
Properly discontinuous groups on certain matrix homogeneous spaces

Shmuel Friedland
University of Illinois at Chicago

February 14, 1995

Abstract. We characterize discrete groups Γ ⊂ GL(n,R) which act properly discontinu-
ously on the homogeneous space GL(m,R)\GL(n,R).

§1. Introduction

A manifold M is called a complete locally homogeneous if M = J\H/Γ. Here H is
a finite dimensional Lie group, J ⊂ H its closed Lie subgroup and Γ ⊂ H is a discrete
subgroup which acts freely and properly discontinuously on J\H. See [Gol]. In the last
thirty years there was a lot of activity in the case where J is noncompact (the nonclassical
case). Consult our list of references.

The first basic problem in this area is to characterize all discrete subgroups Γ ⊂ H
which act freely and properly discontinously on J\H. The most known example is Calabi-
Markus phenomenon. That is, only finite groups can act freely and properly discontinu-
ously on J\H. See [C-M], [Wol1] and [Kob]. The second basic problem is to characterize
all Γ for which M is a compact manifolds (cocompact lattices). There are examples in
which cocompact lattices do not exist [B-L] and [Zim2]. The most known problem in
this area is the Auslander’s conjecture. Here H = Aff(Rn) - the Lie group of all affine
transformations of Rn, J = GL(n,R). Then Auslander’s conjecture claims that if M is
compact then Γ is virtually solvable. See [Mil], [Mar1-2], [G-K], [Tom] and [D-G].

The aim of this paper to consider the following specific problems of the above type.
Let H = GL(n,R), J = GL(m,R), 1 < m < n, where J is standardly embedded in the
upper left corner in H. Note that J\H = SL(m,R)\SL(n,R). We characterize all discrete
subgroups Γ ⊂ GL(n,R) which act properly discontinously on J\H. Let M = J\H/Γ be
a locally homogeneous manifold. We then show that GL(n−m,R), standardly embedded
in the lower right corner of GL(n,R), acts naturally from the left on J\H and this action
projects to M . In particular, any one parameter subgroup of G(n−m,R) induces a flow
on M .

In [Zim2] it was shown that for 2 ≤ m < n
2 , n > 4 J\H do not admit cocompact

lattices. We make the following observation. Assume that M = J\H/Γ is compact. Then
Γ, considered as a group of transformation on certain compactification of J\H, does not
have an invariant probability measure. It was our plan to prove the existence of such
an invariant probability measure using the flow induced by the action of corresponding
subgroups of GL(n −m,R) and the compactness of M (some generalized version of the
Raghunathan’s measure conjecture [Rat]) but we failed to do so.

We now outline briefly the contents of the paper. In §2 we show that
GL(m,R)\GL(n,R) is essentially the Grassmanian Gmn times M0

(n−m)n - the set of all
(n−m)× n matrices of rank n−m. We then give necessary and sufficient conditions for
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a discrete group Γ ⊂ GL(n,R) to act properly discontinously (from the right) on M0
kn. In

Section 3 we characterize discrete groups Γ ⊂ GL(n,R) which act properly discontinuously
on G(m,R)\G(n,R). §4 characterizes subgroups Γ ⊂ GL(n,R), considered as groups of
continuous transformations of Skn, which have an invariant probability measure. In the
last section we show that if M = GL(m,R)\GL(n,R)/Γ is a compact manifold then Γ,
considered as a group of continuous transformations of Gmn × S(n−m)m, does not have an
invariant probability measure on Gmn × S(n−m)m.

§2. The action of discrete groups on the frame spaces

Let Mmn be the space of m× n real valued matrices. We view each X = (xi
j)

i=m,j=n
i=j=1

as composed of m-row vectors xi = (xi
1, ..., x

i
n) ∈ Rn, i = 1, ..., m. Recall that for any

1 ≤ k ≤ min(m,n) the matrix Ck(X), the k − th compound of X, is an
(
m
k

)× (
n
k

)
matrix

whose entries are k × k minors of X arranged in a lexigraphical order. See for example
[Gan] for the standard properties of compound matrices. In what follows we assume
that 1 ≤ m < n unless stated otherwise. Then Cm(X) ∈ RN , N =

(
n
m

)
. In that case

Cm(X) is identified with the wedge product x1 ∧ · · · ∧ xm of the m rows of X. Clearly,
Cm(X) = 0 ⇐⇒ rank(X) < m. Let M0

mn be the manifold of m× n matrices of rank m.
This manifold is called the manifold of m- frames in Rn. It is known that for X, Y ∈ M0

mn

C(X), C(Y ) are proportional iff the row spaces of the matrices X, Y are identical, e.g.
[Boo, p’65]. Let π : RN\{0} → RPN−1 be the canonical projection. Then π(Cm(Mmn))
is the Grassmanian Gmn. Set φ : M0

mn → Gmn to be given by φ(X) = π(Cm(X)). Let
X ∈ Mmn, Y ∈ M(n−m)n. Note that Cm(X), Cn−m(Y ) ∈ RN , N =

(
n
m

)
. Let A(X, Y ) ∈

Mnn be the matrix whose first m rows is the matrix X and and the last n−m rows is the
matrix Y . Expanding det(A(X, Y )) by the first m row we deduce that

det(A(X, Y )) =< Cm(X), Cn−m(Y ) > .

It is not difficult to see that for u, v ∈ RN we can define a ”product” < u, v > such that
the above equality holds. Moreover, < v, u >= (−1)m(n−m) < u, v >.

Let S ⊂ Mnn be the subvariety of singular matrices. That is, GL(n,R) = Mnn\S.
We view M0

mn × M0
(n−m)n as a subset of Mnn. Set S′ = S ∩ M0

mn × M0
(n−m)n. Thus,

GL(n,R) ≡ M0
mn ×M0

(n−m)n\S′. Note that S′ is the variety of ”perpendicular” matrices

S′ = {A(X, Y ) : X ∈ M0
mn, Y ∈ M0

(n−m)n, < Cm(X), Cn−m(Y ) >= 0}.

Let
ψ : M0

mn ×M0
(n−m)n → Gmn ×M0

(n−m)m, ψ((X,Y )) = (φ(X), Y ).

Set
ψ(GL(n,R)) = ψ(M0

mn ×M0
(n−m)m\S′) =

Tmn = {(Z, Y ), Z ∈ Gmn, Y ∈ M0
(n−m)n, < Z, Y > 6= 0}.

2



(2.1) Theorem. Let 1 ≤ m < n. Then

SL(m,R)\SL(n,R) = GL(m,R)\GL(n,R) ∼ Tmn.

Proof. Observe that GL(m,R) acts on M0
mn from the left by matrix multiplication.

Clearly, the orbit orb(X), X ∈ M0
mn represents the subspace spanned by the rows of X.

Hence, GL(m,R)\M0
mn ∼ Gmn. Thus, the orbit of A(X,Y ), X ∈ M0

mn, Y ∈ M0
(n−m)n

under the action of GL(m,R) represents the point (φ(X), Y ). So

GL(m,R)\M0
mn ×M0

(n−m)n ∼ Gmn ×M0
(n−m)n.

Hence, GL(m,R)\GL(n,R) = Tmn. Clearly, GL(m,R)\GL(n,R) = SL(m,R)\SL(n,R)
and the theorem follows. ¦

Let H ′ ⊂ GL(m,R) be a closed subgroup. Then H ′ acts from the left on M0
mn. The

quotient manifold H ′\M0
mn has

(
n
m

)
charts and each chart is isomorphic to H ′\GL(m,R)×

Mm(n−m). (Each chart is obtained by considering a corresponding m × m nonsingular
submatrix in X ∈ M0

mn.) Thus H ′ acts on M0
mn ×Mkn where the action on the second

factor is a trivial action. In particular, H ′ acts from the left on GL(n,R) for any n > m and
H ′\GL(n,R) is a manifold. Suppose furthermore that H ′ is homogeneous, i.e. R∗H ′ = H ′.
Let H = H ′ ∩ SL(n,R). Then H\SL(n,R) = H ′\GL(n,R). Let Γ ⊂ GL(n,R) be
a discrete group. Then Γ acts from the right on H ′\GL(n,R). Note that this action
consists of two separate actions. Γ acts on the quotient H ′\M0

mn and on M0
(n−m)n. Recall

that a group G is said to act properly discontinuously on a manifold M if for any compact
set K ⊂ M the set of g ∈ G so that K ∩Kg 6= ∅ is a finite set. We now give necessary and
sufficient conditions for a properly discontinuous action of a discrete group Γ ⊂ GL(n,R)
on M0

kn. To do that we need to recall a few standard facts. On Rp, p = 1, ..., we let ‖ · ‖
to be the Euclidean norm. Let

K(R, τ) = {X :X = (xi
j)

i=k,j=n
i=j=1 ∈ Mkn,

‖(xi
1, ..., x

i
n)‖ ≤ R, i = 1, ..., k, τ ≤ ‖Ck(X)‖, 0 ≤ τ, 0 ≤ R.}

It then follows that any compact set K ⊂ M0
kn, 1 ≤ k ≤ n is a closed subset of K(R, τ)

for some 0 < τ, 0 < R. Let A ∈ Mmn, B ∈ Mnp, 1 ≤ k ≤ min(m,n, p). Then Ck(AB) =
Ck(A)Ck(B). Moreover, the k− th compound of the identity In ∈ Mnn is also the identity
matrix. Thus, for A ∈ GL(n,R) we have Ck(X)−1 = Ck(X−1). Furthermore,

X ∈ O(n,R) ⇒ Ck(X) ∈ O(
(

n

k

)
,R).

Hence, K(R, τ)X = K(R, τ) for any X ∈ O(n,R). Recall that each A ∈ GL(n,R) can be
written in the form

A = UΣV, U, V ∈ O(n,R),Σ = diag(σ1, ..., σn), σ1 ≥ σ2 ≥ · · ·σn > 0, det(Σ) = |det(A)|.
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The above form is called usually the singular value decomposition of A. See for example
[H-J]. The quanitities σi = σi(A), i = 1, ..., n, are called the singular values of A. For
A ∈ SL(n,R) it follows that Σ ∈ SL(n,R). Furthermore one can choose U, V ∈ SO(n,R).

(2.2) Theorem. Let Γ ⊂ GL(n,R) be a discrete group. Let 1 ≤ k < n. Then Γ acts
properly discontinuously on M0

kn iff the following condition hold. For each 1 > ε > 0 all
but a finite number of γ ∈ Γ satisfy either σn−k+1(γ) ≥ 1

ε or ε ≥ σk(γ).

Proof. As K(R, τ)O = K(R, τ) for any O ∈ O(n,R) it is enough to consider the sets
K(R, τ) ∩ K(R, τ)Σ(γ), γ ∈ Γ. We first show that if for each 1 > ε > 0 all but a fi-
nite number of γ ∈ Γ satisfy either σn−k+1(γ) ≥ 1

ε or ε ≥ σk(γ) then Γ acts properly
discontinuously on M0

kn. Let

Γ(k, ε) = {γ : γ ∈ Γ, σk(γ) ≤ ε}.

Then for any X ∈ K(R, 0) each of the last n−k+1 columns of the matrix XΣ(γ), γ ∈ Γ(k, ε)
has a norm at most

√
kRε. Hence for any Y ∈ K(R, 0)∩K(R, 0)γ, γ ∈ Γ(k, ε) we have the

estimate ‖Ck(Y )‖ ≤ C(R)ε for some positive constant C(R) and 0 ≤ ε ≤ 1. Given τ > 0
there exists ε(R, τ) so that for any γ ∈ Γ(k, ε(R, τ)) and any Y ∈ K(R, 0) ∩K(R, 0)γ we
have the inequality ‖Ck(Y )‖ < τ . It then follows that

K(R, τ) ∩K(R, τ)γ = ∅, γ ∈ Γ(k, ε(R, τ)).

Observe next that the set of all γ ∈ Γ, σn−k+1(γ) > 1
ε is exactly the set Γ(k, ε)−1. Thus

K(R, τ) ∩K(R, τ)γ = ∅, γ−1 ∈ Γ(k, ε(R, τ)).

It then follows that Γ acts properly discontinuously on M0
kn.

Assume now that there exists 0 < ε < 1 and an infinite subsequence of elements
of Γ for which ε < σk(γ), σn−k+1(γ) < 1

ε . Pick up a subsequence γi, i = 1, ..., of this
subsequence so that

lim
i→∞

σj(γi) = σj , j = 1, ..., n,∞ ≥ σ1 ≥ · · · ≥ σn ≥ 0, ε ≤ σk, σn−k+1 ≤ 1
ε
.

By considering the sequence (γi)−1, i = 1, ..., if necessary, we may assume that

σ1 = ... = σp = ∞,∞ > σp+1 ≥ · · ·σp+q > 0, σp+q+1 = · · · = σn = 0,

1 ≤ p ≤ n− k, 0 ≤ n− (p + q) ≤ min(p, n− k).

Assume first that q < k. Let Xi ∈ M0
kn be the following matrix. The columns p+1, ..., p+k

of Xi form a k× k identity matrix Ik. The column p + 1− j of Xi is the k + 1− j column
of the matrix Ik divided by σp+1−j(γi) for j = 1, ..., k − q. All other columns of Xi

are equal to zero. It now follows that there exists K(R, τ) for some 0 < τ, R so that
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Xi, XiΣ(γi) ∈ K(R, τ), i = 1, ...,. Hence Γ does not act properly discontinuously on M0
kn.

Suppose now that q ≥ k. Set Y = (δp+i,j)
i=k,j=n
i=j=1 . It now follows that

lim
i→∞

Y Σ(γi) = Z ∈ M0
kn.

Hence, Γ does not act properly discontinuously on M0
kn. ¦

Assume that Γ ⊂ SL(n,R) is a discrete infinite group. As σ1(γ) is the spectral norm
of γ it follows that the sequence σ1(γ), γ ∈ Γ converges to∞. Since Σ(γ) ∈ SL(n,R), γ ∈ Γ
we deduce that sequence σn(γ), γ ∈ Γ converges to zero. According to Theorem 2.3 Γ does
not act properly discontinuously on M0

1n.

(2.3) Corollary. Let Γ ⊂ SL(n,R) be a discrete group. Then Γ acts properly discontin-
uously on M0

1n iff Γ is a finite group.

§3. Properly discontinuous groups on GL(m,R)\GL(n,R)

(3.1) Theorem. Let Γ ⊂ GL(n,R) be a discrete group. Assume that 1 ≤ m < n. Then Γ
acts properly discontinuously on GL(m,R)\GL(n,R) (from the right) iff for any 0 < ε < 1
there is only a finite number of elements of Γ which have at least n−m singular values in
the interval (ε, 1

ε ).

Proof. Assume first that for some ε > 0 there is an infinite sequence of elements of Γ
so that the interval (ε, 1

ε ) contains at least n −m singular values of each element of this
sequence. Pick a subsequence of this sequence to obtain the following sequence γi ∈ Γ, i =
1, ..., such that

lim
i→∞

σj(γi) = σj , j = 1, ..., n,∞ > σp+1 ≥ ... ≥ σp+n−m > 0, 0 ≤ p ≤ m.

As O(n,R) is compact it is enough to show that there is x ∈ GL(m,R)\GL(n,R) so that
the sequence xΣ(γi) has a convergent subsequence. Assume that the last n−m rows of x
have zero columns numbered 1, ..., p and p + n −m + 1, ..., n. Assume next that the first
m rows of x form the unique subspace spanned by any m linearly independent rows which
have zero coordinates in the columns p + 1, ..., p + n−m. It then follows that the first m
rows of xΣ(γi) span the same subspace as x. Also, the last n−m rows of xΣ(γi) converge
to z ∈ M0

n−m. Thus,

limi→∞xΣ(γi) = y ∈ GL(m,R)\GL(n,R).

Hence, Γ does not act discontinuously on GL(m,R)\GL(n,R).
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Assume now that Γ satisfies the conditions of the theorem. Let 0 ≤ k ≤ m + 1 and
ε > 0 fixed. Set

Γ(k, ε) = {γ : γ ∈ Γ, σk ≥ 1
ε
, σk+n−m ≤ ε}.

It now follows that Γ\ ∪m+1
k=0 Γ(k, ε) is a finite set for any ε > 0. We next characterize

a compact set in SL(m,R)\SL(n,R). To do that we shall view any ξ ∈ Gmn a vector
Cm(X) of a unit length. Here, X ∈ M0

mn is representing the linear subspace generated
by the m rows of X. There is an ambiguity up to a sign ±1. The choice of the sign will
not be relevant. We next observe that any compact set in SL(m,R)\SL(n,R) is a closed
subset of a set of the following type

C(R, τ) = {(ξ, Y ) :ξ = Cm(X), X ∈ M0
mn, ‖Cm(X)‖ = 1, Y ∈ M0

(n−m)n,

‖Cn−m(Y )‖ ≤ R, | < Cm(X), Cn−m(Y ) > | ≥ τ}.

Here R, τ are two given positive numbers. Essentially, R >> 1 and 0 < τ << 1. As in the
proof of Theorem 2.3 C(R, τ) = C(R, τ)O for any O ∈ O(n,R). We claim that there exists
ε(R, τ) so that for any ε < ε(R, τ) and any 0 ≤ k ≤ m+1 one has C(R, τ)Γ(k, ε)∩C(R, τ) =
∅. Assume to the contrary that this assertion is false. Then there exists 0 ≤ k ≤ m + 1
and a sequence γi, i = 1, .., with the following properties

∃xi, yi ∈ C(R, τ), yi = xiΣ(γi), lim
i→∞

xi = x∞, lim
i→∞

yi = y∞,

γi ∈ Γ(k, εi), lim
i→∞

εi = 0, lim
i→∞

σj(γi) = σj , j = 1, ..., n,

σ1 = ... = σp = ∞,∞ > σp+1 ≥ · · ·σp+q > 0, σp+q+1 = · · · = σn = 0.

Our assumptions yield that p ≥ k, p + q + 1 ≤ k + n − m. Set p′ = n − (p + q). Then
p′ ≥ m − k + 1. In particular, p + p′ > m. As x∞, y∞ ∈ C(R, τ) it follows that x∞ and
y∞ have zero submatrices situated in the last n −m rows and the first p columns and in
the last p′ columns respectively. Hence, p, p′ ≤ m. In particular, p, p′ ≥ 1. Consider the
elements xi, yi, i = 1, ...,∞. Assume that they are represented by the matrices

A(Ai, Bi), A(Ci, Di) ∈ M0
m,n ×M0

(n−m)n, ‖Cm(Ai)‖ = 1, ‖Cm(Ci)‖ = 1, i = 1, ...,∞,

lim
i→∞

A(Ai, Bi) = A(A∞, B∞), lim
i→∞

A(Ci, Di) = A(C∞, D∞).

As x∞ ∈ C(R, τ), by expanding the determinant of A(A∞, B∞) by the first p columns,
we deduce that there exists at least one p × p subdeterminant of Ai based on the first p
columns which is nonzero. By interchanging the first p rows of A∞ if necessary we may
assume that the p×p minor based on the first p rows and columns is nonzero. By choosing
the appropriate basis in the subspace spanned by the m rows of Ai, 1 << i ≤ ∞ we may
assume in addition to our assumptions that p×p submatrix of Ai is a diagonal matrix while
the submatrix of Ai based on the last m−p rows and the first p columns is zero. Moreover,
all the diagonal elements of p × p submatrix of Ai, i >> 1 are equal and bounded above
and below by some constants dependending on R, τ . (If p < m we can assume that all the
diagonal elements are equal to 1.) Consider the matrices AiΣ(γi), i >> 1. by dividing row
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j of Ai by σi
j for j = 1, ..., p we deduce that the subspace spanned by the m rows of C∞

contains the first p rows of the identity matrix in SL(n,R). Without loss of generality we
may assume in addition to the above conditions that the first p rows of C∞ are the first
p rows of the identity matrix. As xi = yiΣ(γi)−1 it follows that the last p′ columns of
D∞ are equal to zero. Hence, C∞ has a nonzero p′ × p′ minor different from zero which is
based on the last p′ columns of C∞. This minor must be based on the last m− p rows of
C∞. This is imposssible as m− p < p′. This contradiction proves the theorem. ¦

§4. Invariant probability measures for certain groups of automorphisms

For 1 ≤ k set

Skn = {X : X = (xi
j)

i=k,j=n
i=j=1 ∈ Mkn, max

1≤i≤k
‖(xi

1, ..., x
i
n)‖ = 1}.

Note that S1n = Sn−1 is an n−1 dimensional sphere. We then have the natural projection

π : Mkn\{0} → Skn, π((xi
j)

i=k,j=n
i=j=1 ) =

(xi
j)

i=k,j=n
i=j=1

max1≤i≤k ‖(xi
1, ..., x

i
n)‖ .

Let {0} 6= U ⊂ Rn. Denote by Uk the k product U×· · ·×U and let U ′
k = π(Uk\{0}) ⊂ Skn.

Observe next that every A ∈ GL(n,R) acts on Skn as follows:

(x1, ..., xk) 7→ (x1, ..., xk)A
max1≤i≤k ‖xiA‖ .

Let R(A) be the recurrent set of the above automorphism. In what follows we characterize
R(A). In the case k = 1, i.e. S1n = Sn−1, this characterization was given in [Fri] and is a
more precise version of some Furstenberg’s results [Fur]. See also [Dan1].

(4.1) Theorem. Let A ∈ GL(n,R). Assume that the spectrum of A is located on q circles
|z| = ρi(A), i = 1, ..., q. Let Li(A) ⊂ Rn be the left invariant subspace of A spanned by all
eigenvectors of A corresponding to all eigenvalues of A located on the circle |z| = ρi(A).
Assume that A acts on Skn as above. Then the recurrent set of A is equal to

R(A) = ∪q
1π(Li(A)× · · · × Li(A)\{0}).

Proof. Let L′i,k = (Li(A))′k. We first show that any point X = (x1, ..., xk) ∈ Li,k is
in R(A). For xi 6= 0 set xi = ei

1 + ... + ei
pi

. Here ei
1, ..., e

i
pi
∈ Li(A) are pi linearly

independent eigenvectors of A. Let I ⊂ {1, ..., k} be the set of indices for which xi 6= 0.
Set Â = 1

ρi(A)A. Clearly R(A) = R(Â). Then ei
jÂ = ζije

i
j , |ζij | = 1. Hence, XÂm is given

by the coordinates (ζij)m, j = 1, ..., pi, i ∈ I. Thus, the orbit XÂm,m ∈ Z is isomorphic
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to a subgroup of S1× · · · ×S1 = (S1)N generated by one element g corresponding to XÂ.
The closure of this group is a compact abelian subgroup of (S1)N . Clearly, there exists an
infinite sequence 0 < n1 < ..., of integers so that liml→∞ gnl = g0. As the identity element
g0 corresponds to X we deduce that X ∈ R(Â).

We now prove the containment ∪q
i=1L

′
i,k ⊃ R(A). Fix 0 6= z ∈ Cn and consider

the sequence {zAj}∞0 . Note that all vectors in this sequence lie in the cyclic space W =
span{z, zA, ..., zAn−1}. Assume that dimW = m and let B = A|W . Choose a basis
e1, ..., em so that so that B is represented in this basis as a Jordan matrix, i.e. is a
basis composed of generalized eigenvectors of B. That is, each ei satisifies the equality
ei(B − λiI)li = 0. Assume that mi is the minimal integer for which the above equality
holds. Then mi is called the index of ei and denoted by index(ei). If index(ei) = 1 then
ei is an eigenvector of B with corresponding eigenvalue λi. If index(ei) > 1 then ei is
called a generalized eigenvalue corresponding to the eigenvalue λi. As usual, let spec(B)
denote the spectrum of B. Assume λ ∈ spec(B), i.e. λ is an eigenvalue of B. Then
j = index(λ) is the maximal index of all generalized eigenvectors cooresponding to λ. Let
z =

∑m
1 ξiei. Assume that index(ei) = index(λi). As e1, ..., em is a Jordan basis and

the dimension of the cyclic space generated by x is m it follows that ξi 6= 0, e.g. [Gan].
Let ρ(B) be the spectral radius of B. Denote by domspec(B) ⊂ spec(B) the dominant
spectrum of B. That is, it is the set of all eigenvalues λ ∈ spec(B) which lie on the
maximal circle |ζ| = ρ(B) and which have the maximal index τ among all eigenvalues on
the maximal circle. Equivalently, domspec(B) is the set of all eigenvalues of B lying on
the maximal circle to which correspond the maximal Jordan blocks of length τ . Assume
that the number of these blocks is β. (Here, domspec(B) is counted with multiplicites,
according to the number of maximal Jordan blocks. That is, domspec(B) has exactly
τβ eigenvalues.) It is straightforward to show, e.g. use the explicit formulas for Bj in
[Gan, Ch. 5], that the sequence Bjx

jτ−1ρ(B)j is bounded. Furthermore, all the accumulation
points of this sequence correspond to a compact abelian group A′ ⊂ Cβ in the subspace
whose basis consists of β eigenvectors corresponding to β maximal Jordan blocks of the β
eigenvalues in domspec(B). (Note that this eigenvectors are determined uniquely.)

Consider now the sequence XAj = (x1Aj , ..., xkAj), X ∈ Skn. To each xi we cor-
respond the matrix Bi its spectral radius ρ(Bi) and its index τi for i = 1, ..., k. Let
ρ = max1≤i≤k ρ(Bi) > 0. Denote by τ the maximal index corresponding to all ρ(Bi) = ρ.
Let ρ = ρl(A). Consider the sequence XAj

jτ−1ρj . Pick up any convergent subsequence. It
then follows that every row of the limit matrix Y is either a zero row or a nonzero vector
lying in the Ll(A). By the construction Y 6= 0. Hence, ∪q

i=1L
′
i,k ⊃ R(A). ¦

Let A ∈ GL(n,R). Then A acts (from the right) on Gmn. As in §2 the double cover
G̃mn of Gmn can be identified with all X ∈ M0

nm, ‖Cm(X)‖ = 1. Let N =
(

n
m

)
. Then G̃mn

corresponds to all decomposable vectors x1 ∧ · · · ∧ xm ∈ Rn ∧ · · · ∧Rn ∩ SN−1. Thus the
action of A on Gmn is induced by the action of Cm(A) on SN−1. Theorem 4.1 yields.

(4.2) Theorem. Let B ∈ GL(n,R). Assume that 1 ≤ m < n. Set A = Cm(B). Let
Lm,1(B), ..., Lm,q(B) be the invariant subspaces given in Theorem 4.1. Assume that B acts
on Gmn. Then the recurrent set of B is the variety of all decomposable vectors in the set
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∪q
i=1π(Lm,i(B)).

(4.3) Theorem. Let Γ ⊂ GL(n,R) be a subgroup. Assume that Γ acts on Skn, 1 ≤ k.
Suppose furthermore Γ has an invariant probability measure µ on Skn. Then there exists
a normal subgroup Γ0 ⊂ Γ of a finite index such that the following conditions hold. There
exist q ≥ 1 nontrivial maximal Γ0-invariant subspaces L1, ..., Lq ⊂ Rn with the following
properties. For each γ ∈ Γ0 each Li is an invariant subspace γ spanned by eigenvectors of
γ whose corresponding eigenvalues lie on some circle |z| = ρi(γ). Let

φ : Γ0 → Γ0,i ⊂ GL(Li), γ 7→ γ

ρi(γ)

∣∣Li, i = 1, ..., q.

Then Γ0,i is a bounded group for i = 1, ..., q. Moreover, the support of µ lies in ∪q
i=1(Li)′k.

Proof. Let A ∈ GL(n,R). Assume that A acts on Skn. Suppose that µ is a probability
measure on Skn which is invariant under the action of A. It is well known that µ is
supported on R(A), e.g. [Wal, §6.4]. According to Theorem 4.1 R(A) = ∪q(A)

1 (Li(A))′k.
Assume that Γ has an invariant probability measure µ on Skn. It then follows that

∅ 6= ∩γ∈Γ(∪q(γ)
1 Li(γ)\{0}) = ∪q̃

1L̃i\{0}.

Here, for each γ ∈ Γ each L̃i is a subspace of some Lj(γ). As

Li(γ)β = Li(β−1γβ), β, γ ∈ Γ,

it then follows that Γ acts on the collection L̃1, ..., L̃q̃ as a subgroup of permutation. Let
Γ0 be the stabilizer of the set L̃1, ..., L̃q̃, i.e. L̃iΓ0 = L̃i, i = 1, ..., q̃. Then Γ0 is a normal
subgroup of Γ of a finite index. Clearly, µ is supported on ∪q̃

1(L̃i)′k. Assume that µ has a
nontrivial restriction µi to (L̃i)′k. Let U ⊂ L̃i be the minimal subspace so that the set U ′

k

supports µi. As µ is Γ0 invariant it follows that UΓ0 = U . Let m = dim(U). Denote by
Γ0(U) the projection of Γ0 in GL(U) given by the map γ 7→ γ

ρi(γ)

∣∣U . We claim that Γ0(U)
is bounded. We prove this claim by the induction on m. For m = 1 Γ0(U) ⊂ {±1} and
the claim trivially holds. Assume that Γ0(U) is bounded for all U such that m ≤ p − 1.
Suppose that m = p. Assume to the contrary that Γ0(U) is unbounded. Hence, there
exists a sequence Ai ∈ Γ0(U) ⊂ GL(m,R) with the following properties.

Ai = PiΣiQi, Pi, Qi ∈ O(m,R), Σi = diag(σ1(Ai), ..., σm(Ai)), i = 1, ...,

limi→∞Pi = P, limi→∞Qi = Q, limi→∞σj(Ai) = σj , j = 1, ..., m,

σ1 = ∞, limi→∞
Ai

σ1(Ai)
= T.

As 1 = |det(Ai)| =
∏m

j=1 σj(Ai) we deduce that σm = 0. Hence, rank(T ) < m. Observe
next that limi→∞ xAi

σ1(Ai)
= xT . Let

V = {y : y = xP−1, x = (x1, ..., xm), x1 = 0},W = UT,U ′′
k = U ′

k\V ′
k.
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The minimality of U yields that µi(U ′′
k ) > 0. Note that for any compact set C ⊂ U ′′

k the
sets CAi converge to a subset of W ′

k. It then follows that µi(U ′′
k ) = µi(Wk) > 0. Let

µi(V ′
k) = a. We claim that a > 0. Otherwise the support of µi lies on W ′

k contrary to our
assumptions. It now follows that µi((V γ)′k) = a,∀γ ∈ Γ0. Let µ̄i be the restriction of µi

to V ′
k. Denote by µ̂i the finite Γ0 invariant measure generated by µ̄i.
There are two possible cases. In the first case, the family of subspaces V γ, γ ∈ Γ0 is

finite. Let
Γ1 = {γ′ : γ′ ∈ Γ0, (V γ)γ′ = V γ, ∀γ ∈ Γ0}.

Then Γ1 is a normal subgroup of Γ0 of a finite index. It then follows that µ̄i is Γ1

nontrivial invariant measure. Let Ū ⊂ W be the minimal Γ1 invariant subspace so that µ̄i

is supported on Ū ′
k. As dim(Ū) ≤ dim(V ) < m we can use the induction hypothesis. That

is Γ1(Ū) is bounded. Then µ̂i is supported on the finite union of the sets (V γ)′k, γ ∈ Γ0/Γ1.
Let

Û =
∑

γ∈Γ0/Γ1

Ūγ.

As Γ0/Γ1 is finite we deduce that Γ0(Û) is a bounded group. Suppose first that µi = µ̂i.
Then U = Û and Γ0(U) is bounded. Assume that ν = µi − µ̂i is a nonzero Γ0 invariant
measure. As ν(V ′

k) = 0 our argument shows that ν is supported on W ′
k. Let U1 ⊂ W

be the minimal Γ0 invariant subspace so that ν is supported on (U1)′k. As dim(U1) ≤
dim(W ) < m the induction hypothesis yields that Γ0(U1) is bounded. Then U = U1 + Û
and Γ0(U) = Γ0(U1) + Γ(Û) is bounded.

To this end assume that the family of subspaces V γ, γ ∈ Γ0 is infinite. Let D ⊂ V
be a Borel set such that 0 6∈ D. Suppose that there exists an infinite sequence of γj ∈
Γ0, j = 1, ..., so that Dγj ∩ Dγl = ∅ for any j 6= l. Since µi is finite and Γ0 invariant, it
follows that µi(D′

k) = 0. Thus, there exists a nontrivial proper subspace V̄ ⊂ V so that
the family of subspaces V̄ γ, γ ∈ Γ0 is finite. It then follows that support of µ̂i lies on all
subspaces (V̄ γ)′k, γ ∈ Γ0 for which V̄ γ, γ ∈ Γ0 is a finite collection of subspaces. Let V̄ be
as above. Set G ⊂ GL(m,R) to be the algebraic closure of Γ0 and assume that G0 ⊂ G is
its ireducible component containing the identity. Let Γ1 ⊂ Γ0 be the normal subgroup of a
finite index which fixes all subspaces V̄ γ, γ ∈ Γ0. It then follows that the algebraic closure
of Γ1 contains G0. Set Ṽ = ∩g∈G0V g. Thus, V̄ ⊂ Ṽ . It now follows that Ṽ γ, γ ∈ Γ0

is a finite collection of subspaces. Moreover, µ̂i is supported on this finite collection of
subspaces. We now conclude as above that Γ0(U) is bounded. In both cases we contradict
the assumption that Γ0(U) is not bounded.

Suppose that Z ⊂ L̃i be another nontrivial Γ0 invariant subspace of L̃i so that Γ0(Z)
is bounded. It then follows that Γ0(U +Z) is also bounded. Hence, there exists a maximal
Γ0 invariant subspace Li ⊂ L̃i so that Γ0(Li) is bounded. Moreover, any Γ invariant
probability measure is supported on ∪q

i=1(Li)′k. ¦

(4.4) Corollary. Let Γ ⊂ GL(n,R). Assume that Γ acts on Gmn×Skn, 1 ≤ m < n, 1 ≤ k.
Suppose furthermore that Γ has an invariant probability measure µ. Then there exists a
normal subgroup Γ0 ⊂ Γ of a finite index such that the following conditions hold. There
exist q ≥ 1 nontrivial maximal Γ0-invariant subspaces L1, ..., Lq ⊂ Rn with the following
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properties. For each γ ∈ Γ0 each Li is an invariant subspace γ spanned by eigenvectors of
γ whose corresponding eigenvalues lie on some circle |z| = ρi(γ). Let

φ : Γ0 → Γ0,i ⊂ GL(Li), γ 7→ γ

ρi(γ)

∣∣Li, i = 1, ..., q.

Then Γ0,i is a bounded group for i = 1, ..., q. Moreover, the support of µ lies in Gmn ×
(∪q

i=1(Li)′k).

Suppose that Γ ⊂ GL(n,R) satisfies the conclusions of Theorem 4.3. We then claim
that the action of Γ on Skn and on Gmn × Skn has an invariant measure. Consider the
subgroup Γ0 acting on (Li)′k ⊂ Skn. This action is equivalent to the action of Γ0,i. As Γ0,i

is bounded its topological closure is a compact group. Hence, it is amenable, e.g. [Zim1].
Thus, Γ0,i has an invariant probability measure µ on (Li)′k. Hence, µ is Γ0 invariant. Since
Γ0 is a normal subgroup of Γ of a finite index it easily follow that the action of Γ on µ
generates a finite invariant measure ν. Normalize this invariant measure to obtain a Γ
invariant probability measure. Similar arguments apply to the case Gmn × Skn.

§5. Cocompact lattices

(5.1) Theorem. Let Γ ⊂ GL(n,R) be a discrete group. Assume that Γ acts freely and
properly discontinuously on GL(m,R)\GL(n,R) for 1 ≤ m < n. If

M = GL(m,R)\GL(n,R)/Γ

is compact then Γ does not have an invariant probability measure on Gmn × S(n−m)n.

Proof. Assume to the contrary that ν is an invariant probability measure under the action
of Γ on Gmn × S(n−m)n. Apply now Corollary 4.4 to ν. Since µ is supported on M it
follows that there exists at least one Γ0 invariant subspace, say L1, whose dimension is not
less than n−m. Set

Q = Tmn ∩ (Gmn × (L1 × · · · × L1)).

Then Qγ = Q,∀γ ∈ Γ0. Hence, Γ0 acts freely and properly discontinuously on Q. Let
M ′ = Q/Γ0 a compact submanifold of a compact manifold M0 = SL(m,R)\SL(n,R)/Γ0.
Without loss of generality we assume that the bounded group Γ0(L1) is a subgroup of an
orthogonal group. Let Γ′0 = Γ0

∣∣L1. That is, all singular values of any γ′ ∈ Γ′0 are equal.
As Γ0 acts properly discontinuously on Q we can apply the arguments of Theorem 3.1.
In particular, for any ε > 0 there is only a finite number of elements of Γ′0 which have
all singular values in (ε, 1

ε ). As each element in Γ′0 is a scalar multiple of an orthogonal
matrix it follows that for any ε > 0 all but a finite number of elements of Γ′0 satisfy either
σn′(γ′) ≥ 1

ε or σ1(γ′) ≤ ε. (Here, n′ = dim(L1).) According to Theorem 2.2 Γ′0 acts
properly discontinuously on W = L1 × · · · × L1 ∩ M0

(n−m)n. We claim that M ′ is not
compact. Indeed, pick up any compact set K ⊂ W which contains an open set of W . As
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Γ′0 acts properly discontinously on W , we have that γ(K) ∩K = ∅ except for a finite set
∆ ⊂ Γ′0. Consider the set K ′ = Tmn ∩ (Gmn ×K). Clearly, K ′ is not compact. On the
other hand K ′ is a subset of a finite cover of M ′ induced by ∆. Hence, M ′ is not compact.
This contradicts the assumption that M is compact. Therefore, such a ν does not exists.
¦

According to the referee remarks one can deduce the the results of Sections 4 and 5
using the theorems in [Dan1-2].

Let GL(n−m,R) ⊂ GL(n,R) be embedded in the lower right corner of GL(n,R). It
then follows that the actions of GL(m,R) commutes with the action of GL(n−m,R) on
GL(n,R) from the left. Hence, GL(n−m,R) acts from the left on GL(m,R)\GL(n,R).
Furthermore, this action projects to the action on the manifold
M = GL(m,R)\GL(n,R)/Γ. Let U ⊂ GL(n − m,R) be a one parameter subgroup.
Assume that M is compact. Then the flow induced by U has an invariant probability
measure µ on M . We believe that µ induces an invariant probability measure ν under the
action of Γ on Gmn×S(n−m)n. More precisely, assume that n−m > 1 and U is unipotent
subgroup. Does there exists an analog of the Raghunathan conjecture?
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