Topics in Tensors I Ranks of 3-tensors

A Summer School by Shmuel Friedland¹ July 6-8, 2011 given in Department of Mathematics University of Coimbra, Portugal

¹Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA, e-mail:friedlan@uic.edu

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, ..., x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,...,i_p}] \in \mathbb{F}^{n_1 \times ... \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$ Tensor $\tau \in \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$ Tensor $\tau \in \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3$

HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$ Tensor $\tau \in \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3$

HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i,j,k} = x_i y_j z_k$, $(i, j, k) = (1, 1, 1), \dots, (m_1, m_2, m_3)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

< 回 > < 三 > < 三 >

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$ Tensor $\tau \in \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3$

HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i,j,k} = x_i y_j z_k$, $(i, j, k) = (1, 1, 1), \dots, (m_1, m_2, m_3)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

basis of
$$\mathbb{U}_j$$
: $[\mathbf{u}_{1,j}, \dots, \mathbf{u}_{m_j,j}] \ j = 1, 2, 3$
basis of \mathbb{U} : $\mathbf{u}_{i_{1,1}} \otimes \mathbf{u}_{i_{2,2}} \otimes \mathbf{u}_{i_{3,3}}, i_j = 1, \dots, m_j, j = 1, 2, 3,$

< 回 > < 三 > < 三 >

scalar $a \in \mathbb{F}$, vector $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}^n$, matrix $A = [a_{ij}] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T} = [t_{i,j,k}] \in \mathbb{F}^{m \times n \times l}$, p-tensor $\mathcal{T} = [t_{i_1,\dots,i_p}] \in \mathbb{F}^{n_1 \times \dots \times n_p}$

Abstractly $\mathbb{U} := \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3 \dim \mathbb{U}_i = m_i, i = 1, 2, 3, \dim \mathbb{U} = m_1 m_2 m_3$ Tensor $\tau \in \mathbb{U}_1 \otimes \mathbb{U}_2 \otimes \mathbb{U}_3$

HISTORY: Tensors-as now W. Voigt 1898 Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i,j,k} = x_i y_j z_k$, $(i, j, k) = (1, 1, 1), \dots, (m_1, m_2, m_3)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

basis of
$$\mathbb{U}_j$$
: $[\mathbf{u}_{1,j}, \dots, \mathbf{u}_{m_j,j}] \ j = 1, 2, 3$
basis of \mathbb{U} : $\mathbf{u}_{i_1,1} \otimes \mathbf{u}_{i_2,2} \otimes \mathbf{u}_{i_3,3}, i_j = 1, \dots, m_j, j = 1, 2, 3,$
 $\tau = \sum_{i_1=i_2=i_3=1}^{m_1,m_2,m_3} t_{i_1,i_2,i_2} \mathbf{u}_{i_1,1} \otimes \mathbf{u}_{i_2,2} \otimes \mathbf{u}_{i_3,3}$

A Summer School by Shmuel Friedland July 6 Topics in Tensors I Ranks of 3-tensors

æ

イロト イヨト イヨト イヨト

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< ∃ >

Unfolding tensor: in direction 1: $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

< 🗇 🕨 < 🖃 >

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

< 🗇 🕨 < 🖃 >

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

 $\mathcal{T} = \sum_{i=1}^{m_1} T_{i,1} \mathbf{e}_{i,1}$ (convenient notation)

< 🗇 🕨 < 🖃 >

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

$$\mathcal{T} = \sum_{i=1}^{m_1} T_{i,1} \mathbf{e}_{i,1} \text{ (convenient notation)}$$

$$R_1 := \dim \operatorname{span}(T_{1,1}, \dots, T_{m_1,1}).$$

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

$$\mathcal{T} = \sum_{i=1}^{m_1} T_{i,1} \mathbf{e}_{i,1} \text{ (convenient notation)}$$

$$R_1 := \dim \operatorname{span}(T_{1,1}, \dots, T_{m_1,1}).$$

Similarly, unfolding in directions 2,3

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

$$\mathcal{T} = \sum_{i=1}^{m_1} T_{i,1} \mathbf{e}_{i,1} \text{ (convenient notation)}$$

$$R_1 := \dim \operatorname{span}(T_{1,1}, \dots, T_{m_1,1}).$$

Similarly, unfolding in directions 2,3

rank \mathcal{T} minimal r:

$$\mathcal{T} = f_r(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1, \dots, \mathbf{x}_r, \mathbf{y}_r, \mathbf{z}_r) := \sum_{i=1}^r \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i,$$

Unfolding tensor: in direction 1:

 $\mathcal{T} = [t_{i,j,k}]$ view as a matrix $A_1 = [t_{i,(j,k)}] \in \mathbb{F}^{m_1 \times (m_2 \cdot m_3)}$

 $R_1 := \operatorname{rank} A_1$: dimension of row or column subspace spanned in direction 1

$$T_{i,1} := [t_{i,j,k}]_{j,k=1}^{m_2,m_3} \in \mathbb{F}^{m_2 \times m_3}, i = 1, \dots, m_1$$

$$\mathcal{T} = \sum_{i=1}^{m_1} T_{i,1} \mathbf{e}_{i,1} \text{ (convenient notation)}$$

$$R_1 := \dim \operatorname{span}(T_{1,1}, \dots, T_{m_1,1}).$$

Similarly, unfolding in directions 2,3

rank \mathcal{T} minimal r:

$$\begin{aligned} \mathcal{T} &= f_r(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1, \dots, \mathbf{x}_r, \mathbf{y}_r, \mathbf{z}_r) := \sum_{i=1}^r \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i, \\ (\text{CANDEC, PARFAC}) \end{aligned}$$

A Summer School by Shmuel Friedland July 6 Topics in Tensors I Ranks of 3-tensors

æ

イロト イヨト イヨト イヨト

FACT I: rank $T \ge \max(R_1, R_2, R_3)$

æ

イロト イ団ト イヨト イヨト

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

æ

イロト イヨト イヨト イヨト

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

< 🗇 🕨 < 🖃 🕨

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

・ 何 ト ・ ヨ ト ・ ヨ

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

COR rank $T \leq \min(mn, ml, nl)$

・ 何 ト ・ ヨ ト ・ ヨ

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

COR rank $T \leq \min(mn, ml, nl)$

PROOF: Suppose $\tau = \sum_{i=1}^{p} \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i$ (1)

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

COR rank $T \leq \min(mn, ml, nl)$

PROOF: Suppose $\tau = \sum_{i=1}^{p} \mathbf{x}_i \otimes \mathbf{y}_i \otimes \mathbf{z}_i$ (1) Write $\mathbf{z}_i = \sum_{j=1}^{m_3} z_{i,j} \mathbf{e}_{j,3}$ then each $T_{k,3} \in \text{span}(\mathbf{x}_1 \otimes \mathbf{y}_1, \dots, \mathbf{x}_p \otimes \mathbf{y}_p)$.

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

COR rank $T \leq \min(mn, ml, nl)$

PROOF: Suppose $\tau = \sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1) Write $\mathbf{z}_{i} = \sum_{j=1}^{m_{3}} z_{i,j} \mathbf{e}_{j,3}$ then each $T_{k,3} \in \text{span}(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \dots, \mathbf{x}_{p} \otimes \mathbf{y}_{p})$. Vise versa suppose $T_{k,3} = \sum_{i=1}^{p} a_{k,i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k = 1, \dots, m_{3}$.

くぼう くほう くほう

FACT I: rank $\mathcal{T} \ge \max(R_1, R_2, R_3)$ Reason $\mathbb{U}_2 \otimes \mathbb{U}_3 \sim \mathbb{F}^{m_2 \times m_3} \equiv \mathbb{F}^{m_2 m_3}$

Note:

- R₁, R₂, R₃ are easily computable
- It is possible that $R_1 \neq R_2 \neq R_3$

FACT II : For $\tau = \mathcal{T} = [t_{i,j,k}]$ let $T_{k,3} := [t_{i,j,k}]_{i,j=1}^{m_1,m_2} \in \mathbb{F}^{m_1 \times m_2}, k = 1, \dots, m_3$. Then rank $\mathcal{T} =$ minimal dimension of subspace $L \subset \mathbb{F}^{m_1 \times m_2}$ spanned by rank one matrices containing $T_{1,3}, \dots, T_{m_3,3}$.

COR rank $T \leq \min(mn, ml, nl)$

PROOF: Suppose $\tau = \sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1) Write $\mathbf{z}_{i} = \sum_{j=1}^{m_{3}} z_{i,j} \mathbf{e}_{j,3}$ then each $T_{k,3} \in \operatorname{span}(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \dots, \mathbf{x}_{p} \otimes \mathbf{y}_{p})$. Vise versa suppose $T_{k,3} = \sum_{i=1}^{p} a_{k,i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k = 1, \dots, m_{3}$. Then (1) holds with $\mathbf{z}_{i} := \sum_{k=1}^{m_{3}} a_{k,i} \mathbf{e}_{k,3}$.

Complexity of rank of 3-tensor

A Summer School by Shmuel Friedland July 6 Topics in Tensors I Ranks of 3-tensors

2

イロト イヨト イヨト イヨト

Hastad 1990: Tensor rank is NP-complete for any finite field Is rank of a tensor is at most k: provide the decomposition of T as a sum of at most k rank one tensors Hastad 1990: Tensor rank is NP-complete for any finite field Is rank of a tensor is at most k: provide the decomposition of T as a sum of at most k rank one tensors

PRF: 3-sat with *n* variables *m* clauses satisfiable iff rank $\mathcal{T} = 4n + 2m$, $\mathcal{T} \in \mathbb{F}^{(2n+3m)\times(3n)\times(3n+m)}$) otherwise rank is larger

A Summer School by Shmuel Friedland July 6 Topics in Tensors I Ranks of 3-tensors

2

イロト イヨト イヨト イヨト

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

-

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_j, j \in \mathbb{N}$, rank $\mathcal{T}_j = k$.

< 同 > < 回 > .

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_j, j \in \mathbb{N}$, rank $\mathcal{T}_j = k$.

generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times l}$: grank(m, n, l)

< 回 > < 回 > < 回 >

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_j, j \in \mathbb{N}$, rank $\mathcal{T}_j = k$.

generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times l}$: grank(m, n, l)

typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times l}$.

< 回 > < 回 > < 回 >

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_j, j \in \mathbb{N}$, rank $\mathcal{T}_j = k$.

generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times l}$: grank(m, n, l)

typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times l}$.

typical rank takes all the values $k = \operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$

< 回 > < 回 > < 回 > -

 $\mathcal{R}_r(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_j, j \in \mathbb{N}$, rank $\mathcal{T}_j = k$.

generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times l}$: grank(m, n, l)

typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times l}$.

typical rank takes all the values $k = \operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$

In all the examples we know $mtrank(m, n, l) \leq grank(m, n, l) + 1$

・ 何 ト ・ ヨ ト ・ ヨ ト

```
\begin{split} \mathbf{U} &\subset \mathbb{F}^{m \times n} : \operatorname{mrank} \mathbf{U} := \max\{\operatorname{rank} A, A \in \mathbf{U}\}\\ \operatorname{rank} \mathcal{T} &\geq \operatorname{mrank} \mathbf{T}_{\rho}(\mathcal{T}).\\ \operatorname{grank}(2, m, m) &= m\\ \operatorname{mtrank}(2, 2, 2) &= 3\\ \operatorname{grank}(2, m, n) &= \min(n, 2m) \text{ for } 2 \leq m \leq n \end{split}
```

- 1. Appendix: Complex and real algebraic geometry (first the complex case).
- 2. Generic rank.
- 3. Matrices and the rank of 3 tensors
- 4. Maximal rank
- 5. Known results on rank of tensors
- 6. Typical rank of real 3 tensors
- (First rudiments of real algebraic geometry.)

Supersymmetric tensors

 $\mathcal{F} = [f_{i_1,...,i_d}] \in (\mathbb{C}^m)^{\otimes d} \text{ supersymmetric if}$ $\mathcal{F} \text{ invariant under permutations of indices}$ the entries of \mathcal{F} are *d*-mixed derivative of homogeneous polynomial $f(\mathbf{x})$ of degree *d* in $\mathbf{x} = (x_1, ..., x_m)^{\top}$ $f(\mathbf{x}) = \sum_{i=1}^r l_i(\mathbf{x})^d$ where each $l_i(\mathbf{x}) = \sum_{j=1}^m l_{ij}x_j$ the minimal *r*-is the supersymmetric rank of \mathcal{F} Sylvester's theorem: for d = 2 the symmetric rank of symmetric matrix is the rank of symmetric matrix $d \ge 3$ Counting parameters: $f(\mathbf{x})$ has $\binom{m+d-1}{d}$ coefficients

Counting parameters: $f(\mathbf{x})$ has $\binom{m+d-1}{d}$ coefficients to each sequence $1 \le i_1 \le m_2 \le \ldots \le i_d \le m$ corresponds a unique sequence $1 \le m_1 < m_2 + 1 < \ldots < m_d + d - 1 \le m + d - 1$ symgrank $(\mathcal{F}) \ge \lceil \frac{\binom{m+d-1}{d}}{m} \rceil$ Alexander-Hirschowitz theorem: Equality holds except for a finite number of exceptions

< 回 > < 回 > < 回 > -