAC)

Basic facts

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$

Basic facts

FACT I: $\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$

Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then rank $\mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$
minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.
COR $\operatorname{rank} \mathcal{T} \leq \min (m n, m l, n l)$

Basic facts

FACT I: $\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then rank $\mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.
COR rank $\mathcal{T} \leq \min (m n, m l, n l)$
PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then rank $\mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.
COR rank $\mathcal{T} \leq \min (m n, m l, n l)$
PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$.

Basic facts

FACT I: $\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then rank $\mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.
COR $\operatorname{rank} \mathcal{T} \leq \min (m n, m l, n l)$
PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$. Vise versa suppose $T_{k, 3}=\sum_{i=1}^{p} a_{k, i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k=1, \ldots, m_{3}$.

Basic facts

FACT I: $\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then rank $\mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.
COR $\operatorname{rank} \mathcal{T} \leq \min (m n, m l, n l)$
PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$.
Vise versa suppose $T_{k, 3}=\sum_{i=1}^{p} a_{k, i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k=1, \ldots, m_{3}$.
Then (1) holds with $\mathbf{z}_{i}:=\sum_{k=1}^{m_{3}} a_{k, i} \mathbf{e}_{k, 3}$.

Complexity of rank of 3-tensor

Complexity of rank of 3-tensor

> Hastad 1990: Tensor rank is NP-complete for any finite field Is rank of a tensor is at most k : provide the decomposition of \mathcal{T} as a sum of at most k rank one tensors

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field Is rank of a tensor is at most k : provide the decomposition of \mathcal{T} as a sum of at most k rank one tensors

PRF: 3-sat with n variables m clauses satisfiable iff rank $\left.\mathcal{T}=4 n+2 m, \mathcal{T} \in \mathbb{F}^{(2 n+3 m) \times(3 n) \times(3 n+m)}\right)$ otherwise rank is larger

Generic and typical ranks

Generic and typical ranks

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times l}:$ all tensors of rank $\leq r$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}:$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.

Generic and typical ranks

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.
typical rank takes all the values $k=\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.
typical rank takes all the values $k=\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$
In all the examples we know $\operatorname{mtrank}(m, n, I) \leq \operatorname{grank}(m, n, I)+1$

Examples

$\mathbf{U} \subset \mathbb{F}^{m \times n}: \operatorname{mrank} \mathbf{U}:=\max \{\operatorname{rank} A, A \in \mathbf{U}\}$ $\operatorname{rank} \mathcal{T} \geq \operatorname{mrank} \mathbf{T}_{p}(\mathcal{T})$.
$\operatorname{grank}(2, m, m)=m$
$\operatorname{mtrank}(2,2,2)=3$
$\operatorname{grank}(2, m, n)=\min (n, 2 m)$ for $2 \leq m \leq n$

Order of presentation from the paper On the generic and typical ranks of 3-tensors

1. Appendix: Complex and real algebraic geometry (first the complex case).
2. Generic rank.
3. Matrices and the rank of 3 tensors
4. Maximal rank
5. Known results on rank of tensors
6. Typical rank of real 3 tensors
(First rudiments of real algebraic geometry.)

Supersymmetric tensors

$\mathcal{F}=\left[f_{i, 1}, \ldots, i_{d}\right] \in\left(\mathbb{C}^{m}\right)^{\otimes d}$ supersymmetric if
\mathcal{F} invariant under permutations of indices
the entries of \mathcal{F} are d-mixed derivative of
homogeneous polynomial $f(\mathbf{x})$ of degree d in $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)^{\top}$ $f(\mathbf{x})=\sum_{i=1}^{r} l_{i}(\mathbf{x})^{d}$ where each $l_{i}(\mathbf{x})=\sum_{j=1}^{m} l_{i j} x_{j}$
the minimal r-is the supersymmetric rank of \mathcal{F}
Sylvester's theorem: for $d=2$ the symmetric rank of symmetric matrix is the rank of symmetric matrix
$d \geq 3$
Counting parameters: $f(\mathbf{x})$ has $\binom{m+d-1}{d}$ coefficients to each sequence $1 \leq i_{1} \leq m_{2} \leq \ldots \leq i_{d} \leq m$ corresponds a unique sequence $1 \leq m_{1}<m_{2}+1<\ldots<m_{d}+d-1 \leq m+d-1$
$\operatorname{symgrank}(\mathcal{F}) \geq\left\lceil\frac{\left(\begin{array}{c}\binom{d-1}{d} \\ m\end{array}\right\rceil}{}\right.$
Alexander-Hirschowitz theorem:
Equality holds except for a finite number of exceptions

