Entropy of algebraic maps

Shmuel Friedland Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago Chicago, Illinois 60680

Abstract

In this paper I give upper bounds for the entropy of algebraic maps in terms of certain homological data induced by their graphs.

AMS classification 28D20, 30D05, 54H20

§0. Introduction

Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed set. Set

$$X^{\infty} = \prod_{1}^{\infty} X_{i}, \ X_{i} = X, \ i = 1, ...,$$
$$\Gamma^{\infty} = \{ (x_{i})_{1}^{\infty}, \ (x_{i}, x_{i+1}) \in \Gamma, \ i = 1, 2, ... \}.$$

Then $X^{\infty}, \Gamma^{\infty}$ are compact metric spaces in the Tychonoff topology. Let $\sigma: X^{\infty} \to X^{\infty}$ be the shift map. Clearly, $\sigma: \Gamma^{\infty} \to \Gamma^{\infty}$. The dynamics of $\sigma|_{\Gamma^{\infty}}$ is the the dynamics induced by the graph Γ . Let $h(\Gamma) = h(\sigma|_{\Gamma^{\infty}})$ be the entropy of σ restricted to Γ^{∞} . Assume that X is a finite set set. Then $\sigma|_{\Gamma}$ is a subshift of a finite type which is a well studied subject, e.g. [8]. In this paper I study the case where X is a compact analytic space of complex dimension n and $\Gamma \subset X \times X$ is a graph of a dominating algebraic function. That is, $\Gamma \subset X \times X$ is a closed irreducible complex subspace of dimension n such that the projection of Γ on the its first and the second component is X. I am mainly concerned with upper estimates of $h(\Gamma)$. Following Gromov [6] and Friedland [3] I show $h(\Gamma) \leq lov(\Gamma)$. Here $lov(\Gamma)$ is the volume growth of the projections of Γ^{∞} on the first k coordinates, k = 2, ...,. In the case that X is Kähler and Γ is the graph of a holomorphic map $F: X \times X$ I prove rigorously that $h(F) = h(\Gamma(F)) = log\rho(F)$ where $\rho(F)$ is the spectral radius of the induced action of F on the homology groups of X. (A sketchy proof is given in [3].) Next I consider finite algebraic maps, i.e. where Γ, X are projective varieties and the projections of Γ on the first and the second factor is finite to one map. I show that Γ induces a linear operator on the analytic homology of X, i.e. the homology groups generated by analytic cycles. Let $\rho_a(\Gamma)$ be the spectral radius of this linear operator. I then show that $lov(\Gamma) \leq log\rho_a(\Gamma)$. I conjecture that as in the Kähler case $h(\Gamma) = lov(\Gamma) = log\rho_a(\Gamma)$. In the last section I discuss the case where the projections of Γ on the first and the second coordinates are branched nonfinite to one covering. One still has the inequality $h(\Gamma) \leq lov(\Gamma) \leq log\rho_a(\Gamma)$. By iterating this inequality one can improve the upper bound on $h(\Gamma)$ as in the case of rational maps $F: X \to X$ discussed in [2].

$\S1$. Volumes of certain graphs

Let X be a compact metric space with a metric $d : X \times X \to \mathbf{R}_+$. Then X^{∞} is a compact metric space with respect to the metric:

$$\delta((x_i)_1^{\infty}, (y_i)_1^{\infty}) = \max_{1 \le i} \frac{d(x_i, y_i)}{2^{i-1}}, \ (x_i)_1^{\infty}, (y_i)_1^{\infty} \in X^{\infty}.$$

Let $\pi_m : X^{\infty} \to X^m = \prod_1^m X_i$ be the projection on the first *m* components. Recall that the shift map $\sigma : X^{\infty} \to X^{\infty}$ is a continuous map given by $\sigma((x_i)_1^{\infty}) = (x_i)_2^{\infty}$. Assume that $\Gamma \subset X \times X$ is an arbitrary closed set. It then follows that Γ^{∞} is a compact set such that $\sigma : \Gamma^{\infty} \to \Gamma^{\infty}$. In what follows I exclude the noninteresting case $\Gamma^{\infty} = \emptyset$. Let $h(\Gamma) = h(\sigma, \Gamma^{\infty})$ be the entropy of $\sigma | \Gamma$. Assume that $F : X \to X$ is a continuous map. Set $\Gamma(F) = \{(x, y) : y = F(x), x \in X\}$ to be the graph of F. It then follows that h(F)-the entropy of is equal to $h(\Gamma(F))$ [2].

Assume that X is a compact quasi Riemannian manifold. That is, there exists an open finite cover $\mathcal{U} = \bigcup_{i=1}^{p} U_i, U_i \subset X, i = 1, ..., p$, such that the following conditions hold. Each U_i is a Riemannian manifold which induces a metric $d_i(\cdot, \cdot) : U_i \times U_i \to \mathbf{R}_+$. U_i is locally complete with respect to d_i . On $U_i \cap U_j$ the metrics d_i, d_j are equivalent. That is,

$$d_j(x,y) \le A_{ji}d_i(x,y), d_i(x,y) \le A_{ij}d_j(x,y), \forall x, y \in U_i \cap U_j, 0 < A_{ij}, A_{ji}.$$

Thus X is a compact Riemannian manifold if p = 1. For $I = \{i_1, ..., i_k\}, 1 \le i_1 < i_2 < \cdots < i_k \le p$ let $U_I = \bigcap_{j \in I} U_j$. Assume that $x, y \in X$. Set $I(x, y) = \{j : 1 \le j \le p, x, y \in U_j\}$. Let I(x) = I(x, x). If I(x, y) is nonempty define

$$d(x,y) = \min_{j \in I(x,y)} d_j(x,y).$$

A straightforward argument shows that our assumptions yield that the above metric can be extended to $X \times X$. Note that

$$d(x,y) \le d_i(x,y) \le Ad(x,y), x, y \in U_i, A = \max_{1 \le i \ne j \le p} A_{ij}.$$

Let $Y \subset X$. Then, for $\emptyset \neq I \subset \{1, ..., p\}$, set $Y_I = \{y : y \in Y, I(y) = I\}$. Note that Y_I may be empty. Observe that

$$Y_I \cap Y_J = \emptyset \text{ for } I \neq J, Y = \bigcup_{\emptyset \neq I \subset \{1, \dots, p\}} Y_I.$$

It then follows that the sets $\emptyset \neq Y_I, \emptyset \neq I \subset \{1, ..., p\}$, forms a partition of Y. Consider a nonempty set Y_I . For $i \in I$ let $dim_i(Y_I)$ be the Hausdorff dimension of Y_I with respect to the Riemannian metric on U_i . As on U_I all the Riemannian metrics are equivalent we have that $dim_i(Y_I) = t, i \in I$. Thus, $dim(Y_I) = t$ is the Hausdorff dimension of Y_I . Let $d \geq dim(Y_I)$. For $d > dim(Y_I)$ let $vol_d(Y_I) = 0$. For $d = dim(Y_I)$ denote by $vol_d^{(i)}(Y_I)$ the d-volume of Y_I with respect to the Riemannian metric on U_i . Set

$$vol_d(Y_I) = min_{i \in I} vol_d^{(i)}(Y_I).$$

Define $dim(Y) = max_{Y_I \neq \emptyset} dim(Y_I)$. Assume that d = dim(Y). Then the volume of Y is given by

$$vol(Y) = \sum_{Y_I \neq \emptyset} vol_d(Y_I).$$

Consider the space X^k . Clearly, X^k is a quasi Riemannian manifold with an open induced by the product $\mathcal{U}^p = \mathcal{U} \times \cdots \times \mathcal{U}$. Each element of the open cover $U_{j_1} \times \cdots \times U_{j_k}$, $1 \leq j_i \leq p, i = 1, ..., k$, is a Riemannian manifold endowed with the Riemannian product metric. Let $B_k(a, r) \subset X^k$ be an open ball of radius r centered at a with respect to the induced metric on X^k by X:

$$B_k(a,r) = \{x, \ x = (x_i)_1^k, a = (a_i)_1^k \in X^k, \ \sum_1^k d(x_i, a_i)^2 < r^2.\}$$

In what follows I assume that $\Gamma \subset X \times X$ is a closed set with an integer Hausdorff dimension n > 0. Let $vol(\Gamma^k) \leq \infty$ be the *n* dimensional volume of Γ^k . I shall assume:

$$vol(\Gamma^k) < \infty, \ k = 2, ...,$$

This assumption imply that Γ^k has Hausdorff dimension n for k = 2, ...,Set

$$lov(\Gamma) = \limsup_{k \to \infty} \frac{log \ vol(\Gamma^k)}{k},$$

$$Dens_{\epsilon}(\Gamma^k) = \inf_{a \in \Gamma^k} \ vol(\Gamma^k \cap B_k(a, \epsilon)),$$

$$lodn_{\epsilon}(\Gamma) = \liminf_{k \to \infty} \frac{log \ Dens_{\epsilon}(\Gamma^k)}{k},$$

$$lodn(\Gamma) = \lim_{\epsilon \to 0} lodn_{\epsilon}(\Gamma).$$

Lemma 1.1 Let X be a compact quasi Riemannian manifold, $\Gamma \subset X \times X$ a closed set of integer Hausdorff dimension n satisfying $vol(\Gamma^k) < \infty, k = 2, ...,$ Then

$$h(\Gamma) \leq lov(\Gamma) - lodn(\Gamma).$$

Proof. Let

$$\begin{split} \delta_j(\xi,\eta) &= \max_{0 \le l \le j-1} \delta(\sigma^{\circ l}(\xi), \sigma^{\circ l}(\eta)) = \\ &\max_{1 \le i} \frac{d(x_i, y_i)}{2^{(i-j)^+}}, \; \xi = (x_i)_1^{\infty}, \eta = (y_i)_1^{\infty} \in X^{\infty}, j = 1, \dots . \end{split}$$

Here, $a^+ = max(a, 0)$, $a \in \mathbf{R}$. Fix $\epsilon > 0$. Let $L(k, \epsilon, \Gamma^{\infty})$ be the maximal size of (k, ϵ) separated set in Γ^{∞} . That is for any finite set $E \subset \Gamma^{\infty}$ with the property $\xi, \eta \in E, \xi \neq \eta \Rightarrow \delta_k(\xi, \eta) > \epsilon$ we have the inequality $Card(E) \leq L(k, \epsilon, \Gamma^{\infty})$. Furthermore, the equality sign holds for at least one such a set E. The standard definition of $h(\sigma, \Gamma)$ is [8, Ch.7]:

$$h(\sigma, \Gamma) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \frac{\log L(k, \epsilon, \Gamma^{\infty})}{k}$$

Let $E(k,\epsilon,\Gamma^{\infty})$ be a (k,ϵ) separated set of cardinality $L(k,\epsilon,\Gamma^{\infty})$. It then follows that

$$\max_{1 \le i \le k+K(\epsilon)} d(x_i, y_i) > \epsilon, \ \xi = (x_i)_1^\infty \ne \eta = (y_i)_1^\infty \in E(k, \epsilon, \Gamma^\infty), \ K(\epsilon) = \lceil \log_2 D - \log_2 \epsilon \rceil.$$

Here D is the diameter of X. In particular the $L(k, \epsilon, \Gamma^{\infty})$ balls

$$B_{k+K(\epsilon)}(\pi_{k+K(\epsilon)}(\xi),\frac{\epsilon}{2}), \ \xi \in E(k,\epsilon,\Gamma^{\infty})$$

are disjoint. Hence:

$$vol(\Gamma^{k+K(\epsilon)}) \geq L(k,\epsilon,\Gamma^{\infty})Dens_{\frac{\epsilon}{2}}(\Gamma^{k+K(\epsilon)}).$$

Take the logarithm of this inequality, divide by $k + K(\epsilon)$, take limsup of the both sides of this inequality and let ϵ tend to zero to deduce the lemma. \diamond

For a compact Riemannian manifold this lemma is due to Gromov [**Gro**]. Our proof is the proof given in [**3**].

Let M be a complex Kähler manifold with corresponding (1, 1) form ω induced by the Hermitian metric $d\rho^2$. Assume that $X \subset M$ be an irreducible analytic variety of dimension d. If X is smooth then X is Kähler whose (1, 1) form ω' and the corresponding Hermitian metric $d\rho'^2$ are the restriction of ω and $d\rho^2$ respectively. Let Sing(X) be the set of singular points of X. Then $X \setminus Sing(X)$ is Kähler with (1, 1) form ω' and $d\rho'^2$ its Hermitian metric. Since Sing(X) is a proper subvariety of X it follows that for all purposes needed here Xbehaves as Riemannian manifold. First note that the induced metric $d : X \times X \to \mathbf{R}_+$ by the metric $d\rho^2$ in M is the metric induced by $d\rho'^2$ in $X \setminus Sing(X)$ obtained by the completion of this metric to X. Consider next the following stratification of X

$$X_0 = X, X_i = Sing(X_{i-1}), i = 1, ..., k, X_k \neq \emptyset, Sing(X_k) = \emptyset, X = \bigcup_0^k X_i \setminus Sing(X_i).$$

Thus, each $X_i \setminus Sing(X_i)$ is Kähler and has the corresponding (1, 1) form ω_i and the Hermitian metric $d\rho_i^2$ which are the restrictions of ω and $d\rho^2$ respectively to $X_i \setminus Sing(X_i)$.

By the abuse of notation I consider ω_i and $d\rho_i^2$ as the restrictions of ω' and $d\rho'^2$. The following lemma is needed in the sequel.

Lemma 1.2. Let M be a Kähler manifold, $X \subset M$ be an irreducible analytic subvariety. Then, for any positive integer $n, n \leq \dim(X)$ there exists a constant C(n, X) so that the following condition is satisfied. Let $\Gamma \subset X \times X$ be an irreducible analytic subvariety such that $\Gamma = \Gamma^2, \Gamma^k, k = 3, ...,$ have all complex dimension n. Then

$$vol(\Gamma^k \cap B_k(a,\epsilon)) \ge C(n,X)\epsilon^{2n}, k=2,...,.$$

Proof. Assume first that X is smooth. Clearly, Γ^k is an irreducible analytic subvariety of (complex) dimension n. According to [1, Sec. 5.4.19] the above inequality holds. If X is not smooth we trivially have that $\Gamma^k \subset M^k$ and the above inequality still holds. \diamond

Let X, \mathcal{O} be a compact analytic space. Consult with [4] for the properties of complex spaces and with [5] for the properties of complex manifolds and projective varieties needed here. Then one has a finite cover $\mathcal{U} = \bigcup_{1}^{p} U_{i}$ of X such that each $(U_{i}, \mathcal{O}_{i}), \mathcal{O}_{i} = \mathcal{O} | \mathcal{U}_{i}$ is isomorphic to the model complex space $(\tilde{U}_{i}, \tilde{O}_{i})$ which is the sheaf of holomorphic functions over a complex variety $U_{i} \subset \mathbb{C}^{n_{i}}$. (This definition of a complex space is Serre's definition which is not the most general definition, i.e. [4, p'13].) For simplicity of notation I will suppress the reference to the sheaf of a complex space and no ambiguity will arise. I shall assume that X is irreducible, i.e. $X \setminus Sing(X)$ is connected. As explained above one can view each $\tilde{U}_{i} \subset \mathbb{C}^{n_{i}}$ as a Riemannian manifold. It then follows that one can view X as a quasi Riemannian manifold. (To see that consider a cover $\hat{\mathcal{U}} = \bigcup_{1}^{p} \hat{U}_{i}$, $Closure(\hat{U}_{i}) \subset$ $U_{i}, i = 1, ..., p.$) Hence, it is possible to apply all the results obtained so far. Recall that $Y \subset X$ is a complex subspace of X if \tilde{Y}_{i} - the isomorphic image of $Y \cap U_{i}$ in \tilde{U}_{i} is an analytic subvariety of \tilde{U}_{i} . Let $\Gamma \subset X \times X$ be a complex irreducible subspace of dimension n. Define the quantities

$$vol(\Gamma^k), lov(\Gamma), Dens_{\epsilon}(\Gamma^k), lodn_{\epsilon}(\Gamma), lodn(\Gamma)$$

as above. Combine Lemma 1.1 and Lemma 1.2 to deduce

Theorem 1.3. Let X be a compact complex irreducible space. Assume that $\Gamma \subset X \times X$ is a compact complex irreducible subspace. Then $lodn(\Gamma) \ge 0$. Hence $h(\Gamma) \le lov(\Gamma)$.

In the case X is Kähler the above theorem is due to Gromov [6]. Assume that the assumptions of Theorem 1.3 hold. Suppose furthermore that

$$dim(\Gamma) = dim(X), \pi_1(\Gamma) = \pi_2(\Gamma) = X.$$

Then I view $\Gamma \subset X \times X$ as a graph of an algebraic function. Indeed, the projections $\pi_i : \Gamma \to X, i = 1, 2$, are branched covers of degree $d_i, i = 1, 2$. That is, there exists a complex subspace $Y_i \subset X$ such that $\pi_i : X \setminus \pi_i^{-1}(Y_i) \to X \setminus Y_i$ is d_i covering for i = 1, 2.

§2. Entropy of holomorphic selfmaps of a compact Kähler manifold

Let X be a compact Kähler manifold and let ω be the corresponding closed (1, 1) form of X. Denote by

$$H_*(X, \mathbf{F}) = \sum_{0}^{2n} \oplus H_i(X, \mathbf{F}), H^*(X, \mathbf{F}) = \sum_{0}^{2n} \oplus H^i(X, \mathbf{F})$$

be the total homology and cohomology groups of X over a field $\mathbf{F} = \mathbf{Z}, \mathbf{Q}, \mathbf{R}$. Let [X] the fundamental class of X, i.e. the generator of the one dimensional free group $H_{2n}(X, \mathbf{Z})$. Assume that $F: X \to X$ is a holomorphic map. Then

$$F_*: H_*(X, \mathbf{F}) \to H_*(X, \mathbf{F}), F^*: H^*(X, \mathbf{F}) \to H^*(X, \mathbf{F})$$

be the linear operators induced by F. I assume that

$$F_* = Id: H_0(X, \mathbf{F}) \to H_0(X, \mathbf{R}).$$

Let $\rho(F)$ be the spectral radius of $F_*(F^*)$ for $\mathbf{F} = \mathbf{R}$. The above assumptions yield that $\rho(F) \geq 1$. Set $\phi_m = (F^{\circ m})^* \omega$, m = 0, 1, ..., to be the the pull back of ω by the $F^{\circ m}$.

Theorem 2.1. Let X be a compact Kähler manifold of complex dimension n and assume that $F: X \to X$ is a holomorphic map. Then

$$lov(\Gamma(F)) = \limsup_{j \to \infty} \frac{\log |(\sum_{i=0}^{i=j-1} \phi_i)^n([X])|}{j}.$$
 (2.2)

Moreover

$$lov(\Gamma(F)) = h(F) = log\rho(F)$$

Proof. Let ω_k be the induced (1,1) form on X^k . Set $\Gamma = \Gamma(F)$. Then

$$\Gamma^k = \{ (x, F(x), ..., F^{\circ (k-1)}(x)) : x \in X \}.$$

Denote by θ_k the restriction of ω_k to Γ^k . Hence, in terms of the variable x, the restriction of θ_k to the j - th coordinate of Γ^k is ϕ_{j-1} - the pull back of $\omega = \phi_0$ by $F^{\circ j-1}$. Thus

$$\theta_k(x) = \sum_{j=0}^{k-1} \phi_j(x), \ x \in X, \ k = 0, 1, \dots, .$$
(2.3)

So $vol(\Gamma^k) = \frac{1}{n!} \theta_k^n([X])$. We now prove the inequality $lov(F) \leq log\rho(F)$. Clearly

$$\theta_k^n([X]) \le k^n \max_{0 \le m_1 \le m_2 \le \dots \le m_n < k} |\phi_{m_1}\phi_{m_2}\cdots\phi_{m_n}[X]|.$$

Let $\|\cdot\|_j$ be a norm on $H^j(X, \mathbf{R})$ and denote $\|F^*\|_j$ the induced norm of the operator $F^*: H^j(X, \mathbf{R}) \to H^j(X, \mathbf{R})$ for j = 1, ..., 2n. It then follows

$$\|\phi_{m_j}\cdots\phi_{m_n}\|_{2(n-j+1)} = \|(F^*)^{m_j}(\phi_0\cdots\phi_{m_n-m_j})\|_{2(n-j+1)} \le \|(F^*)^{m_j}\|_{2(n-j+1)} \|\phi_0\cdots\phi_{m_n-m_j}\|_{2(n-j+1)}, m_j \le m_p, p = j+1, ..., n$$

Clearly, there exists a constant K_j depending only on the norms $\|\cdot\|_i$, i = 2, 2(j-1), 2j so that

$$||xy||_{2j} \le K_j ||x||_2 ||y||_{2(j-1)}, x \in H^2(X, \mathbf{R}), y \in H^{2(j-1)}(X, \mathbf{R})$$

for j = 2, ..., n. The above inequalities yield

$$|\phi_{m_1} \cdots \phi_{m_n}[X]| \le K \prod_{i=1}^n ||(F^*)^{m_i - m_{i-1}}||_{2(n-i+1)}, m_0 = 0 \le m_1 \le \cdots \le m_n < k$$

for some fixed K. Let $\rho_i(F)$ be the spectral radius of $F^* : H^i(X, \mathbf{R}) \to H^i(X, \mathbf{R})$ for i = 0, ..., 2n. Note that $\rho(F) = \max_{0 \le i \le 2n} \rho_i(F)$. Observe next the that for any $\epsilon > 0$ there exists $\kappa(\epsilon)$ so that

$$||(F^*)^m||_i \le \kappa(\epsilon)(\rho(F) + \epsilon)^m, m = 0, 1, ..., i = 1, ..., 2n.$$

Combine all the above inequalities with (2.2) to get the inequality $lov(\Gamma(F)) \leq log(\rho(F) + \epsilon)$. As $\epsilon > 0$ was arbitrary small we deduce that $lov(\Gamma(F)) \leq log\rho(F)$. Combine this inequality with Theorem 1.3 to deduce that $h(F) \leq lov(\Gamma(F)) \leq log\rho(F)$. Yomdin's inequality $h(F) \geq log\rho(F)$ [9] yields the equality $h(F) = lov(\Gamma(F) = log\rho(F))$.

A sketchy proof of Theorem 2.1 was given in [3]. Assume that $X \subset M$ is an irreducible complex subvariety of dimension n in a compact Kähler manifold M. Let $F: X \to X$ be a continuous map so that the graph $\Gamma(F) \subset X \times X$ is an irreducible complex variety of dimension n. Let $\rho(F)$ be the spectral radius of $F^*: H^*(X, \mathbf{R}) \to H^*(X, \mathbf{R})$. We then can apply all the arguments of Theorem 2.1 except Yomdin's theorem. Hence, we deduce

Theorem 2.4. Let M be a Kähler manifold and $X \subset M$ be a complex irreducible variety. Assume that $F : X \to X$ be a continuous map such that $\Gamma(F) \subset X \times X$ is a complex subvariety. Then

$$h(F) \le lov(\Gamma(F)) \le log\rho(F).$$

In [3] I proved the above theorem in the case that X is a projective variety and F is a continuous rational map. If in addition F is a regular rational map then $h(F) = log\rho(F)$.

$\S3$. Upper bounds on the entropy of finite algebraic maps

Let \mathbb{CP}^N be the *N* dimensional complex projective space and $\Gamma \subset \mathbb{CP}^N \times \mathbb{CP}^N$ be an irreducible subvariety. Denote by $\pi'_i(\Gamma^\infty)$ the projection of Γ^∞ on the i-th component. Clearly, $\pi'_i(\Gamma^\infty) \supset \pi'_{i+1}(\Gamma^\infty), i = 2, ...,$ Hence, $\pi'_i(\Gamma^\infty) = X, i = k, k+1, ...,$ for some $k \ge 1$. Here X is an irreducible subvariety of \mathbb{CP}^N . Let $\Gamma_1 = \Gamma \cap X \times X$. It then follows that Γ_1 is an irreducible subvariety and

$$h(\Gamma) = h(\sigma|_{\Gamma^{\infty}}) = h(\sigma|_{\Gamma^{\infty}}) = h(\Gamma_1).$$

Since I am interested in $h(\Gamma)$ in what follows I assume that $\pi_1(\Gamma) = \pi_2(\Gamma) = X$ and the complex dimension of X and Γ is n. In order to use Theorem 1.3 one needs to estimate $vol(\Gamma^k)$. For that purpose it is convenient to view Γ^k as a subvariety of $(\mathbf{CP}^N)^k$.

Let $U \subset \mathbb{CP}^N$ be an irreducible variety of dimension d. Then vol(U) = deg(U) is the number of intersection points of the zero dimensional variety $U \cap H^d$. Here $H^j \subset \mathbb{CP}^N$ is a hyperplane of codimension j in general position for j = 0, ..., n. Thus $vol(U) = [U] \cdot [H^d]$. As H^d is an intersection of d H^1 in general position we have also the formula vol(U) = $[U] \cdot [H^1] \cdots [H^1]$. Let $1 \le k, 1 \le i \le k$ be given. Set

$$H^{i,k} = \mathbf{CP}^N \times \cdots \times \mathbf{CP}^N \times H^1 \times \mathbf{CP}^N \times \cdots \mathbf{CP}^N \subset (\mathbf{CP}^N)^k$$

to be a codimension 1 variety with the factor H^1 on the i-th component in general position. Let $U \subset (\mathbf{CP}^N)^k$ be an irreducible variety of dimension d. For $1 \leq i_1 \leq i_2 \leq \cdots \leq i_d \leq k$ let $[U] \cdot [H^{i_1,k}] \cdots [H^{i_d,k}]$ be the number of points in the intersection $U \cap H^{i_1,k} \cap \cdots \cap H^{i_d,k}$. This number can be zero. For example, if some number j appears more than N times in the sequence i_1, \ldots, i_d then the above intersection is empty since $H^{i_1,k} \cap \cdots \cap H^{i_d,k} = \emptyset$.

Lemma 3.1. Let $U \subset (\mathbf{CP}^N)^k$ be an irreducible variety of dimension d. Then

$$vol(U) = \sum_{1 \le i_1 \le i_2 \le \dots \le i_d \le k} [U] \cdot [H^{i_1,k}] \cdots [H^{i_d,k}].$$

Proof. Assume first that $U = U_1 \times U_2 \times \cdots \cup U_k$ where $U_i \subset \mathbb{CP}^N$ is an irreducible variety of dimension d_i for i = 1, ..., k. Then $vol(U) = vol(U_1) \cdots vol(U_k)$. A straightforward computation shows that the lemma holds in this case. I claim that this simple case implies the lemma in general. Indeed, recall that

$$H_{2j}(\mathbf{CP}^N, \mathbf{Z}) \sim \mathbf{Z}, j = 0, ..., N, H_{2j-1}(\mathbf{CP}^N, \mathbf{Z}) = 0, j = 1, ..., N.$$

Now use the standard product formula for $H_*((\mathbf{CP}^N)^k, \mathbf{Z})$ to deduce that any analytic cycle in $H_{2d}((\mathbf{CP}^N)^k, \mathbf{Z})$ is a sum of cycles of the form $U_1 \times \cdots \cup U_k$.

Corollary 3.2. Let $\Gamma \subset \mathbf{CP}^N \times \mathbf{CP}^N$ an irreducible complex variety so that Γ^k is an irreducible variety of dimension $n \leq N$ for k = 2, ..., Then

$$vol(\Gamma^k) = \sum_{1 \le i_1 \le i_2 \le \dots \le i_n \le k} [\Gamma^k] \cdot [H^{i_1,k}] \cdots [H^{i_n,k}].$$

Theorem 3.3. Let $\Gamma \subset \mathbf{CP}^1 \times \mathbf{CP}^1$ be an irreducible curve whose projection on the first and second coordinate gives \mathbf{CP}^1 . Assume that in some chart $\mathbf{C}^2 \subset \mathbf{CP}^1 \times \mathbf{CP}^1$ the curve Γ is given by $p(x, y) = 0, (x, y) \in \mathbf{C}^2$, where p(x, y) is an irreducible polynomial depending explicitly on x and y. Then

$$h(\Gamma) \le lov(\Gamma) = log \max(deg_x(p), deg_y(p)).$$

Proof. Let $d_1 = deg_y(p), d_2 = deg_x(p)$. Thus, the projection of $\tau_i : \Gamma \to \mathbb{CP}^1$ on the i - th coordinate is d_i branched covering for i = 1, 2. Next observe that $\Gamma^k \cap H^{i,k}$ means that we specify the i - th coordinate of Γ^k . Then we have d_1, d_2 possible choices for the coordinate i + 1, i - 1 respectively for Γ^k . Continuing in this manner one deduces that $[\Gamma^k] \cdot [H^{i,k}] = d_1^{k-i} d_2^{i-1}$. Thus,

$$vol(\Gamma^k) = \sum_{i=1}^k d_1^{k-i} d_2^{i-1}.$$

In particular,

$$(\max(d_1, d_2))^{k-1} < vol(\Gamma^k) \le k(\max(d_1, d_2))^{k-1}$$

and the equality for $lov(\Gamma)$ is established. Use Theorem 1.3. to complete the proof of the theorem. \diamond

I conjecture that under the assumptions of Theorem 3.3 the equality $h(\Gamma) = lov(\Gamma)$ holds. I now show how to generalize Theorem 3.3 to proper graphs Γ .

Definition 3.4. Let $\Gamma \subset \mathbf{CP}^N \times \mathbf{CP}^N$ be an irreducible variety of dimension n. Then Γ is called proper if the following conditions hold. There exist an irreducible smooth variety $X \subset \mathbf{CP}^N$ of dimension n so that the projections $\tau_i : \Gamma \to X$ on the i-th component of $\mathbf{CP}^N \times \mathbf{CP}^N$ is finite to one branched covering of degree d_i for i = 1, 2.

Note that Γ satisfying the assumptions of Theorem 3.3 is proper. Assume the assumptions of Definition 3.4. I call $\Gamma \subset X \times X$ a graph of a finite algebraic function. As X is triangulable, e.g. [7], it follows that X is a finite CW complex. As in the previous section I denote by $H_*(X, \mathbf{F}), H^*(X, \mathbf{F}), \mathbf{F} = \mathbf{Z}, \mathbf{Q}, \mathbf{R}$ the total homology and cohomology groups of X. Let $H_{2j,a}(X, \mathbf{F}) \subset H_{2j}(X, \mathbf{F}), j = 0, ..., n$, be the subgroup generated by all varieties $Y \subset X$ of complex dimension j. Let \mathbf{R}_+ be the semiring of nonnegative reals. For the one of the above rings \mathbf{F} set $\mathbf{F}_+ = \mathbf{F} \cap \mathbf{R}_+$ to be the corresponding semirings. Let $K_{2j,a}(X, \mathbf{F}_+)$ be the cone generated by the subvarieties of complex dimension j with coefficients in \mathbf{F}_+ . Thus

$$H_{2j,a}(X,\mathbf{F}) = K_{2j,a}(X,\mathbf{F}_{+}) - K_{2j,a}(X,\mathbf{F}_{+}), j = 0, ..., n, H_{*,a}(X,\mathbf{F}) = \sum_{j=0}^{n} \oplus H_{2j,a}(X,\mathbf{F}).$$

I now show that Γ induces a linear operator $\Gamma^* : H_{*,a}(X, \mathbf{F}) \to H_{*,a}(X, \mathbf{F})$. More precisely Γ^* is positive with respect to the cone $K_{*,a}(X, \mathbf{F}_+)$. That is

$$\Gamma^* : K_{2j,a}(X, \mathbf{F}_+) \to K_{2j,a}(X, \mathbf{F}_+), j = 0, ..., n.$$

Let $V \subset X$ be an irreducible subvariety of dimension j. Then $\tau_2(\tau_1^{-1}(V)) \subset X$ is a variety whose each irreducible component is of dimension j. Set

$$\Gamma^*([V]) = [\tau_2(\tau_1^{-1}(V)]].$$

It is straightforward to show that Γ^* is linear. Let $\rho_{2j,a}(\Gamma)$ be the spectral radius of $\Gamma^*: H_{2j,a}(X, \mathbf{R}) \to H_{2j,a}(X, \mathbf{R}), j = 0, ..., n$. Note that

$$\rho_{0,a}(\Gamma) = d_1, \rho_{2n,a}(\Gamma) = d_2.$$

Set $\rho_a(\Gamma) = \max_{0 \le j \le n} \rho_{2j,a}(\Gamma)$. Finally I define $L : H_{2j,a}(X, \mathbf{F}) \to H_{2j-2,a}(X, \mathbf{F})$ to be the Lefschetz map which is induced by the hyperplane section. That is, let $V \subset X$ be an irreducible variety of dimension j. Then $L([V]) = [V \cap H^1]$. Note that L is positive with respect to the cone $K_{*,a}(X, \mathbf{F}_+)$.

Theorem 3.5. Let $\Gamma \subset \mathbf{CP}^N \times \mathbf{CP}^N$ be a proper irreducible variety. Then

$$lov(\Gamma) \leq log\rho_a(\Gamma).$$

Proof. Assume the notations of Definition 3.4. I claim that

$$\begin{split} [\Gamma^k] \cdot [H^{i_1,k}] \cdots [H^{i_n,k}] = \\ d_2^{i_1 - 1} d_1^{k - i_n} L(\Gamma^*)^{i_n - i_{n-1}} \cdots L(\Gamma^*)^{i_3 - i_2} L(\Gamma^*)^{i_2 - i_1} ([X \cap H^1]), 1 \leq < i_1 < i_2 < \cdots < i_n \leq k. \end{split}$$

Indeed, the above formula without the factor $d_2^{i_1-1}d_1^{k-i_n}$ determines the number of points when we project this intersection on the components $i_1, ..., i_n$. As all the hyperplanes are in general positions this is exactly the number of distinct points of the above intersection when we project it on the $i_n - i_1 + 1$ consequitive components $i_1, i_1 + 1, ..., i_n$. When we advance from the component i_n to the k - th component we pick the factor $d_1^{k-i_n}$. When we decrease from the $i_1 - th$ component to the first component we pick up the factor $d_2^{i_1-1}$. This proves the above formula for the distinct $i_1, ..., i_n$. Similar formulas hold if some indices coincide. As in the proof of Theorem 2.1 introduce norms on the spaces $H_{2j,a}(X, \mathbf{R}), j = 0, ..., n$. The arguments given in the proof of Theorem 2.1 yield that for any $\epsilon > 0$ there exists $\kappa(\epsilon)$ so that

$$[\Gamma^k] \cdot [H^{i_1,k}] \cdots [H^{i_n,k}] \le \kappa(\epsilon)(\rho_a(\Gamma) + \epsilon)^k.$$

Hence

$$vol(\Gamma^k) \le k^n \kappa(\epsilon) (\rho_a(\Gamma) + \epsilon)^k$$

and the theorem follows. \diamond

I conjecture that under the assumptions of Theorem 3.5

$$h(\Gamma) = lov(\Gamma) = log\rho_a(\Gamma).$$

$\S4$. Upper bounds on the entropy of nonfinite algebraic maps

In this section I assume that $\Gamma \subset \mathbf{CP}^N \times \mathbf{CP}^N$ is an irreducible variety of dimension nso that there exists an irreducible variety $X \subset \mathbf{CP}^N$ of dimension n such that $\tau_i : \Gamma \to X$ on the i-th component of $\mathbf{CP}^N \times \mathbf{CP}^N$ is a branched convering of degree d_i for i = 1, 2. I call Γ the graph of an algebraic function in X. Assume first that τ_2 is finite to one. Then the linear operator $\Gamma^* : H_{*,a}(X, \mathbf{F}_+) \to H_{*,a}(X, \mathbf{F}_+)$ is well defined and it is straightforward to show that Theorem 3.5 applies in this case. Assume now that τ_1 is finite to one. Then one can define $\tilde{\Gamma}^* : H_{*,a}(X, \mathbf{F}_+) \to H_{*,a}(X, \mathbf{F}_+)$ by pushing from the second factor of $X \times X$ to the first. Let $\tilde{\rho}_a(\Gamma)$ be the spectral radius of $\tilde{\Gamma}^*$. It then follows that one has an analogous inequality

$$lov(\Gamma) \leq log\tilde{\rho}_a(\Gamma)$$

It is not hard to show (by pulling back) that if τ_1, τ_2 are finite to one then $\tilde{\rho}_a(\Gamma) = \rho_a(\Gamma)$. In what follows I assume that neither τ_1 nor τ_2 are finite to one branched covering.

It is still possible to define $\Gamma^* : K_{2j,a}(\mathbf{F}_+) \to K_{2j,a}(\mathbf{F}_+) \to$ by pushing forward varieties $V \subset X$ in general position. More precisely, assume that there exist subvarieties $S_1, S_2 \subset X$ so that

$$\tau_i: \Gamma \setminus \tau_i^{-1}(S_i) \to X \setminus S_i$$

are d_i covering for i = 1, 2. Let $V \subset X, V \setminus S_1 \neq \emptyset$ be an irreducible variety of dimension j. I say that V is in general position with respect to S_1 . It then follows that $V' = Closure(\tau_2(\tau_1^{-1}(V \setminus S_1)))$ is a subvariety whose each irreducible component is of dimension j. I then let $\Gamma^*([V]) = [V']$. Note that Γ^* is a linear functional on the subcone $K' \subset K_{2j,a}(\mathbf{F}_+)$ generated by all V which are in general position with respect S_1 . V is said to be a special irreducible variety with respect to S_1 if the homology class [V] is not contained in the cone K'. I let $\Gamma^*([V]) = 0$ for all special irreducible varieties with respect to S_1 . This defines Γ^* on $H_{*,a}(X, \mathbf{F})$. Let $\rho_{2j,a}(\Gamma), j = 0, ..., n, \rho_a(\Gamma)$ be defined as in the previous section. For $k \geq 1$ define $\Gamma_k \subset X \times X$ to be the graph obtained by projecting Γ^{k+1} on the first and the last coordinate. (Note that $\Gamma_1 = \Gamma = \Gamma^2$.) Let $\Gamma_k^* : H_{*,a}(X, \mathbf{F}) \to H_{*,a}(X, \mathbf{F})$ be defined as above. I claim that

$$\Gamma_k^* \le (\Gamma^*)^k, k = 2, \dots,$$

where the inequalities are with respect to the cone $K_{*,a}(X, \mathbf{R}_+)$. This follows from the fact that Γ_k^* picks up more special irreducible varieties on which Γ_k^* vanishes. See more detailed discussion on this matter in [2]. The same argument yields

$$\Gamma_{p+k}^* \le \Gamma_p^* \Gamma_k^*, p, k = 1, 2, \dots,.$$
(4.1)

In particular

$$\rho(\Gamma_{pk}^*) \le \rho(\Gamma_p^*)^k, p, k = 1, 2, ...,.$$
(4.2)

Apply the arguments of the proof of Theorem 3.5 to deduce.

Theorem 4.3. Let $\Gamma \subset X \times X, X \subset \mathbb{CP}^N$ be a graph of an algebraic function on X. Then

$$vol(\Gamma^{\infty}) \le log\rho_a(\Gamma)$$

Let $\sigma: \Gamma^{\infty} \to \Gamma^{\infty}$ be the shift map. Then $\sigma^k: \Gamma^{\infty} \to \Gamma^{\infty}$ splits to k copies of the shift map applied to the graph Γ_k^{∞} . Therefore

$$h(\sigma^k \big| \Gamma^{\infty}) = kh(\sigma \big| \Gamma^{\infty}) = h(\sigma \big| \Gamma^{\infty}_k).$$

See for example [8]. Observe next that $\rho_a(\Gamma_k) = \rho(\Gamma_k^*)$. Combine (4.2) with Theorems 4.3 and 1.3 to deduce

Corollary 4.4. Let the assumptions of Theorem 4.2 hold. Then

$$h(\Gamma) \leq \liminf_{k \to \infty} \frac{\log \rho_a(\Gamma_k)}{k}.$$

Actually, the inequality (4.1) yields that \liminf can be replaced by lim. I conjecture that $h(\Gamma)$ is equal to the liminf.

I close this section with another estimate on $lov(\Gamma)$. Assume that X and Γ are contained in the following complete intersections

$$X \subset \tilde{X} = \{x : x \in \mathbf{C}^{N+1}, f_i(x) = 0, i = 1, ..., N - n\}, \Gamma \subset \tilde{\Gamma} = \{(x, y) : (x, y) \in \mathbf{C}^{N+1}, f_i(x) = f_i(y) = 0, i = 1, ..., N - n, g_j(x, y) = 0, j = 1, ..., n\}.$$
(4.5)
sume that $f_1(x), ..., f_{N-n}(x)$ are homogeneous polynomials in x and $g_1(x, y), ..., g_n(x, y)$

I assume that $f_1(x), ..., f_{N-n}(x)$ are homogeneous polynomials in x and $g_1(x, y), ..., g_n(x, y)$ are bihomogeneous polynomials in (x, y). Note that if $X = \mathbb{CP}^N$ then $\tilde{\Gamma}$ is given only by the polynomials $g_1, ..., g_N$. Let f(x), g(x, y) be arbitrary polynomials in the variables $x, y \in \mathbb{C}^k$. Then

$$deg(f), deg_x(g), deg_y(g), deg(g) = \max(deg_x(g), deg_y(g))$$

are the corresponding degrees the above polynomials.

Theorem 4.6. Let $\Gamma \subset X \times X, X \subset \mathbb{CP}^N$ be a graph of an algebraic function on X. Assume that X, Γ are contained in the complete intersections given in (4.5). Then

$$lov(\Gamma) \leq \sum_{i=1}^{N-n} logdeg(f_i) + \sum_{j=1}^{n} logdeg(g_j).$$

Proof. Note that Γ^k are contained in the complete intersection given by

$$f_i(x^p) = 0, g_j(x^q, x^{q+1}), x^p \in \mathbb{C}^{N+1}, p = 1, ..., k, q = 1, ..., k-1, i = 1, ..., N-n, j = 1, ..., n.$$

Observe next that each $H^{i,k}$ is given by one linear equation. Bezout theorem yields that

$$[\Gamma^k] \cdot [H^{i_1,k}] \cdots [H^{i_n,k}] \le \left(\prod_{i=1}^{N-n} deg(f_i)\right)^k \left(\prod_{j=1}^n deg(g_j)\right)^{k-1}$$

Hence, $vol(\Gamma^k)$ is at most k^n times the right-hand side of the above inequality. The proof of the theorem is completed.

References

[1] H. Federer, *Geometric Measure Theory*, Springer-Verlag, Berlin 1969.

[2] S. Friedland, Entropy of polynomial and rational maps, Annals Math. 133 (1991), 359-368.

[3] S. Friedland, Entropy of rational selfmaps of projective varieties, Advanced Series in Dynamical Systems Vol. 9, pp. 128-140, World Scientific, Singapore 1991.

[4] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer-Verlag, Berlin 1984.

[5] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, Wiley 1978.

[6] M. Gromov, On the entropy of holomorphic maps, preprint, 1977.

[7] S. Lojasiewicz, Triangulation of semi-analytic sets, Annali Scu. Norm. Sup. Pisa, Sc. Fis. Mat. Ser. 3, v. 18, fasc. 4 (1964), 449-474.

[8] P. Walters, An Introduction to Ergodic Theory, Springer 1982.

[9] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57(1987), 285-299.