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§0. Introduction

A major concept in differentiable dynamics is the Lyapunov exponents of a given map f . It combines the
results of ergodic theory with differential properties of f . Consider the following two closely related examples
which motivate our paper. Let M be a compact surface and f : M → M a smooth diffeomorphism. Let E
denote the set of Borel f -invariant ergodic measures on M . Assume that µ ∈ E . Let h(µ) be the µ-entropy
of f and λ1(µ) ≥ λ2(µ) be the Lyapunov exponents of f . Suppose that h(µ) > 0. The well known result of
L.S. Young [You] yields that h(µ)

λ1(µ) is the Hausdorff dimension of µ unstable manifold Wu(µ) associated with
λ1(µ). Suppose furthermore that f is an Axiom A diffeomorphism. Then for each x in the nonwandering
set Ω(f) one has the unstable manifold Wu(x). The result of McCluskey-Manning [M-M] yields that the
Hausdorff dimension of any Wu(x)∩Ω(f) is equal to supµ∈E

h(µ)
λ1(µ) . The supremum is achieved for a unique

Gibbs measure µ∗.
Let f : CP → CP be a rational map of the Riemann sphere CP of degree at least two. Denote by

J(f) the Julia set of f . Let E be all f -invariant ergodic measures supported on J(f). For µ ∈ E , f has two
equal Lyapunov exponents λ1(µ) = λ2(µ) ≥ 0. Assume that h(µ) > 0. Then the µ-Hausdorff dimension of
J(f), given by infX⊂J(f),µ(X)=1 dimHX, is equal to h(µ)

λ(µ) . Suppose furthermore that f is hyperbolic. That

is, |(f◦m)′(z)| > 1, z ∈ J(f), for some integer m ≥ 1. Then dimHJ(f) = supµ∈E
h(µ)
λ(µ) . The above supremum

is achieved for a unique Gibbs measure µ∗ which is equivalent to the Hausdorff measure on J(f) [Rue]. In
these two examples the proof of the variational formula for the Hausdorff dimension is based on the notion
of the topological pressure and the Bowen equation [Bow1-2].

In this paper we generalize these results to a discrete setting as follows. Let < n >= {1, ..., n} be an
alphabet on n symbols. Denote by N and < n >N the set of natural numbers and the space of all infinite
sequences on < n > symbols, equipped with the Tychonoff topology, respectively. Let σ :< n >N→< n >N

be the (one sided) shift map. Then a σ invariant closed set S ⊂< n >N, σS = S, is called a subshift. A
subshift S is called a subshift of finite type (SFT) if S can be described by a finite number of conditions. A
standard representation of SFT is given by a digraph Γ ⊂< n > × < n > as follows:

Γ∞ := {(ai)∞1 ∈< n >N: (ai, ai+1) ∈ Γ, i = 1, ..., }.

It is well known that any SFT S ⊂< n >N can be represented in the above way by enlarging the given
alphabet. Recall that if f an Axiom A diffeomorphisms (hyperbolic rational map) then the Ω(f) (J(f)) has
a Markov partition ([Shu, Thm. 10.28], [Rue]). The action f on Ω(f) (J(f)) induces a SFT, such that the
map f on Ω(f) (J(f)) induces the shift map on SFT. If Ω(f) (J(f)) is totally disconnected then Ω(f) (J(f))
is homeomorphic to SFT. If Ω(f) (J(f)) is not totally disconnected then all the points of Ω(f) (J(f)), whose
orbit stays in the interior of the Markov partition, are in one to one correspondance with a ”big” subset of
SFT.

Let S ⊂< n >N be a subshift. Then every point a = (ai)∞1 ∈ S corresponds to an infinite walk on the
digraph < n > × < n >. For convenience, we view our walk starting from o: o−a1−a2− ... . To each finite
path o− a1 − ...− ap, viewed as (ai)

p
1, we assign a positive weight φp(a1, ..., ap). Assume that

φp+q(a1, ..., ap+q) ≤ φp(a1, ..., ap) + φq(ap+1, ..., ap+q), ∀(ai)∞1 ∈ S. (0.1)

φp(a1, ..., ap) can be viewed as the distance of the end of the path (ai)
p
1 to o. Then (0.1) is equivalent to

the triangle inequality. For each p ≥ 1 let ψp : S → R+ be the random variable such that ψp((ai)∞1 ) =
φp(a1, ..., ap). Denote by φ and ψ the sequences {φ}∞1 and {ψ}∞1 respectively. Let µ be a σ-invariant ergodic
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measure on S. Kingman’s subadditive ergodic theorem yields that that the sequence ψp

p , p = 1, ..., converges
µ a.e. to α(µ). We show that α(µ) is the discrete version of the Lyapunov exponent of the distance function
induced by φ. Assume furthermore that for each t > 0 there exists A(t) so that

φp(a1, ..., ap) > t, p > A(t), a ∈ S. (0.2)

Let d : S → R+ be the following metric on S:

d(a, a) = 0, a ∈ S,

d(a, b) = 1, a = (ai)∞1 , b = (bi)∞1 , a, b ∈ S, a1 6= b1,

d(a, b) = e−φp(a1,...,ap), a = (ai)∞1 , b = (bi)∞1 , a, b ∈ S, ai = bi, i = 1, ..., p, ap+1 6= bp+1.

(0.3)

The condition (0.2) yields that S is a complete metric space. For X ⊂ S denote by dimHX the Hausdorff
dimension of X with respect to the metric (0.3). Set δ(φ) := dimHS. In [Fri] we give an explicit formula for
δ(φ) for certain sequences φ on SFT. The purpose of this paper is treat a much broader class of sequences φ
on S than in [Fri], e.g. S not have to be SFT, and to relate δ(φ) to the Hausdorff dimension of σ invariant
probability measures on S.

Let µ be a probability measure on S. Then

δ(φ, µ) := inf
X⊂S,µ(X)=1

dimH(X)

is called the Hausdorff dimension of µ. Assume that µ is σ-invariant ergodic measure. Denote by h(µ) the
µ entropy of the shift. We prove that

δ(φ, µ) =
h(µ)
α(µ)

, (0.4)

if either h(µ) or α(µ) are positive. Compare this equality with the formulas for the Hausdorff dimension of
Wu(µ) and the µ Hausdorff dimension of J(f) to deduce that α(µ) is the analog of the Lyapunov exponent.
Set αm(µ) =

∫
ψm

m dµ. Then αm ≥ α(µ),m = 1, ...,. Moreover, limm→∞ αm = α(µ). Hence,

δ(φ, µ) ≥ h(µ)
αm(µ)

, m = 1, ..., (0.5)

For certain SFT and corresponding Markov chains one can compute explicitly the right-hand side of (0.5).
Thus we can obtain explicit lower bounds for δ(φ, µ). Set

δ̂(φ) := sup
µ∈E,h(µ)>0

h(µ)
λ(µ)

. (0.6)

Then δ(φ) ≥ δ̂(φ). We give a condition on φ for which δ(φ) = δ̂(φ). Under this condition the subshift S,
which does not have be a SFT, behaves as a rational map f on its Julia set.

The main motiviation of this paper is the Hausdorff dimension of a Kleinian group F ≤ PSL(2,C).
(See Maskit [Mas] for a reference on the Kleinian groups.) Let o be a point in three dimensional hyperbolic
space H3 on which F acts as a group of hyperbolic isometries. Then Fo, the F orbit of o, accumilates to
Λ(F ), the limit set of F . Here Λ(F ) is located on the Riemann sphere CP. We want to give computable
lower bounds on dimHΛ(F ), which can be arbitrary close to dimHΛ(F ), using only the hyperbolic distances
between the points in Fo. We do that for geometrically finite, purely loxodromic, Kleinian groups.

Suppose that F is a Schottky group. Then F is a free group on r generators. The orbit of F is 2r
regular tree which correspond to a standard SFT Γ∞, where Γ ⊂< 2r > × < 2r > is the graph induced
by a free group on r generators. Then the sequence φ is the sequence induced by the hyperbolic distances
between o and other points of the orbit. We show

dimHΛ(F ) = δ(φ) = δ̂(φ). (0.7)
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Hence we can use lower bounds (0.5) to get lower bounds on dimHΛ(F ). Moreover, we show that these
lower bounds are arbitrary close to dimHΛ(F ). Our results complement the results of Bowen [Bow2], who
showed how to apply the thermodynamics formalism to the action of F on CP to find dimHΛ(F ).

In the last section we show how to apply our results to a geometrically finite, purely loxodromic, Kleinian
group F . We construct a subshift S corresponding to Λ(F ). We do not know if S is a SFT. (For certain
Fuchsian group F , Λ(F ) has a coding as a SFT, e.g. [B-S].) We prove (0.7) in this case.

We now survey briefly the contents of the paper. In §1 we discuss examples of φ on subshifts. We
define κ(φ) - an analog of the Poincaré exponent. We show the inequality δ(φ) ≤ κ(φ). (It is an opposite to
inequality dimHΛ(F ) ≥ κ(F ) for Kleinian groups [B-J].) In §2 we prove the characterization (0.4). We also
show that for topologically transitive SFT the inequality (0.5) gives computational lower bounds to δ̂(φ),
which can be arbtrary close to δ̂(φ). Section 3 is devoted to the nonadditive topological pressure, see [Fal]
and [Bar]. We give a sufficient condition which ensures the variational characterization of the topological
pressure. This condition generalizes a condition of Barreira [Bar]. This condition on φ implies the equality
δ(φ) = δ̂(φ). We show that this condition is satisfied in the context of geometrically finite, purely loxodromic,
Kleinian groups. In §4 and §5 we apply our results to the Hausdorff dimension of the limit sets of Schottky
groups and geometrically finite, purely loxodromic, Kleinian groups respectively.

§1. Metrics on subshifs

Let S ⊂< n >N be a subshift. Associate with S the following infinite tree T (S) := T = (V, E). Let o
be the root of the tree. Then each a = (ai)∞1 ∈ S represents a chain (geodesic) in T starting from o. The
vertices of this chain are o and (ai)m

1 ,m = 1, ...,. The chain is given by o− (a1)− · · · − (ai)m
1 − · · ·. Let

a = (ai)∞1 , b = (bi)∞1 ∈ S, ai = bi, i = 1, ..., p, ap+1 6= bp+1.

Then the two chains induced by a, b have a common chain o− a1 − · · · − ap. If a1 6= b1 (p=0), then the two
induced chains by a, b have only a common vertex o. Thus

V = {v : v = o, v = (ai)m
1 , m = 1, ..., a = (ai)∞1 ∈ S}.

Let dist : V × V → R+ be a metric on T which satisfies the following conditions: First,

0 < dist((ai)m
1 , o) = φm(a1, ..., am), m = 1, ..., . (1.1)

Second,
dist((ai)

p+q
1 , (ai)

p
1) = dist((ai)

p+q
p+1, o) = φq(ap+1, ..., ap+q), 1 ≤ p, q. (1.2)

Then the triangle inequality

dist((ai)
p+q
1 , o) ≤ dist((ai)

p+q
1 , (ai)

p
1) + dist((ai)

p
1, o)

is equivalent to
φp+q(a1, ..., ap+q) ≤ φp(a1, ..., ap) + φq(ap+1, .., ap+q), p, q = 1, ..., . (1.3)

Third,
a1 = b1 ⇒ dist((ai)

p
1, (bj)

q
1) = dist((ai)

p
2, (bj)

q
2), (1.4)

a1 6= b1 ⇒ dist((ai)
p
1, (bj)

q
1) = φp(a1, ..., ap) + φq(b1, ..., bq). (1.5)

It is straightforward to show that (0.3) defines a metric d on S. Assume furthermore that (0.2) holds.
Then S is a compact metric with respect to the metric (0.3). Furthermore, the Tychonoff (coordinatewise)
topology is induced by the metric d. We let δ(φ) to be the Hausdorff dimension of S with respect to the
metric d.
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We discuss a few examples that motivate the above definitions. Assume that φp(a1, ..., ap) = p. Then
the induced metric is the standard graph metric dg(·, ·) on T . That is, dg(u, v) is the number of edges in
the chain connecting u, v. Let h > 0 and assume that φp(a1, ..., ap) = ph. Then the induced metric is dgh,
the weighted graph metric. The distance between the adjacent vertices is h, i.e. the weight of each edge in
T is h. The choice h = log 2 in (0.3) gives the standard metric on < n >N and on any of its subshifts.

We now consider examples related to SFT. Let C = (cij)n
1 ∈ Mn(R+) be a nonnegative n × n matrix.

Denote by Γ(C) ⊂< n > × < n > is the digraph induced by C. That is,

(i, j) ∈ Γ(C) ⇐⇒ cij > 0.

Denote by ρ(C) the spectral radius of C. For any Γ ⊂< n > × < n >, let A(Γ) ∈ Mn(R) denote the 0− 1
matrix such that Γ(A(Γ)) = Γ. Set ρ(Γ) = ρ(A(Γ)).

Let Γ ⊂< n > × < n > be a digraph which has a cycle, i.e. ρ(Γ) > 0. Set

Γ1 =< n >, Γ2 = Γ,

Γk = {a : a = (ai)k
1 , ai ∈< n >, i = 1, ..., n, (ai, ai+1) ∈ Γ, i = 1, ..., k − 1}, k = 3, ...,

Γ∞ = {a : a = (ai)∞1 , ai ∈< n >, i = 1, ..., (ai, ai+1) ∈ Γ, i = 1, ..., }.
.

Then Γ∞ is a nonempty SFT induced by Γ. Let h > 0 and consider the weighted graph metric dgh. It is
well known (e.g. [Fri]) that

δ(φ) =
log ρ(Γ)

h
. (1.6)

Let C = (cij)n
1 ∈ Mn(R+). Suppose that ∆ ⊂ Γ(C), ρ(∆) > 0. On T (∆∞) we define a metric using the

following functions:

φ1(i) = t, i ∈< n >, max
1≤i,j

cij ≤ t, φp(a1, ..., ap) = t +
p−1∑

i=1

caiai+1 , (ai)
p
1 ∈ ∆p, p = 2, ..., . (1.7)

In [Fri] we give the following formula for δ(φ). Let

B(x) = (bij(x))n
1 , ρ(x) = ρ(B(x)), x > 0,

bij(x) = e−xcij , (i, j) ∈ Γ(C), bij(x) = 0, (i, j) 6∈ Γ(C).

Then δ(φ) ≥ 0 is the unique nonnegative number so that

ρ(δ(φ)) = 1, ρ(x) < 1, for x > δ(φ).

This characterization of δ(φ) appears in Mauldin and Williams [M-W] for certain geometrical constructions
in Rm. If C

h is a matrix with rational entries for some h > 0 then (1.6) holds for an appropriate Γ ([Fri]).
Consider the special linear group SL(N,C) of N × N complex valued matrices. Let I denote the

identity matrix. For A ∈ SL(N,C) let A∗ ∈ SL(N,C) denote the conjugate transpose of A. Recall that the
spectral norm ||A|| is given by the formula ||A||2 = ρ(AA∗) = ρ(A∗A), where ρ(B) is the spectral radius of
B ∈ SL(N,C). Note that A ∈ SL(N,C) ⇒ ||A|| ≥ 1. Let SU(N,C) ⊂ SL(N,C) be the special unitary
group, i.e. the maximal compact subgroup of SL(N,C). It is easy to show that

B ∈ SL(N,C), ||B|| = 1 ⇐⇒ B ∈ SU(N,C).

Assume that A1, ..., An ∈ SL(N,C). Suppose furthermore that the following conditions are satisfied:

Ai 6∈ SU(N,C)), i = 1, ..., n, Aa1 · · ·Aam 6∈ SU(N,C), (ai)m
1 ∈ Γm, m = 1, ..., . (1.8)

The above conditions hold if A1, ..., An generate a torsion free and discrete semigroup (in the standard
topology). Set

φp(a1, ..., ap) = 2 log ||Aa1 · · ·Aap ||, (ai)
p
1 ∈ Γp, p = 1, ..., . (1.9)
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Then (1.1) holds. Furthermore, the submultiplicativity of the norm yields (1.3). If (1.8) does not hold,
replace (1.1) by

0 ≤ φm(a1, ..., am), m = 1, ..., . (1.1)′

Then the conditions (1.1)′ and (1.2)− (1.5) yield that dist(·, ·) is a semimetric on T (Γ∞) = (V, E). Set

V (v) = {u : u ∈ V, dist(u, v) = 0}.

For each v ∈ V we identify the vertices V (v) with one vertex v′. We thus obtain a new graph T ′ with the
metric dist(·, ·).

The following inverse problem arises naturally: Let φ be defined as above and assume that (1.1)′ and
(1.3) hold. Does there exist a separable Hilbert space H and bounded linear operators Ai : H → H with the
the operator norm ||Ai|| for i = 1, ..., n, so that (1.9) holds?

Let F =< f1, ..., fr > be a free group on r generators. We identify fi, f
−1
i with i, i + r for i = 1, ..., r.

That is, gi = fi, gi+r = f−1
i , i = 1, ..., r. A word gi1gi2 · · · gim is called a reduced word if |ij − ij+1| 6= r, j =

1 = 1, ...,m − 1. Then F induces the graph Γ =< 2r > × < 2r > \ ∪r
i=1 ((i, i + r) ∪ (i + r, i)). That is,

Γm gives the set of all reduced words in F of length m. Furthermore, Γ∞ corresponds to all (half) infinite
reduced words, which are standardly identified with the limit set Λ(F ) of F (e.g. [Fri]). For each i ∈< 2r >
let ī ∈< 2r > be the unique number so that |̄i− i| = r.

Assume that Γ ⊂< 2r > × < 2r > is the graph induced by a free group on r generators. Consider
the SFT Γ∞. Suppose that we have a sequence of functions φ satisfying (1.3). We then define the distance
function dist : V × V → R+ using (1.1), (1.2) and (1.4). We replace the condition (1.5) by

a1 6= b1 ⇒ dist((ai)
p
1, (bj)

q
1) = φp+q(b̄q, b̄q−1, ..., b̄1, a1, ..., ap). (1.5f)

To ensure the equality dist(u, v) = dist(v, u) we assume

φp(a1, ..., ap) = φp(āp, ..., ā1), p = 1, ..., . (1.10)

We give a natural set of examples of metrics satisfying (1.1)-(1.4), (1.5f) and (1.10). Let F =<
A1, ..., Ar >,A1, ..., Ar ∈ SL(N,C) be a free discrete group. Recall that for i ∈< r >, ī = i + r and
Aī = A−1

i . Set

dist((ai)
p
1, (bi)

q
1) = log ||A−1

bq
· · ·A−1

b1
Aa1 · · ·Aap ||+ log ||A−1

ap
· · ·A−1

a1
Ab1 · · ·Abq ||

= log ||Ab̄q
· · ·Ab̄1Aa1 · · ·Aap ||+ log ||Aāp · · ·Aā1Ab1 · · ·Abq ||, 0 ≤ p, q.

(1.11)

The above definition implies (1.1)-(1.4), (1.5f) and (1.10). Consider the special case N = 2. As for any
B ∈ SL(2,C) we have the equality ||B−1|| = ||B||, we deduce that for SL(2,C), (1.9) is equivalent to (1.11).

We now show, that the action of a free group F =< f1, ..., fr > of hyperbolic isometries on n dimensional
hyperbolic space Hn, induces a metric (1.11) on the corresponding orbit of F . For simplicity we consider
the cases n = 2, 3. Let

H2 = SL(2,R)/SO(2,R), PSL(2,R) = SL(2,R)/{±I},
H3 = SL(2,C)/SU(2,C), PSL(2,C) = SL(2,C)/{±I}.

Then PSL2(R) (PSL2(C)) is the group of orientation preserving isometries acting on H2 (H3) by the left
multiplication. Assume that F =< A1, ..., Ar >≤ PSL2(R) (PSL2(C)) be a discrete free group. Then F
acts on H2 (H3). Let o ∈ H2 (H3) be the point corresponding the coset SO(2,R) (SU(2,C)). Then Fo,
the F -orbit of o, corresponds to the vertices of the tree T (Γ∞). The hyperbolic distance dh(u, v), u, v ∈ Fo
coincides with the distance given by (1.11). Moreover, if F is a Schottky group then Γ∞ is isomorphic
Λ(F )-the limit set of F . Furthermore, the metric d on Γ∞ is Lipschitz equivalent to the metric on Λ(F )
viewed as a subset of the sphere Sn. (This point is discussed in detail in §4.) In this case, δ(φ) is the the
Hausdorff dimension of Λ(F ).
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Assume that S ⊂< n >N is a subshift and suppose that we have a sequence of positive functions φ
satisfying (1.3). Let dist(·, ·) be the distance function defined by (1.1),(1.2),(1.4) and either (1.5) or (1.5f)
on the induced tree T (S) = (V, E). For any t > 0 let

B(o, t) = {v : v ∈ V, dist(v, o) ≤ t}.

Assume the condition (0.2). Then B(o, t) is a finite set and let |B(o, t)| be the number of vertices in B(o, t).
|B(o, t)| can be considered as the ”volume” of B(o, t). The volume growth of the metric dist is given by

κ(φ) = lim sup
t→∞

log |B(o, t)|
t

. (1.12)

It is straightforward to show that the volume growth of dist is independent of the choice of the root, i.e. in
(1.12) we can replace o by any o′ ∈ V . In context of discrete groups of hyperbolic motions κ(φ) is identified
with the Poincaré exponent of the Poincaré series:

∑

v∈V

e−sdist(o,v). (1.13)

It is straightforward to show that the above series converge for s > κ(φ) and diverge for s < κ(φ). (See for
example the arguments in [Nic].)

Let G ≤ PSL(2,C) be a discrete group of hyperbolic isometries. Denote by κ(G) and dimHΛ(G) the
Poincaré exponent of G and the Hausdorff of the limit set of G respectively. Then it is known that κ(G) is the
Hausdorff dimension of the conical limit set of G [B-J]. Hence dimHΛ(G) ≥ κ(G). If G is finitely generated
and the area of Λ(G) is zero then dimHΛ(G) = κ(G). In our context we have the opposite inequality:

Theorem 1.14. Let S ⊂< n >N be a subshift. Assume that a positive sequence of functions φ satisfies
(0.1)− (0.2). Then

δ(φ) ≤ κ(φ).

Proof. Let Γ =< n > × < n > be the complete graph on n vertices. For (ai)m
1 ∈ Γm let

C((ai)m
1 ) = {x : x = (xi)∞1 ∈ Γ∞, xi = ai, i = 1, ..., m, } (1.15)

be the cylindrical set corresponding to (ai)m
1 . Note that C((ai)m

1 ) is open and closed set in the product
topology on Γ∞ =< n >N. Then C((ai)m

1 )∩S is an open and closed set of S (and may be ∅). For t > 0 set

S(o, t) = {v : v = (ai)m
1 ∈ B(o, t), φ(a1, ..., am+p) > t, p = 1, ..., (ai)∞1 ∈ S}, (1.16)

to be the ”boundary sphere” of the ball B(o, t). Clearly, |S(o, t)| ≤ |B(o, t)|. Suppose that (ai)m
1 ∈ S(o, t).

Then diam (C((ai)m
1 ) ∩ S), the diameter of C((ai)m

1 ) ∩ S), is less than e−t.
Fix 1 > ε > 0. Then

∪(ai)m
1 ∈S(o,− log ε)C((ai)m

1 ) ∩ S
is a closed cover of S with sets of diameters less than ε. Hence

∑

(ai)m
1 ∈S(o,− log ε)

diam (C((ai)m
1 ) ∩ S)x ≤ |S(o,− log ε)|εx ≤ |B(o,− log ε)|εx, x > 0.

Fix a > 0. From the definition of κ(φ) it follows that we have a positive constant K(a) > 0 so that

|B(o,− log ε)| < K(a)ε−κ(φ)−a, 0 < ε < 1.

Then
lim

ε→0+
|B(o,− log ε)|εx = 0, for x > κ(φ) + a.

Hence δ(φ) ≤ κ(φ) + a. As a was an arbitrary positive number we deduce the theorem. ¦
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§2. Hausdorff dimension of the invariant measures

Let B the Borel sigma-algebra on < n >N generated by cylindrical sets (1.15). Denote by Π the set
of probability measures on < n >N which are invariant under the shift σ. We view < n >N as a compact
metric space equipped with the standard metric (induced by the graph metric dg on T (< n >N) as in §1).
Let E ⊂ Π be the set of ergodic measures. It is well known that E is the set of the extreme points of Π in the
w∗ topology, e.g. [Wal, §6.2]. For each µ ∈ Π let h(µ) denote the measure entropy of σ. As σ is expansive
it follows that h(µ) is an upper semicontinuous function on Π [Wal, §8.2].

Assume that S ⊂< n >N is a subshift. Let

Π(S) := {µ : µ ∈ Π, µ(S) = 1}

to be the set of all σ-invariant probability measures supported on S. Let E(S) = E ∩Π(S) be the set of the
extreme points of Π(S). Assume that the nonnegative functions φ satisfy the assumptions (0.1)-(0.2). Let d
the metric (0.3) on S. Set

δ(µ, φ) = inf
X⊂S,µ(X)=1

dimHX, µ ∈ Π(S),

to be the µ-Hausdorff dimension of S with respect to d. Let ψp : S → R+, p = 0, ..., be defined as follows:

ψ0((ai)∞1 ) = 0,

ψp((ai)∞1 ) = φp(a1, ..., ap), p = 1, ..., (ai)∞1 ∈ S.
(2.1)

That is, ψp is the random variable which describes the length of the path on T (S), of the random variable
X, travelled in p units of time starting o so that X(p) = (ai)

p
1. As ψp is a continuous function it follows that

ψp is µ measurable for any µ ∈ Π(S) and p = 0, ...,. From the inequality (0.1) we deduce

0 ≤ ψp+q ≤ ψp + ψq ◦ σp, p, q ≥ 0, x ∈ S.

Assume that µ ∈ Π(S). Kingman’s subadditive ergodic theorem claims that the sequence ψm

m ,m = 1, ...,
converges µ− a.e. to α(x, µ) ≥ 0. Furthermore, α(σ(x), µ) = α(x, µ) µ− a.e. and

αm(µ) :=
∫

ψm(x)
m

dµ(x), m = 1, ...,

lim
m→∞

αm(µ) =
∫

α(x, µ)dµ(x).
(2.2)

The above inequality on ψ implies that αkm(µ) ≤ αm(µ), k = 1, ...,. Hence
∫

α(x, µ)dµ(x) ≤ αm(µ), m = 1, ..., .

If µ ∈ E(S) then α(x, µ) is a constant function α(µ) µ− a.e.. See for example [Wal, §10.2]. In that case we
have:

αm(µ) ≥ α(µ), m = 1, ...,

lim
m→∞

αm(µ) = α(µ), µ ∈ E(S). (2.3)

We will show that α(x, µ) is the discrete analog of the Lyapunov exponent for the family ψ with respect to
µ. We will only consider ergodic µ.

Theorem 2.4. Let S ⊂< n >N be a subshift. Assume that the sequence of positive functions φ satisfies the
conditions (0.1) − (0.2). Suppose that dist is the distance function on the vertices of the induced tree T (S)
given by (1.1), (1.2), (1.4) an either (1.5) or (1.5f). Let d be the metric on S given by (0.3). Suppose that ψ
is given by (2.1). Let µ ∈ E(S) and assume that max(α(µ), h(µ)) > 0. Then

δ(µ, φ) =
h(µ)
α(µ)

.
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Proof. Assume first that α(µ) > 0. Let B(x, r) = {y : d(x, y) ≤ r} be the closed ball of radius r > 0
centered at x ∈ S. Assume that Y ⊂ S is a Borel set and µ(Y ) > 0. Suppose furthermore that for each
y ∈ Y the following inequality holds:

δ
¯
≤ lim inf

r→0

log µ(B(y, r))
log r

≤ lim sup
r→0

log µ(B(y, r))
log r

≤ δ̄.

Then δ
¯
≤ dimHY ≤ δ̄, where dimHY is the Hausdorff dimension of Y with respect to the metric d. See for

example [You, Prop. 2.1]. Then our theorem is implied by

lim
m→∞

log µ(B(y, rm(y)))
log rm(y)

=
h(µ)
α(µ)

, lim
m→∞

rm(y) = 0, (2.5)

for µ-almost all y ∈ S and a corresponding sequence rm(y), m = 1, ...,. See for example the Remark after
Prop. 2.1 in [You].

We prove (2.5). Assume that y = (yi)∞1 ∈ S. Let Bm(y) be the cylinder C((yi)m
1 ). The Shannon-

McMilan-Breiman theorem (e.g. [Wal]) claims that

lim
m→∞

log µ(Bm(y))
m

= −h(µ)

for µ-almost all y ∈< n >N. (Here we may assume that the finite partition ξ is given by {C((1)), ..., C((n))}.)
The Kingman subadditive ergodic theorem claims that ψm(y)

m converges µ-almost everywhere in S to
α(µ). Hence

lim
m→∞

log µ(Bm(y))
ψm(y)

= −h(µ)
α(µ)

µ-almost everywhere. The assumption that α(µ) > 0 and the definition of the metric d by (0.3) means that

Bm(y) = B(y, rm), rm = e−ψm(y) ≈ e−α(µ)m

for µ-almost all y. Combine the above equalities to deduce (2.5). This proves the theorem for α(µ) > 0.
Assume that α(µ) = 0, h(µ) > 0. It is left to show that δ(µ, φ) = ∞. Fix ε > 0 and let

φp,ε((ai)m
1 ) = φp((ai)m

1 ) + pε, (ai)∞1 ∈ S, m = 1, ..., .

Clearly the functions φε satisfy (0.1)-(0.2). Denote by ψp,ε, p = 1, ..., the corresponding functions on S. Let
dε be the induced metric on S. As ε > 0 it follows that dε(a, b) < d(a, b), a, b ∈ S. Then for any X ⊂ S the
Hausdorff dimension of X with respect to dε does not exceed the Hausdorff dimension of X with respect to
d. Hence δ(µ, φ) ≥ δ(µ, φε). Clearly,

αε(µ) = lim
m→∞

∫
ψm,ε

m
dµ = λ(µ) + ε = ε.

The previous arguments show that δ(µ, φε) = h(µ)
ε . Hence δ(µ, φ) ≥ h(µ)

ε for any ε > 0. Thus δ(µ, φ) = ∞
and the proof of the theorem is complete. ¦

Comparing the formula for δ(φ, µ) in (2.4) with the the formula for the µ - Hausdorff dimension of J(f)
discussed in §0, we realize that α(µ) is a discrete analog of the Lyapunov exponent for the family φ satisfying
the assumptions (0.1)-(0.2). One also can view α(µ) as an average weight of an edge in the tree T (S).

Corollary 2.6. Under the assumptions of Theorem 2.4,

δ(µ, φ) ≥ h(µ)
αm(µ)

, m = 1, ...,

δ(µ, φ) = lim
m→∞

h(µ)
αm(µ)

.
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Let Γ ⊂< n > × < n > be a strongly connected graph on n vertices. That is, the 0− 1 matrix A(Γ) is
irreducible. Assume that S = (sij)n

1 is a stochastic matrix whose graph Γ(S) = Γ. Let π = (π1, ..., πn) be
the unique probability left eigen-vector of S. That is, π is a positive vector whose coordinates add to one
and πS = π. Define the probability measure νS on < n >N by its value on the cylindrical sets:

νS(C((i))) = πi, i ∈< n >, νS(C((ai)m
1 )) = πa1sa1a2 · · · sam−1am , (ai)m

1 ∈ Γm, m > 1. (2.7)

It is well known that νS is shift invariant. As Γ was assumed to be strongly connected, we deduce that the
shift is ergodic with respect to νS , e.g. [Wal, Thm. 1.13]. Recall that ([Wal, §4.8])

h(νS) = −
∑

1≤i,j≤n

πisij log sij , (2.8)

and the topological entropy htop of the shift restricted to Γ∞ is equal to log ρ(Γ). Furthermore, our as-
sumption that Γ is strongly connected implies that there exists a unique ergodic invariant measure µ so that
the Kolmogorov-Sinai measure entropy h(µ) is equal to htop. This is so called Parry measure [Par]. This
measure is νP where P is the unique stochastic matrix of the form

P = ρ(Γ)−1D−1A(Γ)D, D = diag(u1, ..., un), u = (u1, ..., un)T > 0, A(Γ)u = ρ(Γ)u. (2.9)

See for example [Wal, Thm 8.10].

Corollary 2.10. Let Γ ⊂< n > × < n > be a strongly connected graph on n vertices. Assume that the
sequence of positive functions φ satisfies the conditions (0.1) − (0.2) for S = Γ∞. Suppose that νS is an
ergodic measure given by (2.7). Then

α(νS) ≤ 1
m

∑

(ai)m
1 ∈Γm

πa1sa1a2 · · · sam−1amφm(a1, ..., am) = αm(νS) ≤
n∑

i=1

πiφ1(i) = α1(νS), m = 2, ...,

δ(νS , φ) ≥ h(νS)
αm(νS)

, m = 1, ..., .

Suppose furthermore that n = 2r and Γ is the graph induced by a free group on r generators. Then for the
Parry measure νP we have the following:

λ(νP ) ≤
∑

(ai)m
1 ∈Γm φ(a1, ..., am)

m2r(2r − 1)m−1
= αm(νP ), m = 1, ...,

δ(νP , φ) ≥ log(2r − 1)
αm(νP )

, m = 1, ..., .

Let the assumption of Theorems 2.4 hold. Set

δ̂(φ) := sup
µ∈E(S),h(µ)>0

h(µ)
α(µ)

. (2.11)

As δ(φ) ≥ δ(µ, φ) we obtain that δ(φ) ≥ δ̂(φ). Combine this observation with Theorem 1.14 to obtain

κ(φ) ≥ δ(φ) ≥ δ̂(φ). (2.12)

We now show how to use Corollary 2.11 to obtain lower bounds for the δ̂(φ) which converge to δ̂(φ). Let
Γ ⊂< n > × < n > be a strongly connected digraph. Set Γ(1) := Γ and define Γ(l) ⊂ Γl × Γl for l > 1 as
follows:

Γ(l) = {(a, b) : a = (ai)l
1, b = (bi)l

1 ∈ Γl, (al, b1) ∈ Γ}, l = 2, ..., .
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Suppose that A(Γ)p is a positive matrix for some p > 1. It is straightforward to show that there exists q > 1
so that A(Γ(l))q is a positive matrix. Hence Γ(l) is strongly connected for l = 1, ...,. Assume that A(Γ)p

is never positive. Then there exists 1 < p ≤ n so that A(Γ) has exactly p distinct eigenvalues of modulus
ρ(Γ), e.g. [Min]. It is straightforward to show that if l and p are coprime than Γ(l) is strongly connected.
(For any l ≥ 1 Γ(l) is a disjoint union of strongly connected graphs.) Denote by Π(Γl), Σ(Γ(l)) the space of
probability measures on Γl and the space of stochastic matrices induced by Γ(l):

Π(Γl) := {π : π = (πi)i∈Γl ≥ 0,
∑

i∈Γl

πi = 1},

Σ(Γ(l)) := {B = (bij)i,j∈Γl : B ≥ 0, bij = 0 ∀(i, j) 6∈ Γ(l),
∑

j∈Γl

bij = 1, i ∈ Γl},

l = 1, ..., .

For each B ∈ Σ(Γ(l)) let
Π(B) := {π : π ∈ Π(Γl), πB = π}.

Note that if B is irreducible then Π(B) consists of a unique probability eigenvector of B.

Theorem 2.13. Let Γ ⊂< n > × < n > be a strongly connected graph on n vertices. Assume that the
sequence of positive functions φ satisfies the conditions (0.1)− (0.2) for S = Γ∞. Fix l ≥ 1 an let

δl(φ) = max
(πi)i∈Γl∈Π(B),B=(bij)i,j∈Γl∈Σ(Γ(l))

−∑
i,j∈Γl πibij log bij∑

i∈Γl πiφl(i)
, l = 1, ..., .

Then
δ̂(φ) ≥ δl(φ), l = 1, ...,

lim
l→∞

δl(φ) = δ̂(φ).
(2.14)

Proof. Let T (Γ(l)) = (Vl, El) be the tree induced by Γ(l). Then Vl is a subset of V with the same root
o and the vertices induced by Γpl, p = 1, ...,. Any metric dist : V × V : R+ restricts to a metric on Vl. In
particular, a sequence of positive functions φ satisfying (0.1)-(0.2) will restrict to a metric on Vl satisfying
the finiteness assumption. Clearly, Γ(l)∞ is equal to Γ∞ for l = 1, ...,. Furthermore, the action of the shift
σl : Γ(l)∞ → Γ(l)∞ is identical with σl : Γ∞ → Γ∞. Let µ ∈ E(Γ∞). We view µ as a measure µ̃ ∈ E(Γ(l)∞).
Then

h(µ̃) = lh(µ),
αm(µ̃) = lαml(µ), m = 1, ...,

α(µ̃) = lim
m→∞

αm(µ̃) = lα(µ),

h(µ̃)
α(µ̃)

=
h(µ)
α(µ)

,

sup
µ̃∈E(Γ(l)∞)

h(µ̃)
α(µ̃)

= sup
µ∈E(Γ∞)

h(µ)
α(µ)

= δ̂(φ).

Fix l ≥ 1 and choose B = (bij)i,j∈Γl ∈ Σ(Γ(l)). Suppose first that B is irreducible. Then Π(B) = {π}.
Let νB ∈ E(Γ(l)∞) be given by (2.7). According to Corollary 2.10 ( with m = 1),

δ(φ, νB) ≥ −∑
i,j∈Γl πibij log bij∑

i∈Γl πiφl(i)
⇒

δ̂(φ) ≥ −∑
i,j∈Γl πibij log bij∑

i∈Γl πiφl(i)
.

(2.15)
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Assume that B is reducible. Then Π(B) is a convex hull of its extreme points π1, ..., πk ∈ Π(B). Each πj

induces an ergodic measure νj on Γ(l)∞. Set

δ(φ, νB) := max
1≤j≤k

δ(φ, νj).

It is straightforward to show that for any π ∈ Π(B) (2.15) holds. Hence δ̂(φ) ≥ δl(φ), l = 1, ...,.
We now show the second part of (2.14). Assume first that δ̂(φ) < ∞. Fix 1 > ε > 0 and assume that

δ̂(φ) <
h(µ)
α(µ)

(1 + ε), µ ∈ E(Γ∞), h(µ) > 0.

Since σ : Γ∞ → Γ∞ is expansive, h(µ) can be computed with respect to the partition C(i), i = 1, ..., n.
Recall that the sequence 1

m

∑
i∈Γm −µ(C(i)) log µ(C(i)),m = 1, ..., decreases to h(µ). There exists N(ε) so

that

(1 + ε)−1 ≤ mh(µ)∑
i∈Γm −µ(C(i)) log µ(C(i))

≤ 1,

α(µ) ≤ αm(µ) ≤ α(µ)(1 + ε), m ≥ N(ε).

Fix m ≥ N(ε). Let πi = µ(C(i)), i ∈ Γm. Then π = (πi)i∈Γm ∈ Π(Γm). Assume first that π is a positive
vector. Set

B = (bij)i,j∈Γm , bij = π−1
i µ(C((i, j))), (i, j) ∈ Γ2m, bij = 0, (i, j) 6∈ Γ2m.

Since µ is a probability measure on Γ∞, it follows that B is a stochastic matrix, i.e. B ∈ Σ(Γm). As µ is σ
invariant we deduce that π ∈ Π(B). Let ν be σ-invariant measure on Γ(m)∞ given by (2.7). Use (2.8) and
the above inequalities to obtain

h(ν) = −
∑

i,j∈Γm

πibij log bij =

−
∑

(i,j)∈Γ2m

µ(C((i, j)) log µ(C((i, j)) +
∑

i∈Γm

πi log πi ≥

2mh(µ)−mh(µ)(1 + ε) = (1− ε)mh(µ),
mαm(µ) ≤ mα(µ)(1 + ε), m ≥ N(ε).

Hence

δ̂(φ) ≥ δm(φ) ≥ −∑
i,j∈Γm πibij log bij∑

i∈Γm πiφm(i)
≥ (1− ε)h(µ)

(1 + ε)α(µ)
> (1− ε)3δ̂(φ), m ≥ N(ε).

These inequalities remain valid for a nonnegative probability vector π. Hence the second part of (2.14)
follows. In a similar way one shows the second part of (2.14) when δ̂(φ) = ∞. ¦

§3. Topological pressure

In this section we give sufficient conditions for the equality δ(φ) = δ̂(φ) by using the topological pressure.
We state our results for subshifts. Let S ⊂< n >N. Let C(S) denote the Banach space of real continuous
functions on S with the max norm || · ||. Assume that

ψm ∈ C(S), ||ψm

m
|| ≤ K, m = 1, ..., . (3.1)

Set
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M(m) := {(ai)m
1 : C((ai)m

1 ) ∩ S 6= ∅}, n = 1, ...,

Pm :=
∑

(ai)m
1 ∈M(m)

max
x∈C((ai)m

1 )∩S
eψm(x), m = 1, ...,

P := lim sup
m→∞

1
m

log Pm.

(3.2)

Use (3.1) to deduce that −K ≤ P ≤ log n + K. Let q : S → R be a continuous function. Set

Sm(q)(x) =
m−1∑

i=0

q(σi(x)), m = 1, ...,

Then for the sequence ψm = Sm(q),m = 1, ..., P is the topological pressure associated with q. See for
example [Wal, Ch.9]. (We use here the fact that σ is expansive on S.) Set P (q) := P . Recall that in this
case one has the maximal characterization:

P (q) = sup
µ∈E(S)

(h(µ) +
∫

qdµ). (3.3)

As σ is expansive, h(µ) is upper semicontinuous, e.g. [Wal, Thm 8.2, pp. 184]. Hence the supremum in
(3.3) is achieved for at least one ergodic measure

P (q) = h(ν) +
∫

qdν, ν ∈ E(S). (3.4)

If S is a topologically transitive SFT and q is Hölder continuous, then ν is a unique (Gibbs) measure [Bow1].
We call P the topological pressure of {ψm}∞1 . See [Fal] and [Bar] for similar definitions.

Theorem 3.5. Let S ⊂< n >N be a subshift and assume that ψm ∈ C(S), m = 1, ..., satisfy the following
condition. There exists q ∈ C(S) so that

lim
m→∞

|| 1
m

(ψm − Sm(q))|| = 0. (3.6)

Then the topological pressure P associated with ψ is equal to P (q). For any σ-invariant probability measure
set α(µ) =

∫
qdµ. Then

lim
m→∞

∫
ψm

m
dµ = α(µ),

P = sup
µ∈E(S)

(h(µ) + α(µ)).
(3.7)

The supremum is achieved for some ν satisfying (3.4)

Proof. Let Pm, Pm(q) be defined by (3.2) for ψm and Sm(q) respectively. Set || 1
m (ψm−Sm(q)|| = εm. Then

1
m

log Pm(q)− εm ≤ 1
m

log Pm ≤ 1
m

log Pm(q) + εm.

Hence P = P (q). The condition (3.6) implies that αm(µ) :=
∫

ψm

m dµ,m = 1, ..., converge to
∫

qdµ = α(µ).
¦

Let φ be given by (1.7). Define q ∈ C(∆∞) to be a piecewise constant function on the cylinders of
length two:

q(x) = cij , x ∈ C((i, j)) (i, j) ∈ ∆.
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It is straighforward to show that the induced sequence ψ satisfies (3.6). As q is Hölder continuous, we deduce
that ν is a unique Gibbs measure [Bow1]. We will show in the next sections that the condition (3.6) satisfied
for Schottky groups and geometrically finite, purely loxodromic, Kleinian groups. Recall Bareira’s condition
[Bar, Thm 1.7]:

lim
m→∞

||ψm+1(x)− ψm(σ(x)− q(x)|| = 0 (3.8)

for some q ∈ C(S). It is straightfoward to show that the above condition implies (3.6). However, (3.6) does
not have to imply (3.8). Indeed, (3.6) is equivalent to

ψm = Sm(q) + mem, em ∈ C(S), lim
m→∞

||em|| = 0. (3.9)

Clearly, one can choose {em}∞1 such that (3.8) does not hold. We give a simple intrinsic condition for a
subadditive sequence {ψm}∞1 which yields (3.7).

Lemma 3.10. Let {ψm}∞1 ⊂ C(S) and assume that (3.6) holds for some q ∈ C(S). Then for each ε > 0
there exists N(ε) so that

|| 1
m

(ψm − Sm(
ψl

l
))|| ≤ ε, l > N(ε), m > p(l), (3.11)

where p(l) = l2.

Proof. Let q ∈ C(S). Then

Sm(Sl(q)) = lSm(q) + rm,l(q), ||rm,l(q)|| ≤ l(l − 1)||q||.

The condition (3.6) is equivalent to (3.9). Hence

Sm(ψl) = Sm(Sl(q) + lel) = Sm(Sl(q)) + Sm(lel) = lSm(q) + rm,l(q) + lSm(el),
1
m

(ψm − Sm(
ψl

l
)) = em − rm,l

ml
− Sm(el)

m
,

|| 1
m

(ψm − Sm(
ψl

l
))|| ≤ ||em||+ (l − 1)||q||

m
+ ||el||.

Choose N(ε) > 3||q||
ε so that ||em|| ≤ ε

3 for m > N(ε). Then (3.11) holds for p(l) = l2. ¦

Theorem 3.12. Let {ψm}∞1 ⊂ C(S). Assume that for each ε > 0, there exists N(ε) > 0, such that
the condition (3.11) holds for an increasing sequence of positive integers {p(l)}∞1 . Let µ be a σ-invariant
probability measure on S. Then the sequence

αm(µ) :=
∫

ψm

m
dµ, m = 1, ...,

converges to a limit denoted by α(µ). The topological pressure P associated with ψ has the variational
characterization (3.7). Moreover,

P = lim
l→∞

sup
µ∈E(S)

(h(µ) + αl(µ)) = h(µ∗) + α(µ∗), (3.13)

for some µ∗ ∈ E(S).

Proof. The variational characterization of P (ψl

l ) gives

P (
ψl

l
) = sup

µ∈E(S)

(h(µ) + αl(µ)), l = 1, ..., . (3.14)
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Assume that µ is an invariant probablity measure. Then (3.11) implies

|αm(µ)− αl(µ)| ≤ ε, l > N(ε), m > p(l). (3.15)

Fix ε and l > N(ε). Then
|αm(µ)− αk(µ)| ≤ 2ε, k, m > p(l).

Hence {αm(µ)}∞1 is a Cauchy sequence which converges to α(µ). Furthermore,

|α(µ)− αl(µ)| ≤ ε, l > N(ε). (3.16)

In view of (3.11), |P − P (ψl

l )| ≤ ε, l > N(ε). Let Q denote the right-hand side of the second equality in
(3.7). Use (3.14) and (3.16) to obtain

P (
ψl

l
)− ε ≤ Q ≤ P (

ψl

l
) + ε, l > N(ε).

Then P = Q and P has the characterization (3.7). It is left to show that the supremum in (3.7) is achieved.
Let µl be an ergodic measure which maximizes (3.14). Pick up a weakly convergent subsequence {µlk}
which converges to a probability measure ν. Since the shift σ is expansive on S, the Kolmogorov-Sinai
measure of σ|S is upper semicontinuous (e.g. [Wal, Ch.8]). Hence, for each ε > 0 there exists N1(ε) so that
h(ν) > h(µlk)− ε, k > N1(ε). Use (3.15) to deduce that

h(ν) + αm(µlk) > h(µlk) + αlk(µlk)− 2ε, k > max(N(ε), N1(ε)), m > p(l).

Let k →∞ and use the assumption that {µlk} converges weakly to deduce that h(ν) + αm(ν) ≥ P − 2ε. Let
m → ∞ to obtain h(ν) + α(ν) ≥ P − 2ε. Hence h(ν) + α(ν) ≥ P . Use the ergodic decomposition of ν and
(3.7) to obtain that h(ν) + α(ν) = P . Moreover, almost all ergodic components µ∗ of ν satisfy the equality
h(µ∗) + α(µ∗). ¦

Theorem 3.17. Let S ⊂< n >N be a subshift. Assume that the sequence of positive functions φ satisfies
the conditions (0.1) − (0.2). Suppose that dist is the distance function on the vertices of the induced tree
T (S) given by (1.1), (1.2), (1.4) an either (1.5) or (1.5f). Let d be the metric on S given by (0.3) and let δ(φ)
denote the Hausdorff dimension of S with respect to d. Suppose that ψ is given by (2.1). Assume that for each
ε > 0 there exists N(ε) > 0 such that the condition (3.11) holds for an increasing sequence of positive integers
{p(l)}∞1 . Let Pm(t) := P (−tψm

m ), t ∈ R, be the topological pressure corresponding to −tψm

m , m = 1, ...,. Then
P (t) = limm→∞ Pm(t) is the topological pressure associated with {−tψm}∞1 . Assume that the topological
entropy of σ|S is positive, i.e. P (0) > 0. If P (t) > 0,∀t > 0 then δ(φ) = ∞. Assume that there exists t > 0
so that P (t) < 0. Then ∞ > δ(φ) > 0 is the unique solution of the Bowen equation P (t) = 0. Furthermore,
δ(φ) = δ̂(φ), where δ̂(φ) is given by (2.11). There exists µ∗ ∈ E(S) such that δ̂(φ) = δ(φ, µ∗).

Proof. Clearly, for each t ∈ R the sequence {−tψm}∞1 satisfies the condition (3.11). Hence P (t) =
limm→∞ Pm(t). Use Theorem (3.12) to get

P (t) = sup
µ∈E(S)

(h(µ)− tα(µ)) = lim
m→∞

Pm(t). (3.18)

As h(µ) − tα(µ) an affine decreasing function in t we deduce that P (t) is a decreasing continuous convex
function on R. Hence P (t) ≥ P (0) > 0 for t ≤ 0. Suppose first that P (t) > 0 for t > 0. Then there exists
µ ∈ E(S) so that h(µ)− tα(µ) > 0. Use Theorem 2.4 to obtain

δ(φ) ≥ δ(φ, µ) ≥ t.

Hence δ(φ) = ∞ if P (t) > 0 for all t > 0. Assume now that P (t) < 0 for some t > 0. Hence α(µ) > 0 for any
µ ∈ E(S), i.e. α(µ) ≥ a > 0, µ ∈ E(S). Let P (t0) = 0, t0 > 0. Use (3.7) to deduce that t0 = δ̂(φ). Hence,
for P (t) < 0, t > t0. We now show that δ(φ) ≤ t for any t > t0. Recall that P (t) is the topological pressure
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associated with the sequence {−tψm}∞1 . The equality ψm((ai)∞1 ) = φm((ai)m
1 ) and the inequality P (t) < 0

yield
lim

m→∞

∑

(ai)m
1 ∈M(m)

e−tφm((ai)
m
1 ) = 0.

Let ε > 0. Then the condition (0.2) yields that

diam (C((ai)m
1 ) ∩ S) < ε, m > A(ε).

The definition of the Hausdorff dimension implies that δ(φ) ≤ t. Hence δ(φ) ≤ t0 = δ̂(φ). Use (2.12) to
deduce δ(φ) = δ̂(φ). ¦

§4. Schottky groups

Let F =< f1, ..., fr >≤ PSL(2,C), r > 1 be a discrete free group. View F as a discrete group of
Möbius transformations of the extended complex plane CP (complex projective line) which acts as the
group of isometries on H3. As F is free it follows that F acts freely on H3. Fix a point o ∈ H3 and consider
the orbit Fo. Let Γ ⊂< 2r > × < 2r > be the F -induced graph. Then Fo are the vertices in the tree
T (Γ∞). Set

φp(a1, ..., ap) = dh(fa1 · · · fap
o, o), (ai)

p
i ∈ Γp, p = 1, ...,

fi+r = f−1
i , i = 1, ..., r.

Here dh(x, y) is the hyperbolic distance between x, y ∈ H3. If F is a Fuchsian group, choose o ∈ H2 so that
Fo ⊂ H2. Let κ(F ) be the Poincaré exponent of F . Comparing the standard definition of κ(F ) ([Nic]),
and the definition (1.12) of κ(φ) we deduce that κ(F ) = κ(φ). Use the inequality of Bishop-Jones [B-J] and
(2.12) to obtain

dimH(Λ(F )) ≥ κ(F ) = κ(φ) ≥ δ(φ) ≥ δ̂(φ). (4.1)

Theorem 2.13 (when applicable) gives nontrivial lower bounds on any quantity appearing in (4.1). It is
known that dimHΛ(G) = κ(G) for the following discrete G ≤ PSL(2,C): G is a lattice, i.e. the volume
of the fundamental domain is finite; G is geometrically finite or convex cocompact (e.g. [Nic]); Λ(G) has
zero Lebesgue area [Bis]. It seems that one has equality signs in (4.1) in many cases. We show the equality
dimH(Λ(F )) = δ̂(φ) for a finitely generated, free Kleinian group F (Λ(F ) 6= CP) without parabolic elements.

A finitely generated free group F =< f1, ..., fr >≤ PSL(2,C) is called a classical Schottky group of
rank r if the following conditions hold: There exists 2r disjoint circles C1, , ..., C2r in CP with a common
exterior and fi maps the inside of Ci onto the outside of Cr+i for i = 1, ..., r. It is well known that F is
discrete. Furhtermore, F is purely loxodromic, i.e. does not contain parabolic elements. See for example
[Mas]. View F as the group of hyperbolic isometries of H3. Then F has a following fundamental domain
D(F ). Assume for simplicity that each Ci is a standard Euclidean circle in C with the center oi and radius
ri. Let Bi be the open three dimensional ball centered at oi with the radius ri. Then D(F ) = H3\ ∪2r

i=1 Bi.
Denote by Di = Bi ∩C the open disk centered at oi with radius ri. Then Λ(F ) ⊂ ∪2r

i=1Di.
A finitely generated free group F =< f1, ..., fr >⊂ PSL(2,C) is called Schottky group if we replace

in the above definition the disjoint circles C1, ..., C2r by simple closed curves in CP. Let T be the closed
connected component bounded by C1, ..., C2r. Let Di denote the open connected component of the com-
plement of D bounded by Ci for i = 1, ..., 2r. Then F is discrete; F does not have parabolic elements;
T is the fundamental domain for the action of F on CP; F (viewed as a discrete group of isometries of
H3) is geometrically finite; Λ(F ) ⊂ ∪2r

i=1Di. Vice versa, assume that F is a finitely generated, free, purely
loxodromic Kleinian group. Then F is a Schottky group. See [Mas, X.H].

We now recall the results of Bowen [Bow2], who applies the tools of thermodynamics formalism to
compute dimHΛ(F ) for a Schottky group F . For convenience, we assume that the curves C1, ..., C2r lie in C.
Then dimHΛ(F ) is computed with respect to the Euclidean metric on C. The sets Di ∩ Λ(F ), i = 1, ..., 2r,
form a Markov partition for Λ(F ). Let f : Λ(F ) → Λ(F ) be

f |Λ(F ) ∩Di := fi|Λ(F ) ∩Di, i = 1, ..., 2r. (4.2)
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There is a natural homeomorphism Θ : Γ∞ → Λ(F ), where Γ < 2r > × < 2r > is the digraph induced by
the free group on r generators. Furthermore, Θ−1fΘ is a shift σ on Γ∞. Set

q(z) = q(f)(z) := log |f ′i(z)|, z ∈ Λ(F ) ∩Di, i = 1, ..., 2r.

Then f expands uniformly on Λ(F ). That is, q(fk)(z) ≥ a > 0, z ∈ Λ(F ), for some k ≥ 1. Let Π(Λ(F )) be
the set of f -invariant measures supported on Λ(F ) and let E(Λ(F )) denote the subset of ergodic measures.
Let P (−tq) be the topological pressure associated with −tq as defined in §3. Then dimHΛ(F ) is the unique
solution of P (−tq) = 0. Furthermore, the unique maximal Gibbs measure µ∗ corresponding to t = dimHΛ(F )
is equivalent to a dimHΛ(F )-Hausdorff measure. From the definition of q it follows that

∫
qdµ is the Lyapunov

exponent λ(µ) of f . As f expands uniformly it follows that λ(µ) ≥ a > 0. Thus

dimHΛ(F ) = sup
µ∈E(Λ(F ))

h(µ)
λ(µ)

=
h(µ∗)
λ(µ∗)

. (4.3)

Theorem 4.4. Let F =< f1, ..., fr > be a finitely generated, free, purely loxodromic Kleinian group. Assume
that o ∈ H3 and let T be the induced tree whose vertices are the elements of the F -orbit of o. Define a metric
on T using the hyperbolic metric on the F -orbit of o. Let Γ ⊂< 2r > × < 2r > be the graph induced by F .
Define φm, ψm,m = 1, ..., by (1.1) and (2.1) respectively. Suppose that the metric d on Γ∞ is given by (0.3).
Then

dimH Λ(F ) = δ(φ) = δ̂(φ).

Proof. As F is finitely generated, free, purely loxodromic Kleinian group, it follows that F is Schottky
[Mas, X.H.]. Without loss of generality we assume that Ci, Di ⊂ C, i = 1, ..., 2r.

We first consider the case where F is a classical Schottky group. It is more convenient to consider the
open ball B3 ⊂ R3 of radius one centered at the origin 0 as a model for three dimensional hyperbolic space.
Recall that the hyperbolic metric ds is given by 2|dx|

1−|x|2 , x ∈ B3 where |dx| is the Euclidean metric. For
x, y ∈ B3 we denote by dh(x, y) the hyperbolic distance between x, y. Let S2 = ∂B3 and we identify S2 with
the Riemann sphere using the stereographic projection. The fundamental domain D(F ) for the action of F
is given by B3\ ∪2r

i=1 Bi, where Bi are open balls centered at oi and ∂Bi ∩ S2 = Di for i = 1, ..., 2r. Assume
furthermore that o is in the interior of D(F ). Then o ∈ T and o is connected to vertices fjo ∈ fjD(F ) ⊂
Bj+r, j ∈< 2r >= Γ1. (Here j + r is taken modulo 2r). Note that Λ(F ) ∩ Bi = Λ(F ) ∩ Di, i = 1, ..., 2r.
Other vertices of F -orbit of o are of the form

xk = fa1fa2 · · · fak
o ∈ fa1fa2 · · · fak

D(F ) ⊂ fa1fa2 · · · fak−1Bak+r ⊂ Ba1+r, (ai)k
1 ∈ Γk, k = 2, ..., .

(4.5)
It is straightforward to show that there exists 0 < ρ < 1 and K > 0 so that the diameter of the ball
fa1fa2 · · · fak−1Bak+r is less than Kρk, k = 2, ...,. Observe that the balls fa1fa2 · · · fak−1Bak+r, k = 1, ...,
form a sequence of nested balls. Hence there exists a unique point x so that

|xk − x| ≤ Kρk, x ∈ Λ(F ) ∩Da1+r, k = 0, ..., . (4.6)

Let
Θ : Γ∞ → Λ(F ), Θ((ai)∞1 ) = lim

k→∞
fa1fa2 · · · fak

o, (ai)∞1 ∈ Γ∞.

Then Θ is a homeomorphism and Θ−1fΘ = σ. For l ≥ k let

γ((ai)l
k) := fak

fak+1 · · · fal
, 1 ≤ k ≤ l, (ai)∞1 ∈ Γ∞

xk,l = γ((ai)l
k)(o) ∈ B3,

xk,∞ = lim
l→∞

xk,l ∈ Λ(F ) ∩Dak+r.
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That is, Θ−1xk,∞ = (ai)∞k ∈ Γ∞, while the point xk,l is the vertex in T given by (ai)l
k. The inequality (4.6)

yields
|xk,l − xk,∞| ≤ Kρl−k,

|xk,l − xk,m| ≤ 2Kρmin(l,m)−k.
(4.7)

Assume that ω is a Möbius transformation which maps B3 onto itself. Conjugating F with an appro-
priate ω we will assume that the reference point o (the root of the tree T ) is the origin 0 ∈ B3. Recall
that

dh(0, a) = log
1 + |a|
1− |a| , a ∈ B3.

Furthermore, any Möbius transformation ω : B3 → B3 satisfies

|ω′(x)| = 1− |ω(x)|2
1− |x|2 , x ∈ B3.

For a = ω(0) we get

dh(0, ω(0)) = − log |ω′(0)|+ 2 log(1 + |ω(0)|) = − log |ω′(0)|+ e(ω), |e(ω)| ≤ log 4.

Let x ∈ Λ(F ) and assume that Θ−1x = (ai)∞1 ∈ Γ∞. Then

ψk(Θ−1x) = dh(0, xk) = dh(0, γ((ai)k
1)(0)) = − log |γ((ai)k

1))′(0)|+ e(γ((ai)k
1)).

Observe next that 0 = γ((ai)k
1)−1(xk). Hence

− log |γ((ai)k
1)′(0)| = log |(γ((ai)k

1)−1)′(xk)|.

Recall that f−1
ai

= fai+r, i = 1, ...,. Hence

log |(γ((ai)k
1)−1)′(xk)| =

k∑

i=1

log |γ′ai+r(xi,k)|, k = 1, ...., .

Note that
xj+1,∞ = γ((ai)

j
1)
−1(x), j = 1, ..., .

Let B̄3 be the closed unit ball. As fj(B̄3) = B̄3, j = 1, ..., 2r, we deduce that each log |f ′j | is Lipschitz on B̄3.
Hence

| log |f ′j(u)| − log |f ′j(v)|| ≤ K1|u− v|, u, v ∈ B̄3, j = 1, ..., 2r,

for some positive K1. Using (4.7), we obtain

|
k∑

i=1

log |f ′ai+r(xi,k)| −
k∑

i=1

log |f ′ai+r(xi,∞)|| ≤

K1

k∑

i=1

|xi,k − xi,∞| ≤ K1K

k∑

i=1

ρk−i ≤ K1K

1− ρ
.

Observe next that

xi+1,∞ = fai+r(xi,∞) = f(xi,∞) = f i(x),

log |f ′ai+r(xi,∞)| = log |f ′(xi,∞)| = log |f ′(f i−1(x))|, i = 1, ..., .

Combine all the above estimates to obtain

ψm(Θ−1x)
m

=
1
m

m∑
1

log |f ′(f i−1(x))|+ 1
m

ẽ(x,m). (4.8)
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Here ẽ(x,m) is an error term whose absolute value is bounded by log 4 + K1K
1−ρ . Let q̃ ∈ C(Γ∞) be given

by q̃ = q ◦ Θ. Then the sequence ψ satisfies the assumptions of Theorem 3.5. Combine Theorem 3.17 with
(4.3) and (4.1) to deduce the theorem in the case o ∈ D(F ). Let o′ be any point in H3. As F is a group of
isometries of H3, we obtain

dh(o′, γ((ai)k
1))o′) ≤ dh(o′, o) + dh(o, γ((ai)k

1))o) + dh(γ((ai)k
1))o, γ((ai)k

1))o′) = dh(o, γ((ai)k
1))o) + 2dh(o, o′).

Similarly,
dh(o, γ((ai)k

1))o) ≤ dh(o′, γ((ai)k
1))o′) + 2dh(o, o′).

Hence, for any µ ∈ E(Γ∞), the value α(µ) is independent of the choice of o′. This concludes the proof of the
theorem for the classical Schottky group.

Assume that F is a Schottky group, i.e. C1, ..., C2r disjoint Jordan curves on C. By a quasi-conformal
change of variables F can be conjugated to a classical Schottky group, e.g. [Mas]. Hence each Ci has a
finite length. It is straightforward to show that each Di, i = 1, ..., r, can be covered by an open union of
disks D̃i := ∪ni

j=1Di,j , i = 1, ..., r, with the following properties: Each D̃i, i = 1, ..., r is simply connected,
C̃1 := ∂D̃1, ..., C̃r := ∂D̃r are disjoint Jordan curves which do not intersect any of Cr+1, ..., C2r. Then
C̃i+r := fi(C̃i) ⊂ Di+r, i = 1, ..., r. Hence F is Schottky with respect to C̃1, ..., C̃2r. Let Bi,j be the open
ball centered at oi,j ∈ C so that Bi,j ∩C = Di,j , j = 1, ..., ni, i = 1, ..., r. Then fi(∂Di,j) is another circle
on C which bounds a disk Di+r,j centered at oi+r,j . Let Bi+r,j be the open ball centered in oi+r,j such that
Bi+r,j ∩C = Di+r,j , j = 1, ..., ni, i = 1, ..., r. Note that fi(∂Bi,j) = ∂Bi+r,j , j = 1, ..., ni, i = 1, ..., r. Set

D(F ) = H3\ ∪r
i=1 ∪ni

j=1(Bi,j ∪Bi+r,j).

Then D(F ) ⊂ H3 is a fundamental domain for the action of F . Repeat the arguments for the classical
Schottky group to deduce the theorem in this case. ¦

Corollary 4.9. Let the assumption of Theorem 4.4 hold. Assume that δl(φ), l = 1, ..., are given as in
Theorem 2.13. Then

dimHΛ(F ) ≥ δl(φ), l = 1, ...,

dimHΛ(F ) = lim
l→∞

δl(φ).

§5. Geometrically finite Kleinian groups

Let F =< f1, ..., fr > be a finitely generated infinite group. As in the case of a free group, we set
fi+r = f−1

i , i = 1, ..., r. Let Γ ⊂< 2r > × < 2r > be the graph induced by a free group on r generators. For
(ai)k

1 ∈ Γk we let γ((ai)k
1) = fa1 · · · fak

. We view g ∈ PSL(2,C) as a Möbius transformation

g =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1

of CP. Assume that g(∞) 6= ∞, i.e. c 6= 0. Recall that |g′(z)| = 1, i.e. |cz + d|2 = 1, is called the isometric
circle of g. Let Ig, Rg be the inside and the outside of the isometric circle of g:

Ig = {z ∈ C : |g′(z)| > 1},
Rg := {z ∈ C : |g′(z)| < 1} ∪ {∞}.

Then g(Rg) = Ig−1 . Let Īg, R̄g denote the closure of Ig, Rg. Let ĝ : H3 → H3 be the induced isometry of H3

by g. Call the upper part of the sphere centered at −d
c with radius 1

|c| (located in H3) as the isometric sphere
of ĝ. Let Jg, Dg ⊂ H3 denote the inside and the outside of the isometric sphere of ĝ. Then ĝ(Dg) = Jĝ−1 .
In what follows we shall idenitify ĝ with g and no ambiguity will arise.
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Let F ≤ PSL(2,C) be a finitely generated Kleinian group with the limit set Λ(F ). Then Selberg’s
theorem claims that F has a torsion free subgroup G ≤ F of a finite index. It is well known that Λ(G) = Λ(F ).
In what follows we shall assume that F is torsion free. By conjugating F with some g ∈ PSL(2,C) we can
assume that Λ(F ) ⊂ C. Then the Ford fundamental region R(F ) is ∩R̄f , f ∈ F\{e}. Similarly, if we view F
as a group of discrete isometries of H3, then the Ford domain D(F ) of F is given by ∩D̄f , f ∈ F\{e}. See
for example [Mas]. F is called geometrically finite if there exists a finite set S ⊂ F\{e}, S−1 = S so that
R(F ) = ∩f∈SR̄f . Then F is generated by S. In what follows we assume that F is a geometrically finite,
torsion free, Kleinian group F satisfying

F =< f1, ..., fr >, S = {f1, f
−1
1 , ..., fr, f

−1
r },

and S is a minimal set with respect to R(F ) = ∩f∈SR̄f .
We now construct a subshift of S(F ) ⊂ Γ∞ to which we can apply the results of the previous sections.

We will assume in addition that F is PL (purely loxodromic). Some of the results will apply to F which are
not PL. For g ∈ PSL(2,C) and 0 ≤ ε set

Ig(ε) = {z ∈ C : |g′(z)| > 1 + ε}.

Let T1, ..., Tm be given sets in a fixed space. For any nonvoid U ⊂< m > let Y (U) := ∩i∈UTi. Y (U) is
called a maximal intersection set of T1, ..., Tm if Y (U) 6= ∅ and Y (U ′) = ∅, for any U ′ ⊂< m > which strictly
contains U .

Let A1(ε), ..., Ap(ε)(ε) be the partition of ∪2r
1 Ifi(ε) induced by Ifi(ε), i = 1, ..., 2r as follows: First,

A1(ε) = Y (U1(ε)), ..., Ap1(ε)(ε) = Y (Up1(ε)(ε)), Ui(ε) ⊂< 2r >, i = 1, ..., p1(ε),

are the maximal intersection sets corresponding to Ifi(ε), i = 1, ..., 2r. Let I1
fj

(ε) = Ifj (ε)\∪p1(ε)
i=1 Ai(ε). Then

Ap1+1(ε) = Y (Up1+1(ε)), ..., Ap2(ε)(ε) = Y (Up2(ε)(ε)), Ui(ε) ⊂< 2r >, i = p1(ε) + 1, ..., p2(ε),

are the maximal intersection sets corresponding to I1
fi

(ε), i = 1, ..., 2r. Repeat the above procedure a finite
number of times to obtain the partition A1(ε), ..., Ap(ε)(ε) of ∪2r

1 Ifi(ε) to a finite number pairwise disjoint
nonempty sets. Fix ε0 > 0 so that all the indices p(ε), p1(ε), ..., and the subset Ui(ε) do not depend on ε for
0 < ε < ε0. We assume that ε ∈ (0, ε0) and we drop the dependence on ε for all the indices.

Set
Λi(ε) := Λ(F ) ∩ Īfi(ε), i = 1, ..., 2r.

We assume that ε0 > 0 is small enough so that

Λ(F ) = ∪2r
i=1Λi(ε0) = ∪2r

i=1Λi(ε), 0 < ε < ε0.

Let Λ̂(ε) be the disjoint union of Λ1(ε), ..., Λ2r(ε), 0 ≤ ε ≤ ε0. We define a metric d̂ on Λ̂(ε) as follows:

d̂(x, y) = |x− y|, x, y ∈ Λi(ε), i = 1, ..., 2r,

d̂(x, y) = 2diam Λ(F ), x ∈ Λi(ε), y ∈ Λj(ε), 1 ≤ i < j ≤ 2r.

Then Λ̂(ε) is a compact metric space and

dimHΛ̂(ε) = dimHΛ(F ).

For x, y ∈ Λ̂(ε) we let |x− y| be the Euclidean distance between the two points x, y viewed as two points in
Λ(F ). Thus |x− y| < d̂(x, y) ⇐⇒ d̂(x, y) = 2diam Λ(F ). Let

Bi,j(ε) = (fi(Λi(ε))\Īfi(ε)) ∩Aj(ε) ⊂ Λ(F ), j = 1, ..., p, i = 1, ..., 2r.
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If Bi,j(ε) is nonempty, choose ηε(i, j) ∈< 2r > so that Bi,j(ε) ⊂ Ληε(i,j)(ε). Note that in certain cases
ηε(i, j) ∈< 2r > is not uniquely defined, and we make an arbitrary choice. Then

fi(Λi(ε)) = (Λi(ε) ∩ fi(Λi(ε))) ∪1≤j≤p Bi,j(ε), j = 1, ..., 2r.

We now define a measurable dynamical system f̂ : Λ̂(ε) → Λ̂(ε) as follows. Assume that x is in the
component Λi(ε) for some 1 ≤ i ≤ 2r. If fi(x) ∈ Λi(ε) then f̂(x) := fi(x) stays in the component Λi(ε). If
fi(x) 6∈ Λi(ε) then fi(x) ∈ Bi,j(ε) for exactly one 1 ≤ j ≤ p. We then view f̂(x) := fi(x) as a point in the
component Ληε(i,j)(ε). We claim that f̂ : Λ̂(ε) → Λ̂(ε) is a measurable map with respect to its Borel sigma
algebra. Let X ⊂ Λ̂(ε). Then X = ∪1≤i≤2rXi, where Xi is a measurable subset of Λi(ε) and Xi is the Λi(ε)
component of X for i = 1, ..., 2r. It is enough to show that f̂−1(Xi) is a measurable set. Let Xi,k be the
Λk(ε) component of f̂−1(Xi) . Clearly, Xi,i = f−1

i (Xi) ∩Xi = f−1
i (Xi) as fi expands on Λi(ε). Hence Xi,i

is a measurable set. Observe next that

Xi,k = ∪1≤j≤p,ηε(k,j)=i f−1
k (Xi ∩Bk,j(ε)).

Hence Xi,k is measurable. Therefore f̂ is a measurable map. As f−1
i (Λi(ε)) ⊂ Λi(ε) we deduce that

f̂(Λ̂(ε)) = Λ̂(ε).
For each x ∈ Λ̂(ε) let

a(x, ε) = (ai(x, ε))∞1 , f̂ i−1(x) ∈ Λai(x,ε)(ε), i = 1, ...,

be the component coordinates of the forward orbit of x under the map f̂ . Then f̂ induces the following set

U0(ε) := {a(x, ε) : x ∈ Λ̂(ε)}.

Clearly, a(f̂(x), ε) = σ(a(x, ε)). Hence σU0(ε) ⊂ U0(ε). As f̂Λi(ε) ⊃ Λi(ε), i = 1, ..., 2r, it follows that
σU0(ε) = U0(ε). As f̂ is measurable but not necessary continuous, σU0(ε) may not be a closed set, i.e. U0(ε)
is not a subshift. However, U(ε) = Ū0(ε) is a subshift.

Let q̂ : Λ̂(ε) → R be given by

q̂|Λi(ε) = log |f ′i ||Λi(ε), i = 1, ..., 2r. (5.1)

Since ∞ ∈ R(F ) we deduce that q̂ is Lipschitz on Λ̂(ε). We will show that q̂ induces a Hölder continuous
function q on U0(ε). That is, there exists 0 < ρ < 1, 0 < K so that

|q(a)− q(b)| ≤ Kρn, (ai)∞1 , (bi)∞1 ∈ U0(ε), ai = bi, i = 1, ..., n, n = 1, ..., . (5.2)

Hence q extends to a Hölder continuous q : U(ε) → R. Set α(µ) =
∫

qdµ, µ ∈ E(U(ε)), and let P (−tq) denote
the topological pressure defined in §3.

Theorem 5.3. Let F ≤ PSL(2,C) be a nonelementary, torsion free, geometrically finite, purely loxodromic
Kleinian group. Let Λ(F ) be the limit set of F and assume that ε ∈ (0, ε0) satisfies the assumptions above.
Then there is an injective, surjective map ι : U0(ε) :→ Λ̂(ε) satisfying:

|ι(a)− ι(b)| ≤ C(1 + ε)−n+1, a = (ai)∞1 , b = (bi)∞1 ∈ U0(ε), ai = bi, i = 1, ..., n,

C = max
1≤i≤2r

diam Ifi .
(5.4)

Let q := q̂ ◦ ι. Then (5.2) holds for ρ = (1 + ε)−1. Extend q to a Hölder continuous function on U(ε). The
equation P (−tq) = 0 has a unique positive solution which is equal dimHΛ(F ). Furthermore

dimHΛ(F ) = sup
µ∈E(U(ε))

h(µ)
α(µ)

=
h(µ∗)
α(µ∗)

, µ∗ ∈ E(U(ε)). (5.5)
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Proof. Assume that x, y ∈ Λj(ε). Then |fj(x)− fj(y)| ≥ (1 + ε)|x− y|. Hence

a(x, ε) = (ai)∞1 , a(y, ε) = (bi)∞1 , x, y ∈ Λ̂(ε), ai = bi, i = 1, ..., n + 1,⇒
C ≥ |γ((an−i+1+r)n

1 )x− γ((an−i+1+r)n
1 )y| ≥ (1 + ε)n|x− y|.

Therefore each x ∈ Λj(ε) induces a unique sequence a(x, ε) = (ai)∞1 ∈ U0(ε), a1 = j. Set ι((a(x, ε)) = x ∈
Λj(ε) ⊂ Λ̂(ε). Then (5.4) holds. For x ∈ Λj(ε) we let q(a(x, ε)) = log |f ′j(x)|. As Λ(F ) is a compact set in C
and f−1

i (∞) 6∈ Λ(F ), i = 1, ..., 2r, it follows that there exists K1 > 0 so that

| log f ′i(x)− log f ′i(y)| ≤ K1|x− y|, x, y ∈ Λ(F ).

Combine (5.4) with the above inequality to deduce (5.2) with

ρ = (1 + ε)−1, K = CK1(1 + ε)

and a, b ∈ U0(ε). Then q has a unique extension to U(ε) satisfying (5.2). Note that from the definition of
Ig(ε) it follows that

log |f ′i(z)| ≥ log(1 + ε), z ∈ Ifi(ε), i = 1, ..., 2r, ⇒
q(a) ≥ log(1 + ε), a ∈ U(ε) ⇒ α(µ) ≥ log(1 + ε), µ ∈ E(U(ε).

Use the arguments of the proof of Theorem 3.17 to deduce that either P (0) = htop = 0, t0 = 0 or
htop > 0 and P (−tq) = 0 has a unique positive solution t0. We will show t0 > 0.

Set ψm = −tSm(q) and let Pm(−tq) be given by (3.2) for m = 1, ...,. Then

P (−tq) = lim sup
n→∞

1
n

log Pn(−tq). (5.6)

Assume that t > t0. Following Bowen [Bow2] we show that dimHΛ(F ) ≤ t. (Since U(ε) may not be a
SFT we use (5.6) instead of using Gibbs measures as in [Bow2].) From (5.4) follows that each C((ai)n+1

1 )∩
U(ε), (ai)n+1

1 ∈ M(n + 1) corresponds to a set

Θ((ai)n+1
1 ) := closure ι(C((ai)n+1

1 ) ∩ U0(ε)) ⊂ Λa1(ε)

of diameter C(1 + ε)n at most. Furthermore ∪(ai)
n+1
1 ∈M(n+1)Θ((ai)n+1

1 ) ⊃ Λ(F ). We claim that there exists
K2 > 0 so that

diam Θ((ai)n+1
1 ) ≤ K2 min

x∈C((ai))∩U(ε)
e

∑n−1

j=0
−q(σjx)

. (5.7)

Let
x, y ∈ Λa1(ε), a(x, ε) = (bi)∞1 , a(y, ε) = (ci)∞1 , , ai = bi = ci, i = 1, ..., n + 1,

g = fanfan−1 · · · fa1 , g−1(u) =
g1u + g2

g3u + g4
∈ PSL(2,C), g1g4 − g2g3 = 1,

z = g(x), w = g(y), z, w ∈ Ifan+1
(ε).

Then

|x− y| = |g−1(z)− g−1(w)| = |z − w|
|g3z + g4| |g3w + g4| ≤

|z − w|( 1
2|g3z + g4|2 +

1
2|g3w + g4|2 ) = |z − w| |(g

−1)′(z)|+ |(g−1)′(w)|
2

≤ C max(
1

|g′(x)| ,
1

|g′(y)| ).

Observe next
|g′(x)| = e

∑n−1

i=0
q(σia(x,ε)), |g′(y)| = e

∑n−1

i=0
q(σia(y,ε)).
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Hence
diam Θ((ai)n+1

1 ) ≤ C max
u∈C((ai)

n+1
1 )∩U(ε)

e

∑n−1

j=0
−q(σju)

.

As σia(x, ε), σia(y, ε) agree in the places 1, ..., n + 1− i (5.2) yields

|q(σia(x, ε))− q(σia(y, ε))| ≤ K(1 + ε)−n−1+i.

Hence

|
n−1∑

i=0

q(σia(x, ε))− q(σia(y, ε))| ≤ K

n−1∑

i=0

(1 + ε)−n−1+i <
K

ε
.

Thus 1
|g′(y)| ≤ K

ε|g′(x)| . Hence

max
u∈C((ai)

n+1
1 )∩U(ε)

e

∑n−1

j=0
−q(σju) ≤ K

ε
min

u∈C((ai)
n+1
1 )∩U(ε)

e

∑n−1

j=0
−q(σju)

,

and (5.7) follows. Let t > t0 ≥ 0. Then

∑

(ai)
n+1
1 ∈M(n+1)

(diam Θ((ai)n
1 ))t ≤ K2Qn(tq), n = 1, ..., .

As lim supn∞
1
n log Pn(−tq) = P (−tq) < P (−t0q) = 0 we deduce that both sides of the above inequality tend

to zero. Use the definition of dimHΛ(F ) to deduce that dimHΛ(F ) ≤ t. Since t was an arbitrary number
greater than t0, dimHΛ(F ) ≤ t0. Recall that any nonelementary Kleinian group has a positive Hausdorff
dimension [Bea]. Thus

t0 ≥ dimHΛ(F ) > 0.

We now prove that dimHΛ(F ) ≥ t0. Recall that the Borel sigma algebra of U(ε) is generated by the
sets

C((ai)n
1 ) ∩ U(ε), (ai)n

1 ∈ M(n), n = 1, ..., .

Set
Ψ((ai)n

1 ) := ∩n
j=1f̂

−j+1Λaj (ε), (ai)n
1 ∈ M(n).

Note that Ψ((ai)n
1 ) is in the Borel sigma algebra B of Λ̂(ε). Let B′ ⊂ B be the sub-sigma algebra generated

by Ψ((ai)n
1 ), (ai)n

1 ∈ M(n), n = 1, ..., Note that ∪(ai)n
1∈M(n)Ψ((ai)n

1 ), n = 1, ... form an increasing sequence
of measurable partitions of Λ̂(ε), such that

lim
n→∞

max
(ai)n

1∈M(n)
diam Ψ((ai)n

1 ) = 0.

Therefore B′ = B. Hence any µ ∈ E(U(ε)) induces an f̂ ergodic measure µ̂ on B. Clearly h(µ) = h(µ̂). Then
the µ̂-Lyapunov exponent of f is given by the formula

λ(µ̂) =
∫

log |f ′|dµ̂ = α(µ).

According to Young [You], h(µ̂)
λ(µ̂ ) = dimH µ̂. In particular, dimH µ̂ ≤ dimH Λ̂(ε) = dimHΛ(F ). Choose

µ to be a maximal measure for P (−t0q) to deduce

t0 =
h(µ̂∗)
λ(µ̂∗)

≤ dimHΛ(F ).

Hence t0 = dimHΛ(F ). ¦.
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Theorem 5.8. Let F ≤ PSL(2,C) be a nonelementary, torsion free, geometrically finite, purely loxodromic
Kleinian group. Let Λ(F ) be the limit set of F and assume that ε ∈ (0, ε0) satisfies the assumptions above.
Let T (ε) = (V (ε), E(ε)) be the induced tree by U(ε). Identify the root o ∈ V (ε) with a point o ∈ H3. Set

φm((ai)m
1 ) = dh(γ(ai)m

1 )o, o), (ai)m
1 ∈ V (ε),

ψm((ai)∞1 ) = dh(γ(ai)m
1 )o, o), m = 1, ..., .

Then
dimHΛ(F ) = δ̂(φ).

Proof. Without loss of generality we assume that o ∈ D(F ). The arguments of proofs of Theorem 4.4 yield
(4.8), where f := f̂ , Θ := ι. Theorem 5.3 yields that dimHΛ(F ) = δ̂(φ). ¦

Assume that the conditions of Theorem 5.8 hold. Let µ ∈ E(U(ε)). Then Corollary 2.6 implies a lower
bound

δ(φ, µ) ≥ h(µ)
αm(µ)

, m = 1, ..., .
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