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§0. Introduction

Let X C CPN be an irreducible projective variety. Assume that F': X — X is a rational continuous
map. Denote by h(F) the entropy of F. In [Fri] we showed that h(F) = logp(F) if X is smooth. Here p(F)
is the spectral radius of the induced linear map on the homology groups of X over the rationals. In the
first part of this paper (§1) we show that this result is valid for any irreducible normal projective variety X.
More general, h(F') = logp(F) for a regular selfmap F of an irreducible projective variety X. We conjecture
that the regularity assumption of F' can be replaced by the continuity assumption.

The second part of this paper (§2-3) deals with the case where F' : X — X is a rational but not a
continuous map. One can extend naturally F' to the restriction of the standard shift map to the space Q(F )
which is the closure of the orbit space of F' [Fri]. Using this extension we define the entropy h(F') as in [Fri].
On the other hand one can define H(F') - the volume growth of algebraic subvarieties on X. As in the case
of smooth X discussed in [Fri] our arguments show that

h(F) = H(F) (0.1)

for a rational regular map F : X — X. We conjecture that this equality holds for a discontinuous rational
map. Consult [Fri] for examples where this conjecture holds. In §2 using Gromov’s results [Grol] we prove
that h(F) < M(F). Here M (F) > H(F) is a natural extension of H(F). In §3 we discuss some extensions,
examples and conjectures.

§1. Regular rational maps

Let n be the complex dimension of X and denote by Hay o(X) the subgroup of Har(X, Q) generated
by all irreducible algebraic varieties in X of complex dimension k. In this section we shall assume that F' is
rational and continuous. It then follows that

F,: Hop(X,Q) — Hop(X,Q), Fi: Hopo(X) — HopoX). (1.1)
Denote by pi(F) and py o (F') the spectral radii of the above linear maps. Set

p(F) = max pp(F), pa(F) = max pr.a(F). (1.2)

Let w be the the standard (1,1) form on CP”Y. Assume that Y C X is an irreducible variety of complex
dimension k. Then the volume of Y is given by the Wirtinger formula:

vol(Y) = %/ka.

Thus we can view the restriction of w* to X as a linear functional on Hay, (X). Let A(X) be the set of all
irreducible varieties Y C X,0 < dim(X) < n. We then let

H(F)= sup limsuplogw. (1.3)

YeA(X) m—oo
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Remark. If dim(F°™(Y)) = dim(Y) then vol(F°™(Y")) is the standard volume of the irreducible vari-
ety F°™(Y) mulitplied by the degree of the branched covering map covering map F : Y — F°™(Y). If
dim(F°™(Y)) < dim(Y') then vol(F°™(Y)) = 0. Equivalently:

vol (F°™(Y)) = %/Y((F"m)*w)k, k= dim(Y).

Thus H(F) is the volume growth of algebraic varieties on X. As w* : Hap o(X) — C it follows:
H(F) < logpa(F). (1.4)
In [Fri] we showed that if X is smooth then
H(F) =logpa(F) = logp(F). (1.5)

We will prove this equality for an irreducible projective variety X and a rational regular map F : X — X.
We now recall some basic facts about varieties and rational maps needed here. Most of them can be found
in [Sha).

For a € X we let T, (X) to be the tangent space of X at a. Intrinsically, T,,(X) can be identified with
the linear space of all derivations of the local ring O,(X) at a. We prefer here a coordinate dependent
definition which will be needed for our purposes. Let COT,(X) be the cotangent space of X at a given as
follows. Assume that the affine piece of X - X = X N CN which contains the point a is the zero set the k
polynomials p1, ..., pr, € C[CN]. We then let

Op;

COT,(X) = span{(axl.

(a)ZN, j =1, k} Cc CV, T,(X) = COT,(X)*} (1.6)

Note that dim(T,(X)) > dim(X) and the equality holds iff a is a smooth point of X. Recall that a is called
a normal point of X if the local ring O,(X) is integrally closed. X is called a normal variety if it is normal
at all of its points. Assume that X ¢ CPY is an irreducible projective variety and F : X — X is a rational
continuous map. Let a € X, b= F(a). F is called regular at  if there exists an affine piece X = X N CN
so that a,b € X and the following condition is satisfied:

_fl@) @ e
=@ @) "€ w7

fiagi € C[X]a gl(a’) # 07 1= 15 aN

F(z)

F is called regular if F' is regular at any @ € X. Assume that X is a normal variety and F': X — X is a
rational continuous map. It is quite straightforward to show that F' is a regular mapping.

In what follows we will assume that F' : X — X is a rational regular mapping unless stated otherwise.
Let a € X. Then there exists an open ball B(a,r(a)) C C¥ so that the polynomials g;, i = 1,...,N
appearing do not vanish at any point of Closure(B(a,r(a)). Let U, = B(a,r(a)). Then U = UgexU, is
an open cover of X. Let Uy = U,, U...UU,, a finite cover of X. Then on each U,, the map F' has the
form (1.7). Thus, F can be considered locally as a restriction of a holomorphic map F : U, — C" to X.
Let D(F)(a) € My(C) be the full differential matrix of F' at a. From the definition of the finite cover Uy
it follows that there exists K > 0 so that |[D(F)(a)|| < K, Va € X. It is straightforward to show that
COT,(X)D(F)(a) C COT,(X), b = F(a). Thus, if D(F)(a) denotes the restriction of D(F)(a) to the
tangent space T, (X) we get the expected relation D(F')(a) : To(X) — Tr(q)(X). As usual, let Sing(X) C X
be the variety of the singular points of X. Observe that

F:X,— X, F°°HY) CY, X, =X\Y, Y = UPF° "™(Sing(X)). (1.8)

If Y # X it then follows that X, is a complex manifold of complex dimension n. We view X, as a Riemannian
manifold with the Riemannian metric obtained by the restriction of Fubini-Study metric in CPY 5 X. We
thus showed:



Lemma 1.9. Let X ¢ CPY be an irreducible complex projective variety. Assume that F: X — X is a
rational reqular map. Suppose furthermore that Y # X. Then the norms |D(F(a))|, a € X, are uniformly
bounded.

Theorem 1.10. Let X be an irreducible projective variety. Assume that F': X — X is a rational

regular map. Then
hE) = H(F) = logpa(F) = logp(F) (1.11)

Proof. We now modify the arguments of [New] to show the inequality
h(F) < H(F). (1.12)

Assume first that F' is not dominating. Then Wy = F(X) is an irreducible variety,

dim(W1) < dim(X), F : Wi, — W is a rational regular map and h(F) = h(F, W;). Continue this process
until we get an irreducible subvariety Wy, C X, F' : W, — Wj is a rational regular dominating map and
h(F) = h(F,W}). Thus, w.l.o.g. we may assume that F' is dominating. Hence Y # X where Y is defined by
(1.8). Recall that h(F) is the supremum of all measure theoretic entropies h,(F') where p is an F' invariant
ergodic measure. See for example [Wal, Ch. 8]. Let u be an F invariant ergodic measure. Thus, either
wY)=0or puY)=1.

Assume first that u(Y) = 0. In view of Lemma 1.9 we can define the Lyapunov exponents for the map
F|x, with respect to p. Using the fact that X,, C X where X is compact and the observation that F is
a (local) restriction of a homolomorphic map we can combine the arguments of [New| and [Fri] to deduce
hu(F) < H(F).

Assume now that pu(Y) = 1. Let Z C X be an irreducible variety. Since F' is a rational regular map it
follows that F(Z) is an irreducible variety. Furthermore
dim(F(Z)) < dim(Z). Let Sing(X) = U} Z; where each Z; is an irreducible variety. Set Y; = UPF°~4(Z;) C
Y. Clearly, F°~1(Y;) C Y;. The ergodicity of u implies that p(Y;) is either 0 or 1. As Y = U}Y;
w.lo.g. we may assume that u(Y1) = 1. As u(Y1) = 1 and g is an F invariant measure it follows that
p(Uise F°4(Z1)) =1, k=0,1,.... Let V = UL F°~*(Sing(Z1)). Then F°~1(V) C V. Thus, either u(V) =1
or (V) = 0. In the first case we can repeat our arguments by replacing Sing(X) with Sing(Z1). Thus, it is
enough consider the case (V) = 0. In particular u(Sing(Z1)) = 0. Replace Z; by F°(Z1) to deduce that
it suffices to consider the case where u(Sing(F°(Z1))) =0, i = 0,1, .... That is

p(W) =1, W = {z, z € Z1, F°"(z) & Sing(F°"(Z1)), i =0,1,...}. (1.13)

In that case we can define the Lyapunov exponents of F' on W with respect to p. The arguments of [New]
and [Fri| yield the inequality h,(F) < H(F'). The maximal characterization of h(F') coupled with the above
inequality yields (1.12).

We now use the arguments of [Yom] as given by [Gro2] to deduce the inequality H(F) < h(F). Let
Y C X be an irreducible subvariety. As F is a restriction of a (locally) holomorphic map the arguments in
[Gro2] yield directly that

vol (F°™(Y)) < n(F).

lim sup log

m—00

Hence H(F) < h(F). Combine this inequality with (1.12) to deduce that h(F) = H(F). Using Yomdin’s
arguments and (1.8) we deduce that h(F) > logp(F). Combine this inequality with the previous equality
and (1.4) to deduce the theorem. ©

§2. Discontinuous rational maps

Assume that X is an irreducible projective variety of complex dimension n and F': X — X is rational
map. Denote by Sing(F) C X the set of points where F' is discontinuous. A standard argument shows
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that Sing(F) is a quasi subvariety. Thus, X\(Sing(X) U Sing(F)) is a connected manifold and Z =
Closure(F(X\(Sing(X) U Sing(F)))) is an irreducible variety. If Z = X then F is called dominating.
Otherwise, from the dynamics point of view it is enough to study the map F': Z — Z. Continuing the above
process it is enough to consider dominating rational maps. In what follows we shall assume that F': X — X
is a dominating rational discontinuous (at least at one point) map. Furthermore, we shall assume that X
is a smooth variety. This is not a serious restriction. Indeed, according to Hironaka [Hir] it is possible to
blow up the ambient space CP" > X to obtain a smooth projective variety Y which is a resolution of X.
It then follows that F' lifts to a rational dominating map G :Y — Y. Set

VO = SZ?’Lg(F), ‘/z = F(X\V() U...uU ‘/1',1) N ‘/ifl =

) ) 2.1
{z, F(z) & Sing(F), j=0,...,i—1, F*'(z) € Sing(F)}, i=1,..., V =Ug°V,. 21)

Hence, each V; is a quasi subvariety of X. In particular u(V;) = 0 where u is measure with respect to volume
form w™. Thus, u(V) = 0. It is natural to consider the orbit space Q(F) C X on which the action of the
standard shift is equivalent to the map F":

x*=T[x, X, =X,i=1,..,
1:[ (2.2)

X® D Q(F) = {(Fi(z)), = € X, Fis holomorphic at F'(z), i =0,1,...}.

Let d : X x X — R4 be the metric induced by the Fubini-Study metric on X C CP”". Clearly, X has a
finite diameter: d(z,y) < D, Vz,y € X. It then follows that X°° is a compact metric space with respect to

the metric: ( )
oo ooy d TiyYi
O((2:)1°, (wi)7°) = nl“gf‘ 9i—1

s ()77 (9a)7° € X5

Let m, 0 X*° — X™ = H;n X; be the projection on the first m components. Recall that the shift map
o : X% — X* is a continuous map given by o((7;)7°) = (2;)5°. It is easy to see that o : Q(F) — Q(F).
Moreover, the map F': m1(Q(F)) — m1(2(F)) is equivalent to the restriction of o to Q(F). Set Q(F) =

Closure(Q(F)). Thus, Q(F) is a compact set which is mapped into itself by o. Let

Di(F) = m(QF)), i =1,..., T(F) =Ty(F), 23)
g; . Fl(F) — Fifl(F), ({EJ)Zl — (Ij)é, = 1,

Note that I'1(F) = X, I'(F') C X x X is the standard graph of F and I';(F) is an irreducible variety of
dimension dim(X). The map
o9 : T(F)— X (2.4)

can be viewed as a regular resolution of the rational map F'.
As in [Fri] we define the entropy h(F) by

h(o, Q(F°™)) .

h(F)=1i m— 00 2.5
(F) = timsup = (25)
This definition yields straightforward the inequality:

h(F°™) < mh(F). (2.6)

Of course, if F is regular (continuous) then the equality sign hold in (2.6). In [Fri] we conjectured that
h(F) = H(F) where X is smooth. In what follows we define the quantity H(F) - the volume growth of
algebraic subvarieties on X by the iterates of F' in a slightly different way then in (1.3). The arguments
of [Fri] imply that these two definitions are the same if F' is a holomorphic rational map. We view X a
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smooth projective variety in the ambient projective space CPY. A hyperplane S of complex dimension
N — dim(X) + k is called in general position if the following condition hold:

SNX =U"Z;, Z; irreducible, dim(Z;) =k, Z; ¢ V,
dim(Closure(F (Z\V))) =k, j=1,..,i=1,...m, (2.7)
Closure(F°I(Z;\V)) # Closure(F* (Z,\V))), fori # 1.

Since F': X — X is a dominating map the standard arguments of algebraic geometry yield that ”most” of
N — dim(X) + k dimensional hyperplanes of cpV (with respect to the appropriate measure) are generic.
Denote by Ak(X, F), k=1,...,dim(X) the set of all k£ dimensional algebraic subvarieties of X of the form
SN X where S is an N — dim(X) + k dimensional hyperplane in general position. Let Y ¢ CPY be an
irreducible algebraic variety of complex dimension k. Denote by deg(Y) the degree of Y. That is deg(Y)
is the number of the intersection points (counted with multiplicities) with any N — dim(Y") dimensional
hyperplane S so that Y N S consists of a finite number of points. Equivalently, deg(Y) = vol(Y'). Set

ajr= sup wol(Closure(F*(Y\V))), j=0,1,..,
YeAL(X,F)
loacws
B = lim sup w, k=1,..,dim(X), (2.8)
j—o0 J
H(F)= .
)= oo ™

We conjecture:

Conjecture 2.9. Let X ¢ CPY be an irreducible smooth projective variety. Assume that F : X — X
is a dominating rational map. Let h(F) and H(F) be as defined above. Then h(F) < H(F).

To support this conjecture we will recall some results of [Grol]. Let X be a compact Riemann manifold.
Assume that I' C X x X is an arbitrary closed set. Set

I~ = {5, &= (,Tz)(l)o e X™>, (l‘i,{EH_l) el i=1, }, T, = Fm(roo), m=1,... (210)

It then follows that I'*° is a compact set in X such that o : ' — I'°. Let h(T") = h(o,T'>°). We view
X" as a Riemannian manifold endowed with the Riemannian product metric. Assume that the Hausdorff
dimension of I' C X2 is a positive integer n. Let vol(I'*) < oo be the n dimensional volume of I'*. We shall
assume:

vol(T%) < 00, k=2, ... (2.11)
Let By (a,r) C X* be an open ball of radius r centered at a with respect to the induced metric on X* by X:

k

Bi(a,r) = {z, z = (z;)¥,a = (a;)} € X*, Zd(mi,ai)Q <r?}
1

Set .
l (T
lov(T") = limsup log vol(I'")

k—o0 k ’
Dens (Ty,) = inf vol(T* N By(a,e¢)),
a€r* . (2.12)
log Dens(T"
lodn(T) = lim inf 29 L5,
k—o0 k
lodn(T") = lin% lodn(T).

Lemma 2.13 (Gromov) Let X be a compact Riemannian manifold, T C X x X a closed set of integer
Hausdorff dimension n satisfying condition (2.11). Then

h(T) < lov(T) — lodn(T). (2.14)
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Proof. Let
§;(&,m) = max §(0°(€),0%(n)) =

0<i<j—1 ( )
2.15
d(@i,Yi) . oo . _ (1 veo o yoo
r?gi( 2(i—j)+ ) 5 - (wl)l 1= (yl)l € X yJ = 17 cee e

Here, at = maxz(a,0), a € R. Fix € > 0. Let L(k,e,I'*°) be the maximal size of (k, €) separated set in I'*°.
That is for any finite set E C I'*° with the property £, € E, £ #n = 0r(£,n) > ¢ we have the inequality
Card(E) < L(k,e,I'°). Furthermore, the equality sign holds for at least one such a set E. The standard
definition of h(c,T") is [Wal, Ch.7]:

log L(k,e, '™
h(c,T) = lim lim sup M.

e—0 ko0 k

(2.16)

Let E(k,e,T°) be a (k, €) separated set of cardinality L(k,e, I'*). It then follows that

d 15 91 ) = ,L_OO - ,L_OO Ek,,FOO,K =l D -1 .
LI (Ti,yi) > €, &= (0:)7° #n = (:)7° € E(k,6,T>), K(e) = [loga 0gac€|

Here D is the diameter of X. In particular the L(k, ¢, ') balls

€ o0
Bk-l—K(e)(Trk-l-K(e)(g)v 5)5 5 € E(k,e,F )
are disjoint. Hence:
vol (TF+E()y > [(E, e,F“)Dens;(F’HK(e)).

Take the logarithm of this inequality, divide by k + K (¢), take limsup of the both sides of this inequality and
let € tend to zero to deduce the lemma. ¢

Theorem 2.17. (Gromov) Let X be a compact complex Kihler manifold. Assume thatT' C X x X is
a closed irreducible analytic subvariety. Then lodn(T") > 0. Hence

h(T) < lov(T). (2.18)

Proof. Let n be the complex dimension of I'. According to [Fed, Sec. 5.4.19] the irreducible analytic
subvariety I'* ¢ X* is minimal. Thus

vol(T'* N By (a, €)) > C(n)e®".

Here C(n) depends on the space X and the dimension n but not on k, a, €. (Consult [Grol] for a detailed
proof.) Thus, lodn(T") > 0 and (2.14) yields (2.18). ¢

Let F': X — X be a dominating rational map. Assume that w is the restriction of the Fubini-Study
(1,1) form to X € CPY. Set

Om = (F°")'w, m=0,1,...,

. . (2.19)
Omrsoompe = Omy P, 0<my, 1 =1,k 1 <k <dim(X).

.....

_____ m, 18 a linear functional on Hay o(X). Thus, we can replace this rational
form by a regular (k,k) form vy, . ,m, € H?*. If F is not holomorphic we usually would not have the
functorial equality:

wml;--~;mjwmj+1;~~~;mk = V..., mp-

The arguments in [Fri] would yield the inequality:

wml,...,mjwmj+1,...,mk - wml,...,mk- (220)



as linear functionals on Hay o (X) with respect to the cone generated by the k complex dimensional analytic
cycles in X. Let ||¢m,,....m,|| be the norm of the linear functional ¢, .. m, : Hak,a — R. Note

6.l = |Gy, (XD

Here [X] is the fundamental class of X, i.e. the generator of the one dimensional free group Ha,(X,Z). A
straightforward argument shows that

l .

Br = lim sup M:

mi=..=mp=j—1—00 ]

(2.21)

tmsup  0mmeen o@Dy

mi=..=mp=j—1—00 7
We now define another invariant M (F) of F'
l i iet | Bme o (IX

M(F) = limsup 2L DX0m <5, imtin [Fmscoma (XD (2.92)

The definitions (2.8), (2.22) and the equalities (2.21) yield the inequality H(F) < M(F). We shall show
that for holomorphic F' we have the equality H(F) = M(F).

Theorem 2.23. Let X C CPY be an irreducible projective variety of complex dimension n and assume
that F : X — X is a dominating rational map. Denote by T'(F) C X x X the graph of F as given by (2.3).
Then

lou(D(F)) — limsup zog|<zzi:é‘jl o)™ (XD| (2.24)
Hence
h(F) < h(T(F)) < M(F). (2.25)

Proof. The points of 74 (Q(F)) C I'x(F) are of the form (z, F (), ..., F°*~(z)), 2 € X\V. Hence, in terms
of the variable z, the restriction of the (1,1) form w on the j — th coordinate of 7;(Q(F')) is ¢;—1 - the pull
back of ¢o by F°/~1. Thus, the restriction of the standard (1,1) form w in (CP™)¥ to X\V is

k—1

Oc(x) = ¢j(x), € X\V, k=0,1,.... (2.26)
j=0

So vol (T (F)) = 467 ([X]) and (2.24) follows. Clearly

n

O ([X]) < k"

max )
0<mi<kyi=1,....n [@m,..ooma

Use Theorem 2.17 (I'(F) ¢ CPY x CPV), equality (2.24), definition (2.22) and the above inequality to
deduce that h(o,I'°) = h(I'(F)) < M(F). Recall that h(c°™,T'(F)*) = mh(o,T'(F)*). Next note that

the action of 0°™ on I'(F")* decomposes in an obvious way to m subshifts. One of this subshifts is o :
Q(F°™) — Q(F°™). Therefore

W, Q(F°™) < h(0°™, Q(F)) = mh(D(F)™) < mM(F).
Combine this inequality with the definition (2.5) to deduce the theorem. o
Theorem 2.27. Let X be a compact Kdhler manifold. Assume that F : X — X is holomorphic. Then
h(F) =lov(T(F)®) = M(F) = logp(F). (2.28)
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Proof. Let u be the dimension of H?(X). Assume that A € R** is a matrix representation of the linear
operator F* : H?(X) — H?(X). Suppose first that A is similar to a diagonal matrix over the complex
numbers (A is semi simple). Let A1,...,\, and ug,...,u, € C* = H*(X,C) be the u complex eigenvalues
and the p corresponding eigenvectors of A. Then

Jj=p
¢k = Zaj)\?uj, a; € C}7 _7 = 1, ooy [
j=1
It then follows that
XD = b )

1Sj1)~~~)jn§”

Here, the tensor bj;, . ;. is a symmetric tensor. W.l.o.g. we may assume that [Ai| > |[A2| > ... > |A\,]. A
straightforward argument shows that

M(F) < logpk(F) < logp(F). '
For a general matrix A one has to use a corresponding modification of (2.29) to deduce (2.30). Next note

that (2.25) is valid in this case. Combine the above inequalities with (2.25) and Yomdin’s inequality to
deduce (2.28). ¢

We now note that the arguments of the proof of Theorem 2.27 yield the validity of (2.30) for a projective
variety X and a rational continuous map F. (However, we can not apply Yomdin’s inequality.) Use (2.25)
to deduce:

Theorem 2.31. Let X ¢ CPY be an irreducible complex projective variety. Assume that F: X — X
is a rational continuous map. Then h(F) < logp(F).

83. Extensions, examples and conjectures.

Let X ¢ CP" be a smooth projective variety of complex dimension n. Assume that I' € X x X is an
irreducible variety. We call T regular if dim(T") = dim(X) = n and the projection of " on each X component
of X x X is X. Assume that I' C X? is a regular irreducible variety It then follows that there exists a
subvariety U C X so that for each z € X\U we have

zx X NI =Uj(z,yi(2)), yi(x) # y;(x) fori# j. (3.1)

We remark that there exists many regular irreducible graphs I'. Indeed, let us view X x X a subset of
CP" x CP". In CP¥ choose an affine chart CV so that X, = X NCY C X is an irreducible affine variety
of dimension n. Intersect X, x X, C C?V with a hyperplane L of codimension n in general position. It then
follows that each irreducible component of Closure((X, x Xq)NL) C X x X is a regular irreducible graph.

Let Sym(X*) be the symmetric k product of X. That is, Sym(X*) be the space of k — th unordered
pairs {x1,...,a%}, v; € X, i = 1,..., k. Thus, a regular irreducible I" induces a rational map

F X = Sym(X?), 2 {1(@), g0 @)}, (3.2)
We identify F with the v valent map F' : X — X and no ambiguity will arise. Let Sing(F) be the set of
points where the map (3.2) is discontinous. Thus, F(z) = {Fi(x), ..., Fy(z)}, x & Sing(F), where each F;(z)

appears according to its multiplicity. (F;(x) # Fj(x) for i # j and x ¢ U.). We now show that most of the
results of the previous section apply to the v valent map F.
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A standard argument yields that Sing(F') is a quasi-variety of codimension 2 at least, e.g. [G-H, p’491].
Let Vi, i =0,1,... and V be defined as in (2.1). We then define Q(F) C I'™ as (2.2). Thus I'y(F) = T'* and
Q(F) = I>°. We can define the quanties oz, B, and H(F) as in (2.8). We let F°™ : X — X be the v™
valent map obtained by the composition of F' m times. Equivalently, F°™ can be defined in terms of the
graph I'™*1:
Fo o X — Sym(XY"), x — {z1(), ..., zom ()}

m 3.3
€V, zx XM AT =Y (.., 2i(2). (3:3)

We now let ¢, and ¢y, .m, be defined as in (2.19), where w is the (1,1) form on Sym(X"") induced by
the standard (1,1) form on X*". Then the formulas (2.20) — (2.22) hold. We define h(F) by (2.5). The
arguments of the proof of Theorem 2.23 yield:

Theorem 3.4. Let X C CPY be a smooth projective variety of dimension n. Assume that T C X x X
is a reqular irreducible variety. Then

lou() — limsup zog|<z§:€;‘jl 6" (XD| (35)
Hence
h(F) < h(T) < M(F). (3.6)

Conjecture 3.7 Let the assumptions of Theorem 3.4 hold. Then

WF) = h(T) = lov(T) = M(F) = H(F). (3.8)

Let F': CV — C¥ be a polynomial map. We will express in relatively simple terms the quantity M (F).
Assume first that F' is dominating. Let L C C" be a hyperplane of codimension 1 in general position. (L
is the dual of w.) Denote by Q,, = F°~™(L) C CV the hypersurface of codimension 1 obtained by the pull
back of L. Set n = N. It then follows

log(maxo<m,<j tm,....m,)

M(F) = limsup

R T Card(ﬂi’f@mi). (3.9)

Suppose now that F is not dominating. In §1 we showed that there exists an irreducible variety X ¢ CV of
complex dimension n so that F': X — X is a dominating map and the dynamics of of F' is reduced to the
restriction of F' to X. We then let Q,, = F°~™(L) N X and the equality (3.9) applies.

We now study the structure of the set ' where I' = T'(F'), F : X — X where X be a compact smooth
projective surface and F' is a dominating rational map which satisfies the following condition. It is well
known that F' is holomorphic except at a finite number of points (; € X, ¢ =1, ..., k. We shall assume that

F:X—X, X=X\{C,.., ¢} (3.10)

The above assumption simplifies enormously the dynamics of o : Q(F ) — Q(F) More precisely, we have

Lemma 3.11. Let X be a smooth projective surface and F' : X — X is a rational dominating map
which is not holomorphic exactly at the points {(1,...,{x}. Assume the condition (3.10) holds. Then

QF)=YUZ YNZ=0, Closure(Y) =Y U Z,
Y ={(z;)7", 3 2; € {C, -, Gt} oY) CY,

- (3.12).
ZCcU= HU Us={C,...G},i=1,...
1
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Furthermore, Y is an open complex (algebraic) space (in the sense of Grauert-Remmert).

Proof. Let (z;){° € Y. Assume that z; & {(1,...,(x}. Then z; = F7=%(z;), j > i. It then follows
that there exists a neighborhood U C Q(F ) of = so it is homeomorphic to a corresponding neighborhood
V C T;(F) of the point & = ()} € I';(F). As I';(F) is an irreducible algebraic variety we deduce that Y is
a complex (algebraic) space in a natural way. More rigorously, a neighborhood U C Q(F ) of a point (z;)$°
consists of a finite product of the affine neighborhoods U; C X of the points x; for j = 1,...,m so that

Tm & {1 Qb 35 E {0 Qb = Ui NG G} =0

Furthermore, the ring of analytic function Oy (U) coincide with O A F))(U ). ©

We may view Z as the boundary of Y. Note that I can be naturally identified with the unit circle S?.
It then follows that either u(Z) =1 or u(Z) = 0 where p is the o invariant probability measure induced by
the uniform probability measure on U. (i is the Haar measure on S1.)

We now bring an example of a map satisfying condition (3.10). Let F = (p,q) : C?> — C? be a
polynomial map. Suppose that

m m

p=Y pilx,y), =Y aly)

0 0

are the homogeneous expansions of p and ¢, where each p;, ¢; is either a zero polynomial or a homogeneous
polynomial of degree i. Assume furthermore that at least one of the polynomials p,,, ¢ is not a zero
polynomial. Suppose furthermore that p,, and g, are linearly dependent. (This would be the case if
deg(p) # deg(q).) Tt then follows that F extends to a rational map F : CP? — CP? so that the line at
infinity L is mapped to one point ¢ = (u,v,0) € L. The condition (3.10) in this case is equivalent ot the
condition |py, (u, v)| + |gm (u, v)| > 0. Thus, there are many dominating polynomial maps which satisfy these
conditions.

We now discuss the definition of the entropy h(F) as given by (2.5) for F' satisfying conditions of
Lemma 3.11. Let u be an invariant ergodic probability measure under the shift o on the space T'(F°™)>.
Suppose first that p is supported on Z given in (3.12). Let h,, be the measure theoretical entropy of o. The
topological entropy of o on U is equal to logk. The variational characterization of the topological entropy
yields the inequality h, < logk. See for example [Wal, Ch.7-8]. Assume that i(F) > 0. The variational
characterization

h(o,T'(F°™)*°) = sup hy, (3.13)
n

together with the above arguments and the definition (2.5) imply that for m sufficiently large it is enough to
consider in (3.13) the invariant ergodic measures so that u(Z) = 0. It then follows that p can be considered
as an F°™ invariant ergodic measure on X so that pu({(i,...,¢x}) = 0. Thus, we can define the Lyapunov
exponents of F°" with respect to . The arguments of [Fri] (using basically inequalities of the type (2.20))
yield that M (F') < co. The inequality (3.6) suggests that all the Lyapunov exponents are finite. Now the
modified arguments of [New] should yield h(F) < H(F) (Conjecture 2.9).
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