ENTROPY OF RATIONAL SELFMAPS OF PROJECTIVE VARIETIES

Shmuel Friedland Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago Chicago, Illinois 60680 December 4, 1990

§0. Introduction

Let $X \subset \mathbf{CP}^{\mathbf{N}}$ be an irreducible projective variety. Assume that $F : X \to X$ is a rational continuous map. Denote by h(F) the entropy of F. In [**Fri**] we showed that $h(F) = log\rho(F)$ if X is smooth. Here $\rho(F)$ is the spectral radius of the induced linear map on the homology groups of X over the rationals. In the first part of this paper (§1) we show that this result is valid for any irreducible normal projective variety X. More general, $h(F) = log\rho(F)$ for a regular selfmap F of an irreducible projective variety X. We conjecture that the regularity assumption of F can be replaced by the continuity assumption.

The second part of this paper (§2-3) deals with the case where $F : X \to X$ is a rational but not a continuous map. One can extend naturally F to the restriction of the standard shift map to the space $\hat{\Omega}(F)$ which is the closure of the orbit space of F [**Fri**]. Using this extension we define the entropy h(F) as in [**Fri**]. On the other hand one can define H(F) - the volume growth of algebraic subvarieties on X. As in the case of smooth X discussed in [**Fri**] our arguments show that

$$h(F) = H(F) \tag{0.1}$$

for a rational regular map $F: X \to X$. We conjecture that this equality holds for a discontinuous rational map. Consult [**Fri**] for examples where this conjecture holds. In §2 using Gromov's results [**Gro1**] we prove that $h(F) \leq M(F)$. Here $M(F) \geq H(F)$ is a natural extension of H(F). In §3 we discuss some extensions, examples and conjectures.

§1. Regular rational maps

Let n be the complex dimension of X and denote by $H_{2k,a}(X)$ the subgroup of $H_{2k}(X, \mathbf{Q})$ generated by all irreducible algebraic varieties in X of complex dimension k. In this section we shall assume that F is rational and continuous. It then follows that

$$F_*: H_{2k}(X, \mathbf{Q}) \to H_{2k}(X, \mathbf{Q}), \quad F_*: H_{2k,a}(X) \to H_{2k,a}(X).$$
 (1.1)

Denote by $\rho_k(F)$ and $\rho_{k,a}(F)$ the spectral radii of the above linear maps. Set

$$\rho(F) = \max_{0 \le k \le n} \rho_k(F), \ \ \rho_a(F) = \max_{0 \le k \le n} \rho_{k,a}(F).$$
(1.2)

Let ω be the standard (1,1) form on \mathbb{CP}^N . Assume that $Y \subset X$ is an irreducible variety of complex dimension k. Then the volume of Y is given by the Wirtinger formula:

$$vol(Y) = \frac{1}{k!} \int_Y \omega^k.$$

Thus we can view the restriction of ω^k to X as a linear functional on $H_{2k,a}(X)$. Let $\mathcal{A}(X)$ be the set of all irreducible varieties $Y \subset X, 0 \leq \dim(X) \leq n$. We then let

$$H(F) = \sup_{Y \in \mathcal{A}(X)} \limsup_{m \to \infty} \log \frac{vol(F^{\circ m}(Y))}{m}.$$
(1.3)

Remark. If $dim(F^{\circ m}(Y)) = dim(Y)$ then $vol(F^{\circ m}(Y))$ is the standard volume of the irreducible variety $F^{\circ m}(Y)$ multiplied by the degree of the branched covering map covering map $F: Y \to F^{\circ m}(Y)$. If $dim(F^{\circ m}(Y)) < dim(Y)$ then $vol(F^{\circ m}(Y)) = 0$. Equivalently:

$$vol(F^{\circ m}(Y)) = \frac{1}{k!} \int_{Y} ((F^{\circ m})^* \omega)^k, \ k = dim(Y).$$

Thus H(F) is the volume growth of algebraic varieties on X. As $\omega^k : H_{2k,a}(X) \to \mathbb{C}$ it follows:

$$H(F) \le \log \rho_a(F). \tag{1.4}$$

In [Fri] we showed that if X is smooth then

$$H(F) = \log \rho_a(F) = \log \rho(F). \tag{1.5}$$

We will prove this equality for an irreducible projective variety X and a rational regular map $F : X \to X$. We now recall some basic facts about varieties and rational maps needed here. Most of them can be found in [Sha].

For $a \in X$ we let $T_a(X)$ to be the tangent space of X at a. Intrinsically, $T_a(X)$ can be identified with the linear space of all derivations of the local ring $\mathcal{O}_a(X)$ at a. We prefer here a coordinate dependent definition which will be needed for our purposes. Let $COT_a(X)$ be the cotangent space of X at a given as follows. Assume that the affine piece of $X - \tilde{X} = X \cap \mathbb{C}^N$ which contains the point a is the zero set the k polynomials $p_1, ..., p_k \in \mathbb{C}[\mathbb{C}^N]$. We then let

$$COT_a(X) = span\{\left(\frac{\partial p_j}{\partial x_i}(a)\right)_{i=1}^{i=N}, \ j = 1, ..., k\} \subset \mathbf{C}^N, \ T_a(X) = COT_a(X)^{\perp}\}$$
(1.6)

Note that $dim(T_a(X)) \ge dim(X)$ and the equality holds iff a is a smooth point of X. Recall that a is called a normal point of X if the local ring $\mathcal{O}_a(X)$ is integrally closed. X is called a normal variety if it is normal at all of its points. Assume that $X \subset \mathbb{CP}^N$ is an irreducible projective variety and $F: X \to X$ is a rational continuous map. Let $a \in X$, b = F(a). F is called regular at a if there exists an affine piece $\tilde{X} = X \cap \mathbb{C}^N$ so that $a, b \in \tilde{X}$ and the following condition is satisfied:

$$F(x) = \left(\frac{f_1(x)}{g_1(x)}, ..., \frac{f_N(x)}{g_N(x)}\right), \ x \in \mathbf{C}^N,$$

$$f_i, g_i \in \mathbf{C}[\tilde{X}], \ g_i(a) \neq 0, \ i = 1, ..., N$$

(1.7)

F is called regular if F is regular at any $a \in X$. Assume that X is a normal variety and $F : X \to X$ is a rational continuous map. It is quite straightforward to show that F is a regular mapping.

In what follows we will assume that $F: X \to X$ is a rational regular mapping unless stated otherwise. Let $a \in X$. Then there exists an open ball $B(a, r(a)) \subset \mathbb{C}^N$ so that the polynomials g_i , i = 1, ..., N appearing do not vanish at any point of Closure(B(a, r(a))). Let $U_a = B(a, r(a))$. Then $\mathcal{U} = \bigcup_{a \in X} U_a$ is an open cover of X. Let $\mathcal{U}_f = U_{a_1} \cup ... \cup U_{a_t}$ a finite cover of X. Then on each U_{a_i} the map F has the form (1.7). Thus, F can be considered locally as a restriction of a holomorphic map $\overline{F}: U_a \to \mathbb{C}^N$ to X. Let $D(\overline{F})(a) \in M_N(\mathbb{C})$ be the full differential matrix of \overline{F} at a. From the definition of the finite cover \mathcal{U}_f it follows that there exists K > 0 so that $\|D(\overline{F})(a)\| \leq K$, $\forall a \in X$. It is straightforward to show that $COT_b(X)D(\overline{F})(a) \subset COT_a(X)$, b = F(a). Thus, if D(F)(a) denotes the restriction of $D(\overline{F})(a)$ to the tangent space $T_a(X)$ we get the expected relation $D(F)(a): T_a(X) \to T_{F(a)}(X)$. As usual, let $Sing(X) \subset X$ be the variety of the singular points of X. Observe that

$$F: X_r \to X_r, \ F^{\circ -1}(Y) \subset Y, \ X_r = X \setminus Y, \ Y = \bigcup_0^\infty F^{\circ -m}(Sing(X)).$$
(1.8)

If $Y \neq X$ it then follows that X_r is a complex manifold of complex dimension n. We view X_r as a Riemannian manifold with the Riemannian metric obtained by the restriction of Fubini-Study metric in $\mathbb{CP}^N \supset X$. We thus showed:

Lemma 1.9. Let $X \subset \mathbb{CP}^N$ be an irreducible complex projective variety. Assume that $F : X \to X$ is a rational regular map. Suppose furthermore that $Y \neq X$. Then the norms ||D(F(a))||, $a \in X_r$ are uniformly bounded.

Theorem 1.10. Let X be an irreducible projective variety. Assume that $F : X \to X$ is a rational regular map. Then

$$h(F) = H(F) = \log \rho_a(F) = \log \rho(F)$$
(1.11)

Proof. We now modify the arguments of **[New]** to show the inequality

$$h(F) \le H(F). \tag{1.12}$$

Assume first that F is not dominating. Then $W_1 = F(X)$ is an irreducible variety,

 $dim(W_1) < dim(X), F : W_1 \to W_1$ is a rational regular map and $h(F) = h(F, W_1)$. Continue this process until we get an irreducible subvariety $W_k \subset X, F : W_k \to W_k$ is a rational regular dominating map and $h(F) = h(F, W_k)$. Thus, w.l.o.g. we may assume that F is dominating. Hence $Y \neq X$ where Y is defined by (1.8). Recall that h(F) is the supremum of all measure theoretic entropies $h_{\mu}(F)$ where μ is an F invariant ergodic measure. See for example [Wal, Ch. 8]. Let μ be an F invariant ergodic measure. Thus, either $\mu(Y) = 0$ or $\mu(Y) = 1$.

Assume first that $\mu(Y) = 0$. In view of Lemma 1.9 we can define the Lyapunov exponents for the map $F|_{X_r}$ with respect to μ . Using the fact that $X_r \subset X$ where X is compact and the observation that F is a (local) restriction of a homolomorphic map we can combine the arguments of [**New**] and [**Fri**] to deduce $h_{\mu}(F) \leq H(F)$.

Assume now that $\mu(Y) = 1$. Let $Z \subset X$ be an irreducible variety. Since F is a rational regular map it follows that F(Z) is an irreducible variety. Furthermore

 $dim(F(Z)) \leq dim(Z)$. Let $Sing(X) = \bigcup_{1}^{t} Z_{j}$ where each Z_{j} is an irreducible variety. Set $Y_{j} = \bigcup_{0}^{\infty} F^{\circ-i}(Z_{j}) \subset Y$. Clearly, $F^{\circ-1}(Y_{j}) \subset Y_{j}$. The ergodicity of μ implies that $\mu(Y_{j})$ is either 0 or 1. As $Y = \bigcup_{1}^{t} Y_{j}$ w.l.o.g. we may assume that $\mu(Y_{1}) = 1$. As $\mu(Y_{1}) = 1$ and μ is an F invariant measure it follows that $\mu(\bigcup_{i\geq k} F^{\circ i}(Z_{1})) = 1$, $k = 0, 1, \dots$. Let $V = \bigcup_{0}^{\infty} F^{\circ-i}(Sing(Z_{1}))$. Then $F^{\circ-1}(V) \subset V$. Thus, either $\mu(V) = 1$ or $\mu(V) = 0$. In the first case we can repeat our arguments by replacing Sing(X) with $Sing(Z_{1})$. Thus, it is enough consider the case $\mu(V) = 0$. In particular $\mu(Sing(Z_{1})) = 0$. Replace Z_{1} by $F^{\circ i}(Z_{1})$ to deduce that it suffices to consider the case where $\mu(Sing(F^{\circ i}(Z_{1}))) = 0$, $i = 0, 1, \dots$. That is

$$\mu(W) = 1, W = \{x, x \in Z_1, F^{\circ i}(x) \notin Sing(F^{\circ i}(Z_1)), i = 0, 1, ...\}.$$
(1.13)

In that case we can define the Lyapunov exponents of F on W with respect to μ . The arguments of [New] and [Fri] yield the inequality $h_{\mu}(F) \leq H(F)$. The maximal characterization of h(F) coupled with the above inequality yields (1.12).

We now use the arguments of **[Yom]** as given by **[Gro2]** to deduce the inequality $H(F) \le h(F)$. Let $Y \subset X$ be an irreducible subvariety. As F is a restriction of a (locally) holomorphic map the arguments in **[Gro2]** yield directly that

$$\limsup_{m \to \infty} \log \frac{\operatorname{vol}(F^{\circ m}(Y))}{m} \le h(F).$$

Hence $H(F) \leq h(F)$. Combine this inequality with (1.12) to deduce that h(F) = H(F). Using Yomdin's arguments and (1.8) we deduce that $h(F) \geq log\rho(F)$. Combine this inequality with the previous equality and (1.4) to deduce the theorem. \diamond

§2. Discontinuous rational maps

Assume that X is an irreducible projective variety of complex dimension n and $F: X \to X$ is rational map. Denote by $Sing(F) \subset X$ the set of points where F is discontinuous. A standard argument shows

that Sing(F) is a quasi subvariety. Thus, $X \setminus (Sing(X) \cup Sing(F))$ is a connected manifold and $Z = Closure(F(X \setminus (Sing(X) \cup Sing(F))))$ is an irreducible variety. If Z = X then F is called dominating. Otherwise, from the dynamics point of view it is enough to study the map $F: Z \to Z$. Continuing the above process it is enough to consider dominating rational maps. In what follows we shall assume that $F: X \to X$ is a dominating rational discontinuous (at least at one point) map. Furthermore, we shall assume that X is a smooth variety. This is not a serious restriction. Indeed, according to Hironaka [Hir] it is possible to blow up the ambient space $\mathbb{CP}^N \supset X$ to obtain a smooth projective variety Y which is a resolution of X. It then follows that F lifts to a rational dominating map $G: Y \to Y$. Set

$$V_{0} = Sing(F), \ V_{i} = F(X \setminus V_{0} \cup ... \cup V_{i-1}) \cap V_{i-1} = \{x, F^{\circ j}(x) \notin Sing(F), \ j = 0, ..., i-1, \ F^{\circ i}(x) \in Sing(F)\}, \ i = 1, ..., \ V = \cup_{0}^{\infty} V_{i}.$$

$$(2.1)$$

Hence, each V_i is a quasi subvariety of X. In particular $\mu(V_i) = 0$ where μ is measure with respect to volume form ω^n . Thus, $\mu(V) = 0$. It is natural to consider the orbit space $\Omega(F) \subset X^{\infty}$ on which the action of the standard shift is equivalent to the map F:

$$X^{\infty} = \prod_{1}^{\infty} X_{i}, \ X_{i} = X, \ i = 1, ...,$$

$$X^{\infty} \supset \Omega(F) = \{ (F^{i}(x))_{0}^{\infty}, \ x \in X, \ F \ is \ holomorphic \ at \ F^{i}(x), \ i = 0, 1, ... \}.$$

(2.2)

Let $d: X \times X \to \mathbf{R}_+$ be the metric induced by the Fubini-Study metric on $X \subset \mathbf{CP}^N$. Clearly, X has a finite diameter: $d(x, y) \leq D$, $\forall x, y \in X$. It then follows that X^{∞} is a compact metric space with respect to the metric:

$$\delta((x_i)_1^{\infty}, (y_i)_1^{\infty}) = \max_{1 \le i} \frac{d(x_i, y_i)}{2^{i-1}}, \ (x_i)_1^{\infty}, (y_i)_1^{\infty} \in X^{\infty}.$$

Let $\pi_m : X^{\infty} \to X^m = \prod_1^m X_i$ be the projection on the first *m* components. Recall that the shift map $\sigma : X^{\infty} \to X^{\infty}$ is a continuous map given by $\sigma((x_i)_1^{\infty}) = (x_i)_2^{\infty}$. It is easy to see that $\sigma : \Omega(F) \to \Omega(F)$. Moreover, the map $F : \pi_1(\Omega(F)) \to \pi_1(\Omega(F))$ is equivalent to the restriction of σ to $\Omega(F)$. Set $\hat{\Omega}(F) = Closure(\Omega(F))$. Thus, $\hat{\Omega}(F)$ is a compact set which is mapped into itself by σ . Let

$$\Gamma_{i}(F) = \pi_{i}(\Omega(F)), \ i = 1, ..., \ \Gamma(F) = \Gamma_{2}(F),$$

$$\sigma_{i}: \Gamma_{i}(F) \to \Gamma_{i-1}(F), \ (x_{i})_{1}^{i} \mapsto (x_{i})_{2}^{i}, \ i = 1, ...$$
(2.3)

Note that $\Gamma_1(F) = X$, $\Gamma(F) \subset X \times X$ is the standard graph of F and $\Gamma_i(F)$ is an irreducible variety of dimension dim(X). The map

$$\sigma_2: \Gamma(F) \to X \tag{2.4}$$

can be viewed as a regular resolution of the rational map F.

As in [**Fri**] we define the entropy h(F) by

$$h(F) = limsup_{m \to \infty} \frac{h(\sigma, \hat{\Omega}(F^{\circ m}))}{m}.$$
(2.5)

This definition yields straightforward the inequality:

$$h(F^{\circ m}) \le mh(F). \tag{2.6}$$

Of course, if F is regular (continuous) then the equality sign hold in (2.6). In [**Fri**] we conjectured that h(F) = H(F) where X is smooth. In what follows we define the quantity H(F) - the volume growth of algebraic subvarieties on X by the iterates of F in a slightly different way then in (1.3). The arguments of [**Fri**] imply that these two definitions are the same if F is a holomorphic rational map. We view X a

smooth projective variety in the ambient projective space \mathbb{CP}^N . A hyperplane S of complex dimension N - dim(X) + k is called in general position if the following condition hold:

$$S \cap X = \bigcup_{1}^{m} Z_{i}, \ Z_{i} \ irreducible, \ dim(Z_{i}) = k, \ Z_{i} \not\subset V,$$

$$dim(Closure(F^{\circ j}(Z_{i} \setminus V))) = k, \ j = 1, ..., i = 1, ..., m,$$

$$Closure(F^{\circ j}(Z_{i} \setminus V)) \neq Closure(F^{\circ j}(Z_{l} \setminus V))), \ for \ i \neq l.$$

$$(2.7)$$

Since $F: X \to X$ is a dominating map the standard arguments of algebraic geometry yield that "most" of $N - \dim(X) + k$ dimensional hyperplanes of \mathbb{CP}^N (with respect to the appropriate measure) are generic. Denote by $\mathcal{A}_k(X, F)$, $k = 1, ..., \dim(X)$ the set of all k dimensional algebraic subvarieties of X of the form $S \cap X$ where S is an $N - \dim(X) + k$ dimensional hyperplane in general position. Let $Y \subset \mathbb{CP}^N$ be an irreducible algebraic variety of complex dimension k. Denote by deg(Y) the degree of Y. That is deg(Y) is the number of the intersection points (counted with multiplicities) with any $N - \dim(Y)$ dimensional hyperplane S so that $Y \cap S$ consists of a finite number of points. Equivalently, deg(Y) = vol(Y). Set

$$\alpha_{j,k} = \sup_{Y \in \mathcal{A}_k(X,F)} vol(Closure(F^{\circ j}(Y \setminus V))), \ j = 0, 1, ...,$$

$$\beta_k = \limsup_{j \to \infty} \frac{log\alpha_{j,k}}{j}, \ k = 1, ..., dim(X),$$

$$H(F) = \max_{1 \le k \le dim(X)} \beta_k.$$

(2.8)

We conjecture:

Conjecture 2.9. Let $X \subset \mathbb{CP}^N$ be an irreducible smooth projective variety. Assume that $F : X \to X$ is a dominating rational map. Let h(F) and H(F) be as defined above. Then $h(F) \leq H(F)$.

To support this conjecture we will recall some results of [**Gro1**]. Let X be a compact Riemann manifold. Assume that $\Gamma \subset X \times X$ is an arbitrary closed set. Set

$$\Gamma^{\infty} = \{\xi, \ \xi = (x_i)_1^{\infty} \in X^{\infty}, \ (x_i, x_{i+1}) \in \Gamma, \ i = 1, ...\}, \ \Gamma_m = \pi_m(\Gamma^{\infty}), \ m = 1, ...$$
(2.10)

It then follows that Γ^{∞} is a compact set in X^{∞} such that $\sigma : \Gamma^{\infty} \to \Gamma^{\infty}$. Let $h(\Gamma) = h(\sigma, \Gamma^{\infty})$. We view X^k as a Riemannian manifold endowed with the Riemannian product metric. Assume that the Hausdorff dimension of $\Gamma \subset X^2$ is a positive integer n. Let $vol(\Gamma^k) \leq \infty$ be the n dimensional volume of Γ^k . We shall assume:

$$vol(\Gamma^k) < \infty, \ k = 2, \dots$$
 (2.11)

Let $B_k(a,r) \subset X^k$ be an open ball of radius r centered at a with respect to the induced metric on X^k by X:

$$B_k(a,r) = \{x, \ x = (x_i)_1^k, a = (a_i)_1^k \in X^k, \ \sum_{1}^k d(x_i, a_i)^2 < r^2.\}$$

Set

$$lov(\Gamma) = \limsup_{k \to \infty} \frac{\log vol(\Gamma^k)}{k},$$

$$Dens_{\epsilon}(\Gamma_k) = \inf_{a \in \Gamma^k} vol(\Gamma^k \cap B_k(a, \epsilon)),$$

$$lodn_{\epsilon}(\Gamma) = \liminf_{k \to \infty} \frac{\log Dens_{\epsilon}(\Gamma^k)}{k},$$

$$lodn(\Gamma) = \lim_{\epsilon \to 0} lodn_{\epsilon}(\Gamma).$$

(2.12)

Lemma 2.13 (Gromov) Let X be a compact Riemannian manifold, $\Gamma \subset X \times X$ a closed set of integer Hausdorff dimension n satisfying condition (2.11). Then

$$h(\Gamma) \le lov(\Gamma) - lodn(\Gamma).$$
(2.14)

Proof. Let

$$\delta_{j}(\xi,\eta) = \max_{0 \le l \le j-1} \delta(\sigma^{\circ l}(\xi), \sigma^{\circ l}(\eta)) = \max_{1 \le i} \frac{d(x_{i}, y_{i})}{2^{(i-j)^{+}}}, \ \xi = (x_{i})_{1}^{\infty}, \eta = (y_{i})_{1}^{\infty} \in X^{\infty}, j = 1, \dots.$$

$$(2.15)$$

Here, $a^+ = max(a, 0)$, $a \in \mathbf{R}$. Fix $\epsilon > 0$. Let $L(k, \epsilon, \Gamma^{\infty})$ be the maximal size of (k, ϵ) separated set in Γ^{∞} . That is for any finite set $E \subset \Gamma^{\infty}$ with the property $\xi, \eta \in E, \ \xi \neq \eta \Rightarrow \delta_k(\xi, \eta) > \epsilon$ we have the inequality $Card(E) \leq L(k, \epsilon, \Gamma^{\infty})$. Furthermore, the equality sign holds for at least one such a set E. The standard definition of $h(\sigma, \Gamma)$ is [Wal, Ch.7]:

$$h(\sigma, \Gamma) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \frac{\log L(k, \epsilon, \Gamma^{\infty})}{k}.$$
(2.16)

Let $E(k,\epsilon,\Gamma^{\infty})$ be a (k,ϵ) separated set of cardinality $L(k,\epsilon,\Gamma^{\infty})$. It then follows that

$$\max_{1 \le i \le k+K(\epsilon)} d(x_i, y_i) > \epsilon, \ \xi = (x_i)_1^\infty \neq \eta = (y_i)_1^\infty \in E(k, \epsilon, \Gamma^\infty), \ K(\epsilon) = \lceil \log_2 D - \log_2 \epsilon \rceil.$$

Here D is the diameter of X. In particular the $L(k, \epsilon, \Gamma^{\infty})$ balls

$$B_{k+K(\epsilon)}(\pi_{k+K(\epsilon)}(\xi),\frac{\epsilon}{2}), \ \xi \in E(k,\epsilon,\Gamma^{\infty})$$

are disjoint. Hence:

$$vol(\Gamma^{k+K(\epsilon)}) \ge L(k,\epsilon,\Gamma^{\infty})Dens_{\frac{\epsilon}{2}}(\Gamma^{k+K(\epsilon)}).$$

Take the logarithm of this inequality, divide by $k + K(\epsilon)$, take limsup of the both sides of this inequality and let ϵ tend to zero to deduce the lemma. \diamond

Theorem 2.17. (Gromov) Let X be a compact complex Kähler manifold. Assume that $\Gamma \subset X \times X$ is a closed irreducible analytic subvariety. Then $lodn(\Gamma) \geq 0$. Hence

$$h(\Gamma) \le lov(\Gamma). \tag{2.18}$$

Proof. Let n be the complex dimension of Γ . According to [Fed, Sec. 5.4.19] the irreducible analytic subvariety $\Gamma^k \subset X^k$ is minimal. Thus

$$vol(\Gamma^k \cap B_k(a,\epsilon)) \ge C(n)\epsilon^{2n}$$

Here C(n) depends on the space X and the dimension n but not on k, a, ϵ . (Consult [**Gro1**] for a detailed proof.) Thus, $lodn(\Gamma) \ge 0$ and (2.14) yields (2.18). \diamond

Let $F: X \to X$ be a dominating rational map. Assume that ω is the restriction of the Fubini-Study (1,1) form to $X \subset \mathbf{CP}^N$. Set

$$\phi_m = (F^{\circ m})^* \omega, \ m = 0, 1, \dots, \phi_{m_1, \dots, m_k} = \phi_{m_1} \dots \phi_{m_k}, \ 0 \le m_i, \ i = 1, \dots, k, \ 1 \le k \le \dim(X).$$
(2.19)

Here ϕ_m is the pull back of ω by the $F^{\circ m}$ and ϕ_{m_1,\ldots,m_k} the exterior products of $\phi_{m_1},\ldots,\phi_{m_k}$. Note that ϕ_{m_1,\ldots,m_k} is a rational (k,k) form. As the singularities of this form are "mild" (on subvariety of codimension 2 at least) the (k,k) form ϕ_{m_1,\ldots,m_k} is a linear functional on $H_{2k,a}(X)$. Thus, we can replace this rational form by a regular (k,k) form $\psi_{m_1,\ldots,m_k} \in H^{2k}$. If F is not holomorphic we usually would not have the functorial equality:

$$\psi_{m_1,\dots,m_j}\psi_{m_{j+1},\dots,m_k} = \psi_{m_1,\dots,m_k}.$$

The arguments in [Fri] would yield the inequality:

$$\psi_{m_1,\dots,m_j}\psi_{m_{j+1},\dots,m_k} \ge \psi_{m_1,\dots,m_k}.$$
(2.20)

as linear functionals on $H_{2k,a}(X)$ with respect to the cone generated by the k complex dimensional analytic cycles in X. Let $\|\phi_{m_1,\dots,m_k}\|$ be the norm of the linear functional $\phi_{m_1,\dots,m_k}: H_{2k,a} \to \mathbf{R}$. Note

$$\|\phi_{m_1,\dots,m_n}\| = |\phi_{m_1,\dots,m_n}([X])|.$$

Here [X] is the fundamental class of X, i.e. the generator of the one dimensional free group $H_{2n}(X, \mathbb{Z})$. A straightforward argument shows that

$$\beta_{k} = \lim_{m_{1}=...=m_{k}=j-1\to\infty} \frac{\log \|\phi_{m_{1},...,m_{k}}\|}{j} = \lim_{m_{1}=...=m_{k}=j-1\to\infty} \frac{\log |\phi_{m_{1},...,m_{k},0,...,0}([X])|}{j}, \ k = 1,...,n.$$
(2.21)

We now define another invariant M(F) of F

$$M(F) = \limsup_{j \to \infty} \frac{\log(\max_{0 \le m_i < j, i=1,...,n} |\phi_{m_1,...,m_n}([X])|)}{j}.$$
(2.22)

The definitions (2.8), (2.22) and the equalities (2.21) yield the inequality $H(F) \leq M(F)$. We shall show that for holomorphic F we have the equality H(F) = M(F).

Theorem 2.23. Let $X \subset \mathbb{CP}^N$ be an irreducible projective variety of complex dimension n and assume that $F: X \to X$ is a dominating rational map. Denote by $\Gamma(F) \subset X \times X$ the graph of F as given by (2.3). Then

$$lov(\Gamma(F)) = \limsup_{j \to \infty} \frac{log|(\sum_{i=0}^{i=j-1} \phi_i)^n([X])|}{j}.$$
 (2.24)

Hence

$$h(F) \le h(\Gamma(F)) \le M(F). \tag{2.25}$$

Proof. The points of $\pi_k(\Omega(F)) \subset \Gamma_k(F)$ are of the form $(x, F(x), ..., F^{\circ k-1}(x)), x \in X \setminus V$. Hence, in terms of the variable x, the restriction of the (1, 1) form ω on the j - th coordinate of $\pi_j(\Omega(F))$ is ϕ_{j-1} - the pull back of ϕ_0 by $F^{\circ j-1}$. Thus, the restriction of the standard (1, 1) form ω in $(\mathbb{CP}^N)^k$ to $X \setminus V$ is

$$\theta_k(x) = \sum_{j=0}^{k-1} \phi_j(x), \ x \in X \setminus V, \ k = 0, 1, \dots .$$
(2.26)

So $vol(\Gamma_k(F)) = \frac{1}{n!} \theta_k^n([X])$ and (2.24) follows. Clearly

$$\theta_k^n([X]) \le k^n \max_{0 \le m_i < k, i=1,...,n} |\phi_{m_1,...,m_n}|.$$

Use Theorem 2.17 ($\Gamma(F) \subset \mathbb{CP}^N \times \mathbb{CP}^N$), equality (2.24), definition (2.22) and the above inequality to deduce that $h(\sigma, \Gamma^{\infty}) = h(\Gamma(F)) \leq M(F)$. Recall that $h(\sigma^{\circ m}, \Gamma(F)^{\infty}) = mh(\sigma, \Gamma(F)^{\infty})$. Next note that the action of $\sigma^{\circ m}$ on $\Gamma(F)^{\infty}$ decomposes in an obvious way to m subshifts. One of this subshifts is $\sigma : \hat{\Omega}(F^{\circ m}) \to \hat{\Omega}(F^{\circ m})$. Therefore

$$h(\sigma, \hat{\Omega}(F^{\circ m})) \le h(\sigma^{\circ m}, \hat{\Omega}(F)) = mh(\Gamma(F)^{\infty}) \le mM(F).$$

Combine this inequality with the definition (2.5) to deduce the theorem. \diamond

Theorem 2.27. Let X be a compact Kähler manifold. Assume that $F: X \to X$ is holomorphic. Then

$$h(F) = lov(\Gamma(F)^{\infty}) = M(F) = log\rho(F).$$
(2.28)

Proof. Let μ be the dimension of $H^2(X)$. Assume that $A \in \mathbf{R}^{\mu,\mu}$ is a matrix representation of the linear operator $F^* : H^2(X) \to H^2(X)$. Suppose first that A is similar to a diagonal matrix over the complex numbers (A is semi-simple). Let $\lambda_1, ..., \lambda_{\mu}$ and $u_1, ..., u_{\mu} \in \mathbf{C}^{\mu} \equiv H^2(X, \mathbf{C})$ be the μ complex eigenvalues and the μ corresponding eigenvectors of A. Then

$$\phi_k = \sum_{j=1}^{j=\mu} a_j \lambda_j^k u_j, \ a_j \in \mathbf{C}, \ j = 1, ..., \mu.$$

It then follows that

$$\phi_{m_1,\dots,m_n}([X]) = \sum_{1 \le j_1,\dots,j_n \le \mu} b_{j_1,\dots,j_n} \lambda_{j_1}^{m_1} \dots \lambda_{j_n}^{m_n}.$$
(2.29)

Here, the tensor b_{j_1,\ldots,j_n} is a symmetric tensor. W.l.o.g. we may assume that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_{\mu}|$. A straightforward argument shows that

$$M(F) = log|\lambda_{i_1}\lambda_{i_2}...\lambda_{i_k}|, \ 1 \le i_1... \le i_k, \ 1 \le k \le n,$$

$$M(F) \le log\rho_k(F) \le log\rho(F).$$
(2.30)

For a general matrix A one has to use a corresponding modification of (2.29) to deduce (2.30). Next note that (2.25) is valid in this case. Combine the above inequalities with (2.25) and Yomdin's inequality to deduce (2.28). \diamond

We now note that the arguments of the proof of Theorem 2.27 yield the validity of (2.30) for a projective variety X and a rational continuous map F. (However, we can not apply Yomdin's inequality.) Use (2.25) to deduce:

Theorem 2.31. Let $X \subset \mathbb{CP}^N$ be an irreducible complex projective variety. Assume that $F : X \to X$ is a rational continuous map. Then $h(F) \leq \log \rho(F)$.

\S 3. Extensions, examples and conjectures.

Let $X \subset \mathbf{CP}^N$ be a smooth projective variety of complex dimension n. Assume that $\Gamma \subset X \times X$ is an irreducible variety. We call Γ regular if $dim(\Gamma) = dim(X) = n$ and the projection of Γ on each X component of $X \times X$ is X. Assume that $\Gamma \subset X^2$ is a regular irreducible variety. It then follows that there exists a subvariety $U \subset X$ so that for each $x \in X \setminus U$ we have

$$x \times X \cap \Gamma = \bigcup_{1}^{v} (x, y_i(x)), \ y_i(x) \neq y_i(x) \text{ for } i \neq j.$$

$$(3.1)$$

We remark that there exists many regular irreducible graphs Γ . Indeed, let us view $X \times X$ a subset of $\mathbb{CP}^N \times \mathbb{CP}^N$. In \mathbb{CP}^N choose an affine chart \mathbb{C}^N so that $X_a = X \cap \mathbb{C}^N \subset X$ is an irreducible affine variety of dimension n. Intersect $X_a \times X_a \subset \mathbb{C}^{2N}$ with a hyperplane L of codimension n in general position. It then follows that each irreducible component of $Closure((X_a \times X_a) \cap L) \subset X \times X$ is a regular irreducible graph.

Let $Sym(X^k)$ be the symmetric k product of X. That is, $Sym(X^k)$ be the space of k - th unordered pairs $\{x_1, ..., x_k\}, x_i \in X, i = 1, ..., k$. Thus, a regular irreducible Γ induces a rational map

$$F: X \to Sym(X^v), \ x \mapsto \{y_1(x), \dots, y_v(x)\}.$$

$$(3.2)$$

We identify F with the v valent map $F: X \to X$ and no ambiguity will arise. Let Sing(F) be the set of points where the map (3.2) is discontinous. Thus, $F(x) = \{F_1(x), ..., F_v(x)\}, x \notin Sing(F)$, where each $F_i(x)$ appears according to its multiplicity. $(F_i(x) \neq F_j(x) \text{ for } i \neq j \text{ and } x \notin U$.). We now show that most of the results of the previous section apply to the v valent map F.

A standard argument yields that Sing(F) is a quasi-variety of codimension 2 at least, e.g. [**G-H**, p'491]. Let V_i , i = 0, 1, ... and V be defined as in (2.1). We then define $\Omega(F) \subset \Gamma^{\infty}$ as (2.2). Thus $\Gamma_k(F) \equiv \Gamma^k$ and $\hat{\Omega}(F) = \Gamma^{\infty}$. We can define the quanties $\alpha_{j,k}$, β_k and H(F) as in (2.8). We let $F^{\circ m} : X \to X$ be the v^m valent map obtained by the composition of F m times. Equivalently, $F^{\circ m}$ can be defined in terms of the graph Γ^{m+1} :

$$F^{\circ m} : X \to Sym(X^{v^m}), \ x \mapsto \{z_1(x), ..., z_{v^m}(x)\} , x \in V_m, \ x \times X^m \cap \Gamma^{m+1} = \cup_1^{v^m} (x, ..., z_i(x)).$$
(3.3)

We now let ϕ_m and ϕ_{m_1,\ldots,m_k} be defined as in (2.19), where ω is the (1,1) form on $Sym(X^{v^m})$ induced by the standard (1,1) form on X^{v^m} . Then the formulas (2.20) – (2.22) hold. We define h(F) by (2.5). The arguments of the proof of Theorem 2.23 yield:

Theorem 3.4. Let $X \subset \mathbb{CP}^N$ be a smooth projective variety of dimension n. Assume that $\Gamma \subset X \times X$ is a regular irreducible variety. Then

$$lov(\Gamma) = \limsup_{j \to \infty} \frac{log|(\sum_{i=0}^{i=j-1} \phi_i)^n([X])|}{j}.$$
(3.5)

Hence

$$h(F) \le h(\Gamma) \le M(F). \tag{3.6}$$

Conjecture 3.7 Let the assumptions of Theorem 3.4 hold. Then

$$h(F) = h(\Gamma) = lov(\Gamma) = M(F) = H(F).$$
(3.8)

Let $F : \mathbf{C}^N \to \mathbf{C}^N$ be a polynomial map. We will express in relatively simple terms the quantity M(F). Assume first that F is dominating. Let $L \subset \mathbf{C}^N$ be a hyperplane of codimension 1 in general position. (L is the dual of ω .) Denote by $Q_m = F^{\circ - m}(L) \subset \mathbf{C}^N$ the hypersurface of codimension 1 obtained by the pull back of L. Set n = N. It then follows

$$M(F) = \limsup_{j \to \infty} \frac{\log(\max_{0 \le m_i < j} t_{m_1, \dots, m_n})}{j}, \ t_{m_1, \dots, m_n} = Card(\cap_{i=1}^{i=n} Q_{m_i}).$$
(3.9)

Suppose now that F is not dominating. In §1 we showed that there exists an irreducible variety $X \subset \mathbb{C}^N$ of complex dimension n so that $F: X \to X$ is a dominating map and the dynamics of of F is reduced to the restriction of F to X. We then let $Q_m = F^{\circ - m}(L) \cap X$ and the equality (3.9) applies.

We now study the structure of the set Γ^{∞} where $\Gamma = \Gamma(F)$, $F : X \to X$ where X be a compact smooth projective surface and F is a dominating rational map which satisfies the following condition. It is well known that F is holomorphic except at a finite number of points $\zeta_i \in X$, i = 1, ..., k. We shall assume that

$$F: \tilde{X} \to \tilde{X}, \ \tilde{X} = X \setminus \{\zeta_1, ..., \zeta_k\}.$$

$$(3.10)$$

The above assumption simplifies enormously the dynamics of $\sigma : \hat{\Omega}(F) \to \hat{\Omega}(F)$. More precisely, we have

Lemma 3.11. Let X be a smooth projective surface and $F : X \to X$ is a rational dominating map which is not holomorphic exactly at the points $\{\zeta_1, ..., \zeta_k\}$. Assume the condition (3.10) holds. Then

$$\widehat{\Omega}(F) = Y \cup Z, \ Y \cap Z = \emptyset, \ Closure(Y) = Y \cup Z,
Y = \{(x_j)_1^\infty, \ \exists j \ x_j \notin \{\zeta_1, ..., \zeta_k\}\}, \ \sigma(Y) \subset Y,
Z \subset \mathcal{U} = \prod_1^\infty U_i, \ U_i = \{\zeta_1, ..., \zeta_k\}, \ i = 1, ...$$
(3.12).

Furthermore, Y is an open complex (algebraic) space (in the sense of Grauert-Remmert).

Proof. Let $(x_j)_1^{\infty} \in Y$. Assume that $x_i \notin \{\zeta_1, ..., \zeta_k\}$. Then $x_j = F^{j-i}(x_i), j > i$. It then follows that there exists a neighborhood $U \subset \hat{\Omega}(F)$ of x so it is homeomorphic to a corresponding neighborhood $V \subset \Gamma_i(F)$ of the point $\xi = (x_j)_1^i \in \Gamma_i(F)$. As $\Gamma_i(F)$ is an irreducible algebraic variety we deduce that Y is a complex (algebraic) space in a natural way. More rigorously, a neighborhood $U \subset \hat{\Omega}(F)$ of a point $(x_j)_1^{\infty}$ consists of a finite product of the affine neighborhoods $U_j \subset X$ of the points x_j for j = 1, ..., m so that

$$x_m \notin \{\zeta_1, ..., \zeta_k\}, \ x_j \notin \{\zeta_1, ..., \zeta_k\} \Rightarrow U_j \cap \{\zeta_1, ..., \zeta_k\} = \emptyset.$$

Furthermore, the ring of analytic function $\mathcal{O}_Y(U)$ coincide with $\mathcal{O}_{\pi_m(\hat{\Omega}(F))}(U)$.

We may view Z as the boundary of Y. Note that \mathcal{U} can be naturally identified with the unit circle S^1 . It then follows that either $\mu(Z) = 1$ or $\mu(Z) = 0$ where μ is the σ invariant probability measure induced by the uniform probability measure on \mathcal{U} . (μ is the Haar measure on S^1 .)

We now bring an example of a map satisfying condition (3.10). Let $F = (p,q) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map. Suppose that

$$p = \sum_{0}^{m} p_i(x, y), \quad q = \sum_{0}^{m} q_i(x, y)$$

are the homogeneous expansions of p and q, where each p_i , q_i is either a zero polynomial or a homogeneous polynomial of degree i. Assume furthermore that at least one of the polynomials p_m , q_m is not a zero polynomial. Suppose furthermore that p_m and q_m are linearly dependent. (This would be the case if $deg(p) \neq deg(q)$.) It then follows that F extends to a rational map $F : \mathbb{CP}^2 \to \mathbb{CP}^2$ so that the line at infinity L is mapped to one point $\zeta = (u, v, 0) \in L$. The condition (3.10) in this case is equivalent of the condition $|p_m(u, v)| + |q_m(u, v)| > 0$. Thus, there are many dominating polynomial maps which satisfy these conditions.

We now discuss the definition of the entropy h(F) as given by (2.5) for F satisfying conditions of Lemma 3.11. Let μ be an invariant ergodic probability measure under the shift σ on the space $\Gamma(F^{\circ m})^{\infty}$. Suppose first that μ is supported on Z given in (3.12). Let h_{μ} be the measure theoretical entropy of σ . The topological entropy of σ on \mathcal{U} is equal to *logk*. The variational characterization of the topological entropy yields the inequality $h_{\mu} \leq logk$. See for example [Wal, Ch.7-8]. Assume that h(F) > 0. The variational characterization

$$h(\sigma, \Gamma(F^{\circ m})^{\infty}) = \sup_{\mu} h_{\mu}$$
(3.13)

together with the above arguments and the definition (2.5) imply that for m sufficiently large it is enough to consider in (3.13) the invariant ergodic measures so that $\mu(Z) = 0$. It then follows that μ can be considered as an $F^{\circ m}$ invariant ergodic measure on X so that $\mu(\{\zeta_1, ..., \zeta_k\}) = 0$. Thus, we can define the Lyapunov exponents of $F^{\circ m}$ with respect to μ . The arguments of [**Fri**] (using basically inequalities of the type (2.20)) yield that $M(F) < \infty$. The inequality (3.6) suggests that all the Lyapunov exponents are finite. Now the modified arguments of [**New**] should yield $h(F) \leq H(F)$ (Conjecture 2.9).

References.

[Fed] H. Federer, Geometric Measure Theory, Springer 1969.

[Fri] S. Friedland, Entropy of polynomial and rational maps, Annals Math. 1990, to appear.

[G-H] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley 1978.

[Gro1] M. Gromov, On the entropy of holomorphic maps, preprint, 1977.

[Gro2] M. Gromov, Entropy, homology and semialgebraic geometry, Astérisque 145-146 (1987), 225-240.

[Hir] H. Hironaka, On resolution of singularities, Proc. Int. Congress Math., Stockholm 1962, 507-525.

[New] S. Newhouse, Entropy and volume, Ergod. Th. & Dynam. Sys. 8(1988), 283-299.

[Sha] I. R. Shafarevich, Basic Algebraic Geometry, Springer 1977.

[Wal] P. Walters, An Introduction to Ergodic Theory, Springer 1982.

[Yom] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57(1987), 285-299.