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§0. Introduction

Let X ⊂ CPN be an irreducible projective variety. Assume that F : X → X is a rational continuous
map. Denote by h(F ) the entropy of F . In [Fri] we showed that h(F ) = logρ(F ) if X is smooth. Here ρ(F )
is the spectral radius of the induced linear map on the homology groups of X over the rationals. In the
first part of this paper (§1) we show that this result is valid for any irreducible normal projective variety X .
More general, h(F ) = logρ(F ) for a regular selfmap F of an irreducible projective variety X . We conjecture
that the regularity assumption of F can be replaced by the continuity assumption.

The second part of this paper (§2-3) deals with the case where F : X → X is a rational but not a
continuous map. One can extend naturally F to the restriction of the standard shift map to the space Ω̂(F )
which is the closure of the orbit space of F [Fri]. Using this extension we define the entropy h(F ) as in [Fri].
On the other hand one can define H(F ) - the volume growth of algebraic subvarieties on X . As in the case
of smooth X discussed in [Fri] our arguments show that

h(F ) = H(F ) (0.1)

for a rational regular map F : X → X . We conjecture that this equality holds for a discontinuous rational
map. Consult [Fri] for examples where this conjecture holds. In §2 using Gromov’s results [Gro1] we prove
that h(F ) ≤ M(F ). Here M(F ) ≥ H(F ) is a natural extension of H(F ). In §3 we discuss some extensions,
examples and conjectures.

§1. Regular rational maps

Let n be the complex dimension of X and denote by H2k,a(X) the subgroup of H2k(X,Q) generated
by all irreducible algebraic varieties in X of complex dimension k. In this section we shall assume that F is
rational and continuous. It then follows that

F∗ : H2k(X,Q) → H2k(X,Q), F∗ : H2k,a(X) → H2k,a(X). (1.1)

Denote by ρk(F ) and ρk,a(F ) the spectral radii of the above linear maps. Set

ρ(F ) = max
0≤k≤n

ρk(F ), ρa(F ) = max
0≤k≤n

ρk,a(F ). (1.2)

Let ω be the the standard (1, 1) form on CPN . Assume that Y ⊂ X is an irreducible variety of complex
dimension k. Then the volume of Y is given by the Wirtinger formula:

vol(Y ) =
1

k!

∫
Y

ωk.

Thus we can view the restriction of ωk to X as a linear functional on H2k,a(X). Let A(X) be the set of all
irreducible varieties Y ⊂ X, 0 ≤ dim(X) ≤ n. We then let

H(F ) = sup
Y ∈A(X)

lim sup
m→∞

log
vol(F ◦m(Y ))

m
. (1.3)
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Remark. If dim(F ◦m(Y )) = dim(Y ) then vol(F ◦m(Y )) is the standard volume of the irreducible vari-
ety F ◦m(Y ) mulitplied by the degree of the branched covering map covering map F : Y → F ◦m(Y ). If
dim(F ◦m(Y )) < dim(Y ) then vol(F ◦m(Y )) = 0. Equivalently:

vol(F ◦m(Y )) =
1

k!

∫
Y

((F ◦m)∗ω)k, k = dim(Y ).

Thus H(F ) is the volume growth of algebraic varieties on X . As ωk : H2k,a(X) → C it follows:

H(F ) ≤ logρa(F ). (1.4)

In [Fri] we showed that if X is smooth then

H(F ) = logρa(F ) = logρ(F ). (1.5)

We will prove this equality for an irreducible projective variety X and a rational regular map F : X → X .
We now recall some basic facts about varieties and rational maps needed here. Most of them can be found
in [Sha].

For a ∈ X we let Ta(X) to be the tangent space of X at a. Intrinsically, Ta(X) can be identified with
the linear space of all derivations of the local ring Oa(X) at a. We prefer here a coordinate dependent
definition which will be needed for our purposes. Let COTa(X) be the cotangent space of X at a given as
follows. Assume that the affine piece of X - X̃ = X ∩ CN which contains the point a is the zero set the k
polynomials p1, ..., pk ∈ C[CN ]. We then let

COTa(X) = span{(
∂pj

∂xi

(a))i=N
i=1 , j = 1, ..., k} ⊂ CN , Ta(X) = COTa(X)⊥} (1.6)

Note that dim(Ta(X)) ≥ dim(X) and the equality holds iff a is a smooth point of X . Recall that a is called
a normal point of X if the local ring Oa(X) is integrally closed. X is called a normal variety if it is normal
at all of its points. Assume that X ⊂ CPN is an irreducible projective variety and F : X → X is a rational
continuous map. Let a ∈ X, b = F (a). F is called regular at a if there exists an affine piece X̃ = X ∩ CN

so that a, b ∈ X̃ and the following condition is satisfied:

F (x) = (
f1(x)

g1(x)
, ...,

fN (x)

gN(x)
), x ∈ CN ,

fi, gi ∈ C[X̃], gi(a) 6= 0, i = 1, ..., N

(1.7)

F is called regular if F is regular at any a ∈ X . Assume that X is a normal variety and F : X → X is a
rational continuous map. It is quite straightforward to show that F is a regular mapping.

In what follows we will assume that F : X → X is a rational regular mapping unless stated otherwise.
Let a ∈ X . Then there exists an open ball B(a, r(a)) ⊂ CN so that the polynomials gi, i = 1, ..., N
appearing do not vanish at any point of Closure(B(a, r(a)). Let Ua = B(a, r(a)). Then U = ∪a∈XUa is
an open cover of X . Let Uf = Ua1

∪ ... ∪ Uat
a finite cover of X . Then on each Uai

the map F has the
form (1.7). Thus, F can be considered locally as a restriction of a holomorphic map F̄ : Ua → CN to X .
Let D(F̄ )(a) ∈ MN(C) be the full differential matrix of F̄ at a. From the definition of the finite cover Uf

it follows that there exists K > 0 so that ‖D(F̄ )(a)‖ ≤ K, ∀a ∈ X . It is straightforward to show that
COTb(X)D(F̄ )(a) ⊂ COTa(X), b = F (a). Thus, if D(F )(a) denotes the restriction of D(F̄ )(a) to the
tangent space Ta(X) we get the expected relation D(F )(a) : Ta(X) → TF (a)(X). As usual, let Sing(X) ⊂ X

be the variety of the singular points of X . Observe that

F : Xr → Xr, F
◦−1(Y ) ⊂ Y, Xr = X\Y, Y = ∪∞

0 F
◦−m(Sing(X)). (1.8)

If Y 6= X it then follows that Xr is a complex manifold of complex dimension n. We viewXr as a Riemannian
manifold with the Riemannian metric obtained by the restriction of Fubini-Study metric in CPN ⊃ X . We
thus showed:
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Lemma 1.9. Let X ⊂ CPN be an irreducible complex projective variety. Assume that F : X → X is a
rational regular map. Suppose furthermore that Y 6= X . Then the norms ‖D(F (a))‖, a ∈ Xr are uniformly
bounded.

Theorem 1.10. Let X be an irreducible projective variety. Assume that F : X → X is a rational
regular map. Then

h(F ) = H(F ) = logρa(F ) = logρ(F ) (1.11)

Proof. We now modify the arguments of [New] to show the inequality

h(F ) ≤ H(F ). (1.12)

Assume first that F is not dominating. Then W1 = F (X) is an irreducible variety,
dim(W1) < dim(X), F : W1 → W1 is a rational regular map and h(F ) = h(F,W1). Continue this process
until we get an irreducible subvariety Wk ⊂ X , F : Wk → Wk is a rational regular dominating map and
h(F ) = h(F,Wk). Thus, w.l.o.g. we may assume that F is dominating. Hence Y 6= X where Y is defined by
(1.8). Recall that h(F ) is the supremum of all measure theoretic entropies hµ(F ) where µ is an F invariant
ergodic measure. See for example [Wal, Ch. 8]. Let µ be an F invariant ergodic measure. Thus, either
µ(Y ) = 0 or µ(Y ) = 1.

Assume first that µ(Y ) = 0. In view of Lemma 1.9 we can define the Lyapunov exponents for the map
F |Xr

with respect to µ. Using the fact that Xr ⊂ X where X is compact and the observation that F is
a (local) restriction of a homolomorphic map we can combine the arguments of [New] and [Fri] to deduce
hµ(F ) ≤ H(F ).

Assume now that µ(Y ) = 1. Let Z ⊂ X be an irreducible variety. Since F is a rational regular map it
follows that F (Z) is an irreducible variety. Furthermore
dim(F (Z)) ≤ dim(Z). Let Sing(X) = ∪t

1Zj where each Zj is an irreducible variety. Set Yj = ∪∞
0 F

◦−i(Zj) ⊂
Y . Clearly, F ◦−1(Yj) ⊂ Yj . The ergodicity of µ implies that µ(Yj) is either 0 or 1. As Y = ∪t

1Yj

w.l.o.g. we may assume that µ(Y1) = 1. As µ(Y1) = 1 and µ is an F invariant measure it follows that
µ(∪i≥kF

◦i(Z1)) = 1, k = 0, 1, .... Let V = ∪∞
0 F

◦−i(Sing(Z1)). Then F ◦−1(V ) ⊂ V . Thus, either µ(V ) = 1
or µ(V ) = 0. In the first case we can repeat our arguments by replacing Sing(X) with Sing(Z1). Thus, it is
enough consider the case µ(V ) = 0. In particular µ(Sing(Z1)) = 0. Replace Z1 by F ◦i(Z1) to deduce that
it suffices to consider the case where µ(Sing(F ◦i(Z1))) = 0, i = 0, 1, .... That is

µ(W ) = 1, W = {x, x ∈ Z1, F
◦i(x) 6∈ Sing(F ◦i(Z1)), i = 0, 1, ...}. (1.13)

In that case we can define the Lyapunov exponents of F on W with respect to µ. The arguments of [New]
and [Fri] yield the inequality hµ(F ) ≤ H(F ). The maximal characterization of h(F ) coupled with the above
inequality yields (1.12).

We now use the arguments of [Yom] as given by [Gro2] to deduce the inequality H(F ) ≤ h(F ). Let
Y ⊂ X be an irreducible subvariety. As F is a restriction of a (locally) holomorphic map the arguments in
[Gro2] yield directly that

lim sup
m→∞

log
vol(F ◦m(Y ))

m
≤ h(F ).

Hence H(F ) ≤ h(F ). Combine this inequality with (1.12) to deduce that h(F ) = H(F ). Using Yomdin’s
arguments and (1.8) we deduce that h(F ) ≥ logρ(F ). Combine this inequality with the previous equality
and (1.4) to deduce the theorem. �

§2. Discontinuous rational maps

Assume that X is an irreducible projective variety of complex dimension n and F : X → X is rational
map. Denote by Sing(F ) ⊂ X the set of points where F is discontinuous. A standard argument shows
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that Sing(F ) is a quasi subvariety. Thus, X\(Sing(X) ∪ Sing(F )) is a connected manifold and Z =
Closure(F (X\(Sing(X) ∪ Sing(F )))) is an irreducible variety. If Z = X then F is called dominating.
Otherwise, from the dynamics point of view it is enough to study the map F : Z → Z. Continuing the above
process it is enough to consider dominating rational maps. In what follows we shall assume that F : X → X

is a dominating rational discontinuous (at least at one point) map. Furthermore, we shall assume that X
is a smooth variety. This is not a serious restriction. Indeed, according to Hironaka [Hir] it is possible to
blow up the ambient space CPN ⊃ X to obtain a smooth projective variety Y which is a resolution of X .
It then follows that F lifts to a rational dominating map G : Y → Y . Set

V0 = Sing(F ), Vi = F (X\V0 ∪ ... ∪ Vi−1) ∩ Vi−1 =

{x, F ◦j(x) 6∈ Sing(F ), j = 0, ..., i− 1, F ◦i(x) ∈ Sing(F )}, i = 1, ..., V = ∪∞
0 Vi.

(2.1)

Hence, each Vi is a quasi subvariety of X . In particular µ(Vi) = 0 where µ is measure with respect to volume
form ωn. Thus, µ(V ) = 0. It is natural to consider the orbit space Ω(F ) ⊂ X∞ on which the action of the
standard shift is equivalent to the map F :

X∞ =

∞∏
1

Xi, Xi = X, i = 1, ...,

X∞ ⊃ Ω(F ) = {(F i(x))∞0 , x ∈ X, F is holomorphic at F i(x), i = 0, 1, ...}.

(2.2)

Let d : X × X → R+ be the metric induced by the Fubini-Study metric on X ⊂ CPN . Clearly, X has a
finite diameter: d(x, y) ≤ D, ∀x, y ∈ X . It then follows that X∞ is a compact metric space with respect to
the metric:

δ((xi)
∞
1 , (yi)

∞
1 ) = max

1≤i

d(xi, yi)

2i−1
, (xi)

∞
1 , (yi)

∞
1 ∈ X∞.

Let πm : X∞ → Xm =
∏m

1 Xi be the projection on the first m components. Recall that the shift map
σ : X∞ → X∞ is a continuous map given by σ((xi)

∞
1 ) = (xi)

∞
2 . It is easy to see that σ : Ω(F ) → Ω(F ).

Moreover, the map F : π1(Ω(F )) → π1(Ω(F )) is equivalent to the restriction of σ to Ω(F ). Set Ω̂(F ) =
Closure(Ω(F )). Thus, Ω̂(F ) is a compact set which is mapped into itself by σ. Let

Γi(F ) = πi(Ω̂(F )), i = 1, ..., Γ(F ) = Γ2(F ),

σi : Γi(F ) → Γi−1(F ), (xj)
i
1 7→ (xj)

i
2, i = 1, ...

(2.3)

Note that Γ1(F ) = X , Γ(F ) ⊂ X × X is the standard graph of F and Γi(F ) is an irreducible variety of
dimension dim(X). The map

σ2 : Γ(F ) → X (2.4)

can be viewed as a regular resolution of the rational map F .
As in [Fri] we define the entropy h(F ) by

h(F ) = limsupm→∞

h(σ, Ω̂(F ◦m))

m
. (2.5)

This definition yields straightforward the inequality:

h(F ◦m) ≤ mh(F ). (2.6)

Of course, if F is regular (continuous) then the equality sign hold in (2.6). In [Fri] we conjectured that
h(F ) = H(F ) where X is smooth. In what follows we define the quantity H(F ) - the volume growth of
algebraic subvarieties on X by the iterates of F in a slightly different way then in (1.3). The arguments
of [Fri] imply that these two definitions are the same if F is a holomorphic rational map. We view X a
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smooth projective variety in the ambient projective space CPN . A hyperplane S of complex dimension
N − dim(X) + k is called in general position if the following condition hold:

S ∩X = ∪m
1 Zi, Zi irreducible, dim(Zi) = k, Zi 6⊂ V,

dim(Closure(F ◦j(Zi\V ))) = k, j = 1, ..., i = 1, ...,m,

Closure(F ◦j(Zi\V )) 6= Closure(F ◦j(Zl\V ))), for i 6= l.

(2.7)

Since F : X → X is a dominating map the standard arguments of algebraic geometry yield that ”most” of
N − dim(X) + k dimensional hyperplanes of CPN (with respect to the appropriate measure) are generic.
Denote by Ak(X,F ), k = 1, ..., dim(X) the set of all k dimensional algebraic subvarieties of X of the form
S ∩ X where S is an N − dim(X) + k dimensional hyperplane in general position. Let Y ⊂ CPN be an
irreducible algebraic variety of complex dimension k. Denote by deg(Y ) the degree of Y . That is deg(Y )
is the number of the intersection points (counted with multiplicities) with any N − dim(Y ) dimensional
hyperplane S so that Y ∩ S consists of a finite number of points. Equivalently, deg(Y ) = vol(Y ). Set

αj,k = sup
Y ∈Ak(X,F )

vol(Closure(F ◦j(Y \V ))), j = 0, 1, ...,

βk = lim sup
j→∞

logαj,k

j
, k = 1, ..., dim(X),

H(F ) = max
1≤k≤dim(X)

βk.

(2.8)

We conjecture:

Conjecture 2.9. Let X ⊂ CPN be an irreducible smooth projective variety. Assume that F : X → X

is a dominating rational map. Let h(F ) and H(F ) be as defined above. Then h(F ) ≤ H(F ).

To support this conjecture we will recall some results of [Gro1]. Let X be a compact Riemann manifold.
Assume that Γ ⊂ X ×X is an arbitrary closed set. Set

Γ∞ = {ξ, ξ = (xi)
∞
1 ∈ X∞, (xi, xi+1) ∈ Γ, i = 1, ...}, Γm = πm(Γ∞), m = 1, ... . (2.10)

It then follows that Γ∞ is a compact set in X∞ such that σ : Γ∞ → Γ∞. Let h(Γ) = h(σ,Γ∞). We view
Xk as a Riemannian manifold endowed with the Riemannian product metric. Assume that the Hausdorff
dimension of Γ ⊂ X2 is a positive integer n. Let vol(Γk) ≤ ∞ be the n dimensional volume of Γk. We shall
assume:

vol(Γk) <∞, k = 2, ... . (2.11)

Let Bk(a, r) ⊂ Xk be an open ball of radius r centered at a with respect to the induced metric on Xk by X :

Bk(a, r) = {x, x = (xi)
k
1 , a = (ai)

k
1 ∈ Xk,

k∑
1

d(xi, ai)
2 < r2.}

Set

lov(Γ) = lim sup
k→∞

log vol(Γk)

k
,

Densε(Γk) = inf
a∈Γk

vol(Γk ∩Bk(a, ε)),

lodnε(Γ) = lim inf
k→∞

log Densε(Γ
k)

k
,

lodn(Γ) = lim
ε→0

lodnε(Γ).

(2.12)

Lemma 2.13 (Gromov) Let X be a compact Riemannian manifold, Γ ⊂ X × X a closed set of integer
Hausdorff dimension n satisfying condition (2.11). Then

h(Γ) ≤ lov(Γ) − lodn(Γ). (2.14)

5



Proof. Let
δj(ξ, η) = max

0≤l≤j−1
δ(σ◦l(ξ), σ◦l(η)) =

max
1≤i

d(xi, yi)

2(i−j)+
, ξ = (xi)

∞
1 , η = (yi)

∞
1 ∈ X∞, j = 1, ... .

(2.15)

Here, a+ = max(a, 0), a ∈ R. Fix ε > 0. Let L(k, ε,Γ∞) be the maximal size of (k, ε) separated set in Γ∞.
That is for any finite set E ⊂ Γ∞ with the property ξ, η ∈ E, ξ 6= η ⇒ δk(ξ, η) > ε we have the inequality
Card(E) ≤ L(k, ε,Γ∞). Furthermore, the equality sign holds for at least one such a set E. The standard
definition of h(σ,Γ) is [Wal, Ch.7]:

h(σ,Γ) = lim
ε→0

lim sup
k→∞

log L(k, ε,Γ∞)

k
. (2.16)

Let E(k, ε,Γ∞) be a (k, ε) separated set of cardinality L(k, ε,Γ∞). It then follows that

max
1≤i≤k+K(ε)

d(xi, yi) > ε, ξ = (xi)
∞
1 6= η = (yi)

∞
1 ∈ E(k, ε,Γ∞), K(ε) = dlog2D − log2εe.

Here D is the diameter of X . In particular the L(k, ε,Γ∞) balls

Bk+K(ε)(πk+K(ε)(ξ),
ε

2
), ξ ∈ E(k, ε,Γ∞)

are disjoint. Hence:
vol(Γk+K(ε)) ≥ L(k, ε,Γ∞)Dens ε

2
(Γk+K(ε)).

Take the logarithm of this inequality, divide by k+K(ε), take limsup of the both sides of this inequality and
let ε tend to zero to deduce the lemma. �

Theorem 2.17. (Gromov) Let X be a compact complex Kähler manifold. Assume that Γ ⊂ X ×X is
a closed irreducible analytic subvariety. Then lodn(Γ) ≥ 0. Hence

h(Γ) ≤ lov(Γ). (2.18)

Proof. Let n be the complex dimension of Γ. According to [Fed, Sec. 5.4.19] the irreducible analytic
subvariety Γk ⊂ Xk is minimal. Thus

vol(Γk ∩Bk(a, ε)) ≥ C(n)ε2n.

Here C(n) depends on the space X and the dimension n but not on k, a, ε. (Consult [Gro1] for a detailed
proof.) Thus, lodn(Γ) ≥ 0 and (2.14) yields (2.18). �

Let F : X → X be a dominating rational map. Assume that ω is the restriction of the Fubini-Study
(1,1) form to X ⊂ CPN . Set

φm = (F ◦m)∗ω, m = 0, 1, ... ,

φm1,...,mk
= φm1

...φmk
, 0 ≤ mi, i = 1, ..., k, 1 ≤ k ≤ dim(X).

(2.19)

Here φm is the pull back of ω by the F ◦m and φm1,...,mk
the exterior products of φm1

, ..., φmk
. Note that

φm1,...,mk
is a rational (k, k) form. As the singularities of this form are ”mild” (on subvariety of codimension

2 at least) the (k, k) form φm1,...,mk
is a linear functional on H2k,a(X). Thus, we can replace this rational

form by a regular (k, k) form ψm1,...,mk
∈ H2k. If F is not holomorphic we usually would not have the

functorial equality:
ψm1,...,mj

ψmj+1,...,mk
= ψm1,...,mk

.

The arguments in [Fri] would yield the inequality:

ψm1,...,mj
ψmj+1,...,mk

≥ ψm1,...,mk
. (2.20)
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as linear functionals on H2k,a(X) with respect to the cone generated by the k complex dimensional analytic
cycles in X . Let ‖φm1,...,mk

‖ be the norm of the linear functional φm1,...,mk
: H2k,a → R. Note

‖φm1,...,mn
‖ = |φm1,...,mn

([X ])|.

Here [X ] is the fundamental class of X , i.e. the generator of the one dimensional free group H2n(X,Z). A
straightforward argument shows that

βk = lim sup
m1=...=mk=j−1→∞

log‖φm1,...,mk
‖

j
=

lim sup
m1=...=mk=j−1→∞

log|φm1,...,mk,0,...,0([X ])|

j
, k = 1, ..., n.

(2.21)

We now define another invariant M(F ) of F

M(F ) = lim sup
j→∞

log(max0≤mi<j, i=1,...,n |φm1,...,mn
([X ])|)

j
. (2.22)

The definitions (2.8), (2.22) and the equalities (2.21) yield the inequality H(F ) ≤ M(F ). We shall show
that for holomorphic F we have the equality H(F ) = M(F ).

Theorem 2.23. Let X ⊂ CPN be an irreducible projective variety of complex dimension n and assume
that F : X → X is a dominating rational map. Denote by Γ(F ) ⊂ X ×X the graph of F as given by (2.3).
Then

lov(Γ(F )) = lim sup
j→∞

log|(
∑i=j−1

i=0 φi)
n([X ])|

j
. (2.24)

Hence
h(F ) ≤ h(Γ(F )) ≤M(F ). (2.25)

Proof. The points of πk(Ω(F )) ⊂ Γk(F ) are of the form (x, F (x), ..., F ◦k−1(x)), x ∈ X\V . Hence, in terms
of the variable x, the restriction of the (1, 1) form ω on the j − th coordinate of πj(Ω(F )) is φj−1 - the pull

back of φ0 by F ◦j−1. Thus, the restriction of the standard (1, 1) form ω in (CPN )k to X\V is

θk(x) =
k−1∑
j=0

φj(x), x ∈ X\V, k = 0, 1, ... . (2.26)

So vol(Γk(F )) = 1
n!θ

n
k ([X ]) and (2.24) follows. Clearly

θn
k ([X ]) ≤ kn max

0≤mi<k,i=1,...,n
|φm1,...,mn

|.

Use Theorem 2.17 (Γ(F ) ⊂ CPN × CPN ), equality (2.24), definition (2.22) and the above inequality to
deduce that h(σ,Γ∞) = h(Γ(F )) ≤ M(F ). Recall that h(σ◦m,Γ(F )∞) = mh(σ,Γ(F )∞). Next note that
the action of σ◦m on Γ(F )∞ decomposes in an obvious way to m subshifts. One of this subshifts is σ :
Ω̂(F ◦m) → Ω̂(F ◦m). Therefore

h(σ, Ω̂(F ◦m)) ≤ h(σ◦m, Ω̂(F )) = mh(Γ(F )∞) ≤ mM(F ).

Combine this inequality with the definition (2.5) to deduce the theorem. �

Theorem 2.27. Let X be a compact Kähler manifold. Assume that F : X → X is holomorphic. Then

h(F ) = lov(Γ(F )∞) = M(F ) = logρ(F ). (2.28)
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Proof. Let µ be the dimension of H2(X). Assume that A ∈ Rµ,µ is a matrix representation of the linear
operator F ∗ : H2(X) → H2(X). Suppose first that A is similar to a diagonal matrix over the complex
numbers (A is semi simple). Let λ1, ..., λµ and u1, ..., uµ ∈ Cµ ≡ H2(X,C) be the µ complex eigenvalues
and the µ corresponding eigenvectors of A. Then

φk =

j=µ∑
j=1

ajλ
k
juj , aj ∈ C, j = 1, ..., µ.

It then follows that
φm1,...,mn

([X ]) =
∑

1≤j1,...,jn≤µ

bj1,...,jn
λm1

j1
...λmn

jn
. (2.29)

Here, the tensor bj1,...,jn
is a symmetric tensor. W.l.o.g. we may assume that |λ1| ≥ |λ2| ≥ ... ≥ |λµ|. A

straightforward argument shows that

M(F ) = log|λi1λi2 ...λik
|, 1 ≤ i1... ≤ ik, 1 ≤ k ≤ n,

M(F ) ≤ logρk(F ) ≤ logρ(F ).
(2.30)

For a general matrix A one has to use a corresponding modification of (2.29) to deduce (2.30). Next note
that (2.25) is valid in this case. Combine the above inequalities with (2.25) and Yomdin’s inequality to
deduce (2.28). �

We now note that the arguments of the proof of Theorem 2.27 yield the validity of (2.30) for a projective
variety X and a rational continuous map F . (However, we can not apply Yomdin’s inequality.) Use (2.25)
to deduce:

Theorem 2.31. Let X ⊂ CPN be an irreducible complex projective variety. Assume that F : X → X

is a rational continuous map. Then h(F ) ≤ logρ(F ).

§3. Extensions, examples and conjectures.

Let X ⊂ CPN be a smooth projective variety of complex dimension n. Assume that Γ ⊂ X ×X is an
irreducible variety. We call Γ regular if dim(Γ) = dim(X) = n and the projection of Γ on each X component
of X × X is X . Assume that Γ ⊂ X2 is a regular irreducible variety It then follows that there exists a
subvariety U ⊂ X so that for each x ∈ X\U we have

x×X ∩ Γ = ∪v
1(x, yi(x)), yi(x) 6= yj(x) for i 6= j. (3.1)

We remark that there exists many regular irreducible graphs Γ. Indeed, let us view X × X a subset of
CPN ×CPN . In CPN choose an affine chart CN so that Xa = X ∩CN ⊂ X is an irreducible affine variety
of dimension n. Intersect Xa ×Xa ⊂ C2N with a hyperplane L of codimension n in general position. It then
follows that each irreducible component of Closure((Xa ×Xa)∩L) ⊂ X ×X is a regular irreducible graph.

Let Sym(Xk) be the symmetric k product of X . That is, Sym(Xk) be the space of k − th unordered
pairs {x1, ..., xk}, xi ∈ X, i = 1, ..., k. Thus, a regular irreducible Γ induces a rational map

F : X → Sym(Xv), x 7→ {y1(x), ..., yv(x)}. (3.2)

We identify F with the v valent map F : X → X and no ambiguity will arise. Let Sing(F ) be the set of
points where the map (3.2) is discontinous. Thus, F (x) = {F1(x), ..., Fv(x)}, x 6∈ Sing(F ), where each Fi(x)
appears according to its multiplicity. (Fi(x) 6= Fj(x) for i 6= j and x 6∈ U .). We now show that most of the
results of the previous section apply to the v valent map F .
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A standard argument yields that Sing(F ) is a quasi-variety of codimension 2 at least, e.g. [G-H, p’491].
Let Vi, i = 0, 1, ... and V be defined as in (2.1). We then define Ω(F ) ⊂ Γ∞ as (2.2). Thus Γk(F ) ≡ Γk and
Ω̂(F ) = Γ∞. We can define the quanties αj,k, βk and H(F ) as in (2.8). We let F ◦m : X → X be the vm

valent map obtained by the composition of F m times. Equivalently, F ◦m can be defined in terms of the
graph Γm+1:

F ◦m : X → Sym(Xvm

), x 7→ {z1(x), ..., zvm(x)}

, x ∈ Vm, x×Xm ∩ Γm+1 = ∪vm

1 (x, ..., zi(x)).
(3.3)

We now let φm and φm1,...,mk
be defined as in (2.19), where ω is the (1, 1) form on Sym(Xvm

) induced by
the standard (1, 1) form on Xvm

. Then the formulas (2.20) − (2.22) hold. We define h(F ) by (2.5). The
arguments of the proof of Theorem 2.23 yield:

Theorem 3.4. Let X ⊂ CPN be a smooth projective variety of dimension n. Assume that Γ ⊂ X ×X

is a regular irreducible variety. Then

lov(Γ) = lim sup
j→∞

log|(
∑i=j−1

i=0 φi)
n([X ])|

j
. (3.5)

Hence
h(F ) ≤ h(Γ) ≤M(F ). (3.6)

Conjecture 3.7 Let the assumptions of Theorem 3.4 hold. Then

h(F ) = h(Γ) = lov(Γ) = M(F ) = H(F ). (3.8)

Let F : CN → CN be a polynomial map. We will express in relatively simple terms the quantity M(F ).
Assume first that F is dominating. Let L ⊂ CN be a hyperplane of codimension 1 in general position. (L
is the dual of ω.) Denote by Qm = F ◦−m(L) ⊂ CN the hypersurface of codimension 1 obtained by the pull
back of L. Set n = N . It then follows

M(F ) = lim sup
j→∞

log(max0≤mi<j tm1,...,mn
)

j
, tm1,...,mn

= Card(∩i=n
i=1Qmi

). (3.9)

Suppose now that F is not dominating. In §1 we showed that there exists an irreducible variety X ⊂ CN of
complex dimension n so that F : X → X is a dominating map and the dynamics of of F is reduced to the
restriction of F to X . We then let Qm = F ◦−m(L) ∩X and the equality (3.9) applies.

We now study the structure of the set Γ∞ where Γ = Γ(F ), F : X → X where X be a compact smooth
projective surface and F is a dominating rational map which satisfies the following condition. It is well
known that F is holomorphic except at a finite number of points ζi ∈ X, i = 1, ..., k. We shall assume that

F : X̃ → X̃, X̃ = X\{ζ1, ..., ζk}. (3.10)

The above assumption simplifies enormously the dynamics of σ : Ω̂(F ) → Ω̂(F ). More precisely, we have

Lemma 3.11. Let X be a smooth projective surface and F : X → X is a rational dominating map
which is not holomorphic exactly at the points {ζ1, ..., ζk}. Assume the condition (3.10) holds. Then

Ω̂(F ) = Y ∪ Z, Y ∩ Z = ∅, Closure(Y ) = Y ∪ Z,

Y = {(xj)
∞
1 , ∃j xj 6∈ {ζ1, ..., ζk}}, σ(Y ) ⊂ Y,

Z ⊂ U =

∞∏
1

Ui, Ui = {ζ1, ..., ζk}, i = 1, ...

(3.12).
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Furthermore, Y is an open complex (algebraic) space (in the sense of Grauert-Remmert).

Proof. Let (xj)
∞
1 ∈ Y . Assume that xi 6∈ {ζ1, ..., ζk}. Then xj = F j−i(xi), j > i. It then follows

that there exists a neighborhood U ⊂ Ω̂(F ) of x so it is homeomorphic to a corresponding neighborhood
V ⊂ Γi(F ) of the point ξ = (xj)

i
1 ∈ Γi(F ). As Γi(F ) is an irreducible algebraic variety we deduce that Y is

a complex (algebraic) space in a natural way. More rigorously, a neighborhood U ⊂ Ω̂(F ) of a point (xj)
∞
1

consists of a finite product of the affine neighborhoods Uj ⊂ X of the points xj for j = 1, ...,m so that

xm 6∈ {ζ1, ..., ζk}, xj 6∈ {ζ1, ..., ζk} ⇒ Uj ∩ {ζ1, ..., ζk} = ∅.

Furthermore, the ring of analytic function OY (U) coincide with O
πm(Ω̂(F ))(U). �

We may view Z as the boundary of Y . Note that U can be naturally identified with the unit circle S1.
It then follows that either µ(Z) = 1 or µ(Z) = 0 where µ is the σ invariant probability measure induced by
the uniform probability measure on U . (µ is the Haar measure on S1.)

We now bring an example of a map satisfying condition (3.10). Let F = (p, q) : C2 → C2 be a
polynomial map. Suppose that

p =

m∑
0

pi(x, y), q =

m∑
0

qi(x, y)

are the homogeneous expansions of p and q, where each pi, qi is either a zero polynomial or a homogeneous
polynomial of degree i. Assume furthermore that at least one of the polynomials pm, qm is not a zero
polynomial. Suppose furthermore that pm and qm are linearly dependent. (This would be the case if
deg(p) 6= deg(q).) It then follows that F extends to a rational map F : CP2 → CP2 so that the line at
infinity L is mapped to one point ζ = (u, v, 0) ∈ L. The condition (3.10) in this case is equivalent ot the
condition |pm(u, v)|+ |qm(u, v)| > 0. Thus, there are many dominating polynomial maps which satisfy these
conditions.

We now discuss the definition of the entropy h(F ) as given by (2.5) for F satisfying conditions of
Lemma 3.11. Let µ be an invariant ergodic probability measure under the shift σ on the space Γ(F ◦m)∞.
Suppose first that µ is supported on Z given in (3.12). Let hµ be the measure theoretical entropy of σ. The
topological entropy of σ on U is equal to logk. The variational characterization of the topological entropy
yields the inequality hµ ≤ logk. See for example [Wal, Ch.7-8]. Assume that h(F ) > 0. The variational
characterization

h(σ,Γ(F ◦m)∞) = sup
µ
hµ (3.13)

together with the above arguments and the definition (2.5) imply that for m sufficiently large it is enough to
consider in (3.13) the invariant ergodic measures so that µ(Z) = 0. It then follows that µ can be considered
as an F ◦m invariant ergodic measure on X so that µ({ζ1, ..., ζk}) = 0. Thus, we can define the Lyapunov
exponents of F ◦m with respect to µ. The arguments of [Fri] (using basically inequalities of the type (2.20))
yield that M(F ) < ∞. The inequality (3.6) suggests that all the Lyapunov exponents are finite. Now the
modified arguments of [New] should yield h(F ) ≤ H(F ) (Conjecture 2.9).
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