Entropy of algebraic maps

Shmuel Friedland
Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago
Chicago, Illinois 60680

Abstract

In this paper I give upper bounds for the entropy of algebraic maps in terms of certain homological data induced by their graphs.

AMS classification 28D20, 30D05, 54H20

§0. Introduction

Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed set. Set

$$
\begin{aligned}
X^{\infty} & =\prod_{1}^{\infty} X_{i}, X_{i}=X, i=1, \ldots \\
\Gamma^{\infty} & =\left\{\left(x_{i}\right)_{1}^{\infty},\left(x_{i}, x_{i+1}\right) \in \Gamma, i=1,2, \ldots\right\} .
\end{aligned}
$$

Then $X^{\infty}, \Gamma^{\infty}$ are compact metric spaces in the Tychonoff topology. Let $\sigma: X^{\infty} \rightarrow X^{\infty}$ be the shift map. Clearly, $\sigma: \Gamma^{\infty} \rightarrow \Gamma^{\infty}$. The dynamics of $\left.\sigma\right|_{\Gamma^{\infty}}$ is the the dynamics induced by the graph Γ. Let $h(\Gamma)=h\left(\left.\sigma\right|_{\Gamma^{\infty}}\right)$ be the entropy of σ restricted to Γ^{∞}. Assume that X is a finite set set. Then $\left.\sigma\right|_{\Gamma}$ is a subshift of a finite type which is a well studied subject, e.g. [8]. In this paper I study the case where X is a compact analytic space of complex dimension n and $\Gamma \subset X \times X$ is a graph of a dominating algebraic function. That is, $\Gamma \subset X \times X$ is a closed irreducible complex subspace of dimension n such that the projection of Γ on the its first and the second component is X. I am mainly concerned with upper estimates of $h(\Gamma)$. Following Gromov [6] and Friedland [3] I show $h(\Gamma) \leq \operatorname{lov}(\Gamma)$. Here $\operatorname{lov}(\Gamma)$ is the volume growth of the projections of Γ^{∞} on the first k coordinates, $k=2, \ldots$, . In the case that X is Kähler and Γ is the graph of a holomorphic map $F: X \times X \mathrm{I}$ prove rigorously that $h(F)=h(\Gamma(F))=\log \rho(F)$ where $\rho(F)$ is the spectral radius of the induced action of F on the homology groups of X. (A sketchy proof is given in [3].) Next I consider finite algebraic maps, i.e. where Γ, X are projective varieties and the projections of Γ on the first and the second factor is finite to one map. I show that Γ induces a linear operator
on the analytic homology of X, i.e. the homology groups generated by analytic cycles. Let $\rho_{a}(\Gamma)$ be the spectral radius of this linear operator. I then show that $\operatorname{lov}(\Gamma) \leq \log \rho_{a}(\Gamma)$. I conjecture that as in the Kähler case $h(\Gamma)=\operatorname{lov}(\Gamma)=\log \rho_{a}(\Gamma)$. In the last section I discuss the case where the projections of Γ on the first and the second coordinates are branched nonfinite to one covering. One still has the inequality $h(\Gamma) \leq \operatorname{lov}(\Gamma) \leq \log \rho_{a}(\Gamma)$. By iterating this inequality one can improve the upper bound on $h(\Gamma)$ as in the case of rational maps $F: X \rightarrow X$ discussed in [2].

$\S 1$. Volumes of certain graphs

Let X be a compact metric space with a metric $d: X \times X \rightarrow \mathbf{R}_{+}$. Then X^{∞} is a compact metric space with respect to the metric:

$$
\delta\left(\left(x_{i}\right)_{1}^{\infty},\left(y_{i}\right)_{1}^{\infty}\right)=\max _{1 \leq i} \frac{d\left(x_{i}, y_{i}\right)}{2^{i-1}},\left(x_{i}\right)_{1}^{\infty},\left(y_{i}\right)_{1}^{\infty} \in X^{\infty}
$$

Let $\pi_{m}: X^{\infty} \rightarrow X^{m}=\prod_{1}^{m} X_{i}$ be the projection on the first m components. Recall that the shift map $\sigma: X^{\infty} \rightarrow X^{\infty}$ is a continuous map given by $\sigma\left(\left(x_{i}\right)_{1}^{\infty}\right)=\left(x_{i}\right)_{2}^{\infty}$. Assume that $\Gamma \subset X \times X$ is an arbitrary closed set. It then follows that Γ^{∞} is a compact set such that $\sigma: \Gamma^{\infty} \rightarrow \Gamma^{\infty}$. In what follows I exclude the noninteresting case $\Gamma^{\infty}=\emptyset$. Let $h(\Gamma)=h\left(\sigma, \Gamma^{\infty}\right)$ be the entropy of $\sigma \mid \Gamma$. Assume that $F: X \rightarrow X$ is a continuous map. Set $\Gamma(F)=\{(x, y): y=F(x), x \in X\}$ to be the graph of F. It then follows that $h(F)$-the entropy of is equal to $h(\Gamma(F))$ [2].

Assume that X is a compact quasi Riemannian manifold. That is, there exists an open finite cover $\mathcal{U}=\cup_{1}^{p} U_{i}, U_{i} \subset X, i=1, \ldots, p$, such that the following conditions hold. Each U_{i} is a Riemannian manifold which induces a metric $d_{i}(\cdot, \cdot): U_{i} \times U_{i} \rightarrow \mathbf{R}_{+} . U_{i}$ is locally complete with respect to d_{i}. On $U_{i} \cap U_{j}$ the metrics d_{i}, d_{j} are equivalent. That is,

$$
d_{j}(x, y) \leq A_{j i} d_{i}(x, y), d_{i}(x, y) \leq A_{i j} d_{j}(x, y), \forall x, y \in U_{i} \cap U_{j}, 0<A_{i j}, A_{j i}
$$

Thus X is a compact Riemannian manifold if $p=1$. For $I=\left\{i_{1}, \ldots, i_{k}\right\}, 1 \leq i_{1}<i_{2}<\cdots<$ $i_{k} \leq p$ let $U_{I}=\cap_{j \in I} U_{j}$. Assume that $x, y \in X$. Set $I(x, y)=\left\{j: 1 \leq j \leq p, x, y \in U_{j}\right\}$. Let $I(x)=I(x, x)$. If $I(x, y)$ is nonempty define

$$
d(x, y)=\min _{j \in I(x, y)} d_{j}(x, y)
$$

A straightforward argument shows that our assumptions yield that the above metric can be extended to $X \times X$. Note that

$$
d(x, y) \leq d_{i}(x, y) \leq A d(x, y), x, y \in U_{i}, A=\max _{1 \leq i \neq j \leq p} A_{i j}
$$

Let $Y \subset X$. Then, for $\emptyset \neq I \subset\{1, \ldots, p\}$, set $Y_{I}=\{y: y \in Y, I(y)=I\}$. Note that Y_{I} may be empty. Observe that

$$
Y_{I} \cap Y_{J}=\emptyset \text { for } I \neq J, Y=\cup_{\emptyset \neq I \subset\{1, \ldots, p\}} Y_{I} .
$$

It then follows that the sets $\emptyset \neq Y_{I}, \emptyset \neq I \subset\{1, \ldots, p\}$, forms a partition of Y. Consider a nonempty set Y_{I}. For $i \in I$ let $\operatorname{dim}_{i}\left(Y_{I}\right)$ be the Hausdorff dimension of Y_{I} with respect to the Riemannian metric on U_{i}. As on U_{I} all the Riemannian metrics are equivalent we have that $\operatorname{dim}_{i}\left(Y_{I}\right)=t, i \in I$. Thus, $\operatorname{dim}\left(Y_{I}\right)=t$ is the Hausdorff dimension of Y_{I}. Let $d \geq \operatorname{dim}\left(Y_{I}\right)$. For $d>\operatorname{dim}\left(Y_{I}\right)$ let $\operatorname{vol}_{d}\left(Y_{I}\right)=0$. For $d=\operatorname{dim}\left(Y_{I}\right)$ denote by $\operatorname{vol}_{d}^{(i)}\left(Y_{I}\right)$ the d-volume of Y_{I} with respect to the Riemannian metric on U_{i}. Set

$$
\operatorname{vol}_{d}\left(Y_{I}\right)=\min _{i \in I} v o l_{d}^{(i)}\left(Y_{I}\right)
$$

Define $\operatorname{dim}(Y)=\max _{Y_{I} \neq \emptyset} \operatorname{dim}\left(Y_{I}\right)$. Assume that $d=\operatorname{dim}(Y)$. Then the volume of Y is given by

$$
\operatorname{vol}(Y)=\sum_{Y_{I} \neq \emptyset} \operatorname{vol}_{d}\left(Y_{I}\right)
$$

Consider the space X^{k}. Clearly, X^{k} is a quasi Riemannian manifold with an open induced by the product $\mathcal{U}^{p}=\mathcal{U} \times \cdots \times \mathcal{U}$. Each element of the open cover $U_{j_{1}} \times \cdots \times U_{j_{k}}, 1 \leq j_{i} \leq$ $p, i=1, \ldots, k$, is a Riemannian manifold endowed with the Riemannian product metric. Let $B_{k}(a, r) \subset X^{k}$ be an open ball of radius r centered at a with respect to the induced metric on X^{k} by X :

$$
B_{k}(a, r)=\left\{x, x=\left(x_{i}\right)_{1}^{k}, a=\left(a_{i}\right)_{1}^{k} \in X^{k}, \sum_{1}^{k} d\left(x_{i}, a_{i}\right)^{2}<r^{2} .\right\}
$$

In what follows I assume that $\Gamma \subset X \times X$ is a closed set with an integer Hausdorff dimension $n>0$. Let $\operatorname{vol}\left(\Gamma^{k}\right) \leq \infty$ be the n dimensional volume of Γ^{k}. I shall assume:

$$
\operatorname{vol}\left(\Gamma^{k}\right)<\infty, k=2, \ldots,
$$

This assumption imply that Γ^{k} has Hausdorff dimension n for $k=2, \ldots$, . Set

$$
\begin{aligned}
& \operatorname{lov}(\Gamma)=\limsup _{k \rightarrow \infty} \frac{\log \operatorname{vol}\left(\Gamma^{k}\right)}{k} \\
& \operatorname{Dens}_{\epsilon}\left(\Gamma^{k}\right)=\inf _{a \in \Gamma^{k}} \operatorname{vol}\left(\Gamma^{k} \cap B_{k}(a, \epsilon)\right) \\
& \operatorname{lodn}_{\epsilon}(\Gamma)=\liminf _{k \rightarrow \infty} \frac{\log \operatorname{Dens} s_{\epsilon}\left(\Gamma^{k}\right)}{k} \\
& \operatorname{lodn}(\Gamma)=\lim _{\epsilon \rightarrow 0} \operatorname{lodn}_{\epsilon}(\Gamma)
\end{aligned}
$$

Lemma 1.1 Let X be a compact quasi Riemannian manifold, $\Gamma \subset X \times X$ a closed set of integer Hausdorff dimension n satisfying $\operatorname{vol}\left(\Gamma^{k}\right)<\infty, k=2, \ldots$, . Then

$$
h(\Gamma) \leq \operatorname{lov}(\Gamma)-\operatorname{lodn}(\Gamma) .
$$

Proof. Let

$$
\begin{aligned}
& \delta_{j}(\xi, \eta)=\max _{0 \leq l \leq j-1} \delta\left(\sigma^{\circ l}(\xi), \sigma^{\circ l}(\eta)\right)= \\
& \max _{1 \leq i} \frac{d\left(x_{i}, y_{i}\right)}{2^{(i-j)^{+}}}, \xi=\left(x_{i}\right)_{1}^{\infty}, \eta=\left(y_{i}\right)_{1}^{\infty} \in X^{\infty}, j=1, \ldots
\end{aligned}
$$

Here, $a^{+}=\max (a, 0), a \in \mathbf{R}$. Fix $\epsilon>0$. Let $L\left(k, \epsilon, \Gamma^{\infty}\right)$ be the maximal size of (k, ϵ) separated set in Γ^{∞}. That is for any finite set $E \subset \Gamma^{\infty}$ with the property $\xi, \eta \in E, \xi \neq$ $\eta \Rightarrow \delta_{k}(\xi, \eta)>\epsilon$ we have the inequality $\operatorname{Card}(E) \leq L\left(k, \epsilon, \Gamma^{\infty}\right)$. Furthermore, the equality sign holds for at least one such a set E. The standard definition of $h(\sigma, \Gamma)$ is [8, Ch.7]:

$$
h(\sigma, \Gamma)=\lim _{\epsilon \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{\log L\left(k, \epsilon, \Gamma^{\infty}\right)}{k} .
$$

Let $E\left(k, \epsilon, \Gamma^{\infty}\right)$ be a (k, ϵ) separated set of cardinality $L\left(k, \epsilon, \Gamma^{\infty}\right)$. It then follows that

$$
\max _{1 \leq i \leq k+K(\epsilon)} d\left(x_{i}, y_{i}\right)>\epsilon, \xi=\left(x_{i}\right)_{1}^{\infty} \neq \eta=\left(y_{i}\right)_{1}^{\infty} \in E\left(k, \epsilon, \Gamma^{\infty}\right), K(\epsilon)=\left\lceil\log _{2} D-\log _{2} \epsilon\right\rceil .
$$

Here D is the diameter of X. In particular the $L\left(k, \epsilon, \Gamma^{\infty}\right)$ balls

$$
B_{k+K(\epsilon)}\left(\pi_{k+K(\epsilon)}(\xi), \frac{\epsilon}{2}\right), \xi \in E\left(k, \epsilon, \Gamma^{\infty}\right)
$$

are disjoint. Hence:

$$
\operatorname{vol}\left(\Gamma^{k+K(\epsilon)}\right) \geq L\left(k, \epsilon, \Gamma^{\infty}\right) \operatorname{Dens}_{\frac{\epsilon}{2}}\left(\Gamma^{k+K(\epsilon)}\right) .
$$

Take the logarithm of this inequality, divide by $k+K(\epsilon)$, take limsup of the both sides of this inequality and let ϵ tend to zero to deduce the lemma. \diamond

For a compact Riemannian manifold this lemma is due to Gromov [Gro]. Our proof is the proof given in [3].

Let M be a complex Kähler manifold with corresponding $(1,1)$ form ω induced by the Hermitian metric $d \rho^{2}$. Assume that $X \subset M$ be an irreducible analytic variety of dimension d. If X is smooth then X is Kähler whose $(1,1)$ form ω^{\prime} and the corresponding Hermitian metric $d \rho^{\prime 2}$ are the restriction of ω and $d \rho^{2}$ respectively. Let $\operatorname{Sing}(X)$ be the set of singular points of X. Then $X \backslash \operatorname{Sing}(X)$ is Kähler with $(1,1)$ form ω^{\prime} and $d \rho^{\prime 2}$ its Hermitian metric. Since $\operatorname{Sing}(X)$ is a proper subvariety of X it folows that for all purposes needed here X behaves as Riemannian manifold. First note that the induced metric $d: X \times X \rightarrow \mathbf{R}_{+}$ by the metric $d \rho^{2}$ in M is the metric induced by $d \rho^{\prime 2}$ in $X \backslash \operatorname{Sing}(X)$ obtained by the completion of this metric to X. Consider next the following stratification of X

$$
X_{0}=X, X_{i}=\operatorname{Sing}\left(X_{i-1}\right), i=1, \ldots, k, X_{k} \neq \emptyset, \operatorname{Sing}\left(X_{k}\right)=\emptyset, X=\cup_{0}^{k} X_{i} \backslash \operatorname{Sing}\left(X_{i}\right) .
$$

Thus, each $X_{i} \backslash \operatorname{Sing}\left(X_{i}\right)$ is Kähler and has the corresponding $(1,1)$ form ω_{i} and the Hermitian metric $d \rho_{i}^{2}$ which are the restrictions of ω and $d \rho^{2}$ respectively to $X_{i} \backslash \operatorname{Sing}\left(X_{i}\right)$.

By the abuse of notation I consider ω_{i} and $d \rho_{i}^{2}$ as the restrictions of ω^{\prime} and $d \rho^{\prime 2}$. The following lemma is needed in the sequel.

Lemma 1.2. Let M be a Kähler manifold, $X \subset M$ be an irreducible analytic subvariety. Then, for any positive integer $n, n \leq \operatorname{dim}(X)$ there exists a constant $C(n, X)$ so that the following condition is satisfied. Let $\Gamma \subset X \times X$ be an irreducible analytic subvariety such that $\Gamma=\Gamma^{2}, \Gamma^{k}, k=3, \ldots$, have all complex dimension n. Then

$$
\operatorname{vol}\left(\Gamma^{k} \cap B_{k}(a, \epsilon)\right) \geq C(n, X) \epsilon^{2 n}, k=2, \ldots,
$$

Proof. Assume first that X is smooth. Clearly, Γ^{k} is an irreducible analytic subvariety of (complex) dimension n. According to [1, Sec. 5.4.19] the above inequality holds. If X is not smooth we trivially have that $\Gamma^{k} \subset M^{k}$ and the above inequality still holds. \diamond

Let X, \mathcal{O} be a compact analytic space. Consult with [4] for the properties of complex spaces and with [5] for the properties of complex manifolds and projective varieties needed here. Then one has a finite cover $\mathcal{U}=\cup_{1}^{p} U_{i}$ of X such that each $\left(U_{i}, \mathcal{O}_{i}\right), \mathcal{O}_{i}=\mathcal{O} \mid \mathcal{U}_{i}$ is isomorphic to the model complex space ($\tilde{U}_{i}, \tilde{O}_{i}$) which is the sheaf of holomorphic functions over a complex variety $U_{i} \subset \mathbf{C}^{n_{i}}$. (This definition of a complex space is Serre's definition which is not the most general definition, i.e. [4, p'13].) For simplicity of notation I will suppress the reference to the sheaf of a complex space and no ambiguity will arise. I shall assume that X is irreducible, i.e. $X \backslash \operatorname{Sing}(X)$ is connected. As explained above one can view each $\tilde{U}_{i} \subset \mathbf{C}^{n_{i}}$ as a Riemannian manifold. It then follows that one can view X as a quasi Riemannian manifold. (To see that consider a cover $\hat{\mathcal{U}}=\cup_{1}^{p} \hat{U}_{i}, \operatorname{Closure}\left(\hat{U}_{i}\right) \subset$ $U_{i}, i=1, \ldots, p$.) Hence, it is possible to aplly all the results obtained so far. Recall that $Y \subset X$ is a complex subspace of X if \tilde{Y}_{i} - the isomorphic image of $Y \cap U_{i}$ in \tilde{U}_{i} is an analytic subvariety of \tilde{U}_{i}. Let $\Gamma \subset X \times X$ be a complex irreducible subspace of dimension n. Define the quantities

$$
\operatorname{vol}\left(\Gamma^{k}\right), \operatorname{lov}(\Gamma), \operatorname{Dens}_{\epsilon}\left(\Gamma^{k}\right), \operatorname{lodn}_{\epsilon}(\Gamma), \operatorname{lodn}(\Gamma)
$$

as above. Combine Lemma 1.1 and Lemma 1.2 to deduce
Theorem 1.3. Let X be a compact complex irreducible space. Assume that $\Gamma \subset X \times X$ is a compact complex irreducible subspace. Then $\operatorname{lod} n(\Gamma) \geq 0$. Hence $h(\Gamma) \leq \operatorname{lov}(\Gamma)$.

In the case X is Kähler the above theorem is due to Gromov [6]. Assume that the assumptions of Theorem 1.3 hold. Suppose furthermore that

$$
\operatorname{dim}(\Gamma)=\operatorname{dim}(X), \pi_{1}(\Gamma)=\pi_{2}(\Gamma)=X
$$

Then I view $\Gamma \subset X \times X$ as a graph of an algebraic function. Indeed, the projections $\pi_{i}: \Gamma \rightarrow X, i=1,2$, are branched covers of degree $d_{i}, i=1,2$. That is, there exists a complex subspace $Y_{i} \subset X$ such that $\pi_{i}: X \backslash \pi_{i}^{-1}\left(Y_{i}\right) \rightarrow X \backslash Y_{i}$ is d_{i} covering for $i=1,2$.

§2. Entropy of holomorphic selfmaps of a compact Kähler manifold

Let X be a compact Kähler manifold and let ω be the corresponding closed $(1,1)$ form of X. Denote by

$$
H_{*}(X, \mathbf{F})=\sum_{0}^{2 n} \oplus H_{i}(X, \mathbf{F}), H^{*}(X, \mathbf{F})=\sum_{0}^{2 n} \oplus H^{i}(X, \mathbf{F})
$$

be the total homology and cohomology groups of X over a field $\mathbf{F}=\mathbf{Z}, \mathbf{Q}, \mathbf{R}$. Let $[X]$ the fundamental class of X, i.e. the generator of the one dimensional free group $H_{2 n}(X, \mathbf{Z})$. Assume that $F: X \rightarrow X$ is a holomorphic map. Then

$$
F_{*}: H_{*}(X, \mathbf{F}) \rightarrow H_{*}(X, \mathbf{F}), F^{*}: H^{*}(X, \mathbf{F}) \rightarrow H^{*}(X, \mathbf{F})
$$

be the linear operators induced by F. I assume that

$$
F_{*}=I d: H_{0}(X, \mathbf{F}) \rightarrow H_{0}(X, \mathbf{R}) .
$$

Let $\rho(F)$ be the spectral radius of $F_{*}\left(F^{*}\right)$ for $\mathbf{F}=\mathbf{R}$. The above assumptions yield that $\rho(F) \geq 1$. Set $\phi_{m}=\left(F^{\circ m}\right)^{*} \omega, m=0,1, \ldots$, to be the the pull back of ω by the $F^{\circ m}$.

Theorem 2.1. Let X be a compact Kähler manifold of complex dimension n and assume that $F: X \rightarrow X$ is a holomorphic map. Then

$$
\begin{equation*}
\operatorname{lov}(\Gamma(F))=\limsup _{j \rightarrow \infty} \frac{\log \left|\left(\sum_{i=0}^{i=j-1} \phi_{i}\right)^{n}([X])\right|}{j} \tag{2.2}
\end{equation*}
$$

Moreover

$$
\operatorname{lov}(\Gamma(F))=h(F)=\log \rho(F)
$$

Proof. Let ω_{k} be the induced $(1,1)$ form on X^{k}. Set $\Gamma=\Gamma(F)$. Then

$$
\Gamma^{k}=\left\{\left(x, F(x), \ldots, F^{\circ(k-1)}(x)\right): x \in X\right\}
$$

Denote by θ_{k} the restriction of ω_{k} to Γ^{k}. Hence, in terms of the variable x, the restriction of θ_{k} to the $j-t h$ coordinate of Γ^{k} is ϕ_{j-1} - the pull back of $\omega=\phi_{0}$ by $F^{\circ j-1}$. Thus

$$
\begin{equation*}
\theta_{k}(x)=\sum_{j=0}^{k-1} \phi_{j}(x), x \in X, k=0,1, \ldots, \tag{2.3}
\end{equation*}
$$

So $\operatorname{vol}\left(\Gamma^{k}\right)=\frac{1}{n!} \theta_{k}^{n}([X])$. We now prove the inequality $\operatorname{lov}(F) \leq \log \rho(F)$. Clearly

$$
\theta_{k}^{n}([X]) \leq k^{n} \max _{0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n}<k}\left|\phi_{m_{1}} \phi_{m_{2}} \cdots \phi_{m_{n}}[X]\right| .
$$

Let $\|\cdot\|_{j}$ be a norm on $H^{j}(X, \mathbf{R})$ and denote $\left\|F^{*}\right\|_{j}$ the induced norm of the operator $F^{*}: H^{j}(X, \mathbf{R}) \rightarrow H^{j}(X, \mathbf{R})$ for $j=1, \ldots, 2 n$. It then follows

$$
\begin{aligned}
& \left\|\phi_{m_{j}} \cdots \phi_{m_{n}}\right\|_{2(n-j+1)}=\left\|\left(F^{*}\right)^{m_{j}}\left(\phi_{0} \cdots \phi_{m_{n}-m_{j}}\right)\right\|_{2(n-j+1)} \leq \\
& \left\|\left(F^{*}\right)^{m_{j}}\right\|_{2(n-j+1)}\left\|\phi_{0} \cdots \phi_{m_{n}-m_{j}}\right\|_{2(n-j+1)}, m_{j} \leq m_{p}, p=j+1, \ldots, n .
\end{aligned}
$$

Clearly, there exists a constant K_{j} depending only on the norms $\|\cdot\|_{i}, i=2,2(j-1), 2 j$ so that

$$
\|x y\|_{2 j} \leq K_{j}\|x\|_{2}\|y\|_{2(j-1)}, x \in H^{2}(X, \mathbf{R}), y \in H^{2(j-1)}(X, \mathbf{R})
$$

for $j=2, \ldots, n$. The above inequalites yield

$$
\left|\phi_{m_{1}} \cdots \phi_{m_{n}}[X]\right| \leq K \prod_{i=1}^{n}\left\|\left(F^{*}\right)^{m_{i}-m_{i-1}}\right\|_{2(n-i+1)}, m_{0}=0 \leq m_{1} \leq \cdots \leq m_{n}<k
$$

for some fixed K. Let $\rho_{i}(F)$ be the spectral radius of $F^{*}: H^{i}(X, \mathbf{R}) \rightarrow H^{i}(X, \mathbf{R})$ for $i=0, \ldots, 2 n$. Note that $\rho(F)=\max _{0 \leq i \leq 2 n} \rho_{i}(F)$. Observe next the that for any $\epsilon>0$ there exists $\kappa(\epsilon)$ so that

$$
\left\|\left(F^{*}\right)^{m}\right\|_{i} \leq \kappa(\epsilon)(\rho(F)+\epsilon)^{m}, m=0,1, \ldots, i=1, \ldots, 2 n .
$$

Combine all the above inequalities with (2.2) to get the inequality $\operatorname{lov}(\Gamma(F)) \leq \log (\rho(F)+$ ϵ). As $\epsilon>0$ was arbitrary small we deduce that $\operatorname{lov}(\Gamma(F)) \leq \log \rho(F)$. Combine this inequality with Theorem 1.3 to deduce that $h(F) \leq \operatorname{lov}(\Gamma(F)) \leq \log \rho(F)$. Yomdin's inequality $h(F) \geq \log \rho(F)[\mathbf{9}]$ yields the equality $h(F)=\operatorname{lov}(\Gamma(F)=\log \rho(F) . \diamond$.

A sketchy proof of Theorem 2.1 was given in [3]. Assume that $X \subset M$ is an irreducible complex subvariety of dimension n in a compact Kähler manifold M. Let $F: X \rightarrow X$ be a continuous map so that the graph $\Gamma(F) \subset X \times X$ is an irreducible complex variety of dimension n. Let $\rho(F)$ be the spectral radius of $F^{*}: H^{*}(X, \mathbf{R}) \rightarrow H^{*}(X, \mathbf{R})$. We then can apply all the arguments of Theorem 2.1 except Yomdin's theorem. Hence, we deduce

Theorem 2.4. Let M be a Kähler manifold and $X \subset M$ be a complex irreducible variety. Assume that $F: X \rightarrow X$ be a continuous map such that $\Gamma(F) \subset X \times X$ is a complex subvariety. Then

$$
h(F) \leq \operatorname{lov}(\Gamma(F)) \leq \log \rho(F) .
$$

In [3] I proved the above theorem in the case that X is a projective variety and F is a continuous rational map. If in addition F is a regular rational map then $h(F)=\log \rho(F)$.

§3. Upper bounds on the entropy of finite algebraic maps

Let $\mathbf{C P}^{N}$ be the N dimenisonal complex projective space and $\Gamma \subset \mathbf{C P}^{N} \times \mathbf{C P}^{N}$ be an irreducible subvariety. Denote by $\pi_{i}^{\prime}\left(\Gamma^{\infty}\right)$ the projection of Γ^{∞} on the $i-t h$ component. Clearly, $\pi_{i}^{\prime}\left(\Gamma^{\infty}\right) \supset \pi_{i+1}^{\prime}\left(\Gamma^{\infty}\right), i=2, \ldots$, . Hence, $\pi_{i}^{\prime}\left(\Gamma^{\infty}\right)=X, i=k, k+1, \ldots$, for some $k \geq 1$. Here X is an irreducible subvariety of $\mathbf{C} \mathbf{P}^{N}$. Let $\Gamma_{1}=\Gamma \cap X \times X$. It then follows that Γ_{1} is an irreducible subvariety and

$$
h(\Gamma)=h\left(\left.\sigma\right|_{\Gamma^{\infty}}\right)=h\left(\left.\sigma\right|_{\Gamma_{1}^{\infty}}\right)=h\left(\Gamma_{1}\right) .
$$

Since I am interested in $h(\Gamma)$ in what follows I assume that $\pi_{1}(\Gamma)=\pi_{2}(\Gamma)=X$ and the complex dimension of X and Γ is n. In order to use Theorem 1.3 one needs to estimate $\operatorname{vol}\left(\Gamma^{k}\right)$. For that purpose it is convenient to view Γ^{k} as a subvariety of $\left(\mathbf{C P}^{N}\right)^{k}$.

Let $U \subset \mathbf{C} \mathbf{P}^{N}$ be an irreducible variety of dimension d. Then $\operatorname{vol}(U)=\operatorname{deg}(U)$ is the number of intersection points of the zero dimensional variety $U \cap H^{d}$. Here $H^{j} \subset \mathbf{C P}^{N}$ is a hyperplane of codimension j in general position for $j=0, \ldots, n$. Thus $\operatorname{vol}(U)=[U] \cdot\left[H^{d}\right]$. As H^{d} is an intersection of $d H^{1}$ in general position we have also the formula $\operatorname{vol}(U)=$ $[U] \cdot\left[H^{1}\right] \cdots\left[H^{1}\right]$. Let $1 \leq k, 1 \leq i \leq k$ be given. Set

$$
H^{i, k}=\mathbf{C} \mathbf{P}^{N} \times \cdots \times \mathbf{C P}^{N} \times H^{1} \times \mathbf{C} \mathbf{P}^{N} \times \cdots \mathbf{C} \mathbf{P}^{N} \subset\left(\mathbf{C P}^{N}\right)^{k}
$$

to be a codimension 1 variety with the factor H^{1} on the $i-t h$ component in general position. Let $U \subset\left(\mathbf{C P}^{N}\right)^{k}$ be an irreducible variety of dimension d. For $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{d} \leq k$ let $[U] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{d}, k}\right]$ be the number of points in the intersection $U \cap H^{i_{1}, k} \cap \cdots \cap H^{i_{d}, k}$. This number can be zero. For example, if some number j appears more than N times in the sequence i_{1}, \ldots, i_{d} then the above intersection is empty since $H^{i_{1}, k} \cap \cdots \cap H^{i_{d}, k}=\emptyset$.

Lemma 3.1. Let $U \subset\left(\mathbf{C} \mathbf{P}^{N}\right)^{k}$ be an irreducible variety of dimension d. Then

$$
\operatorname{vol}(U)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{d} \leq k}[U] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{d}, k}\right] .
$$

Proof. Assume first that $U=U_{1} \times U_{2} \times \cdots U_{k}$ where $U_{i} \subset \mathbf{C} \mathbf{P}^{N}$ is an irreducible variety of dimension d_{i} for $i=1, \ldots, k$. Then $\operatorname{vol}(U)=\operatorname{vol}\left(U_{1}\right) \cdots \operatorname{vol}\left(U_{k}\right)$. A straightforward computation shows that the lemma holds in this case. I claim that this simple case implies the lemma in general. Indeed, recall that

$$
H_{2 j}\left(\mathbf{C P}^{N}, \mathbf{Z}\right) \sim \mathbf{Z}, j=0, \ldots, N, H_{2 j-1}\left(\mathbf{C P}^{N}, \mathbf{Z}\right)=0, j=1, \ldots, N
$$

Now use the standard product formula for $H_{*}\left(\left(\mathbf{C P}^{N}\right)^{k}, \mathbf{Z}\right)$ to deduce that any any analytic cycle in $H_{2 d}\left(\left(\mathbf{C P}^{N}\right)^{k}, \mathbf{Z}\right)$ is a sum of cycles of the form $U_{1} \times \cdots U_{k}$.

Corollary 3.2. Let $\Gamma \subset \mathbf{C P}^{N} \times \mathbf{C P}^{N}$ an irreducible complex variety so that Γ^{k} is an irreducible variety of dimension $n \leq N$ for $k=2, \ldots$, . Then

$$
\operatorname{vol}\left(\Gamma^{k}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \leq k}\left[\Gamma^{k}\right] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{n}, k}\right]
$$

Theorem 3.3. Let $\Gamma \subset \mathbf{C P}^{1} \times \mathbf{C P}^{1}$ be an irreducible curve whose projection on the first and second coordinate gives $\mathbf{C P}{ }^{1}$. Assume that in some chart $\mathbf{C}^{2} \subset \mathbf{C P}{ }^{1} \times \mathbf{C P}{ }^{1}$ the curve Γ is given by $p(x, y)=0,(x, y) \in \mathbf{C}^{2}$, where $p(x, y)$ is an irreducible polynomial depending explicitly on x and y. Then

$$
h(\Gamma) \leq \operatorname{lov}(\Gamma)=\log \max \left(\operatorname{deg}_{x}(p), \operatorname{deg}_{y}(p)\right)
$$

Proof. Let $d_{1}=\operatorname{deg}_{y}(p), d_{2}=\operatorname{deg}_{x}(p)$. Thus, the projection of $\tau_{i}: \Gamma \rightarrow \mathbf{C P}^{1}$ on the $i-t h$ coordinate is d_{i} branched covering for $i=1,2$. Next observe that $\Gamma^{k} \cap H^{i, k}$ means that we specify the $i-t h$ coordinate of Γ^{k}. Then we have d_{1}, d_{2} possible choices for the coordinate $i+1, i-1$ respectively for Γ^{k}. Continuing in this manner one deduces that $\left[\Gamma^{k}\right] \cdot\left[H^{i, k}\right]=d_{1}^{k-i} d_{2}^{i-1}$. Thus,

$$
\operatorname{vol}\left(\Gamma^{k}\right)=\sum_{i=1}^{k} d_{1}^{k-i} d_{2}^{i-1}
$$

In particular,

$$
\left(\max \left(d_{1}, d_{2}\right)\right)^{k-1}<\operatorname{vol}\left(\Gamma^{k}\right) \leq k\left(\max \left(d_{1}, d_{2}\right)\right)^{k-1}
$$

and the equality for $\operatorname{lov}(\Gamma)$ is established. Use Theorem 1.3. to complete the proof of the theorem. \diamond

I conjecture that under the assumptions of Theorem 3.3 the equality $h(\Gamma)=\operatorname{lov}(\Gamma)$ holds. I now show how to generalize Theorem 3.3 to proper graphs Γ.

Definition 3.4. Let $\Gamma \subset \mathbf{C P}^{N} \times \mathbf{C P}^{N}$ be an irreducible variety of dimension n. Then Γ is called proper if the following conditions hold. There exist an irreducible smooth variety $X \subset \mathbf{C P}{ }^{N}$ of dimension n so that the projections $\tau_{i}: \Gamma \rightarrow X$ on the $i-$ th component of $\mathbf{C} \mathbf{P}^{N} \times \mathbf{C P}^{N}$ is finite to one branched covering of degree d_{i} for $i=1,2$.

Note that Γ satisfying the assumptions of Theorem 3.3 is proper. Assume the assumptions of Definition 3.4. I call $\Gamma \subset X \times X$ a graph of a finite algebraic function. As X is triangulable, e.g. [7], it follows that X is a finite CW complex. As in the previous section I denote by $H_{*}(X, \mathbf{F}), H^{*}(X, \mathbf{F}), \mathbf{F}=\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ the total homology and cohomology groups of X. Let $H_{2 j, a}(X, \mathbf{F}) \subset H_{2 j}(X, \mathbf{F}), j=0, \ldots, n$, be the subgroup generated by all varieties $Y \subset X$ of complex dimension j. Let \mathbf{R}_{+}be the semiring of nonnegative reals. For the one of the above rings \mathbf{F} set $\mathbf{F}_{+}=\mathbf{F} \cap \mathbf{R}_{+}$to be the corresponding semirings. Let $K_{2 j, a}\left(X, \mathbf{F}_{+}\right)$be the cone generated by the subvarieties of complex dimension j with coefficients in \mathbf{F}_{+}. Thus

$$
H_{2 j, a}(X, \mathbf{F})=K_{2 j, a}\left(X, \mathbf{F}_{+}\right)-K_{2 j, a}\left(X, \mathbf{F}_{+}\right), j=0, \ldots, n, H_{*, a}(X, \mathbf{F})=\sum_{j=0}^{n} \oplus H_{2 j, a}(X, \mathbf{F}) .
$$

I now show that Γ induces a linear operator $\Gamma^{*}: H_{*, a}(X, \mathbf{F}) \rightarrow H_{*, a}(X, \mathbf{F})$. More precisely Γ^{*} is positive with respect to the cone $K_{*, a}\left(X, \mathbf{F}_{+}\right)$. That is

$$
\Gamma^{*}: K_{2 j, a}\left(X, \mathbf{F}_{+}\right) \rightarrow K_{2 j, a}\left(X, \mathbf{F}_{+}\right), j=0, \ldots, n .
$$

Let $V \subset X$ be an irreducible subvariety of dimension j. Then $\tau_{2}\left(\tau_{1}^{-1}(V)\right) \subset X$ is a variety whose each irreducible component is of dimension j. Set

$$
\Gamma^{*}([V])=\left[\tau_{2}\left(\tau_{1}^{-1}(V)\right] .\right.
$$

It is straightforward to show that Γ^{*} is linear. Let $\rho_{2 j, a}(\Gamma)$ be the spectral radius of $\Gamma^{*}: H_{2 j, a}(X, \mathbf{R}) \rightarrow H_{2 j, a}(X, \mathbf{R}), j=0, \ldots, n$. Note that

$$
\rho_{0, a}(\Gamma)=d_{1}, \rho_{2 n, a}(\Gamma)=d_{2} .
$$

Set $\rho_{a}(\Gamma)=\max _{0 \leq j \leq n} \rho_{2 j, a}(\Gamma)$. Finally I define $L: H_{2 j, a}(X, \mathbf{F}) \rightarrow H_{2 j-2, a}(X, \mathbf{F})$ to be the Lefschetz map which is induced by the hyperplane section. That is, let $V \subset X$ be an irreducible variety of dimension j. Then $L([V])=\left[V \cap H^{1}\right]$. Note that L is positive with respect to the cone $K_{*, a}\left(X, \mathbf{F}_{+}\right)$.

Theorem 3.5. Let $\Gamma \subset \mathbf{C P}^{N} \times \mathbf{C P}^{N}$ be a proper irreducible variety. Then

$$
\operatorname{lov}(\Gamma) \leq \log \rho_{a}(\Gamma)
$$

Proof. Assume the notations of Definition 3.4. I claim that

$$
\begin{aligned}
& {\left[\Gamma^{k}\right] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{n}, k}\right]=} \\
& d_{2}^{i_{1}-1} d_{1}^{k-i_{n}} L\left(\Gamma^{*}\right)^{i_{n}-i_{n-1}} \cdots L\left(\Gamma^{*}\right)^{i_{3}-i_{2}} L\left(\Gamma^{*}\right)^{i_{2}-i_{1}}\left(\left[X \cap H^{1}\right]\right), 1 \leq<i_{1}<i_{2}<\cdots<i_{n} \leq k .
\end{aligned}
$$

Indeed, the above formula without the factor $d_{2}^{i_{1}-1} d_{1}^{k-i_{n}}$ determines the number of points when we project this intersection on the components i_{1}, \ldots, i_{n}. As all the hyperplanes are in general positions this is exactly the number of distinct points of the above intersection when we project it on the $i_{n}-i_{1}+1$ consequitive components $i_{1}, i_{1}+1, \ldots, i_{n}$. When we advance from the component i_{n} to the $k-t h$ component we pick the factor $d_{1}^{k-i_{n}}$. When we decrease from the $i_{1}-t h$ component to the first component we pick up the factor $d_{2}^{i_{1}-1}$. This proves the above formula for the distinct i_{1}, \ldots, i_{n}. Similar formulas hold if some indices coincide. As in the proof of Theorem 2.1 introduce norms on the spaces $H_{2 j, a}(X, \mathbf{R}), j=0, \ldots, n$. The arguments given in the proof of Theorem 2.1 yield that for any $\epsilon>0$ there exists $\kappa(\epsilon)$ so that

$$
\left[\Gamma^{k}\right] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{n}, k}\right] \leq \kappa(\epsilon)\left(\rho_{a}(\Gamma)+\epsilon\right)^{k} .
$$

Hence

$$
\operatorname{vol}\left(\Gamma^{k}\right) \leq k^{n} \kappa(\epsilon)\left(\rho_{a}(\Gamma)+\epsilon\right)^{k}
$$

and the theorem follows. \diamond
I conjecture that under the assumptions of Theorem 3.5

$$
h(\Gamma)=\operatorname{lov}(\Gamma)=\log \rho_{a}(\Gamma)
$$

§4. Upper bounds on the entropy of nonfinite algebraic maps

In this section I assume that $\Gamma \subset \mathbf{C P}{ }^{N} \times \mathbf{C P}^{N}$ is an irreducible variety of dimension n so that there exists an irreducible variety $X \subset \mathbf{C} \mathbf{P}^{N}$ of dimension n such that $\tau_{i}: \Gamma \rightarrow X$ on the $i-t h$ component of $\mathbf{C} \mathbf{P}^{N} \times \mathbf{C} \mathbf{P}^{N}$ is a branched convering of degree d_{i} for $i=1,2$. I call Γ the graph of an algebraic function in X. Assume first that τ_{2} is finite to one. Then the linear operator $\Gamma^{*}: H_{*, a}\left(X, \mathbf{F}_{+}\right) \rightarrow H_{*, a}\left(X, \mathbf{F}_{+}\right)$is well defined and it is straightforward to show that Theorem 3.5 applies in this case. Assume now that τ_{1} is finite to one. Then one can define $\tilde{\Gamma}^{*}: H_{*, a}\left(X, \mathbf{F}_{+}\right) \rightarrow H_{*, a}\left(X, \mathbf{F}_{+}\right)$by pushing from the second factor of $X \times X$ to the first. Let $\tilde{\rho}_{a}(\Gamma)$ be the spectral radius of $\tilde{\Gamma}^{*}$. It then follows that one has an analogous inequality

$$
\operatorname{lov}(\Gamma) \leq \log \tilde{\rho}_{a}(\Gamma)
$$

It is not hard to show (by pulling back) that if τ_{1}, τ_{2} are finite to one then $\tilde{\rho}_{a}(\Gamma)=\rho_{a}(\Gamma)$. In what follows I assume that neither τ_{1} nor τ_{2} are finite to one branched covering.

It is still possible to define $\Gamma^{*}: K_{2 j, a}\left(\mathbf{F}_{+}\right) \rightarrow K_{2 j, a}\left(\mathbf{F}_{+}\right) \rightarrow$ by pushing forward varieties $V \subset X$ in general position. More precisely, assume that there exist subvarieties $S_{1}, S_{2} \subset X$ so that

$$
\tau_{i}: \Gamma \backslash \tau_{i}^{-1}\left(S_{i}\right) \rightarrow X \backslash S_{i}
$$

are d_{i} covering for $i=1,2$. Let $V \subset X, V \backslash S_{1} \neq \emptyset$ be an irreducible variety of dimension j. I say that V is in general position with respect to S_{1}. It then follows that $V^{\prime}=$ $\operatorname{Closure}\left(\tau_{2}\left(\tau_{1}^{-1}\left(V \backslash S_{1}\right)\right)\right)$ is a subvariety whose each irreducible component is of dimension j. I then let $\Gamma^{*}([V])=\left[V^{\prime}\right]$. Note that Γ^{*} is a linear functional on the subcone $K^{\prime} \subset$ $K_{2 j, a}\left(\mathbf{F}_{+}\right)$generated by all V which are in general position with respect $S_{1} . V$ is said to be a special irreducible variety with respect to S_{1} if the homology class [V] is not contained in the cone K^{\prime}. I let $\Gamma^{*}([V])=0$ for all special irreducible varieties with respect to S_{1}. This defines Γ^{*} on $H_{*, a}(X, \mathbf{F})$. Let $\rho_{2 j, a}(\Gamma), j=0, \ldots, n, \rho_{a}(\Gamma)$ be defined as in the previous section. For $k \geq 1$ define $\Gamma_{k} \subset X \times X$ to be the graph obtained by projecting Γ^{k+1} on the first and the last coordinate. (Note that $\Gamma_{1}=\Gamma=\Gamma^{2}$.) Let $\Gamma_{k}^{*}: H_{*, a}(X, \mathbf{F}) \rightarrow H_{*, a}(X, \mathbf{F})$ be defined as above. I claim that

$$
\Gamma_{k}^{*} \leq\left(\Gamma^{*}\right)^{k}, k=2, \ldots
$$

where the inequalities are with respect to the cone $K_{*, a}\left(X, \mathbf{R}_{+}\right)$. This follows from the fact that Γ_{k}^{*} picks up more special irreducible varieties on which Γ_{k}^{*} vanishes. See more detailed discussion on this matter in [2]. The same argument yields

$$
\begin{equation*}
\Gamma_{p+k}^{*} \leq \Gamma_{p}^{*} \Gamma_{k}^{*}, p, k=1,2, \ldots, \tag{4.1}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\rho\left(\Gamma_{p k}^{*}\right) \leq \rho\left(\Gamma_{p}^{*}\right)^{k}, p, k=1,2, \ldots, \tag{4.2}
\end{equation*}
$$

Apply the arguments of the proof of Theorem 3.5 to deduce.
Theorem 4.3. Let $\Gamma \subset X \times X, X \subset \mathbf{C} \mathbf{P}^{N}$ be a graph of an algebraic function on X. Then

$$
\operatorname{vol}\left(\Gamma^{\infty}\right) \leq \log \rho_{a}(\Gamma)
$$

Let $\sigma: \Gamma^{\infty} \rightarrow \Gamma^{\infty}$ be the shift map. Then $\sigma^{k}: \Gamma^{\infty} \rightarrow \Gamma^{\infty}$ splits to k copies of the shift map applied to the graph Γ_{k}^{∞}. Therefore

$$
h\left(\sigma^{k} \mid \Gamma^{\infty}\right)=k h\left(\sigma \mid \Gamma^{\infty}\right)=h\left(\sigma \mid \Gamma_{k}^{\infty}\right) .
$$

See for example [8]. Observe next that $\rho_{a}\left(\Gamma_{k}\right)=\rho\left(\Gamma_{k}^{*}\right)$. Combine (4.2) with Theorems 4.3 and 1.3 to deduce

Corollary 4.4. Let the assumptions of Theorem 4.2 hold. Then

$$
h(\Gamma) \leq \liminf _{k \rightarrow \infty} \frac{\log \rho_{a}\left(\Gamma_{k}\right)}{k} .
$$

Actually, the inequality (4.1) yields that liminf can be replaced by lim. I conjecture that $h(\Gamma)$ is equal to the liminf.

I close this section with another estimate on $\operatorname{lov}(\Gamma)$. Assume that X and Γ are contained in the following complete intersections

$$
\begin{align*}
& X \subset \tilde{X}=\left\{x: x \in \mathbf{C}^{N+1}, f_{i}(x)=0, i=1, \ldots, N-n\right\}, \Gamma \subset \tilde{\Gamma}= \\
& \left\{(x, y):(x, y) \in \mathbf{C}^{N+1}, f_{i}(x)=f_{i}(y)=0, i=1, \ldots, N-n, g_{j}(x, y)=0, j=1, \ldots, n\right\} \tag{4.5}
\end{align*}
$$

I assume that $f_{1}(x), \ldots, f_{N-n}(x)$ are homogeneous polynomials in x and $g_{1}(x, y), \ldots, g_{n}(x, y)$ are bihomogeneous polynomials in (x, y). Note that if $X=\mathbf{C} \mathbf{P}^{N}$ then $\tilde{\Gamma}$ is given only by the polynomials g_{1}, \ldots, g_{N}. Let $f(x), g(x, y)$ be arbitrary polynomials in the variables $x, y \in \mathbf{C}^{k}$. Then

$$
\operatorname{deg}(f), \operatorname{deg}_{x}(g), \operatorname{deg}_{y}(g), \operatorname{deg}(g)=\max \left(\operatorname{deg}_{x}(g), \operatorname{deg}_{y}(g)\right)
$$

are the corresponding degrees the above polynomials.
Theorem 4.6. Let $\Gamma \subset X \times X, X \subset \mathbf{C P}^{N}$ be a graph of an algebraic function on X. Assume that X, Γ are contained in the complete intersections given in (4.5). Then

$$
\operatorname{lov}(\Gamma) \leq \sum_{i=1}^{N-n} \log \operatorname{deg}\left(f_{i}\right)+\sum_{j=1}^{n} \log \operatorname{deg}\left(g_{j}\right) .
$$

Proof. Note that Γ^{k} are contained in the complete intersection given by
$f_{i}\left(x^{p}\right)=0, g_{j}\left(x^{q}, x^{q+1}\right), x^{p} \in \mathbf{C}^{N+1}, p=1, \ldots, k, q=1, \ldots, k-1, i=1, \ldots, N-n, j=1, \ldots, n$.
Observe next that each $H^{i, k}$ is given by one linear equation. Bezout theorem yields that

$$
\left[\Gamma^{k}\right] \cdot\left[H^{i_{1}, k}\right] \cdots\left[H^{i_{n}, k}\right] \leq\left(\prod_{i=1}^{N-n} \operatorname{deg}\left(f_{i}\right)\right)^{k}\left(\prod_{j=1}^{n} \operatorname{deg}\left(g_{j}\right)\right)^{k-1}
$$

Hence, $\operatorname{vol}\left(\Gamma^{k}\right)$ is at most k^{n} times the right-hand side of the above inequality. The proof of the theorem is completed.

References

[1] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin 1969.
[2] S. Friedland, Entropy of polynomial and rational maps, Annals Math. 133 (1991), 359-368.
[3] S. Friedland, Entropy of rational selfmaps of projective varieties, Advanced Series in Dynamical Systems Vol. 9, pp. 128-140, World Scientific, Singapore 1991.
[4] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer-Verlag, Berlin 1984.
[5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley 1978.
[6] M. Gromov, On the entropy of holomorphic maps, preprint, 1977.
[7] S. Lojasiewicz, Triangulation of semi-analytic sets, Annali Scu. Norm. Sup. Pisa, Sc. Fis. Mat. Ser. 3, v. 18, fasc. 4 (1964), 449-474.
[8] P. Walters, An Introduction to Ergodic Theory, Springer 1982.
[9] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57(1987), 285-299.

