Entropy of graphs, semigroups and groups

Shmuel Friedland
Institut des Hautes Études Scientifiques
and
University of Illinois at Chicago

August 7, 1995

§0. Introduction

Let X be a compact metric space and $T: X \rightarrow X$ is continuous transformation. Then the dynamics of T is a widely studied subject. In particular, $h(T)$ - the entropy of T is a well understood object. Let $\Gamma \subset X \times X$ be a closed set. Then Γ induces certain dynamics and entropy $h(\Gamma)$. If X is a finite set then Γ can be naturally viewed as a directed graph. That is, if $X=\{1, \ldots, n\}$ then Γ consists of all directed $\operatorname{arcs} i \rightarrow j$ so that $(i, j) \in \Gamma$. Then Γ induces a subshift of finite type which is a widely studied subject. However, in the case that X is infinite, the subject of dynamic of Γ and its entropy are relatively new. The first paper treating the entropy of a graph is due to [Gro]. In that context X is a compact Riemannian manifold and Γ can be viewed as a Riemannian submanifold. (Actually, Γ can have singularities.) We treated this subject in [Fri1-3]. See Bullet [Bul1-2] for the dynamics of quadratic correspondences and $[\mathbf{M}-\mathbf{R}]$ for iterated algebraic functions.

The object of this paper is to study the entropy of a corresponding map induced by Γ. We now describe briefly the main results of the paper. Let X be a compact metric space and assume that $\Gamma \subset X \times X$ is a closed set. Set

$$
\Gamma_{+}^{\infty}=\left\{\left(x_{i}\right)_{1}^{\infty}:\left(x_{i}, x_{i+1}\right) \in \Gamma, i=1, \ldots,\right\}
$$

Let $\sigma: \Gamma_{+}^{\infty} \rightarrow \Gamma_{+}^{\infty}$ be the shift map. Denote by $h(\Gamma)$ be the topological entropy of $\sigma \mid \Gamma_{+}^{\infty}$. It then follows that σ unifies in a natural way the notion of a (continuous) map $T: X \rightarrow X$ and a (finitely generated) semigroup or group of (continuous) transformations $\mathcal{S}: X \rightarrow X$. Indeed, let $T_{i}: X \rightarrow X, i=1, \ldots, m$, be m continuous transformations. Denote by $\Gamma\left(T_{i}\right)$ the graphs corresponding to $T_{i}, i=1, \ldots, m$. Set $\Gamma=\cup_{1}^{m} \Gamma\left(T_{i}\right)$. Then the dynamics of σ is the dynamics of the semigroup generated by $\mathcal{T}=\left\{T_{1}, \ldots, T_{m}\right\}$. If \mathcal{T} is a set of homeomorphisms and $\mathcal{T}^{-1}=\mathcal{T}$ then the dynamics of σ is the dynamics of the group $\mathcal{G}(\mathcal{T})$ generated by \mathcal{T}. In particular, we let $h(\mathcal{G}(\mathcal{T}))=h(\Gamma)$ be the entropy of $\mathcal{G}(\mathcal{T})$ using the particular set of generators \mathcal{T}. For a finitely generated group \mathcal{G} of homeomorphisms of X we define

$$
h(\mathcal{G})=\inf _{\mathcal{T}, \mathcal{G}=\mathcal{G}(\mathcal{T})} h(\mathcal{G}(\mathcal{T})) .
$$

In the second section we study the entropy of graphs, semigroups and groups acting on the finite space X. The results of this section give a good motivation for the general case. In particular we have the following simple inequality

$$
\begin{equation*}
h\left(\cup_{i=1}^{m} \Gamma_{i}\right) \leq h\left(\cup_{i=1}^{m}\left(\Gamma_{i} \cup \Gamma_{i}^{T}\right)\right) \leq \log \sum_{i=1}^{m} e^{h\left(\Gamma_{i} \cup \Gamma_{i}^{T}\right)} . \tag{0.1}
\end{equation*}
$$

Here $\Gamma^{T}=\{(y, x):(x, y) \in \Gamma\}$. Let $\operatorname{Card}(X)=n$. Then any group of homeomorphisms \mathcal{G} of X is a subgroup of the symmetric group S_{n} acting on X as a group of permutations. We then show that if \mathcal{G} is commutative then $h(\mathcal{G})=\log k$ for some integer k. If \mathcal{G} acts transitively on X then k is the minimal number of generators for \mathcal{G}. Moreover, $h(\mathcal{G})=0$ iff \mathcal{G} is a cyclic group. For each $n \geq 3$ we produce a group \mathcal{G} generated by two elements so that $0<h(\mathcal{G})<\log 2$.

In $\S 3$ we discuss the entropy of graphs on compact metric spaces. We show that if $T_{i}: X \rightarrow X, i=1, \ldots, m$, is a set of Lipschitzian transformations of a compact Riemannian manifold X of dimension n then

$$
\begin{equation*}
h\left(\cup_{1}^{m} \Gamma\left(T_{i}\right)\right) \leq \log \sum_{1}^{m} L_{+}\left(T_{i}\right)^{n} . \tag{0.2}
\end{equation*}
$$

Here, $L_{+}\left(T_{i}\right)$ is the maximum of the Lipschitz constant of T_{i} and 1 . Thus, $L_{+}\left(T_{i}\right)^{n}$ is analogous to the norm of a graph on a finite space X. The above inequality generalizes to semi-Riemannian manifolds which have a Hausdorff dimension $n \in \mathbf{R}_{+}$and a finite volume with respect to a given metric d on X. Thus, if X is a compact smooth Riemannian manifold and \mathcal{G} is a finitely generated group of diffeomorphisms (0.2) yields that $h(\mathcal{G})<\infty$. Let X be a compact metric space and $T: X \rightarrow X$ a noninvolutive homeomorphism $\left(T^{2} \neq I d\right)$. We then show that $h\left(\Gamma(T) \cup \Gamma\left(T^{-1}\right)\right) \geq \log 2$. The following example due to M. Boyle shows that (0.1) does not apply in general. Let X be a compact metric space for which there exists a homeomorphism $T: Y \rightarrow Y$ with $h(T)=h\left(T^{2}\right)=\infty$. (See for example [Wal, p. 192].) Set

$$
\begin{aligned}
& X=X_{1} \cup X_{2}, X_{1}=Y, X_{2}=Y, T_{i}\left(X_{1}\right)=X_{2}, T_{i}\left(X_{2}\right)=X_{1} \\
& T_{1}\left(x_{1}\right)=T x_{1}, T_{1}\left(x_{2}\right)=T^{-1} x_{2}, T_{2}\left(x_{1}\right)=T^{-1} x_{1}, T_{2}\left(x_{2}\right)=T x_{2}, x_{1} \in X_{1}, x_{2} \in X_{2} .
\end{aligned}
$$

As $T_{1}^{2}=T_{2}^{2}=I d$ it follows that $2 h\left(T_{1}\right)=2 h\left(T_{2}\right)=h(I d)=0$. Clearly, $T_{2} T_{1} \mid X_{1}=T^{2}$ and $h(\Gamma)=\infty$. The last section discusses mainly the entropy of semigroups and groups of Möbius transformations on the Riemann sphere. Let $\mathcal{T}=\left\{T_{1}, \ldots, T_{k}\right\}$ is a set of Möbius transformations. Inequality (0.2) yield that $h(\mathcal{G}(\mathcal{T})) \leq \log k$. Let $T_{i}(z)=z+a_{i}, i=1,2$, be two translations of \mathbf{C}. Assume that $\frac{a_{1}}{a_{2}}$ is a negative rational number. We then show that

$$
h\left(\Gamma\left(T_{1}\right) \cup \Gamma\left(T_{2}\right)\right)=-\frac{|a|}{|a|+|b|} \log \frac{|a|}{|a|+|b|}-\frac{|b|}{|a|+|b|} \log \frac{|b|}{|a|+|b|} .
$$

Assume now that a_{1} and a_{2} are linearly independent over \mathbf{R}. We then show that

$$
h\left(\cup_{1}^{2}\left(\Gamma\left(T_{i}\right) \cup \Gamma\left(T_{i}^{-1}\right)\right)=\log 4\right.
$$

It is of great interest to see if $h(\mathcal{G})$ has any geometric meaning for a finitely generated Kleinian group \mathcal{G}. Consult with $[\mathbf{G}-\mathbf{L}-\mathbf{W}],[\mathbf{L}-\mathbf{W}],[\mathbf{N}-\mathbf{P}],[\mathbf{L}-\mathbf{P}]$ and $[\mathbf{H u r}]$ for other definitions of the entropy of relations and foliations.

§1. Basic definitions

Let X be a compact metric space and assume that $\Gamma \subset X \times X$ is a closed set. Set

$$
\begin{aligned}
& X^{k}=\prod_{1}^{k} X_{i}, X_{+}^{\infty}=\prod_{1}^{\infty} X_{i}, X^{\infty}=\prod_{i \in \mathbf{Z}} X_{i}, X_{i}=X, i \in \mathbf{Z}, \\
& \Gamma^{k}=\left\{\left(x_{i}\right)_{1}^{k}:\left(x_{i}, x_{i+1}\right) \in \Gamma, i=1, \ldots, k-1,\right\}, k=2, \ldots, \\
& \Gamma_{+}^{\infty}=\left\{\left(x_{i}\right)_{1}^{\infty}:\left(x_{i}, x_{i+1}\right) \in \Gamma, i=1, \ldots,\right\}, \Gamma^{\infty}=\left\{\left(x_{i}\right)_{i \in \mathbf{Z}}:\left(x_{i}, x_{i+1}\right) \in \Gamma, i \in \mathbf{Z}\right\} .
\end{aligned}
$$

We shall assume that $\Gamma^{k} \neq \emptyset, k=2, \ldots$, unless stated otherwise. (In any case, if this assumption does not hold we set $h(\Gamma)=0$.) This in particular implies that $\Gamma_{+}^{\infty} \neq \emptyset, \Gamma^{\infty} \neq$ \emptyset. Let

$$
\pi_{p, q}^{l}: X^{l} \rightarrow X^{q-p+1},\left\{x_{i}\right\}_{1}^{l} \mapsto\left\{x_{i}\right\}_{p}^{q}, 1 \leq p \leq q \leq l .
$$

If no ambiguity arise we shall denote $\pi_{p, q}^{l}$ by $\pi_{p, q}$. The maps $\pi_{p, q}$ are well defined for $X_{+}^{\infty}, X^{\infty}$. For $p \leq 0, p \leq q$ we let $\pi_{p, q}: X^{\infty} \rightarrow X^{q-p+1}$. Similarly, for a finite p we have the obvious maps $\pi_{-\infty, p}, \pi_{p, \infty}$ whose range is Γ_{+}^{∞}. Let $d: X \times X \rightarrow \mathbf{R}_{+}$be a metric on X. As X is compact we have that X is a bounded diameter $0<D<\infty$. That is, $d(x, y) \leq D, \forall x, y \in X$. On $X^{k}, X_{+}^{\infty}, X^{\infty}$ one has the induced metric

$$
\begin{aligned}
& d\left(\left\{x_{i}\right\}_{1}^{k},\left\{y_{i}\right\}_{1}^{k}\right)=\max _{1 \leq i \leq k} \frac{d\left(x_{i}, y_{i}\right)}{\rho^{i-1}} \\
& d\left(\left\{x_{i}\right\}_{1}^{\infty},\left\{y_{i}\right\}_{1}^{\infty}\right)=\sup _{1 \leq i} \frac{d\left(x_{i}, y_{i}\right)}{\rho^{i-1}} \\
& d\left(\left\{x_{i}\right\}_{i \in \mathbf{Z}},\left\{y_{i}\right\}_{i \in \mathbf{Z}}\right)=\sup _{i \in \mathbf{Z}} \frac{d\left(x_{i}, y_{i}\right)}{\rho^{|i-1|}} .
\end{aligned}
$$

Here $\rho>1$ to be fixed later. Since X is compact it follows that $X^{k}, X_{+}^{\infty}, X^{\infty}$ are compact metric spaces where the infinite products have the Tychonoff topology. Let

$$
\begin{aligned}
& \sigma: X_{+}^{\infty} \rightarrow X_{+}^{\infty}, \sigma\left(\left(x_{i}\right)_{1}^{\infty}\right)=\left(x_{i+1}\right)_{1}^{\infty} \\
& \sigma: X^{\infty} \rightarrow X^{\infty}, \sigma\left(\left(x_{i}\right)_{i \in \mathbf{Z}}\right)=\left(x_{i+1}\right)_{i \in \mathbf{Z}}
\end{aligned}
$$

be the one sided shift and two sided shift respectively. We refer to Walters [Wal] for the definitions and properties of dynamical systems used here. Note that $\Gamma_{+}^{\infty}, \Gamma^{\infty}$ are invariant subsets of one sided and two sided shifts, i.e.

$$
\sigma: \Gamma_{+}^{\infty} \rightarrow \Gamma_{+}^{\infty}, \sigma: \Gamma^{\infty} \rightarrow \Gamma^{\infty}
$$

We call the above restrictons of σ as the dynamics (maps) induced by Γ. As Γ was assumed to be closed it follows that $\Gamma_{+}^{\infty}, \Gamma^{\infty}$ are closed too. Hence, we can define the topological entropies $h\left(\sigma \mid \Gamma_{+}^{\infty}\right), h\left(\sigma \mid \Gamma^{\infty}\right)$ of the corresponding restrictions. We shall show that these two entropies are equal. The above entropy is $h(\Gamma)$.

Denote by $C(X)$ the Banach space of all continuous functions $f: X \rightarrow \mathbf{R}$. For $f \in C(X)$ it is possible to define the topological pressure $P(\Gamma, f)$ as follows. First observe that f induces the following continuous functions

$$
\begin{aligned}
& f_{1}: \Gamma_{+}^{\infty} \rightarrow \mathbf{R}, f_{1}\left(\left(x_{i}\right)_{1}^{\infty}\right)=f\left(x_{1}\right) \\
& f_{2}: \Gamma^{\infty} \rightarrow \mathbf{R}, f_{2}\left(\left(x_{i}\right)_{i \in \mathbf{Z}}\right)=f\left(x_{1}\right) .
\end{aligned}
$$

Let $P\left(\sigma, f_{1}\right), P\left(\sigma, f_{2}\right)$ be the topological pressures of f_{1}, f_{2} with respect to the map σ acting on $\Gamma_{+}^{\infty}, \Gamma^{\infty}$ respectively. We shall show that the above topological pressures coincide. We then let $P(\Gamma, f)=P\left(\sigma, f_{1}\right)=P\left(\sigma, f_{2}\right)$.

Let $T: X \rightarrow X$ be a continuous map. Set $\Gamma=\Gamma(T)=\{(x, y): x \in X, y=T(x)\}$ be the graph of T. Denote by $h(T)$ the topological entropy of T. It then follows that $h(T)=h(\Gamma)$. Indeed, observe that $x \mapsto \operatorname{orb}_{T}(x)=\left(T^{i-1}(x)\right)_{1}^{\infty}$ induces a homeomorphism $\phi: X \rightarrow \Gamma(T)_{+}^{\infty}$ such that $T=\phi^{-1} \circ \sigma \circ \phi$ and the equality $h(T)=h\left(\sigma \mid \Gamma_{+}^{\infty}\right)$ follows. Similarly, for $f \in C(X)$ we have the equality $P(T, f)=P\left(\sigma, f_{1}\right)=P(\Gamma(T), f)$.

Let $\Gamma_{\alpha}, \alpha \in \mathcal{A}$ be a family of closed graphs in $X \times X$. Set

$$
\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}=\operatorname{Closure}\left(\cup_{\alpha \in \mathcal{A}} \Gamma_{\alpha}\right)
$$

Note that if \mathcal{A} is finite then $\vee \Gamma_{\alpha}=\cup \Gamma_{\alpha}$. The dynamics of $\Gamma=\vee \Gamma_{\alpha}$ is called the product dynamics induced by $\Gamma_{\alpha}, \alpha \in \mathcal{A}$. Let $T_{\alpha}: X \rightarrow X, \alpha \in \mathcal{A}$ be a set of continuous maps. Set

$$
\mathcal{T}=\cup_{\alpha \in \mathcal{A}} T_{\alpha}, \Gamma(\mathcal{T})=\text { Closure }\left(\cup_{\alpha \in \mathcal{A}} \Gamma\left(T_{\alpha}\right)\right)
$$

Then the dynamics of $\Gamma(\mathcal{T})$ is the dynamics of a semigroup $\mathcal{S}(\mathcal{T})$ generated by \mathcal{T}. If each $T_{\alpha}, \alpha \in \mathcal{A}$ is a homeomorphism and $\mathcal{T}^{-1}=\mathcal{T}$ then the dynamics of $\Gamma(\mathcal{T})$ is the dynamics of a group $\mathcal{G}(\mathcal{T})$ generated by \mathcal{T}. Note that for a fixed $x \in X$ the orbit of x is given by the formula

$$
\operatorname{orb}_{\mathcal{T}}(x)=\left\{\left(x_{i}\right)_{1}^{\infty}, x_{1}=x, x_{i} \in \operatorname{Closure}\left(T_{\alpha_{i-1}} \circ \cdots \circ T_{\alpha_{1}}(x)\right), \alpha_{1}, \ldots, \alpha_{i-1} \in \mathcal{A}, i=2, \ldots,\right\} .
$$

If \mathcal{A} is finite then we can drop the closure in the above definition.
Let \mathcal{T} be a set of continuous transformations of X as above. We then define

$$
h(\mathcal{S}(\mathcal{T}))=h(\Gamma(\mathcal{T})), \quad P(\mathcal{S}(\mathcal{T}), f)=P(\Gamma(\mathcal{T}), f), f \in C(X)
$$

to be the entropy of $\mathcal{S}(\mathcal{T})$ and the topological pressure of f with respect to the set of generators \mathcal{T}. In order to ensure that the above quantities are finite we shall assume that \mathcal{T} is a finite set. Given a finitely generated semigroup \mathcal{S} of $T: X \rightarrow X$ let

$$
h(\mathcal{S})=\inf _{\mathcal{T}, \mathcal{S}=\mathcal{S}(\mathcal{T})} h(\mathcal{S}(\mathcal{T})), P(\mathcal{S}, f)=\inf _{\mathcal{T}, S=S(\mathcal{T})} P(S(\mathcal{T}), f), f \in C(X)
$$

Here, the infimum is taken over all finite generators of \mathcal{S}.

§2. Entropy of graphs on finite spaces

Let X be a finite space. We assume that $X=\{1, \ldots, n\}$. Then each $\Gamma \subset X \times X$ is in one to one correspondence with a $n \times n 0-1$ matrix $A=\left(a_{i j}\right)_{1}^{n}$. That is $(i, j) \in \Gamma \Longleftrightarrow a_{i j}=1$. As usual we let $M_{n}(\{0-1\})$ be the set of $0-1 n \times n$ matrices. For $\Gamma \subset X \times X$ we let $A(\Gamma) \in M_{n}(\{0-1\})$ to be the matrix induced by Γ and for $A \in M_{n}(\{0-1\})$ we let $\Gamma(A)$ to be the graph induced by A. The assumption that $\Gamma^{k} \neq \emptyset, k=1,2, \ldots$, is equivalent to $\rho(A(\Gamma))>0 \Longleftrightarrow \rho(A(\Gamma)) \geq 1$. Here, for any A in the set of $n \times n$ complex valued matrices $M_{n}(\mathbf{C})$ we let $\rho(A)$ to be the spectral radius of A. For $\Gamma \subset X \times X$ consider the sets $X_{l}=\pi_{l, l}\left(\Gamma^{l}\right), l=2, \ldots$, . It easily follows that $X_{2} \supset X_{3} \supset \cdots X_{n}=X_{n+1}=\cdots=X^{\prime}$. Then $\Gamma^{l} \neq \emptyset, l=2, \ldots$, iff $X^{\prime} \neq \emptyset$. Set $\Gamma^{\prime}=\Gamma \cap X^{\prime} \times X^{\prime}$. It then follows that $\Gamma^{\infty}=\Gamma^{\prime \infty}$. Moreover,

$$
\pi_{1, \infty}\left(\Gamma^{\infty}\right)=\pi_{1, \infty}\left(\Gamma^{\prime \infty}\right)=\Gamma_{+}^{\prime \infty} \subset \Gamma_{+}^{\infty}
$$

Here the containment is strict iff $X^{\prime} \neq X$. It is well known fact in symbolic dynamics that if $X^{\prime} \neq \emptyset$ then

$$
h\left(\sigma \mid \Gamma_{+}^{\infty}\right)=h\left(\sigma \mid \Gamma^{\infty}\right)=\log \rho(A(\Gamma))=\log \rho\left(A\left(\Gamma^{\prime}\right)\right)=h\left(\sigma \mid \Gamma^{\prime \infty}\right)=h\left(\sigma \mid \Gamma_{+}^{\prime \infty}\right) .
$$

See for example [Wal]. We thus let $h(\Gamma)$ - the entropy of the graph Γ to be any of the above numbers. In fact, X^{\prime} can be viewed as a limit set of the "transformation" induced by Γ on X^{\prime}. If $\rho(A(\Gamma))=0$, i.e. $X^{\prime}=\emptyset$ we then let $h(\Gamma)=\log ^{+} \rho(A(\Gamma))$. Here, $\log ^{+} x=\log \max (x, 1)$.

Let $\Gamma_{\alpha} \subset X \times X, \alpha \in \mathcal{A}$ be a family of graphs. Set $A_{\alpha}=\left(a_{i j}^{(\alpha)}\right)_{1}^{n}=A\left(\Gamma_{\alpha}\right), \alpha \in \mathcal{A}$. It then follows that

$$
\vee_{\alpha \in \mathcal{A}} A_{\alpha} \stackrel{\text { def }}{=}\left(\max _{\alpha \in \mathcal{A}} a_{i j}^{(\alpha)}\right)_{1}^{n}=A\left(\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}\right)
$$

The Perron-Frobenius theory of nonnegative matrices yields straightforward that $\rho\left(A_{\alpha}\right) \leq$ $\rho\left(\vee A_{\beta}\right)$. This is equivalent to the obvious inequality $h\left(\Gamma_{\alpha}\right) \leq h\left(\vee \Gamma_{\beta}\right)$. We now point out that we can not obtain an upper bound on $h\left(\vee \Gamma_{\alpha}\right)$ as a function of $h\left(\Gamma_{\alpha}\right), \alpha \in \mathcal{A}$. It suffices to pass to the corresponding matrices and their spectral radii. Let $A=\left(a_{i j}\right)_{1}^{n} \in$ $M_{n}(\{0-1\})$ matrix such that $a_{i j}=1 \Longleftrightarrow i \leq j$. Assume that $B=A^{T}$. Then $\rho(A)=\rho(B)=1, \rho(A \vee B)=n$.

Let $\|\cdot\|: \mathbf{C}^{n} \rightarrow \mathbf{R}_{+}$be a norm on \mathbf{C}^{n}. Denote by $\|\cdot\|: M_{n}(\mathbf{C}) \rightarrow \mathbf{R}_{+}$the induced operator norm. Clearly, $\rho(A) \leq\|A\|$. Hence

$$
\rho\left(\vee_{\alpha \in \mathcal{A}} A_{\alpha}\right) \leq \rho\left(\sum_{\alpha \in \mathcal{A}} A_{\alpha}\right) \leq \sum_{\alpha \in \mathcal{A}}\left\|A_{\alpha}\right\| .
$$

Thus

$$
\begin{equation*}
h\left(\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}\right) \leq \log ^{+} \sum_{\alpha \in \mathcal{A}}\left\|A_{\alpha}\right\| . \tag{2.1}
\end{equation*}
$$

In the next section we shall consider analogs of $\|A(\Gamma)\|$ for which we have the inequality (2.1) for any set \mathcal{A}. For a graph $\Gamma \subset X \times X$ let $\Gamma^{T}=\{(x, y):(y, x) \in \Gamma\}$. That is, $A\left(\Gamma^{T}\right)=A^{T}(\Gamma)$. A graph Γ is symmetric if $\Gamma^{T}=\Gamma$. Assume that Γ is symmetric.

It then follows that $\rho(A(\Gamma))=\|A(\Gamma)\|$ where $\|\cdot\|$ is the spectral norm on $M_{n}(\mathbf{C})$, i.e. $\|A\|=\rho\left(A A^{*}\right)^{\frac{1}{2}}$. Thus, for a family $\Gamma_{\alpha}, \alpha \in \mathcal{A}$ of symmetric graphs we have the inequalites

$$
\begin{equation*}
h\left(\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}\right) \leq \log \sum_{\alpha \in \mathcal{A}} e^{h\left(\Gamma_{\alpha}\right)} . \tag{2.2}
\end{equation*}
$$

More generally, for any family of graphs we have the inequalites

$$
\begin{equation*}
h\left(\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}\right) \leq h\left(\vee_{\alpha \in \mathcal{A}}\left(\Gamma_{\alpha} \vee \Gamma_{\alpha}^{T}\right)\right) \leq \log \sum_{\alpha \in \mathcal{A}} e^{h\left(\Gamma_{\alpha} \vee \Gamma_{\alpha}^{T}\right)} . \tag{2.3}
\end{equation*}
$$

Let $T: X \rightarrow X$ be a transformation. Then $A(T)=A(\Gamma(T))$ is a $0-1$ stochastic matrix, i.e. each row of $A(T)$ contains exactly one 1 . Vice versa, if $A \in M_{n}(\{0-1\})$ is a stochastic matrix then $A=A(T)$ for some transformation $T: X \rightarrow X$. Furthermore, $T: X \rightarrow X$ is a homeomorphism iff $A(T)$ is a permutation matrix. For $\mathcal{T}=\left\{T_{1}, \ldots, T_{k}\right\} \mathcal{S}(\mathcal{T})$ is a group iff each T_{i} is a homeomorphism, i.e. $A\left(T_{i}\right)$ is a permutation matrix for $i=1, \ldots, k$. Clearly, any group of homeomorphisms \mathcal{S} of X is a subgroup of the symmetric group $S_{n}, n=\operatorname{Card}(X)$.
(2.4) Theorem. Let X be a finite space and assume that $T_{i}: X \rightarrow X, i=1, \ldots, k$, be a set of transformation. Set

$$
\mathcal{T}=\left\{T_{1}, \ldots, T_{k}\right\}, \Gamma=\Gamma(\mathcal{T})=\cup_{1}^{k} \Gamma\left(T_{i}\right), A=A(\Gamma) .
$$

Then $h(\mathcal{S}(\mathcal{T})) \leq \log k$. Furthermore, $h(\mathcal{S}(\mathcal{T}))=0$ iff $A\left(\Gamma^{\prime}\right)$ is a permutation matrix. Assume that $k \geq 2$. Then $h(\mathcal{S}(\mathcal{T}))=\log k$ iff there exists an irreducible component $\hat{X} \subset X^{\prime}$ on which $\mathcal{S}(\mathcal{T})$ acts transitively such that $A(\Gamma \cap \hat{X} \times \hat{X})$ is $0-1$ matrix with k ones in each row. In particular, $h\left(\mathcal{S}\left(\left\{T, T^{-1}\right\}\right)\right)=\log 2$ for $T^{2} \neq I d$. Assume finally that $\mathcal{S}(\mathcal{T})$ is a commutative group. Then $h(\mathcal{S}(\mathcal{T}))=\log k^{\prime}$ for some integer $1 \leq k^{\prime} \leq k$.

Proof. Recall that $h(\mathcal{S}(\mathcal{T}))=\log \rho(A)$. As $A\left(T_{i}\right)$ is a stochasic matrix it follows that $\rho\left(A\left(T_{i}\right)\right)=1, i=1, \ldots, k$. Since $A \geq A\left(T_{i}\right)$ we deduce that $\rho(A) \geq 1$. Thus, $X^{\prime} \neq \emptyset$. Then $X^{\prime}=\cup_{1}^{m} X_{i}, X_{i} \cap X_{j}=\emptyset, 1 \leq i<j \leq m$. Here, A acts transitively on each X_{i}. Set $\Gamma_{i}=\Gamma \cap X_{i} \times X_{i}, A_{i}=A\left(\Gamma_{i}\right), i=1, \ldots, m$. Note that each A_{i} is an irreducible matrix. It then follow that $h(\Gamma)=\max \log \rho\left(A_{i}\right)$. Set $u_{i}: X_{i} \rightarrow\{1\}$. Then $A_{i} u_{i} \leq k u_{i}$. The minmax characterization of Wielandt for an irreducible A_{i} yields that $\rho\left(A_{i}\right) \leq k$. The equality holds iff each row of A_{i} has exactly k ones. Thus, $h(\Gamma)=\log k, k>1$ iff each row of some A_{i} has k ones.

Assume next that T is a homeomorphism such that $T^{2} \neq I d$. Set $\Gamma=\Gamma(T) \cup \Gamma\left(T^{-1}\right)$. Then $X^{\prime}=X=\cup_{1}^{m} X_{i}$ and least one X_{i} contains more then one point. Clearly, this A_{i} has two ones in each row and column. Hence, $h(\Gamma)=\log 2$.

Assume now that $\mathcal{G}=\mathcal{S}(\mathcal{T})$ is a commutative group. Then $X=X^{\prime}=\cup_{1}^{m} X_{l}$. We claim that the following dichotomy holds for each pair $T_{i}, T_{j}, i \neq j$. Either $T_{i}(x) \neq$ $T_{j}(x) \forall x \in X_{l}$ or $T_{i}(x)=T_{j}(x) \forall x \in X_{l}$. Indeed, assume that $T_{i}(x)=T_{j}(x)$ for some $x \in$ X_{l}. As \mathcal{G} acts transitively on X_{l} and is commutative we deduce that $T_{i}(x)=T_{j}(x) \forall x \in T_{l}$.

Thus $\Gamma\left(T_{i}\right) \cap X_{l} \times X_{l}, i=1, \ldots, k$, consists of k_{l} distinct permutation matrices which do not have any 1 in common. That is $\Gamma_{l}=\Gamma \cap X_{l} \times X_{l}$ is a matrix with k_{l} ones in each row and column. Hence,

$$
h\left(\Gamma_{l}\right)=\log k_{l}, l=1, \ldots, m, h(\Gamma)=\log \max _{1 \leq l \leq m} k_{l} .
$$

\diamond
(2.5) Theorem. Let X be a finite space of n points. If \mathcal{G} is commutative then $h(\mathcal{G})=\log k$ for some integer k which is not greater then the number of the minimal generators of \mathcal{G}. If \mathcal{G} acts transitively on X or the restriciton of \mathcal{G} to one of the irreducible (transitive) components is faithful then k is the minimal number of generators of \mathcal{G}. In particular, for any $\mathcal{G} h(\mathcal{G})=0$ iff \mathcal{G} is cyclic. For each $n \geq 3$ there exists a group \mathcal{G} which acts transitively on X so that $0<h(\mathcal{G})<\log 2$.

Proof. Assume first that \mathcal{G} is commutative. Let $\mathcal{T}=\left\{T_{1}, \ldots, T_{p}\right\}$ be a set of generators. Theorem 2.4 yields that $h(\mathcal{G}(\mathcal{T}))=\log k(\mathcal{T}), k(\mathcal{T}) \leq p$. Choose a minimal subset of generators $\mathcal{T}^{\prime} \subset \mathcal{T}$. Clearly, $h\left(\mathcal{G}\left(\mathcal{T}^{\prime}\right)\right) \leq h(\mathcal{G}(\mathcal{T}))$. Thus, to compute $h(\mathcal{G})$ it is enough to assume that \mathcal{T} consists of a minimal set of generators of \mathcal{G}. Hence, $h(\mathcal{G})=\log k$ and k is at most the number of the minimal generators of \mathcal{G}.

Assume now that \mathcal{G} acts transitively on X. The arguments of the proof of Theorem 2.4 yield that $x \in X, T_{i}(x) \neq T_{j}(x)$ for $i \neq j$. Therefore, $h(\mathcal{G}(\mathcal{T}))=\log p$. In particular, $h(\mathcal{G})=\log k$ where k is the minimal number of generators for \mathcal{G}. Suppose now that X is reducible under the action of \mathcal{G} and the restriction of \mathcal{G} to one of its irreducible components is faithful. Then the above results yield that $h(\mathcal{G})=\log k$ where k is the minimal number of generators of \mathcal{G}.

Assume now that $h(\mathcal{G})=0$. Let $h(\mathcal{G})=h(\mathcal{G}(\mathcal{T}))$. Assume first that \mathcal{G} acts irreducibly on X. If \mathcal{T} consists of one element T we are done. Assume to the contrary that $\mathcal{T}=$ $\left\{T_{1}, \ldots, T_{q}\right\}, q>1$. Then $A(\Gamma) \geq A\left(T_{1}\right)$. Since $A(\Gamma)$ is irreducible as \mathcal{G} acts transitively, and $A(\Gamma) \neq A\left(T_{1}\right)$ we deduce that $\rho(A(\Gamma))>1$. See for example [Gan]. This contradicts our assumption that $h(\mathcal{G})=0$. Hence, \mathcal{G} is generated by one element, i.e. \mathcal{G} is cyclic. Assume now that $X=\cup_{1}^{m} X_{i}$ is the decompostion of X to its irreducible components. According to the above arguments $\Gamma(\mathcal{T}) \cap X_{i} \times X_{i}$ is a permutation matrix. Hence $\Gamma(\mathcal{T})$ is a permutation matrix corresponding to the homeomorphism T. Thus \mathcal{G} is generated by T.

Assume that $\operatorname{Card}(X)=n \geq 3$. Let $T: X \rightarrow X$ be a homeomorphism that acts transitively on X, i.e. $T^{n}=I d, T^{n-1} \neq I d$. Let $Q: X \rightarrow X, Q \neq T$ be another homeomorphism so that $Q(x)=T(x)$ for some $x \in X$. Set $\mathcal{G}=\mathcal{G}(\{T, Q\})$. According to Theorem $2.4 h(\mathcal{G}(\{T, Q\}))<\log 2$. Hence, $h(\mathcal{G})<\log 2$. As \mathcal{G} is not cyclic it follows that $h(\mathcal{G})>0 . \diamond$

It is an interesting problem to determine the entropy of a commutative group in the general case.

§3. Entropy of graphs on compact spaces

Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed graph. As in the previous section set $X_{l}=\pi_{l, l}\left(\Gamma^{l}\right), l=2, \ldots$, . Then $\left\{X_{l}\right\}_{2}^{\infty}$ is a sequence of decreasing closed spaces. Let $X^{\prime}=\cap_{2}^{\infty} X_{l}, \Gamma^{\prime}=\Gamma \cap X^{\prime} \times X^{\prime}$. Clearly,

$$
\Gamma^{\infty}=\Gamma^{\prime \infty}, \pi_{1, \infty}\left(\Gamma^{\infty}\right)=\pi_{1, \infty}\left(\Gamma^{\prime \infty}\right)=\Gamma_{+}^{\prime \infty} \subset \Gamma_{+}^{\infty} .
$$

(3.1) Theorem. Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed set. Then

$$
\begin{aligned}
& h\left(\sigma \mid \Gamma_{+}^{\infty}\right)=h\left(\sigma \mid \Gamma_{+}^{\prime \infty}\right)=h\left(\sigma \mid \Gamma^{\infty}\right) \\
& P\left(\Gamma_{+}^{\infty}, f\right)=P\left(\Gamma_{+}^{\prime \infty}, f\right)=P\left(\Gamma^{\infty}, f\right), f \in C(X)
\end{aligned}
$$

Proof. The equality $h\left(\sigma \mid \Gamma_{+}^{\infty}\right)=h\left(\sigma \mid \Gamma_{+}^{\prime \infty}\right)$ follows from the observation that $\Gamma_{+}^{\prime \infty}=$ $\cap_{0}^{\infty} \sigma^{l}\left(\Gamma_{+}^{\infty}\right)$. See [Wal, Cor. 8.6.1.]. We now prove the equality $h\left(\sigma \mid \Gamma_{+}^{\prime \infty}\right)=h\left(\sigma \mid \Gamma^{\infty}\right)$ It is enough to assume that $X^{\prime}=X$. Set $X_{1}=\Gamma_{+}^{\infty}, X_{2}=\Gamma^{\infty}$. Let $\pi: X_{2} \rightarrow X_{1}$ be the projection $\pi_{1, \infty}$. It then follows that $\pi\left(X_{2}\right)=X_{1}, \pi \circ \sigma_{2}=\sigma_{1} \circ \pi$. Denote by σ_{i} the restriction of σ to X_{i} and let $h_{i}=h\left(\sigma_{i}\right)$ be the topological entropy of σ_{i}. As σ_{1} is a factor of σ_{2} one deduces $h_{1} \leq h_{2}$.

We now prove the reversed inequality $h_{1} \geq h_{2}$. Let Y be a compact metric space and assume that $T: Y \rightarrow Y$ is a continuous transformation. Denote by $\Pi(Y)$ the set of all probability measures on the Borel σ-algebra generated by all open sets of Y. Let $\mathcal{M}(T) \subset \Pi(Y)$ be the set of all T-invariant probability measures. Assume that $\mu \in \mathcal{M}(T)$. Then one defines the Kolmogorov-Sinai entropy $h_{\mu}(T)$. The variational principle states that

$$
h(T)=\sup _{\mu \in \mathcal{M}(T)} h_{\mu}(T), P(T, f)=\sup _{\mu \in \mathcal{M}(T)}\left(h_{\mu}(T)+\int f d \mu\right), f \in C(X)
$$

Let \mathcal{B}_{2} be the σ-algebra generated by open sets in X_{2}. An open set $A \subset X_{2}$ is called cylindrical if there exist $p \leq q$ with the following property. Let $y \in \pi_{i, i}(A)$. Then for $i \leq p$
we have the property $\pi_{1,1}^{2}\left(\left(\pi_{2,2}^{2}\right)^{-1}(y)\right) \subset \pi_{i-1, i-1}(A)$. For $i \geq q$ we have the property $\pi_{2,2}^{2}\left(\left(\pi_{1,1}^{2}\right)^{-1}(y)\right) \subset \pi_{i+1, i+1}(A)$. Let $\mathcal{C} \subset \mathcal{B}_{2}$ be the finite Borel subalgebra generated by open cylindrical sets. Note that each set in \mathcal{C} is cylindrical. Since σ_{2} is a homeomorphism it follows that for any $\mu \in \mathcal{M}\left(\sigma_{2}\right) \mathcal{B}(\mathcal{C}) \stackrel{\circ}{=} \mathcal{B}_{2}$. That is up a set of zero μ-measure every set in \mathcal{B}_{2} can be presented as a set in σ-Borel algebra generated by \mathcal{C}. Let $\alpha \subset \mathcal{C}$ be a finite partition of X_{2}. One then can define the entropy $h\left(\sigma_{2}, \alpha\right)$ with respect to the measure μ [Wal, Ch.4]. Since σ_{2} is a homeomorphism and μ is σ_{2} invariant it follows that $h\left(\sigma_{2}, \alpha\right)=h\left(\sigma_{2}, \sigma_{2}^{m}(\alpha)\right)$ for any $m \in \mathbf{Z}$. The assumption that $\mathcal{B}(\mathcal{C}) \stackrel{o}{=} \mathcal{B}_{2}$ implies that $\sup _{\alpha \in \mathcal{C}} h\left(\sigma_{2}, \alpha\right)=h_{\mu}\left(\sigma_{2}\right)$. Taking m big enough in the previous equality we deduce that it is enough to consider all finite partitions $\alpha \subset \mathcal{C}$ with the following property. For each $A \in \alpha$ and each $i \leq 1, y \in \pi_{i, i}(A)$ we have the condition $\pi_{1,1}^{2}\left(\left(\pi_{2,2}^{2}\right)^{-1}(y)\right) \subset \pi_{i-1, i-1}(A)$. It then follows that μ projects on $\mu^{\prime} \in \mathcal{M}\left(\sigma_{1}\right)$ and $h_{\mu}\left(\sigma_{2}\right)=h_{\mu^{\prime}}\left(\sigma_{1}\right)$. The variational principle yields $h_{2} \leq h_{1}$ and the equalities of all three entropies are established.

To prove the three equalities on the topological pressure we use the analogous arguments for the topological pressure. \diamond

Let $h(\Gamma)$ to be one of the entropies in Theorem 3.1. We call $h(\Gamma)$ the entropy of Γ. For $f \in C(X)$ we denote by $P(\Gamma, f)$ to be one of the topological in Theorem 3.1. Let X be a complete metric space with a metric d. Denote by $B(x, r)$ the open ball of radius r centered in x. Let $\bar{B}(x, r)=$ Closure $(B(x, r))$. We say that X is semi-Riemannian of Hausdorff dimension $n \geq 0$ if for every open ball $B(x, r), 0<r<\delta$ the Hausdorff dimension of $\bar{B}(x, r)$ is n and its Hausdorf volume $\operatorname{vol}(\bar{B}(x, r))$ satisfies the inequality

$$
\alpha r^{n} \leq \operatorname{vol}(\bar{B}(x, r))
$$

for some $0<\alpha$. Recall that if the Hausdorff dimension of a compact set $Y \subset X$ is m then its Hausdorff volume is defined as follows.

$$
\operatorname{vol}(Y)=\lim _{\epsilon \rightarrow 0} \liminf _{x_{i}, 0<\epsilon_{i} \leq \epsilon, i=1, \ldots, k, \cup B\left(x_{i}, \epsilon_{i}\right) \supset Y} \sum_{1}^{k} \epsilon_{i}^{m} .
$$

The following lemma is a straightforward generalization of Bowen's inequality [Bow], [Wal, Thm. 7.15].
(3.2) Lemma. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T: X \rightarrow X$ is Lipschitzian $-d(T(x), T(y)) \leq \lambda d(x, y)$ for all $x, y \in X$ and some $\lambda \geq 1$. Suppose furthermore that X has a finite n dimensional Hausdorff volume. Then $h(T) \leq \log \lambda^{n}$.

Proof. As X is compact and semi-Riemannian it follows that X has the Hausdorff dimension n. Let $N(k, \epsilon)$ be the cardinality of the maximal (k, ϵ) separated set. Assume that $\left\{x_{1}, \ldots, x_{N(k, \epsilon)}\right\}$ is a maximal (k, ϵ) separated set. That is for $i \neq j$

$$
\max _{0 \leq l \leq k-1} d\left(T^{l}\left(x_{i}\right), T^{l}\left(x_{j}\right)\right)>\epsilon .
$$

We claim that

$$
\bar{B}\left(x_{i}, \epsilon_{k}\right) \cap \bar{B}\left(x_{j}, \epsilon_{k}\right)=\emptyset, i \neq j, \epsilon_{k}=\frac{\epsilon}{3 \lambda^{k-1}} .
$$

This is immediate from the inequality $d\left(T^{l}(x), T^{l}(y)\right) \leq \lambda^{l} d(x, y)$ and the (k, ϵ) separability of $\left\{x_{1}, \ldots, x_{N(k, \epsilon)}\right\}$. We thus deduce the obvious inequality

$$
\sum_{l=1}^{N(k, \epsilon)} \operatorname{vol}\left(\bar{B}\left(x_{l}, \epsilon_{k}\right)\right) \leq \operatorname{vol}(X) .
$$

In the above inequality assume that $\epsilon \leq \delta$. Then the lower bound on $\operatorname{vol}\left(\bar{B}\left(x_{l}, \epsilon_{k}\right)\right)$ yields

$$
N(k, \epsilon) \leq \frac{\operatorname{vol}(X) 3^{n} \lambda^{n(k-1)}}{\alpha \epsilon^{n}}
$$

Thus

$$
h(T)=\lim _{\epsilon \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{\log N(k, \epsilon)}{k} \leq n \log \lambda
$$

and the proof of the lemma is completed. \diamond
The above estimate can be improved as follows. Let X be a compact metric space and $T: X \rightarrow X$. Set

$$
L(T)=\sup _{x \neq y \in X} \frac{d(T(x), T(y))}{d(x, y)}, L_{+}(T)=\max (L(T), 1)
$$

Thus T is Lipschitzian iff $L(T)<\infty$. Let

$$
l(T)=\liminf _{k \rightarrow \infty} L_{+}^{\frac{1}{k}}\left(T^{k}\right)
$$

Note that T^{k} is Lipschtzian for some $k \geq 1 \mathrm{iff} l(T)<\infty . l(T)$ can be considered as a generalization of the maximal Lyapunov exponent for the mapping T. As $h\left(T^{k}\right)=$ $k h(T), k \geq 0$ from Lemma 3.2 we obtain.
(3.3) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T: X \rightarrow X$ is a continuous map. Suppose furthermore that X has a finite n dimensional Hausdorff measure. Then $h(T) \leq n \log l(T)$.

We have in mind the following application. Let $T: \mathbf{C P}^{1} \rightarrow \mathbf{C}{ }^{1}$ be a rational map of the Riemann sphere $\mathbf{C P}{ }^{1}$. Let $X=J(T)$ be its Julia set. It is plausible to assume that $\log l(T)$ on X is the Lyapunov exponent corresponding to T and the maximal T-invariant measure on X. Suppose that the Hausdorff dimension of X is n and X has a finite Hausdorff volume. Assume furthermore that X is semi-Riemannian of Hausdorff dimension n. We then can apply Theorem 3.3. As $h(T)=\log \operatorname{deg}(T)$ we have the inequality $\operatorname{deg}(f) \leq l(f)^{n}$.
(3.4) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T_{i}: X \rightarrow X, i=1, \ldots, m$, are continuous maps. Let $\Gamma\left(T_{i}\right)$ be the graph of $T_{i}=1, \ldots, m$. Set $\Gamma=\cup_{1}^{m} \Gamma\left(T_{i}\right)$. Suppose furthermore that X has a finite n dimensional Hausdorff volume. Then

$$
h(\Gamma) \leq \log \sum_{1}^{m} L_{+}\left(T_{i}\right)^{n} .
$$

Proof. It is enough to consider the nontrivial case where each T_{i} is Lipschitzian. In the definitions of the metrics on $\Gamma^{k}, \Gamma_{+}^{\infty}$ set

$$
\rho>\max _{1 \leq i \leq m} L_{+}\left(T_{i}\right) .
$$

Let $M=\{1, \ldots, m\}$. Then for $\omega=\left(\omega_{1}, \ldots, \omega_{k-1}\right) \in M^{k-1}$ we let

$$
\Gamma(\omega)=\left\{\left(x_{i}\right)_{1}^{k}: x_{1} \in X, x_{i}=T_{\omega_{i-1}} \circ \cdots \circ T_{\omega_{1}}\left(x_{1}\right), i=2, \ldots, k\right\} \subset \Gamma^{k}, \omega \in M^{k-1}
$$

Clearly, each $\Gamma(\omega)$ is isometric to X. Hence, the Hausdorff dimension of $\Gamma(\omega)$ is n and $\operatorname{vol}(\Gamma(\omega))=\operatorname{vol}(X)$. Furthermore, $\cup_{\omega \in M^{k-1}} \Gamma(\omega)=\Gamma^{k}$. It then follows that each Γ^{k} has Hausdorff dimension n, has finite Hausdorff volume not exceeding $m^{k-1} \operatorname{vol}(X)$ and is semi-Riemannian compact metric space of Hausdorff dimension n. Moreover, the volume of any closed ball $\bar{B}(y, r) \subset \Gamma^{k}$ is at least αr^{n} where α is the constant for X. Let $Y=\Gamma_{+}^{\infty}$ and consider a maximal (k, ϵ) separated set in Y of cardinality $N(k, \epsilon)-y^{j} \in Y, j \stackrel{+}{=}$ $1, \ldots, N(k, \epsilon)$. That is

$$
\begin{aligned}
& y^{j}=\left(x_{i}^{j}\right)_{i=1}^{\infty},\left(x_{i}^{j}, x_{i+1}^{j}\right) \in \Gamma, i=1, \ldots, j=1, \ldots, N(k, \epsilon), \\
& \max _{1 \leq i} \frac{d\left(x_{i}^{j}, x_{i}^{l}\right)}{\rho^{(i-k)^{+}}>\epsilon, 1 \leq j \neq l \leq N(k, \epsilon) .}
\end{aligned}
$$

Here, $a^{+}=\max (a, 0), a \in \mathbf{R}$. Fix $\epsilon, 0<\epsilon<\delta$. Assume that D is the diameter of X and let $K(\epsilon)=\left\lceil\log _{\rho} D-\log _{\rho} \epsilon\right\rceil$. It then follows that

$$
\begin{equation*}
\max _{1 \leq i \leq k+K(\epsilon)} d\left(x_{i}^{j}, x_{i}^{l}\right)>\epsilon, 1 \leq j \neq l \leq N(k, \epsilon) \tag{3.5}
\end{equation*}
$$

Set $z^{j}=\left(x_{i}^{j}\right)_{i=1}^{k+K(\epsilon)} \subset \Gamma^{k+K(\epsilon)}, j=1, \ldots, N(k, \epsilon)$. Clearly,

$$
\begin{aligned}
& \left\{z^{j}\right\}_{1}^{N(k+K(\epsilon))}=\cup_{\omega \in M^{k+K(\epsilon)-1}}\left(\left\{z^{j}\right\}_{1}^{N(k, \epsilon)} \cap \Gamma(\omega)\right) \Rightarrow \\
& N(k, \epsilon) \leq \sum_{\omega \in M^{k+K(\epsilon)-1}} \operatorname{Card}\left(\left\{z^{j}\right\}_{1}^{N(k, \epsilon)} \cap \Gamma(\omega)\right) .
\end{aligned}
$$

We now estimate $\operatorname{Card}\left(\left\{z^{j}\right\}_{1}^{N(k, \epsilon)} \cap \Gamma(\omega)\right)$ for a fixed $\omega=\left(\omega_{1}, \ldots, \omega_{k+K(\epsilon)-1}\right) \in M^{k+K(\epsilon)-1}$. For each $z^{j}=\left(x_{i}^{j}\right)_{i=1}^{k+K(\epsilon)} \in \Gamma(\omega)$ consider the closed set ball

$$
\bar{B}\left(z^{j}, \epsilon(\omega)\right) \subset \Gamma(\omega), \epsilon(\omega)=\frac{\epsilon}{3 \prod_{1}^{k+K(\epsilon)-1} L_{+}\left(T_{\omega_{i}}\right)} .
$$

(We restrict here our discussion to the compact metric space $\Gamma(\omega)$ with the metric induced from $\Gamma^{k+K(\epsilon)}$.) Let $z^{j} \neq z^{l} \in \Gamma(\omega)$. The condition (3.5) yields that $\bar{B}\left(z^{j}, \epsilon(\omega)\right) \cap$ $\bar{B}\left(z^{l}, \epsilon(\omega)\right)=\emptyset$. As $\Gamma(\omega)$ is isometric to X we deduce that

$$
\operatorname{Card}\left(\left\{z^{j}\right\}_{1}^{N(k, \epsilon)} \cap \Gamma(\omega)\right) \leq \frac{\operatorname{vol}(X) 3^{n} \prod_{i=1}^{k+K(\epsilon)-1} L_{+}\left(T_{\omega_{i}}\right)^{n}}{\alpha \epsilon^{n}}
$$

Hence,

$$
\begin{aligned}
& N(k, \epsilon) \leq \sum_{\omega \in M^{k+K(\epsilon)-1}} \frac{\operatorname{vol}(X) 3^{n} \prod_{i=1}^{k+K(\epsilon)-1} L_{+}\left(T_{\omega_{i}}\right)^{n}}{\alpha \epsilon^{n}}= \\
& \frac{\operatorname{vol}(X) 3^{n}\left(\sum_{i=1}^{m} L_{+}\left(T_{i}\right)^{n}\right)^{k+K(\epsilon)-1}}{\alpha \epsilon^{n}}
\end{aligned}
$$

Thus

$$
h(\Gamma)=\lim _{\epsilon \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{\log N(k, \epsilon)}{k} \leq \log \sum_{i=1}^{n} L_{+}\left(T_{i}\right)^{n}
$$

and the theorem is proved. \diamond
We remark that the inequality of Theorem 3.4 holds if we replace the assumption that X has a finite n-Hausdorff volume by the following one: the number of points of every r - separated set in X does not exceed $C r^{-n}$ for some positive constant C.

Let X satisfies the assumptions of Theorem 3.4. It then follows that for the Lipschitzian maps $f: X \rightarrow X$ the quantity $L_{+}(T)^{n}$ is the "norm" of the graph $\Gamma(f)$ discussed in $\S 2$.
(3.6) Lemma. Let X be a compact metric space and $T: X \rightarrow X$ be a noninvolutive homeomorphism $\left(T^{2} \neq I d\right)$. Then $\log 2 \leq h\left(\Gamma(T) \cup \Gamma\left(T^{-1}\right)\right)$. If $T, T^{-1}: X \rightarrow X$ are noninvolutive isometries then $h\left(\Gamma(T) \cup \Gamma\left(T^{-1}\right)\right)=\log 2$.

Proof. Assume first that T has a periodic orbit $Y=\left\{y_{1}, \ldots, y_{p}\right\}$ of period $p>2$. Restrict T, T^{-1} to this orbit. Theorem 2.4 yields the desired inequality. Assume now that we have an infinite orbit $y_{i}=T^{i}(y), i=1,2, \ldots$, . Fix $n \geq 3$. Let $Y_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$. Denote by $\Gamma_{n} \subset Y_{n} \times Y_{n}$ the graph corresponding to the undirected linear graph on the vertices y_{1}, \ldots, y_{n}. That $(i, j) \in \Gamma_{n} \Longleftrightarrow|i-j|=1$. Clearly

$$
\Gamma_{n}^{\infty} \subset \Gamma^{\infty}, \Gamma=\Gamma(T) \cup \Gamma\left(T^{-1}\right) .
$$

Hence $h\left(\Gamma_{n}\right) \leq h(\Gamma)$. Obviuosly, $h\left(\Gamma_{n}\right)=\log \rho\left(A\left(\Gamma_{n}\right)\right)$. It is well known that $\rho\left(A\left(\Gamma_{n}\right)\right)=$ $2 \cos \frac{\pi}{n+1}$. (The eigenvalues of $A\left(\Gamma_{n}\right)$ are the roots of the Chebycheff polynomial.) Let $n \rightarrow \infty$ and deduce $h(\Gamma) \geq \log 2$. Assume now that T and T^{-1} are noninvolutive isometries. Then Theorem 3.4 and the above inequality implies that $h\left(\Gamma(T) \cup \Gamma\left(T^{-1}\right)\right)=\log 2$. \diamond

Thus, Theorem 3.4 is sharp for $m=2$. Similar examples using isometries and Theorem 2.4 show that Theorem 3.4 is sharp in general.

Let X be a compact metric space and $T_{i}: X \rightarrow X, i=1, \ldots, m$, be a set of continuous transformations. Let $\mathcal{T}=\left\{T_{1}, \ldots, T_{m}\right\}$. Then $h(\mathcal{S}(\mathcal{T}))$ was defined to be the entropy of the graph $\Gamma=\cup_{1}^{m} \Gamma\left(T_{i}\right)$. As in the case of $m=1$ this entropy can be defined in terms of " (k, ϵ) " separated (spanning) sets as follows. Set

$$
d_{k+1}(x, y)=\max \left(\max _{1 \leq i_{1}, j_{1}, \ldots, i_{k}, j_{k} \leq m,} d\left(T_{i_{1}} \ldots T_{i_{k}}(x), T_{j_{1}} \ldots T_{j_{k}}(y)\right), d(x, y)\right), k=1,2, \ldots,
$$

Let $M(k, \epsilon)$ be the maximal cardinality the ϵ separated set in the metric d_{k}.
(3.7) Lemma. Let X be a compact metric space and assume that $T_{i}: X \rightarrow X, i=1, \ldots, m$, are continuous transformations. Then

$$
h\left(\mathcal{S}\left(\left\{T_{1}, \ldots, T_{m}\right\}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{\log M(k, \epsilon)}{k} .\right.
$$

Proof. From the definiton of the (k, ϵ) separated set for Γ_{+}^{∞} it immediately follows that

$$
M(k, \epsilon) \leq N(k, \epsilon)
$$

The arguments in the proof of Theorem 3.4 yield that

$$
N(k, \epsilon) \leq M(k+K(\epsilon))
$$

and the lemma follows. \diamond

$\S 4$. Approximating entropy of graphs by entropy of subshifts of finite type

Let X be a set. $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\} \subset 2^{X}$ is called a finite cover of X if $X=\cup_{1}^{m} U_{i}$. The cover \mathcal{U} is called minimal if any strict subset of \mathcal{U} is not a cover of X. Let $\Gamma \subset X \times X$ be any subset. Introduce the following graph and its corresponding matrix on the space $<m>=\{1, \ldots, m\}$:

$$
\begin{aligned}
& \mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}, \Gamma(\mathcal{U})=\left\{(i, j): \Gamma \cap U_{i} \times U_{j} \neq \emptyset\right\} \subset<m>\times<m>, \\
& \left.A(\Gamma(\mathcal{U}))=\left(a_{i j}\right)_{1}^{m} \in M_{m}(\{0-1\}), a_{i j}=1 \Longleftrightarrow(i, j) \in \Gamma(\mathcal{U})\right\} .
\end{aligned}
$$

Note that $\Gamma(\mathcal{U})$ induces a subshift of a finite type on $<m>$. Thus, $\log ^{+} \rho(\Gamma(\mathcal{U}))$ is the entropy of Γ induced by the cover \mathcal{U}. Let \mathcal{V} be also a finite cover of X. Then \mathcal{V} is called a refinement of \mathcal{U}, written $\mathcal{U}<\mathcal{V}$, if every member of \mathcal{V} is a subset of a member of \mathcal{U}. Assume that $\mathcal{V}=\left\{V_{1}, \ldots, V_{m}\right\}$ is a refinement of \mathcal{U} such that $V_{i} \subset U_{i}, i=1, \ldots, m$. It then follows that $A(\Gamma(\mathcal{U})) \geq A(\Gamma(\mathcal{V}))$ for any $\Gamma \subset X \times X$. Hence, $\rho(A(\Gamma(\mathcal{U}))) \geq \rho(A(\Gamma(\mathcal{V})))$. If $U_{i} \cap U_{j}=\emptyset, 1 \leq i<j \leq m$, then \mathcal{U} is called a finite partition of X. Given a finite minimal cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}$ there always exist a partition $\mathcal{V}=\left\{V_{1}, \ldots, V_{m}\right\}$ such that $V_{i} \subset U_{i}, i=1, \ldots, m$. Indeed, consider a partition \mathcal{U}^{\prime} corresponding to the subalgebra generated by \mathcal{U}. This partition is a refinement of \mathcal{U}. Then each U_{i} is union of some sets in \mathcal{U}^{\prime}. Set $V_{1}=U_{1}$. Let $V_{2} \subset U_{2}$ be the union of sets of \mathcal{U}^{\prime} which are subsets of $U_{2} \backslash U_{1}$. Continue this process to construct \mathcal{V}. In particular, $\rho(A(T, \mathcal{U})) \geq \rho(A(T, \mathcal{V}))$.

Let $\mathcal{U}<\mathcal{V}$ be finite partitions of X. Assume that $\Gamma \subset X \times X$. In general, there is no relation between $\rho(A(\Gamma(\mathcal{U})))$ and $\rho(A(\Gamma(\mathcal{V})))$. Indeed, if $A(\Gamma(\mathcal{V}))$ is a matrix whose all entries are equal to 1 then $A(\Gamma(\mathcal{U}))$ is also a matrix whose all entries are equal to 1 . Hence

$$
\rho(A(\Gamma(\mathcal{V})))=\operatorname{Card}(\mathcal{V})>\rho(A(\Gamma(\mathcal{U})))=\operatorname{Card}(\mathcal{U}) \Longleftrightarrow \mathcal{U} \neq \mathcal{V}
$$

Assume now that $\operatorname{Card}(\mathcal{V})=n, A(\Gamma(\mathcal{V}))=\left(\delta_{(i+1) j}\right)_{1}^{n}, n+1 \equiv 1$ be the matrix corresponding to a cyclic graph on $\langle n\rangle$. Suppose furthermore that $n \geq 3$ and let $U_{1}=V_{1} \cup V_{2}, U_{i}=V_{i+1}, i=2, \ldots, n-1$. It then follows that $\rho(A(\Gamma(\mathcal{U})))>\rho(A(\Gamma(\mathcal{V})))=1$.

Let $\mathcal{F}_{\epsilon}, 0<\epsilon<1$ be a family of finite covers of X increasing in ϵ. That is, $\mathcal{F}_{\delta} \subset$ $\mathcal{F}_{\epsilon}, 0<\delta \leq \epsilon<1$. Assume that $\Gamma \subset X \times X$ be any set. We then set

$$
e(\Gamma, \mathcal{F})=\lim _{\epsilon \rightarrow 0^{+}} \inf _{\mathcal{U} \in \mathcal{F}_{\epsilon}} \log ^{+} \rho(A(\Gamma(\mathcal{U}))) .
$$

Thus, $e(\Gamma, \mathcal{F})$ can be considered as the entropy of Γ induced by the family \mathcal{F}_{ϵ}. Its definition is reminiscent of the definition of the Hausdorff dimension of a metric space X. Let \mathcal{U} be a finite cover of X. Clearly, $A\left(\Gamma^{T}(\mathcal{U})\right)=A^{T}(\Gamma(\mathcal{U}))$. Hence, $\rho(A(\Gamma(\mathcal{U})))=\rho\left(A\left(\Gamma^{T}(\mathcal{U})\right)\right)$ and $e(\Gamma, \mathcal{F})=e\left(\Gamma^{T}, \mathcal{F}\right)$.
(4.1) Lemma. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}$ be a finite cover of compact metric space X. Assume that $\operatorname{diam}(\mathcal{U}) \stackrel{\text { def }}{=} \max \operatorname{diam}\left(U_{i}\right) \leq \frac{\delta}{2}$. Let $\Gamma \subset X \times X$ be a closed set. Assume that $N_{k}(\delta)$ is the maximal cardinality of (k, δ) separated set for $\sigma: \Gamma_{+}^{\infty} \rightarrow \Gamma_{+}^{\infty}$. Then

$$
\limsup _{k \rightarrow \infty} \frac{\log N_{k}(\delta)}{k} \leq \log \rho(A(\Gamma(\mathcal{U})))
$$

Proof. Set

$$
A^{k}(\Gamma(\mathcal{U}))=\left(a_{i j}^{(k)}\right)_{1}^{m}, \nu_{k}(\mathcal{U})=\sum_{1}^{m} a_{i j}^{(k-1)}
$$

Then $\nu_{k}(\mathcal{U})$ is counting the number of distinct point

$$
\left(y_{i}\right)_{1}^{k} \in<m>^{k},\left(y_{i}, y_{i+1}\right) \in \Gamma(\mathcal{U}), i=1, \ldots, k-1 .
$$

Let $K(\delta)$ be defined as in the proof of Theorem 3.4. We claim that $N(k, \delta) \leq \nu_{k+K(\delta)}(\mathcal{U})$. Indeed, assume that $x^{i}=\left(x_{j}^{i}\right)_{j=1}^{\infty}, i=1, \ldots, N(k, \delta)$, is a (k, δ) separated set. Then each x^{i} generates at least one point $y^{i}=\left(y_{1}^{i}, \ldots, y_{p}^{i}\right) \in<m>^{p}$ as follows: $x_{j}^{i} \in U_{y_{j}^{i}}, j=1, \ldots, p$. From (3.5) and the assumption that $\operatorname{diam}(\mathcal{U})<\frac{\delta}{2}$ we deduce that for $p=k+K(\delta)$ $i \neq l \Rightarrow y^{i} \neq y^{l}$. Hence $N(k, \delta) \leq \nu_{k+K(\delta)}(\mathcal{U})$. As a point x^{i} may generate more then one point y^{i} in general we have strict inequality. Since $A(T, \mathcal{U})$ is a nonnegative matrix it is well known that

$$
K_{1} \rho(A)^{k} \leq \nu_{k} \leq K_{2} k^{m-1} \rho(A(T, \mathcal{U}))^{k}, k=1, \ldots,
$$

See for example $[\mathbf{F}-\mathbf{S}]$. The above inequalities yield the lemma. \diamond
Let $\left\{\mathcal{U}_{i}\right\}_{1}^{\infty}$ be sequence of finite open covers such $\operatorname{diam}\left(\mathcal{U}_{i}\right) \rightarrow 0$. Assume that $\Gamma \subset$ $X \times X$ is closed. Then $\left\{\mathcal{U}_{i}\right\}_{1}^{\infty}$ is called an approximation cover sequence for Γ if

$$
\lim _{i \rightarrow \infty} \log ^{+} \rho\left(A\left(\Gamma\left(\mathcal{U}_{i}\right)\right)\right)=h(\Gamma) .
$$

Note as $\rho\left(A^{T}\right)=\rho(A), \forall A \in M_{n}(\mathbf{C})$ and $h(\Gamma)=h\left(\Gamma^{T}\right)$ we deduce that $\left\{\mathcal{U}_{i}\right\}_{1}^{\infty}$ is also an approximation cover for Γ^{T}. Use Lemma 4.1 and (2.2) for finite graphs to obtain sufficient conditions for the validity of the inequality (2.2) for infinite graphs.
(4.2) Corollary. Let X be a compact metric space and $\Gamma_{j}^{T}=\Gamma_{j} \subset X \times X, j=1, \ldots, m$ be closed sets. Assume that there exist a sequence of open finite covers

$$
\left\{\mathcal{U}_{i}\right\}_{1}^{\infty}, \lim _{i \rightarrow \infty} \operatorname{diam}\left(\mathcal{U}_{i}\right)=0
$$

which is an approximation cover for $\Gamma_{1}, \ldots, \Gamma_{m}$. Then

$$
h\left(\cup_{1}^{m} \Gamma_{j}\right) \leq \log \sum_{1}^{m} e^{h\left(\Gamma_{j}\right)} .
$$

Let Z be a compact metric space and $T: Z \rightarrow Z$ is a homeomorphism. Then T is called expansive if there exists $\delta>0$ such that

$$
\sup _{n \in \mathbf{Z}} d\left(T^{n}(x), T^{n}(y)\right)>\delta, \forall x, y \in Z, x \neq y
$$

A finite open cover \mathcal{U} of Z is called a generator for homeomorphism T if for every bisequence $\left\{U_{n}\right\}_{-\infty}^{\infty}$ of members of \mathcal{U} the set $\cap_{n=-\infty}^{\infty} T^{-n} \bar{U}_{n}$ contains at most one point of X. If this condition is replaced by $\cap_{n=-\infty}^{\infty} U_{n}$ then \mathcal{U} is called a weak generator. A basic result due to Keynes and Robertson $[\mathbf{K}-\mathbf{R}]$ and Reddy [Red] claims that T is expansive iff T has a generator iff T has a weak generator. See $[\mathbf{W} \mathbf{a l}, \S 5.6]$. Moreover, T is a factor of the restriction of a shift S on a finite number of symbols to a closed S-invariant set Δ [Wal, Thm 5.24]. If Δ is a subshift of a finite type then T is called FP. See $[\mathbf{F r}]$ for the theory of FP maps. In particular, for any expansive $T, h(T)<\infty$.

Let $\Gamma \subset X \times X$ be a closed set such that $\Gamma^{\infty} \neq \emptyset$. Then Γ is called expansive if

$$
\sup _{n \in \mathbf{Z}} d\left(\sigma^{n}(x), \sigma^{n}(y)\right)>\delta, \forall x, y \in \Gamma^{\infty}, x \neq y
$$

for some $\delta>0$. A finite open cover \mathcal{U} of X is called a generator for Γ if for every bisequence $\left\{U_{n}\right\}_{-\infty}^{\infty}$ of members of \mathcal{U} the set

$$
x=\left(x_{n}\right)_{-\infty}^{\infty} \in \Gamma^{\infty}, x_{n} \in \bar{U}_{n}, n \in \mathbf{Z}
$$

contains at most one point of Γ^{∞}. If this condition is replaced by $x_{n} \in U_{n}$ then \mathcal{U} is called a weak generator. We claim that Γ is expansive iff Γ has a generator iff Γ has a weak generator. Indeed, observe first that the condition that Γ is expansive is equivalent to the assumption that σ is expansive on Γ^{∞}. Let $V_{i}=\pi_{1,1}^{-1}\left(U_{i}\right) \subset X^{\infty}, i=1, \ldots, m$. That is, V_{i} is an open cylindrical set in X^{∞} whose projection on the first coordinate is U_{i} while on all other coordinates is X. Set $W_{i}=V_{i} \cap \Gamma^{\infty}, i=1, \ldots, m$. It now follows that W_{1}, \ldots, W_{m} is a standard set of generators for the map $\sigma: \Gamma^{\infty} \rightarrow \Gamma^{\infty}$.

Assume that $T: X \rightarrow X$ is expansive with the expansive constant δ. It is known [Wal, Thm. 7.11] that

$$
h(T)=\limsup _{k \rightarrow \infty} \frac{\log N\left(k, \delta_{0}\right)}{k}, \delta_{0}<\frac{\delta}{4} .
$$

Thus, according to Lemma $4.1 h(\Gamma) \leq \log \rho(A(\Gamma(\mathcal{U})))$ if Γ is expansive with an expansive constant δ and $\operatorname{diam}(\mathcal{U})<\frac{\delta}{8}$. Assume that $T_{i}: X \rightarrow X, i=1, \ldots, m$, are expansive maps. We claim that for $m>1$ it can happen that $h\left(\cup_{1}^{m} \Gamma\left(T_{i}\right)\right)$ is infinite. Let T_{1} be Anosov
map on the 2-torus X in the standard coordinates. Now change the coordinates in X by a homeomorphism and let T_{2} be Anosov with respect to the new coordinates. It is possible to choose a homeomorphism (which is not diffeo!) so that that $T_{2} \circ T_{1}$ contains horseshoes of arbitrary many folds. Hence $h\left(\Gamma\left(T_{1}\right) \cup \Gamma\left(T_{2}\right) \geq h\left(T_{2} \circ T_{1}\right)=\infty\right.$.

§5. Entropy of semigroups of Möbius transformations

Let $X \subset \mathbf{C P}^{n}$ be an irreducible smooth projective variety of complex dimension n. Assume that $\Gamma \subset X \times X$ be a projective variety such that the projections $\pi_{i, i}: \Gamma \rightarrow X, i=$ 1,2 are onto and finite to one. Then Γ can be viewed as a graph of an algebraic function. In algebraic geometry such a graph is called a correspondence. Furthermore, Γ induces a linear operator

$$
\begin{aligned}
& \Gamma^{*}: H_{*, a}(X) \rightarrow H_{*, a}(X), \quad H_{*, a}(X)=\sum_{j=0}^{n} H_{2 j, a}(X), \\
& \Gamma^{*}: H_{2 j, a}(X) \rightarrow H_{2 j, a}(X), j=0, \ldots, n
\end{aligned}
$$

Here, $H_{2 j, a}(X)$ is the homology generated by the algebraic cycles of X of complex dimension j over the rationals \mathbf{Q}. Indeed, if $Y \subset X$ is an irreducible projective variety then $\Gamma^{*}([Y])=\left[\pi_{2,2}^{2}\left(\left(\pi_{1,1}^{2}\right)^{-1}(Y)\right)\right]$. Let $\rho\left(\Gamma^{*}\right)$ be the spectral radius of Γ^{*}. Assume that first that Γ is irreducible. In [Fri3] we showed that $h(\Gamma) \leq \log \rho\left(\Gamma^{*}\right)$. However our arguments apply also to the case Γ is reducible. We also conjectured in $[\mathbf{F r i 3}]$ that in the case that Γ is irreducible we have the equality $h(\Gamma)=\log \rho\left(\Gamma^{*}\right)$. We now doubt the validity of this conjecture. We will show that in the reducible case we can have a strict inequality $h(\Gamma)<\log \rho\left(\Gamma^{*}\right)$. Let $\Gamma_{i} \subset X \times X, i=1, \ldots, m$, be algebraic correspondences as above. Set $\Gamma=\cup_{1}^{m} \Gamma_{i}$. Then

$$
\Gamma^{*}=\sum_{1}^{m} \Gamma_{i}^{*}, \quad h(\Gamma) \leq \log \rho\left(\sum_{1}^{m} \Gamma_{i}^{*}\right) .
$$

Thus, there is a close analogy between the entropy of algebraic (finite to one) correspondences and entropy of shifts of finite types. Consider the simplest case of the above situation. Let $X=\mathbf{C P}{ }^{1}$ be the Riemann sphere and Γ be an algebraic curve given by a polynomial $p(x, y)=0$ on some chart $\mathbf{C}^{2} \subset \mathbf{C P}{ }^{1} \times \mathbf{C P}{ }^{1}$. Let $d_{1}=\operatorname{deg}_{y}(p), d_{2}=\operatorname{deg}(p), d_{1} \geq$ $1, d_{2} \geq 1$. It then follows that $\rho\left(\Gamma^{*}\right)=\max \left(d_{1}, d_{2}\right)$. Note that $\rho\left(\Gamma^{*}\right)=1$ iff Γ is the graph of a Möbius transformation. Observe next that if $f_{i}: \mathbf{C P}^{1} \rightarrow \mathbf{C P}{ }^{1}, i=1, \ldots, m$, are nonconstant rational maps then the correspondance given by $p(x, y)=\prod_{1}^{m}\left(y-f_{i}(x)\right)$ is induced by $\Gamma=\cup_{1}^{m} \Gamma\left(f_{i}\right)$. In particular,

$$
\begin{equation*}
h(\Gamma) \leq \log \sum_{1}^{m} \operatorname{deg}\left(f_{i}\right) . \tag{5.1}
\end{equation*}
$$

Here, by $\operatorname{deg}\left(f_{i}\right)$ we denote the topological degree of the map f_{i}. Combine the above inequality with Lemma 3.6 to deduce that for any noninvolutive Möbius transformation f we have the equality $h\left(\Gamma(f) \cup \Gamma\left(f^{-1}\right)\right)=\log 2$.
(5.2) Lemma. Let $f, g: \mathbf{C P}^{1} \rightarrow \mathbf{C P}^{1}$ be two Möbius transformations such that x as a common fixed attracting point of f and g and y is a common repelling point of f and g, Then $h(\Gamma(f) \cup \Gamma(g))=0$.

Proof. We may assume that

$$
f=a z, g=b z, 0<|a|,|b|<1 .
$$

Set $\Gamma=\Gamma(f) \cup \Gamma(g)$. It the follows that for any point $\zeta=\left(z_{i}\right)_{1}^{\infty} \neq \eta=(\infty)_{1}^{\infty} \sigma^{l}(z)$ converges to the fixed point $\xi=(0)_{1}^{\infty}$. That is, the nonwondering set of σ is the set $\{\xi, \eta\}$ on which σ acts trivially. Hence $h(\Gamma)=0$. \diamond
(5.3) Lemma. Let $f, g: \mathbf{C P}^{1} \rightarrow \mathbf{C} \mathbf{P}^{1}$ be two parabolic Möbius transformation with the same fixed point $-\infty$, i.e. $f=z+a, g=z+b$. If either a, b are linearly independent over \mathbf{R} or $b=\alpha a, \alpha \geq 0$ then $h(\Gamma(f) \cup \Gamma(g))=0$.

Proof. Let $\Gamma=\Gamma(f) \cup \Gamma(g), \eta=(\infty)_{1}^{\infty}$. If ether a, b are linearly independent over \mathbf{R} or $b=\alpha a, \alpha>0, a \neq 0$ then for any point $\zeta \in \Gamma_{+}^{\infty} \sigma^{l}(\zeta)$ converges to the fixed point η. Hence $h(\Gamma)=0$. Suppose next that $a=b=0$. Then σ is the identity map on Γ_{+}^{∞} and $h(\Gamma)=0$. Assume finally that $b=0, a \neq 0$. Then Ω limit set of σ consists of all points $\zeta=\left(z_{i}\right)_{1}^{\infty}, z_{i}=z_{1}, i=2, \ldots$, . So $\sigma \mid \Omega$ is identity and $h(\Gamma)=0 . \diamond$
(5.4) Theorem. Let $T=z+a, Q=z+b, a b \neq 0$ be two Möbius transformations of $\mathbf{C P}^{1}$. Assume that there $\frac{b}{a}$ is a negative rational number. Then

$$
h(\Gamma)=-\frac{|a|}{|a|+|b|} \log \frac{|a|}{|a|+|b|}-\frac{|b|}{|a|+|b|} \log \frac{|b|}{|a|+|b|} .
$$

We first state an approximation lemma which will be used later.
(5.5) Lemma. Let X be compact metric space and $T: X \rightarrow X$ be a continuous transformation. Assume that we have a sequence of closed subsets $X_{i} \subset X, i=1, \ldots$, which are T-invariant, i.e. $T\left(X_{i}\right) \subset X_{i}, i=1,2, \ldots$, . Suppose furthermore that $\forall \delta>0 \exists M(\delta)$ with the following property. $\forall x \in X \backslash X_{i} \exists y=y(x, i) \in X_{i}, \sup _{n \geq 0} d\left(T^{n}(x), T^{n}(y)\right) \leq \delta$ for each $i>M(\delta)$. Then $\lim _{i \rightarrow \infty} h\left(T \mid X_{i}\right)=h(T)$.

Proof. Observe first that $h(T) \geq h\left(T \mid X_{i}\right)$. Thus it is left to show

$$
\liminf _{i \rightarrow \infty} h\left(T \mid X_{i}\right) \geq h(T)
$$

Let $N(k, \epsilon), N_{i}(k, \epsilon)$ be the cardinality of maximal (k, ϵ) separating set of X and X_{i} respectively. Clearly, $N_{i}(k, \epsilon) \leq N(k, \epsilon)$. Let $x_{1}, \ldots, x_{N(k, \epsilon)}$ be a (k, ϵ) separating set of X. Then

$$
\forall i>M\left(\frac{\epsilon}{4}\right), \forall x_{j} \exists y_{j, i} \in X_{i}, \sup _{n \geq 0} d\left(T^{n}\left(x_{j}\right), T^{n}\left(y_{j, i}\right)\right) \leq \frac{\epsilon}{4} .
$$

Hence, $y_{j, i}, j=1, \ldots, N(k, \epsilon)$, is $\frac{\epsilon}{2}$ separated set in X_{i}. In particular, $N(k, \epsilon) \leq N_{i}\left(k, \frac{\epsilon}{2}\right), i>$ $M\left(\frac{\epsilon}{4}\right)$. Thus

$$
\limsup _{k \rightarrow \infty} \frac{\log N(k, \epsilon)}{k} \leq \limsup _{k \rightarrow \infty} \frac{\log N_{i}\left(k, \frac{\epsilon}{2}\right)}{k} \leq h\left(T \mid X_{i}\right), i>M\left(\frac{\epsilon}{4}\right) .
$$

The characterization of $h(T)$ yields the lemma. \diamond
Proof of Theorem 5.4. W.l.o.g. (without loss of generality) we may assume that $a=p, b=-q$ where p, q are two positive coprime integers. First note that $\mathbf{C P}{ }^{1}$ is foliated by the invariant lines $\Im z=$ Const. Hence, the maximal characterization of $h(\sigma)$ as the supremum over all measure entropy $h_{\mu}(\sigma)$ for all extremal σ invariant measures yields that it enough to restrict ourselves to the action of T, Q on (closure of) the real line. Using the same argument again it is enough to consider the action on the lattice $\mathbf{Z} \subset \mathbf{R}$ plus the point at ∞. We may view $Y=\mathbf{Z} \cup\{\infty\}$ as a compact subspace of $S^{1}=\{z:|z|=1\}$.

$$
0 \mapsto 1, \infty \mapsto-1, j \mapsto e^{\frac{\pi \sqrt{-1}(1+2 j)}{2 j}}, 0 \neq j \in \mathbf{Z} .
$$

For a positive integer i let $Y_{i}=\{-i p q,-i p q+1, \ldots, i p q-1, i p q\}$. Set

$$
\Gamma=\Gamma(T) \cup \Gamma(Q) \subset Y \times Y, X=\Gamma_{+}^{\infty}, \Gamma_{i}=\Gamma \cap Y_{i} \times Y_{i}, X_{i}=\left(\Gamma_{i}\right)_{+}^{\infty}, i=1, \ldots, .
$$

We will view a point $x=\left(x_{j}\right)_{1}^{\infty} \in X$ a path of a particle who starts at time 1 at x_{1} and jumps from the place x_{i} at time i to the place x_{i+1} at time $i+1$. At each point of the lattice \mathbf{Z} a particle is allowed to jump p steps forward and q backwards. The point $\xi=(\infty)_{1}^{\infty}$ is the fixed point of our random walk. Observe next that Γ_{i} is a subshift of a finite type on $2 i p q+1$ points corresponding to the random walk in which a particle stays in the space Y_{i}. Note that $A_{i}=A\left(\Gamma_{i}\right)$ is a matrix whose almost each row (column) sums to two, except the first and the last $\max (p, q)-1$ rows (columns). Moreover, $h\left(\sigma \mid X_{i}\right)=\log \rho\left(A_{i}\right)$. We claim that $X, X_{i}=1, \ldots$, satisfy the assumption of Lemma 5.5. That is any point $x=\left(x_{j}\right)_{1}^{\infty} \in X$ can be approximated up to an arbitrary $\epsilon>0$ by $y_{i}=\left(y_{j, i}\right)_{j=1}^{\infty} \in X_{i}$ for $i>M(\epsilon)$. We assume that $i>L$ some fixed big L. Suppose first that $x_{j}>i p q, j=1, \ldots$, . That is the path described by the vector x never enters X_{i}. Then consider the following path $y_{i}=\left(y_{j, i}\right)_{j=1}^{\infty} \in X_{i}$. It starts at the point $i p q$, i.e. $y_{1, i}=i p q$. Then it jumps p times to the left to the point $(i-1) p q$. Then it the particle jumps q time to the right back to the the point $i p q$ and so on. Clearly, $\sup _{n \geq 0} d\left(\sigma^{n}(x), \sigma^{n}\left(y_{i}\right)\right) \leq d((i-1) p q, \infty)$. Hence for i big enough the above distance is less than ϵ. Same arguments apply to the case $x_{j}<-i p q, j=1, \ldots$, . Consider next a path $x=\left(x_{j}\right)_{1}^{\infty}$ which starts outside X_{i} and then enters X_{i} at some time. If the particle enters to X_{i} and then stays for a short time, e.g. $\leq p q$, every time it enters X_{i} then we can approximate this path by a path looping around the vertex $i p q$ or $-i p q$ in X_{i} as above. Now suppose that we have a path which enters to X_{i} at least one time for a longer period of time. We then approximate this path by a path $\left(y_{i, j}\right)_{j=1}^{\infty} \in X_{i}$ such that this path coincide with x for all time when x is in X_{i} except the short period when x leaves X_{i}. One can show that such path exists. (Start with the simple example $p=1, q=2$.) It then follows that $\sup _{n \geq 0} d\left(\sigma^{n}(x), \sigma^{n}\left(y_{i}\right)\right) \leq d((i-K) p q, \infty)$ for
some $K=K(p, q)$. If i is big enough then we have the desired approximation. Lemma 5.5 yields

$$
h(\Gamma)=\lim _{i \rightarrow \infty} \log \rho\left(A_{i}\right) .
$$

We now estimate $\log \rho\left(A_{i}\right)$ from above and from below. Recall the well known formula for the spectral radius of a nonnegative $n \times n$ matrix A :

$$
\rho=\limsup _{m \rightarrow \infty}\left(\operatorname{trace}\left(A^{m}\right)\right)^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left(\max _{1 \leq j \leq n} a_{j j}^{(m)}\right)^{\frac{1}{m}}, A^{m}=\left(a_{i j}^{(m)}\right)_{1}^{n} .
$$

Let $A=A_{i}$. We now estimate $a_{j j}^{(m)}$. Obviously, $a_{j j}^{(m)}$ is positive if $m=(p+q) k$ as we have to move $k q$ times to the right and $k p$ times to the left. Assume that $m=(p+q) k$. To estimate $a_{j j}^{(m)}$ we assume that we have an uncostrained motion on \mathbf{Z}. Then the number of all possible moves on \mathbf{Z} bringing us back to the original point is equal to

$$
\frac{((p+q) k)!}{(q k)!(p k)!} \leq K \sqrt{p+q} \frac{(p+q)^{(p+q) k}}{q^{q k} p^{p k}} .
$$

The last part of inequality follows from the Stirling formula for some suitable K. The characterization of $\rho(A)$ gives the inequality

$$
\log \rho\left(A_{i}\right) \leq \log \alpha=\log (p+q)-\frac{p}{p+q} \log p-\frac{q}{p+q} \log q .
$$

We thus deduce the upper bound on $h(\Gamma) \leq \log \alpha$. Let $0<\delta<\alpha$. The Stirling formula yields that for $k>M(\delta)$

$$
\frac{((p+q) k)!}{(q k)!(p k)!} \geq(\alpha-\delta)^{(p+q) k}
$$

Fix $k>M(\delta)$ and let $i>k$. Then for $m=(p+q) k$

$$
a_{00}^{(m)}=\frac{((p+q) k)!}{(q k)!(p k)!} .
$$

Clearly,

$$
\rho(A)^{m}=\rho\left(A^{m}\right) \geq a_{00}^{(m)} .
$$

Thus, $h(\Gamma) \geq \log \rho\left(A_{i}\right) \geq \log (\alpha-\delta)$. Let $\delta \rightarrow 0$ and deduce the theorem. \diamond
Note that $h(\Gamma)$ is the entropy of the Bernoulli shift on two symbols with the distribution $\left(\frac{p}{p+q}, \frac{q}{p+q}\right)$. This can be explained by the fact that to have a closed orbit of length $k(p+q)$ we need move to the right $k q$ times and to the left $k p$. That is, the frequency of the right motion is $\frac{q}{p+q}$ and the left motion is $\frac{p}{p+q}$. It seems that Theorem 5.4 remains valid as long as $\frac{a}{b}$ is a real negative number.
(5.6) Theorem. Let $f, g: \mathbf{C P}^{1} \rightarrow \mathbf{C P}^{1}$ be two parabolic Möbius transformations with the same fixed point $-\infty$, i.e. $f=z+a, g=z+b$ where a, b are linearly independent over \mathbf{R}. Let $\Gamma=\Gamma(f) \cup \Gamma\left(f^{-1}\right) \cup \Gamma(g) \cup \Gamma\left(g^{-1}\right)$. Then $h(\Gamma)=\log 4$.

Proof. The orbit of any fixed point $z \in \mathbf{C}$ under the action of the group generated by f, g is a lattice in \mathbf{C} which has one accumulation point $\infty \in \mathbf{C} \mathbf{P}^{1}$. Let Y is defined in the proof of Theorem 5.4. Consider the dynamics of $\sigma \times \sigma$ on $Y_{j} \times Y_{j}$, for $j=1, \ldots$, as in the proof Theorem 5.4. It then follows that $h(\Gamma)=2 h(\sigma \mid X)=2 \log 2 . \diamond$

Let $\mathcal{T}=\left\{f_{1}, \ldots, f_{k}\right\}$ be a set of k - Möbius transformations. Set $\Gamma=\cup_{1}^{k} \Gamma\left(f_{i}\right)$. Then (5.1) yields $h(\Gamma) \leq \log k$. Our examples show that we may have a strict inequality even for the case $k=2$. Let Γ be the correspondence of the Gauss arithmetic-geometric mean $y^{2}=\frac{(x+1)^{2}}{4 x}$ [Bul2]. Our inequality in [Fri3] yield that $h(\Gamma) \leq \log 2$. According to Bullet [Bul2] it is possible to view the dynamics of Γ as a factor of the dynamics of $\tilde{\Gamma}=\Gamma\left(f_{1}\right) \cup \Gamma\left(f_{2}\right)$ for some two Möbius transformations f_{1}, f_{2}. Hence, $h(\Gamma) \leq h(\tilde{\Gamma})$. If $h(\tilde{\Gamma})<\log 2$ we will have a counterexample to our conjecture that $h(\Gamma)=\log 2$. Even if $h(\tilde{\Gamma})=\log 2$ we can still have the inequality $h(\Gamma)<\log 2$ as the dynamics of Γ is a subfactor of the dynamics of $h(\tilde{\Gamma})$. Thus, it would be very interesting to compute $h(\Gamma)$.

Assume that \mathcal{T} generates nonelementary Kleinian group. Theorem 2.5 suggests that $e^{h(\Gamma)}$ may have a noninteger value. It would be very interesting to find such a Kleinian group.

We now state an open problem which is inspired by Furstenberg's conjecture [Fur]. Assume that $1<p<q$ are two co-prime integers. (More generally $p^{m}=q^{n} \Rightarrow m=n=0$.) Let

$$
f, g: \mathbf{C P}^{1} \rightarrow \mathbf{C P}^{1}, T_{1}(z)=z^{p}, T_{2}(z)=z^{q}, z \in \mathbf{C}^{1}, f(\infty)=g(\infty) .=\infty
$$

Note that for f and $g 0, \infty$ are two attractive points with the interior and the exterior of the unit disk as basins of attraction respectively. Thus, the nontrivial dynamics takes place on the unit circle S^{1}. Note that $f \circ g=g \circ f$. Hence f and g have common invariant probability measures. Let \mathcal{M} be the convex set of all probability measures invariant under f, g. Denote by $\mathcal{E} \subset \mathcal{M}$ the set of the extreme points of \mathcal{M} in the standard w^{*} topology. Then \mathcal{E} is the set of ergodic measures with respect to f, g. (For a recent discussion on the common invariant measure of a semigroup of commuting transformation see [Fri4]). Furstenberg's conjecture (for $p=2, q=3$) is that any ergodic measure $\mu \in \mathcal{E}$ is either supported on a finite number of points or is the Lebesgue (Haar) measure on S^{1}. See $[\mathbf{R u d}]$ and $[\mathbf{K}-\mathbf{S}]$ for the recent results on this conjecture. Let \mathcal{G} be the semigroup generated by $\mathcal{T}=\{f, g\}$. Then (0.2) for $X=S^{1}$ or the results of [Fri3] yield the inequality $h(\mathcal{G}(\mathcal{T})) \leq \log (p+q)$. What is the value of $h(\mathcal{G}(\mathcal{T}))$? It is plausible to conjecture equality in this inequality.

References

[Bow] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 404-414.
[Bul1] S. Bullett, Dynamics of quadratic correspondences, Nonlinearity 1 (1988), 27-50.
[Bul2] S. Bullett, Dynamics of the arithmetic-geometric mean, Topology 30 (1991), 171190.
[Fr] D. Fried, Finitely presented dynamical systems, Ergod. Th. \& Dynam. Sys. 7 (1987), 489-507.
[Fri1] S. Friedland, Entropy of polynomial and rational maps, Annals Math. 133 (1991), 359-368.
[Fri2] S. Friedland, Entropy of rational selfmaps of projective varieties, Advanced Series in Dynamical Systems Vol. 9, pp. 128-140, World Scientific, Singapore 1991.
[Fri3] S. Friedland, Entropy of algebraic maps, J. Fourier Anal. Appl. 1995, to appear.
[Fri4] Invariant measures of groups of homeomorphisms and Auslander's conjecture, J. Ergod. Th. 8 Dynam. Sys. 1995, to appear.
$[\mathbf{F}-\mathbf{S}]$ S. Friedland and H. Schneider, The growth of powers of nonnegative matrix, SIAM J. Algebraic Discrete Methods 1 (1980), 185-200.
[Fur] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem on diophantine approximation, Math. Sys. Theory 1 (1967), 1-49.
[Gan] F.R. Gantmacher, Theory of Matrices, II, Chelsea Pub. Co., New York, 1960.
[G-L-W] E. Ghys, R. Langenvin and P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105-142.
[Gro] M. Gromov, On the entropy of holomorphic maps, preprint, 1977.
[Hur] M. Hurley, On topological entropy of maps, Ergod. Th. E3 Dynam. Sys. 15 (1995), 557-568.
[K-S] A. Katok and R.J. Spatzier, Invariant measures for higher rank hyperbolic abelian actions, preprint.
[K-R] B. Keynes and J.B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory 3 (1969), 51-59.
[L-P] R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, Bull Soc. Math. France 120 (1992), 237-250.
[L-W] R. Langevin and Walczak, Entropie d'une dynamique, C.R. Acad. Sci. Paris, 1991.
[M-R] H.F. Münzner and H.M. Rasch, Iterated algebraic functions and functional equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1 (1991), 803-822.
[N-P] Z. Nitecki and F. Przytycki, The entropy of the relation inverse to a map II, Preprint, 1990.
[Red] W.L. Reddy, Lifting homeomorphisms to symbolic flows, Math. Systems Theory 2 (1968), 91-92.
[Rud] D.J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergod. Th. \& Dynam. Sys. 10 (1990), 823-827.
[Wal] P. Walters, An Introduction to Ergodic Theory, Springer 1982.

Acknowledgement. I would like to thank to M. Boyle, M. Gromov and F. Przytycki for useful remarks.

