Entropy of graphs, semigroups and groups

Shmuel Friedland

Institut des Hautes Études Scientifiques and University of Illinois at Chicago August 7, 1995

§0. Introduction

Let X be a compact metric space and $T: X \to X$ is continuous transformation. Then the dynamics of T is a widely studied subject. In particular, h(T) - the entropy of T is a well understood object. Let $\Gamma \subset X \times X$ be a closed set. Then Γ induces certain dynamics and entropy $h(\Gamma)$. If X is a finite set then Γ can be naturally viewed as a directed graph. That is, if $X = \{1, ..., n\}$ then Γ consists of all directed arcs $i \to j$ so that $(i, j) \in \Gamma$. Then Γ induces a subshift of finite type which is a widely studied subject. However, in the case that X is infinite, the subject of dynamic of Γ and its entropy are relatively new. The first paper treating the entropy of a graph is due to [**Gro**]. In that context X is a compact Riemannian manifold and Γ can be viewed as a Riemannian submanifold. (Actually, Γ can have singularities.) We treated this subject in [**Fri1-3**]. See Bullet [**Bul1-2**] for the dynamics of quadratic correspondences and [**M-R**] for iterated algebraic functions.

The object of this paper is to study the entropy of a corresponding map induced by Γ . We now describe briefly the main results of the paper. Let X be a compact metric space and assume that $\Gamma \subset X \times X$ is a closed set. Set

$$\Gamma_{+}^{\infty} = \{ (x_i)_1^{\infty} : (x_i, x_{i+1}) \in \Gamma, i = 1, ..., \}.$$

Let $\sigma: \Gamma_+^{\infty} \to \Gamma_+^{\infty}$ be the shift map. Denote by $h(\Gamma)$ be the topological entropy of $\sigma | \Gamma_+^{\infty}$. It then follows that σ unifies in a natural way the notion of a (continuous) map $T: X \to X$ and a (finitely generated) semigroup or group of (continuous) transformations $\mathcal{S}: X \to X$. Indeed, let $T_i: X \to X, i = 1, ..., m$, be *m* continuous transformations. Denote by $\Gamma(T_i)$ the graphs corresponding to $T_i, i = 1, ..., m$. Set $\Gamma = \bigcup_1^m \Gamma(T_i)$. Then the dynamics of σ is the dynamics of the semigroup generated by $\mathcal{T} = \{T_1, ..., T_m\}$. If \mathcal{T} is a set of homeomorphisms and $\mathcal{T}^{-1} = \mathcal{T}$ then the dynamics of σ is the dynamics of the group $\mathcal{G}(\mathcal{T})$ generated by \mathcal{T} . In particular, we let $h(\mathcal{G}(\mathcal{T})) = h(\Gamma)$ be the entropy of $\mathcal{G}(\mathcal{T})$ using the particular set of generators \mathcal{T} . For a finitely generated group \mathcal{G} of homeomorphisms of X we define

$$h(\mathcal{G}) = \inf_{\mathcal{T}, \mathcal{G} = \mathcal{G}(\mathcal{T})} h(\mathcal{G}(\mathcal{T})).$$

In the second section we study the entropy of graphs, semigroups and groups acting on the finite space X. The results of this section give a good motivation for the general case. In particular we have the following simple inequality

$$h(\cup_{i=1}^{m}\Gamma_{i}) \le h(\cup_{i=1}^{m}(\Gamma_{i}\cup\Gamma_{i}^{T})) \le \log\sum_{i=1}^{m}e^{h(\Gamma_{i}\cup\Gamma_{i}^{T})}.$$
(0.1)

Here $\Gamma^T = \{(y, x) : (x, y) \in \Gamma\}$. Let Card(X) = n. Then any group of homeomorphisms \mathcal{G} of X is a subgroup of the symmetric group S_n acting on X as a group of permutations. We then show that if \mathcal{G} is commutative then $h(\mathcal{G}) = \log k$ for some integer k. If \mathcal{G} acts transitively on X then k is the minimal number of generators for \mathcal{G} . Moreover, $h(\mathcal{G}) = 0$ iff \mathcal{G} is a cyclic group. For each $n \geq 3$ we produce a group \mathcal{G} generated by two elements so that $0 < h(\mathcal{G}) < \log 2$.

In §3 we discuss the entropy of graphs on compact metric spaces. We show that if $T_i: X \to X, i = 1, ..., m$, is a set of Lipschitzian transformations of a compact Riemannian manifold X of dimension n then

$$h(\cup_{1}^{m}\Gamma(T_{i})) \le \log \sum_{1}^{m} L_{+}(T_{i})^{n}.$$
 (0.2)

Here, $L_+(T_i)$ is the maximum of the Lipschitz constant of T_i and 1. Thus, $L_+(T_i)^n$ is analogous to the norm of a graph on a finite space X. The above inequality generalizes to semi-Riemannian manifolds which have a Hausdorff dimension $n \in \mathbf{R}_+$ and a finite volume with respect to a given metric d on X. Thus, if X is a compact smooth Riemannian manifold and \mathcal{G} is a finitely generated group of diffeomorphisms (0.2) yields that $h(\mathcal{G}) < \infty$. Let X be a compact metric space and $T : X \to X$ a noninvolutive homeomorphism $(T^2 \neq Id)$. We then show that $h(\Gamma(T) \cup \Gamma(T^{-1})) \geq \log 2$. The following example due to M. Boyle shows that (0.1) does not apply in general. Let X be a compact metric space for which there exists a homeomorphism $T : Y \to Y$ with $h(T) = h(T^2) = \infty$. (See for example [Wal, p. 192].) Set

$$X = X_1 \cup X_2, X_1 = Y, X_2 = Y, T_i(X_1) = X_2, T_i(X_2) = X_1,$$

$$T_1(x_1) = Tx_1, T_1(x_2) = T^{-1}x_2, T_2(x_1) = T^{-1}x_1, T_2(x_2) = Tx_2, x_1 \in X_1, x_2 \in X_2.$$

As $T_1^2 = T_2^2 = Id$ it follows that $2h(T_1) = 2h(T_2) = h(Id) = 0$. Clearly, $T_2T_1|X_1 = T^2$ and $h(\Gamma) = \infty$. The last section discusses mainly the entropy of semigroups and groups of Möbius transformations on the Riemann sphere. Let $\mathcal{T} = \{T_1, ..., T_k\}$ is a set of Möbius transformations. Inequality (0.2) yield that $h(\mathcal{G}(\mathcal{T})) \leq \log k$. Let $T_i(z) = z + a_i, i = 1, 2$, be two translations of **C**. Assume that $\frac{a_1}{a_2}$ is a negative rational number. We then show that

$$h(\Gamma(T_1) \cup \Gamma(T_2)) = -\frac{|a|}{|a| + |b|} \log \frac{|a|}{|a| + |b|} - \frac{|b|}{|a| + |b|} \log \frac{|b|}{|a| + |b|}.$$

Assume now that a_1 and a_2 are linearly independent over **R**. We then show that

$$h(\cup_1^2(\Gamma(T_i)\cup\Gamma(T_i^{-1})) = \log 4.$$

It is of great interest to see if $h(\mathcal{G})$ has any geometric meaning for a finitely generated Kleinian group \mathcal{G} . Consult with [G-L-W], [L-W], [N-P], [L-P] and [Hur] for other definitions of the entropy of relations and foliations.

§1. Basic definitions

Let X be a compact metric space and assume that $\Gamma \subset X \times X$ is a closed set. Set

$$\begin{split} X^{k} &= \prod_{1}^{k} X_{i}, X^{\infty}_{+} = \prod_{1}^{\infty} X_{i}, X^{\infty} = \prod_{i \in \mathbf{Z}} X_{i}, X_{i} = X, i \in \mathbf{Z}, \\ \Gamma^{k} &= \{ (x_{i})^{k}_{1} : (x_{i}, x_{i+1}) \in \Gamma, i = 1, ..., k - 1, \}, k = 2, ..., \\ \Gamma^{\infty}_{+} &= \{ (x_{i})^{\infty}_{1} : (x_{i}, x_{i+1}) \in \Gamma, i = 1, ..., \}, \ \Gamma^{\infty} &= \{ (x_{i})_{i \in \mathbf{Z}} : (x_{i}, x_{i+1}) \in \Gamma, i \in \mathbf{Z} \}. \end{split}$$

We shall assume that $\Gamma^k \neq \emptyset, k = 2, ...,$ unless stated otherwise. (In any case, if this assumption does not hold we set $h(\Gamma) = 0$.) This in particular implies that $\Gamma^{\infty}_+ \neq \emptyset, \Gamma^{\infty} \neq \emptyset$. Let

$$\pi_{p,q}^{l}: X^{l} \to X^{q-p+1}, \{x_i\}_{1}^{l} \mapsto \{x_i\}_{p}^{q}, 1 \le p \le q \le l.$$

If no ambiguity arise we shall denote $\pi_{p,q}^l$ by $\pi_{p,q}$. The maps $\pi_{p,q}$ are well defined for X_+^{∞}, X^{∞} . For $p \leq 0, p \leq q$ we let $\pi_{p,q} : X^{\infty} \to X^{q-p+1}$. Similarly, for a finite p we have the obvious maps $\pi_{-\infty,p}, \pi_{p,\infty}$ whose range is Γ_+^{∞} . Let $d : X \times X \to \mathbf{R}_+$ be a metric on X. As X is compact we have that X is a bounded diameter $0 < D < \infty$. That is, $d(x,y) \leq D, \forall x, y \in X$. On $X^k, X_+^{\infty}, X^{\infty}$ one has the induced metric

$$d(\{x_i\}_1^k, \{y_i\}_1^k) = \max_{1 \le i \le k} \frac{d(x_i, y_i)}{\rho^{i-1}},$$

$$d(\{x_i\}_1^\infty, \{y_i\}_1^\infty) = \sup_{1 \le i} \frac{d(x_i, y_i)}{\rho^{i-1}},$$

$$d(\{x_i\}_{i \in \mathbf{Z}}, \{y_i\}_{i \in \mathbf{Z}}) = \sup_{i \in \mathbf{Z}} \frac{d(x_i, y_i)}{\rho^{|i-1|}}.$$

Here $\rho > 1$ to be fixed later. Since X is compact it follows that $X^k, X^{\infty}_+, X^{\infty}$ are compact metric spaces where the infinite products have the Tychonoff topology. Let

$$\sigma: X_{+}^{\infty} \to X_{+}^{\infty}, \sigma((x_{i})_{1}^{\infty}) = (x_{i+1})_{1}^{\infty}, \sigma: X^{\infty} \to X^{\infty}, \sigma((x_{i})_{i \in \mathbf{Z}}) = (x_{i+1})_{i \in \mathbf{Z}}$$

be the one sided shift and two sided shift respectively. We refer to Walters [Wal] for the definitions and properties of dynamical systems used here. Note that $\Gamma^{\infty}_{+}, \Gamma^{\infty}$ are invariant subsets of one sided and two sided shifts, i.e.

$$\sigma: \Gamma^{\infty}_{+} \to \Gamma^{\infty}_{+}, \sigma: \Gamma^{\infty} \to \Gamma^{\infty}.$$

We call the above restrictons of σ as the dynamics (maps) induced by Γ . As Γ was assumed to be closed it follows that $\Gamma^{\infty}_{+}, \Gamma^{\infty}$ are closed too. Hence, we can define the topological entropies $h(\sigma | \Gamma^{\infty}_{+}), h(\sigma | \Gamma^{\infty})$ of the corresponding restrictions. We shall show that these two entropies are equal. The above entropy is $h(\Gamma)$. Denote by C(X) the Banach space of all continuous functions $f : X \to \mathbf{R}$. For $f \in C(X)$ it is possible to define the topological pressure $P(\Gamma, f)$ as follows. First observe that f induces the following continuous functions

$$f_1: \Gamma^{\infty}_+ \to \mathbf{R}, f_1((x_i)^{\infty}_1) = f(x_1),$$

$$f_2: \Gamma^{\infty} \to \mathbf{R}, f_2((x_i)_{i \in \mathbf{Z}}) = f(x_1).$$

Let $P(\sigma, f_1), P(\sigma, f_2)$ be the topological pressures of f_1, f_2 with respect to the map σ acting on $\Gamma^{\infty}_+, \Gamma^{\infty}$ respectively. We shall show that the above topological pressures coincide. We then let $P(\Gamma, f) = P(\sigma, f_1) = P(\sigma, f_2)$.

Let $T: X \to X$ be a continuous map. Set $\Gamma = \Gamma(T) = \{(x, y) : x \in X, y = T(x)\}$ be the graph of T. Denote by h(T) the topological entropy of T. It then follows that $h(T) = h(\Gamma)$. Indeed, observe that $x \mapsto orb_T(x) = (T^{i-1}(x))_1^{\infty}$ induces a homeomorphism $\phi: X \to \Gamma(T)_+^{\infty}$ such that $T = \phi^{-1} \circ \sigma \circ \phi$ and the equality $h(T) = h(\sigma | \Gamma_+^{\infty})$ follows. Similarly, for $f \in C(X)$ we have the equality $P(T, f) = P(\sigma, f_1) = P(\Gamma(T), f)$.

Let $\Gamma_{\alpha}, \alpha \in \mathcal{A}$ be a family of closed graphs in $X \times X$. Set

$$\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha} = Closure(\cup_{\alpha \in \mathcal{A}} \Gamma_{\alpha}).$$

Note that if \mathcal{A} is finite then $\forall \Gamma_{\alpha} = \cup \Gamma_{\alpha}$. The dynamics of $\Gamma = \forall \Gamma_{\alpha}$ is called the product dynamics induced by $\Gamma_{\alpha}, \alpha \in \mathcal{A}$. Let $T_{\alpha} : X \to X, \alpha \in \mathcal{A}$ be a set of continuous maps. Set

$$\mathcal{T} = \bigcup_{\alpha \in \mathcal{A}} T_{\alpha}, \Gamma(\mathcal{T}) = Closure(\bigcup_{\alpha \in \mathcal{A}} \Gamma(T_{\alpha})).$$

Then the dynamics of $\Gamma(\mathcal{T})$ is the dynamics of a semigroup $\mathcal{S}(\mathcal{T})$ generated by \mathcal{T} . If each $T_{\alpha}, \alpha \in \mathcal{A}$ is a homeomorphism and $\mathcal{T}^{-1} = \mathcal{T}$ then the dynamics of $\Gamma(\mathcal{T})$ is the dynamics of a group $\mathcal{G}(\mathcal{T})$ generated by \mathcal{T} . Note that for a fixed $x \in X$ the orbit of x is given by the formula

$$orb_{\mathcal{T}}(x) = \{(x_i)_1^{\infty}, x_1 = x, x_i \in Closure(T_{\alpha_{i-1}} \circ \cdots \circ T_{\alpha_1}(x)), \alpha_1, ..., \alpha_{i-1} \in \mathcal{A}, i = 2, ..., \}.$$

If \mathcal{A} is finite then we can drop the closure in the above definition.

Let \mathcal{T} be a set of continuous transformations of X as above. We then define

$$h(\mathcal{S}(\mathcal{T})) = h(\Gamma(\mathcal{T})), \ P(\mathcal{S}(\mathcal{T}), f) = P(\Gamma(\mathcal{T}), f), f \in C(X)$$

to be the entropy of $\mathcal{S}(\mathcal{T})$ and the topological pressure of f with respect to the set of generators \mathcal{T} . In order to ensure that the above quantities are finite we shall assume that \mathcal{T} is a finite set. Given a finitely generated semigroup \mathcal{S} of $T: X \to X$ let

$$h(\mathcal{S}) = \inf_{\mathcal{T}, \mathcal{S} = \mathcal{S}(\mathcal{T})} h(\mathcal{S}(\mathcal{T})), \ P(\mathcal{S}, f) = \inf_{\mathcal{T}, S = S(\mathcal{T})} P(S(\mathcal{T}), f), f \in C(X).$$

Here, the infimum is taken over all finite generators of \mathcal{S} .

\S 2. Entropy of graphs on finite spaces

Let X be a finite space. We assume that $X = \{1, ..., n\}$. Then each $\Gamma \subset X \times X$ is in one to one correspondence with a $n \times n \ 0-1$ matrix $A = (a_{ij})_1^n$. That is $(i, j) \in \Gamma \iff a_{ij} = 1$. As usual we let $M_n(\{0-1\})$ be the set of 0-1 $n \times n$ matrices. For $\Gamma \subset X \times X$ we let $A(\Gamma) \in M_n(\{0-1\})$ to be the matrix induced by Γ and for $A \in M_n(\{0-1\})$ we let $\Gamma(A)$ to be the graph induced by A. The assumption that $\Gamma^k \neq \emptyset, k = 1, 2, ...,$ is equivalent to $\rho(A(\Gamma)) > 0 \iff \rho(A(\Gamma)) \ge 1$. Here, for any A in the set of $n \times n$ complex valued matrices $M_n(\mathbf{C})$ we let $\rho(A)$ to be the spectral radius of A. For $\Gamma \subset X \times X$ consider the sets $X_l = \pi_{l,l}(\Gamma^l), l = 2, ...,$ It easily follows that $X_2 \supset X_3 \supset \cdots X_n = X_{n+1} = \cdots = X'$. Then $\Gamma^l \neq \emptyset, l = 2, ...,$ iff $X' \neq \emptyset$. Set $\Gamma' = \Gamma \cap X' \times X'$. It then follows that $\Gamma^{\infty} = \Gamma'^{\infty}$. Moreover,

$$\pi_{1,\infty}(\Gamma^{\infty}) = \pi_{1,\infty}(\Gamma'^{\infty}) = \Gamma_+'^{\infty} \subset \Gamma_+^{\infty}.$$

Here the containment is strict iff $X' \neq X$. It is well known fact in symbolic dynamics that if $X' \neq \emptyset$ then

$$h(\sigma \big| \Gamma^{\infty}_{+}) = h(\sigma \big| \Gamma^{\infty}) = \log \rho(A(\Gamma)) = \log \rho(A(\Gamma')) = h(\sigma \big| \Gamma'^{\infty}) = h(\sigma \big| \Gamma'^{\infty}_{+}).$$

See for example [Wal]. We thus let $h(\Gamma)$ - the entropy of the graph Γ to be any of the above numbers. In fact, X' can be viewed as a limit set of the "transformation" induced by Γ on X'. If $\rho(A(\Gamma)) = 0$, i.e. $X' = \emptyset$ we then let $h(\Gamma) = \log^+ \rho(A(\Gamma))$. Here, $\log^+ x = \log \max(x, 1)$.

Let $\Gamma_{\alpha} \subset X \times X$, $\alpha \in \mathcal{A}$ be a family of graphs. Set $A_{\alpha} = (a_{ij}^{(\alpha)})_{1}^{n} = A(\Gamma_{\alpha}), \alpha \in \mathcal{A}$. It then follows that

$$\vee_{\alpha \in \mathcal{A}} A_{\alpha} \stackrel{\text{def}}{=} (\max_{\alpha \in \mathcal{A}} a_{ij}^{(\alpha)})_{1}^{n} = A(\vee_{\alpha \in \mathcal{A}} \Gamma_{\alpha}).$$

The Perron-Frobenius theory of nonnegative matrices yields straightforward that $\rho(A_{\alpha}) \leq \rho(\vee A_{\beta})$. This is equivalent to the obvious inequality $h(\Gamma_{\alpha}) \leq h(\vee \Gamma_{\beta})$. We now point out that we can not obtain an upper bound on $h(\vee \Gamma_{\alpha})$ as a function of $h(\Gamma_{\alpha}), \alpha \in \mathcal{A}$. It suffices to pass to the corresponding matrices and their spectral radii. Let $A = (a_{ij})_1^n \in M_n(\{0-1\})$ matrix such that $a_{ij} = 1 \iff i \leq j$. Assume that $B = A^T$. Then $\rho(A) = \rho(B) = 1, \rho(A \vee B) = n$.

Let $\|\cdot\| : \mathbf{C}^n \to \mathbf{R}_+$ be a norm on \mathbf{C}^n . Denote by $\|\cdot\| : M_n(\mathbf{C}) \to \mathbf{R}_+$ the induced operator norm. Clearly, $\rho(A) \leq \|A\|$. Hence

$$\rho(\bigvee_{\alpha\in\mathcal{A}}A_{\alpha})\leq\rho(\sum_{\alpha\in\mathcal{A}}A_{\alpha})\leq\sum_{\alpha\in\mathcal{A}}\|A_{\alpha}\|.$$

Thus

$$h(\vee_{\alpha\in\mathcal{A}}\Gamma_{\alpha}) \le \log^{+}\sum_{\alpha\in\mathcal{A}} \|A_{\alpha}\|.$$
(2.1)

In the next section we shall consider analogs of $||A(\Gamma)||$ for which we have the inequality (2.1) for any set \mathcal{A} . For a graph $\Gamma \subset X \times X$ let $\Gamma^T = \{(x,y) : (y,x) \in \Gamma\}$. That is, $A(\Gamma^T) = A^T(\Gamma)$. A graph Γ is symmetric if $\Gamma^T = \Gamma$. Assume that Γ is symmetric. It then follows that $\rho(A(\Gamma)) = ||A(\Gamma)||$ where $||\cdot||$ is the spectral norm on $M_n(\mathbf{C})$, i.e. $||A|| = \rho(AA^*)^{\frac{1}{2}}$. Thus, for a family $\Gamma_{\alpha}, \alpha \in \mathcal{A}$ of symmetric graphs we have the inequalities

$$h(\vee_{\alpha\in\mathcal{A}}\Gamma_{\alpha}) \le \log\sum_{\alpha\in\mathcal{A}} e^{h(\Gamma_{\alpha})}.$$
(2.2)

More generally, for any family of graphs we have the inequalities

$$h(\vee_{\alpha\in\mathcal{A}}\Gamma_{\alpha}) \le h(\vee_{\alpha\in\mathcal{A}}(\Gamma_{\alpha}\vee\Gamma_{\alpha}^{T})) \le \log\sum_{\alpha\in\mathcal{A}}e^{h(\Gamma_{\alpha}\vee\Gamma_{\alpha}^{T})}.$$
(2.3)

Let $T: X \to X$ be a transformation. Then $A(T) = A(\Gamma(T))$ is a 0-1 stochastic matrix, i.e. each row of A(T) contains exactly one 1. Vice versa, if $A \in M_n(\{0-1\})$ is a stochastic matrix then A = A(T) for some transformation $T: X \to X$. Furthermore, $T: X \to X$ is a homeomorphism iff A(T) is a permutation matrix. For $\mathcal{T} = \{T_1, ..., T_k\} \mathcal{S}(\mathcal{T})$ is a group iff each T_i is a homeomorphism, i.e. $A(T_i)$ is a permutation matrix for i = 1, ..., k. Clearly, any group of homeomorphisms \mathcal{S} of X is a subgroup of the symmetric group $S_n, n = Card(X)$.

(2.4) Theorem. Let X be a finite space and assume that $T_i: X \to X, i = 1, ..., k$, be a set of transformation. Set

$$\mathcal{T} = \{T_1, ..., T_k\}, \Gamma = \Gamma(\mathcal{T}) = \cup_1^k \Gamma(T_i), A = A(\Gamma).$$

Then $h(\mathcal{S}(\mathcal{T})) \leq \log k$. Furthermore, $h(\mathcal{S}(\mathcal{T})) = 0$ iff $A(\Gamma')$ is a permutation matrix. Assume that $k \geq 2$. Then $h(\mathcal{S}(\mathcal{T})) = \log k$ iff there exists an irreducible component $\hat{X} \subset X'$ on which $\mathcal{S}(\mathcal{T})$ acts transitively such that $A(\Gamma \cap \hat{X} \times \hat{X})$ is 0-1 matrix with k ones in each row. In particular, $h(\mathcal{S}(\{T, T^{-1}\})) = \log 2$ for $T^2 \neq Id$. Assume finally that $\mathcal{S}(\mathcal{T})$ is a commutative group. Then $h(\mathcal{S}(\mathcal{T})) = \log k'$ for some integer $1 \leq k' \leq k$.

Proof. Recall that $h(\mathcal{S}(\mathcal{T})) = \log \rho(A)$. As $A(T_i)$ is a stochasic matrix it follows that $\rho(A(T_i)) = 1, i = 1, ..., k$. Since $A \ge A(T_i)$ we deduce that $\rho(A) \ge 1$. Thus, $X' \ne \emptyset$. Then $X' = \bigcup_{i=1}^{m} X_i, X_i \cap X_j = \emptyset, 1 \le i < j \le m$. Here, A acts transitively on each X_i . Set $\Gamma_i = \Gamma \cap X_i \times X_i, A_i = A(\Gamma_i), i = 1, ..., m$. Note that each A_i is an irreducible matrix. It then follow that $h(\Gamma) = \max \log \rho(A_i)$. Set $u_i : X_i \to \{1\}$. Then $A_i u_i \le k u_i$. The minmax characterization of Wielandt for an irreducible A_i yields that $\rho(A_i) \le k$. The equality holds iff each row of A_i has exactly k ones. Thus, $h(\Gamma) = \log k, k > 1$ iff each row of some A_i has k ones.

Assume next that T is a homeomorphism such that $T^2 \neq Id$. Set $\Gamma = \Gamma(T) \cup \Gamma(T^{-1})$. Then $X' = X = \bigcup_{i=1}^{m} X_i$ and least one X_i contains more then one point. Clearly, this A_i has two ones in each row and column. Hence, $h(\Gamma) = \log 2$.

Assume now that $\mathcal{G} = \mathcal{S}(\mathcal{T})$ is a commutative group. Then $X = X' = \bigcup_{1}^{m} X_{l}$. We claim that the following dichotomy holds for each pair $T_{i}, T_{j}, i \neq j$. Either $T_{i}(x) \neq T_{j}(x) \forall x \in X_{l}$ or $T_{i}(x) = T_{j}(x) \forall x \in X_{l}$. Indeed, assume that $T_{i}(x) = T_{j}(x)$ for some $x \in X_{l}$. As \mathcal{G} acts transitively on X_{l} and is commutative we deduce that $T_{i}(x) = T_{j}(x) \forall x \in T_{l}$. Thus $\Gamma(T_i) \cap X_l \times X_l$, i = 1, ..., k, consists of k_l distinct permutation matrices which do not have any 1 in common. That is $\Gamma_l = \Gamma \cap X_l \times X_l$ is a matrix with k_l ones in each row and column. Hence,

$$h(\Gamma_l) = \log k_l, l = 1, ..., m, h(\Gamma) = \log \max_{1 \le l \le m} k_l.$$

 \diamond

(2.5) Theorem. Let X be a finite space of n points. If \mathcal{G} is commutative then $h(\mathcal{G}) = \log k$ for some integer k which is not greater than the number of the minimal generators of \mathcal{G} . If \mathcal{G} acts transitively on X or the restriction of \mathcal{G} to one of the irreducible (transitive) components is faithful then k is the minimal number of generators of \mathcal{G} . In particular, for any \mathcal{G} $h(\mathcal{G}) = 0$ iff \mathcal{G} is cyclic. For each $n \geq 3$ there exists a group \mathcal{G} which acts transitively on X so that $0 < h(\mathcal{G}) < \log 2$.

Proof. Assume first that \mathcal{G} is commutative. Let $\mathcal{T} = \{T_1, ..., T_p\}$ be a set of generators. Theorem 2.4 yields that $h(\mathcal{G}(\mathcal{T})) = \log k(\mathcal{T}), k(\mathcal{T}) \leq p$. Choose a minimal subset of generators $\mathcal{T}' \subset \mathcal{T}$. Clearly, $h(\mathcal{G}(\mathcal{T}')) \leq h(\mathcal{G}(\mathcal{T}))$. Thus, to compute $h(\mathcal{G})$ it is enough to assume that \mathcal{T} consists of a minimal set of generators of \mathcal{G} . Hence, $h(\mathcal{G}) = \log k$ and k is at most the number of the minimal generators of \mathcal{G} .

Assume now that \mathcal{G} acts transitively on X. The arguments of the proof of Theorem 2.4 yield that $x \in X, T_i(x) \neq T_j(x)$ for $i \neq j$. Therefore, $h(\mathcal{G}(\mathcal{T})) = \log p$. In particular, $h(\mathcal{G}) = \log k$ where k is the minimal number of generators for \mathcal{G} . Suppose now that X is reducible under the action of \mathcal{G} and the restriction of \mathcal{G} to one of its irreducible components is faithful. Then the above results yield that $h(\mathcal{G}) = \log k$ where k is the minimal number of generators of \mathcal{G} .

Assume now that $h(\mathcal{G}) = 0$. Let $h(\mathcal{G}) = h(\mathcal{G}(\mathcal{T}))$. Assume first that \mathcal{G} acts irreducibly on X. If \mathcal{T} consists of one element T we are done. Assume to the contrary that $\mathcal{T} = \{T_1, ..., T_q\}, q > 1$. Then $A(\Gamma) \ge A(T_1)$. Since $A(\Gamma)$ is irreducible as \mathcal{G} acts transitively, and $A(\Gamma) \ne A(T_1)$ we deduce that $\rho(A(\Gamma)) > 1$. See for example [**Gan**]. This contradicts our assumption that $h(\mathcal{G}) = 0$. Hence, \mathcal{G} is generated by one element, i.e. \mathcal{G} is cyclic. Assume now that $X = \bigcup_{1}^{m} X_i$ is the decomposition of X to its irreducible components. According to the above arguments $\Gamma(\mathcal{T}) \cap X_i \times X_i$ is a permutation matrix. Hence $\Gamma(\mathcal{T})$ is a permutation matrix corresponding to the homeomorphism T. Thus \mathcal{G} is generated by T.

Assume that $Card(X) = n \geq 3$. Let $T : X \to X$ be a homeomorphism that acts transitively on X, i.e. $T^n = Id, T^{n-1} \neq Id$. Let $Q : X \to X, Q \neq T$ be another homeomorphism so that Q(x) = T(x) for some $x \in X$. Set $\mathcal{G} = \mathcal{G}(\{T, Q\})$. According to Theorem 2.4 $h(\mathcal{G}(\{T, Q\})) < \log 2$. Hence, $h(\mathcal{G}) < \log 2$. As \mathcal{G} is not cyclic it follows that $h(\mathcal{G}) > 0. \diamond$

It is an interesting problem to determine the entropy of a commutative group in the general case.

$\S3$. Entropy of graphs on compact spaces

Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed graph. As in the previous section set $X_l = \pi_{l,l}(\Gamma^l), l = 2, ...,$ Then $\{X_l\}_2^{\infty}$ is a sequence of decreasing closed spaces. Let $X' = \bigcap_2^{\infty} X_l, \Gamma' = \Gamma \cap X' \times X'$. Clearly,

$$\Gamma^{\infty} = \Gamma^{\prime \infty}, \pi_{1,\infty}(\Gamma^{\infty}) = \pi_{1,\infty}(\Gamma^{\prime \infty}) = \Gamma^{\prime \infty}_{+} \subset \Gamma^{\infty}_{+}.$$

(3.1) Theorem. Let X be a compact metric space and $\Gamma \subset X \times X$ be a closed set. Then

$$\begin{split} h(\sigma \big| \Gamma^{\infty}_{+}) &= h(\sigma \big| \Gamma^{\prime \infty}_{+}) = h(\sigma \big| \Gamma^{\infty}), \\ P(\Gamma^{\infty}_{+}, f) &= P(\Gamma^{\prime \infty}_{+}, f) = P(\Gamma^{\infty}, f), f \in C(X) \end{split}$$

Proof. The equality $h(\sigma|\Gamma_{+}^{\infty}) = h(\sigma|\Gamma_{+}^{\prime\infty})$ follows from the observation that $\Gamma_{+}^{\prime\infty} = \bigcap_{0}^{\infty} \sigma^{l}(\Gamma_{+}^{\infty})$. See [**Wal**, Cor. 8.6.1.]. We now prove the equality $h(\sigma|\Gamma_{+}^{\prime\infty}) = h(\sigma|\Gamma^{\infty})$ It is enough to assume that X' = X. Set $X_{1} = \Gamma_{+}^{\infty}, X_{2} = \Gamma^{\infty}$. Let $\pi : X_{2} \to X_{1}$ be the projection $\pi_{1,\infty}$. It then follows that $\pi(X_{2}) = X_{1}, \pi \circ \sigma_{2} = \sigma_{1} \circ \pi$. Denote by σ_{i} the restriction of σ to X_{i} and let $h_{i} = h(\sigma_{i})$ be the topological entropy of σ_{i} . As σ_{1} is a factor of σ_{2} one deduces $h_{1} \leq h_{2}$.

We now prove the reversed inequality $h_1 \ge h_2$. Let Y be a compact metric space and assume that $T: Y \to Y$ is a continuous transformation. Denote by $\Pi(Y)$ the set of all probability measures on the Borel σ -algebra generated by all open sets of Y. Let $\mathcal{M}(T) \subset \Pi(Y)$ be the set of all T-invariant probability measures. Assume that $\mu \in \mathcal{M}(T)$. Then one defines the Kolmogorov-Sinai entropy $h_{\mu}(T)$. The variational principle states that

$$h(T) = \sup_{\mu \in \mathcal{M}(T)} h_{\mu}(T), \ P(T, f) = \sup_{\mu \in \mathcal{M}(T)} (h_{\mu}(T) + \int f d\mu), f \in C(X).$$

Let \mathcal{B}_2 be the σ -algebra generated by open sets in X_2 . An open set $A \subset X_2$ is called cylindrical if there exist $p \leq q$ with the following property. Let $y \in \pi_{i,i}(A)$. Then for $i \leq p$

we have the property $\pi_{1,1}^2((\pi_{2,2}^2)^{-1}(y)) \subset \pi_{i-1,i-1}(A)$. For $i \geq q$ we have the property $\pi_{2,2}^2((\pi_{1,1}^2)^{-1}(y)) \subset \pi_{i+1,i+1}(A)$. Let $\mathcal{C} \subset \mathcal{B}_2$ be the finite Borel subalgebra generated by open cylindrical sets. Note that each set in \mathcal{C} is cylindrical. Since σ_2 is a homeomorphism it follows that for any $\mu \in \mathcal{M}(\sigma_2) \ \mathcal{B}(\mathcal{C}) \stackrel{\circ}{=} \mathcal{B}_2$. That is up a set of zero μ -measure every set in \mathcal{B}_2 can be presented as a set in σ -Borel algebra generated by \mathcal{C} . Let $\alpha \subset \mathcal{C}$ be a finite partition of X_2 . One then can define the entropy $h(\sigma_2, \alpha)$ with respect to the measure μ [Wal, Ch.4]. Since σ_2 is a homeomorphism and μ is σ_2 invariant it follows that $h(\sigma_2, \alpha) = h(\sigma_2, \sigma_2^m(\alpha))$ for any $m \in \mathbb{Z}$. The assumption that $\mathcal{B}(\mathcal{C}) \stackrel{\circ}{=} \mathcal{B}_2$ implies that $\sup_{\alpha \in \mathcal{C}} h(\sigma_2, \alpha) = h_{\mu}(\sigma_2)$. Taking m big enough in the previous equality we deduce that it is enough to consider all finite partitions $\alpha \subset \mathcal{C}$ with the following property. For each $A \in \alpha$ and each $i \leq 1, y \in \pi_{i,i}(A)$ we have the condition $\pi_{1,1}^2((\pi_{2,2}^2)^{-1}(y)) \subset \pi_{i-1,i-1}(A)$. It then follows that μ projects on $\mu' \in \mathcal{M}(\sigma_1)$ and $h_{\mu}(\sigma_2) = h_{\mu'}(\sigma_1)$. The variational principle yields $h_2 \leq h_1$ and the equalities of all three entropies are established.

To prove the three equalities on the topological pressure we use the analogous arguments for the topological pressure. \diamond

Let $h(\Gamma)$ to be one of the entropies in Theorem 3.1. We call $h(\Gamma)$ the entropy of Γ . For $f \in C(X)$ we denote by $P(\Gamma, f)$ to be one of the topological in Theorem 3.1. Let X be a complete metric space with a metric d. Denote by B(x,r) the open ball of radius r centered in x. Let $\overline{B}(x,r) = Closure(B(x,r))$. We say that X is semi-Riemannian of Hausdorff dimension $n \geq 0$ if for every open ball $B(x,r), 0 < r < \delta$ the Hausdorff dimension of $\overline{B}(x,r)$ is n and its Hausdorff volume $vol(\overline{B}(x,r))$ satisfies the inequality

$$\alpha r^n \leq vol(\bar{B}(x,r))$$

for some $0 < \alpha$. Recall that if the Hausdorff dimension of a compact set $Y \subset X$ is m then its Hausdorff volume is defined as follows.

$$vol(Y) = \lim_{\epsilon \to 0} \inf_{x_i, 0 < \epsilon_i \le \epsilon, i = 1, \dots, k, \bigcup B(x_i, \epsilon_i) \supset Y} \sum_{1}^{\kappa} \epsilon_i^m.$$

The following lemma is a straightforward generalization of Bowen's inequality [**Bow**], [**Wal**, Thm. 7.15].

(3.2) Lemma. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T: X \to X$ is Lipschitzian - $d(T(x), T(y)) \leq \lambda d(x, y)$ for all $x, y \in X$ and some $\lambda \geq 1$. Suppose furthermore that X has a finite n dimensional Hausdorff volume. Then $h(T) \leq \log \lambda^n$.

Proof. As X is compact and semi-Riemannian it follows that X has the Hausdorff dimension n. Let $N(k, \epsilon)$ be the cardinality of the maximal (k, ϵ) separated set. Assume that $\{x_1, ..., x_{N(k,\epsilon)}\}$ is a maximal (k, ϵ) separated set. That is for $i \neq j$

$$\max_{0 \le l \le k-1} d(T^l(x_i), T^l(x_j)) > \epsilon.$$

We claim that

$$\bar{B}(x_i,\epsilon_k)\cap \bar{B}(x_j,\epsilon_k)=\emptyset, i\neq j, \epsilon_k=rac{\epsilon}{3\lambda^{k-1}}.$$

This is immediate from the inequality $d(T^{l}(x), T^{l}(y)) \leq \lambda^{l} d(x, y)$ and the (k, ϵ) separability of $\{x_{1}, ..., x_{N(k,\epsilon)}\}$. We thus deduce the obvious inequality

$$\sum_{l=1}^{N(k,\epsilon)} vol(\bar{B}(x_l,\epsilon_k)) \le vol(X).$$

In the above inequality assume that $\epsilon \leq \delta$. Then the lower bound on $vol(\bar{B}(x_l, \epsilon_k))$ yields

$$N(k,\epsilon) \le \frac{vol(X)3^n\lambda^{n(k-1)}}{\alpha\epsilon^n}.$$

Thus

$$h(T) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \frac{\log N(k, \epsilon)}{k} \le n \log \lambda$$

and the proof of the lemma is completed. \diamond

The above estimate can be improved as follows. Let X be a compact metric space and $T: X \to X$. Set

$$L(T) = \sup_{x \neq y \in X} \frac{d(T(x), T(y))}{d(x, y)}, \ L_{+}(T) = \max(L(T), 1).$$

Thus T is Lipschitzian iff $L(T) < \infty$. Let

$$l(T) = \liminf_{k \to \infty} L^{\frac{1}{k}}_{+}(T^k).$$

Note that T^k is Lipschtzian for some $k \ge 1$ iff $l(T) < \infty$. l(T) can be considered as a generalization of the maximal Lyapunov exponent for the mapping T. As $h(T^k) = kh(T), k \ge 0$ from Lemma 3.2 we obtain.

(3.3) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T: X \to X$ is a continuous map. Suppose furthermore that X has a finite n dimensional Hausdorff measure. Then $h(T) \leq n \log l(T)$.

We have in mind the following application. Let $T : \mathbb{CP}^1 \to \mathbb{CP}^1$ be a rational map of the Riemann sphere \mathbb{CP}^1 . Let X = J(T) be its Julia set. It is plausible to assume that $\log l(T)$ on X is the Lyapunov exponent corresponding to T and the maximal T-invariant measure on X. Suppose that the Hausdorff dimension of X is n and X has a finite Hausdorff volume. Assume furthermore that X is semi-Riemannian of Hausdorff dimension n. We then can apply Theorem 3.3. As $h(T) = \log deg(T)$ we have the inequality $deg(f) \leq l(f)^n$.

(3.4) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimension n. Assume that $T_i: X \to X, i = 1, ..., m$, are continuous maps. Let $\Gamma(T_i)$ be the graph of $T_i = 1, ..., m$. Set $\Gamma = \bigcup_1^m \Gamma(T_i)$. Suppose furthermore that X has a finite n dimensional Hausdorff volume. Then

$$h(\Gamma) \le \log \sum_{1}^{m} L_{+}(T_{i})^{n}.$$

Proof. It is enough to consider the nontrivial case where each T_i is Lipschitzian. In the definitions of the metrics on $\Gamma^k, \Gamma^{\infty}_+$ set

$$\rho > \max_{1 \le i \le m} L_+(T_i).$$

Let $M = \{1, ..., m\}$. Then for $\omega = (\omega_1, ..., \omega_{k-1}) \in M^{k-1}$ we let

$$\Gamma(\omega) = \{ (x_i)_1^k : x_1 \in X, x_i = T_{\omega_{i-1}} \circ \dots \circ T_{\omega_1}(x_1), i = 2, \dots, k \} \subset \Gamma^k, \omega \in M^{k-1}.$$

Clearly, each $\Gamma(\omega)$ is isometric to X. Hence, the Hausdorff dimension of $\Gamma(\omega)$ is n and $vol(\Gamma(\omega)) = vol(X)$. Furthermore, $\bigcup_{\omega \in M^{k-1}} \Gamma(\omega) = \Gamma^k$. It then follows that each Γ^k has Hausdorff dimension n, has finite Hausdorff volume not exceeding $m^{k-1}vol(X)$ and is semi-Riemannian compact metric space of Hausdorff dimension n. Moreover, the volume of any closed ball $\bar{B}(y,r) \subset \Gamma^k$ is at least αr^n where α is the constant for X. Let $Y = \Gamma^{\infty}_+$ and consider a maximal (k,ϵ) separated set in Y of cardinality $N(k,\epsilon) - y^j \in Y, j = 1, ..., N(k, \epsilon)$. That is

$$y^{j} = (x_{i}^{j})_{i=1}^{\infty}, (x_{i}^{j}, x_{i+1}^{j}) \in \Gamma, i = 1, ..., j = 1, ..., N(k, \epsilon),$$
$$\max_{1 \le i} \frac{d(x_{i}^{j}, x_{i}^{l})}{\rho^{(i-k)^{+}}} > \epsilon, 1 \le j \ne l \le N(k, \epsilon).$$

Here, $a^+ = \max(a, 0), a \in \mathbf{R}$. Fix $\epsilon, 0 < \epsilon < \delta$. Assume that D is the diameter of X and let $K(\epsilon) = \lceil \log_{\rho} D - \log_{\rho} \epsilon \rceil$. It then follows that

$$\max_{1 \le i \le k+K(\epsilon)} d(x_i^j, x_i^l) > \epsilon, 1 \le j \ne l \le N(k, \epsilon).$$
(3.5)

Set $z^j = (x_i^j)_{i=1}^{k+K(\epsilon)} \subset \Gamma^{k+K(\epsilon)}, j = 1, ..., N(k, \epsilon)$. Clearly, $\{z^j\}_1^{N(k+K(\epsilon))} = \cup_{\omega \in M^{k+K(\epsilon)-1}} (\{z^j\}_1^{N(k,\epsilon)} \cap \Gamma(\omega)) \Rightarrow$ $N(k,\epsilon) \leq \sum_{\omega \in M^{k+K(\epsilon)-1}} Card(\{z^j\}_1^{N(k,\epsilon)} \cap \Gamma(\omega)).$

We now estimate $Card(\{z^j\}_1^{N(k,\epsilon)} \cap \Gamma(\omega))$ for a fixed $\omega = (\omega_1, ..., \omega_{k+K(\epsilon)-1}) \in M^{k+K(\epsilon)-1}$. For each $z^j = (x_i^j)_{i=1}^{k+K(\epsilon)} \in \Gamma(\omega)$ consider the closed set ball

$$\bar{B}(z^j,\epsilon(\omega)) \subset \Gamma(\omega), \epsilon(\omega) = \frac{\epsilon}{3 \prod_{1}^{k+K(\epsilon)-1} L_+(T_{\omega_i})}$$

(We restrict here our discussion to the compact metric space $\Gamma(\omega)$ with the metric induced from $\Gamma^{k+K(\epsilon)}$.) Let $z^j \neq z^l \in \Gamma(\omega)$. The condition (3.5) yields that $\bar{B}(z^j, \epsilon(\omega)) \cap \bar{B}(z^l, \epsilon(\omega)) = \emptyset$. As $\Gamma(\omega)$ is isometric to X we deduce that

$$Card(\{z^j\}_1^{N(k,\epsilon)} \cap \Gamma(\omega)) \le \frac{vol(X)3^n \prod_{i=1}^{k+K(\epsilon)-1} L_+(T_{\omega_i})^n}{\alpha \epsilon^n}$$

Hence,

$$N(k,\epsilon) \leq \sum_{\substack{\omega \in M^{k+K(\epsilon)-1} \\ 0 \leq i \leq m}} \frac{\operatorname{vol}(X)3^n \prod_{i=1}^{k+K(\epsilon)-1} L_+(T_{\omega_i})^n}{\alpha \epsilon^n} = \frac{\operatorname{vol}(X)3^n \left(\sum_{i=1}^m L_+(T_i)^n\right)^{k+K(\epsilon)-1}}{\alpha \epsilon^n}.$$

Thus

$$h(\Gamma) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \frac{\log N(k, \epsilon)}{k} \le \log \sum_{i=1}^{n} L_{+}(T_{i})^{n}$$

and the theorem is proved. \diamond

We remark that the inequality of Theorem 3.4 holds if we replace the assumption that X has a finite *n*-Hausdorff volume by the following one: the number of points of every r-separated set in X does not exceed Cr^{-n} for some positive constant C.

Let X satisfies the assumptions of Theorem 3.4. It then follows that for the Lipschitzian maps $f: X \to X$ the quantity $L_+(T)^n$ is the "norm" of the graph $\Gamma(f)$ discussed in §2.

(3.6) Lemma. Let X be a compact metric space and $T : X \to X$ be a noninvolutive homeomorphism $(T^2 \neq Id)$. Then $\log 2 \leq h(\Gamma(T) \cup \Gamma(T^{-1}))$. If $T, T^{-1} : X \to X$ are noninvolutive isometries then $h(\Gamma(T) \cup \Gamma(T^{-1})) = \log 2$.

Proof. Assume first that T has a periodic orbit $Y = \{y_1, ..., y_p\}$ of period p > 2. Restrict T, T^{-1} to this orbit. Theorem 2.4 yields the desired inequality. Assume now that we have an infinite orbit $y_i = T^i(y), i = 1, 2, ...,$. Fix $n \ge 3$. Let $Y_n = \{y_1, ..., y_n\}$. Denote by $\Gamma_n \subset Y_n \times Y_n$ the graph corresponding to the undirected linear graph on the vertices $y_1, ..., y_n$. That $(i, j) \in \Gamma_n \iff |i - j| = 1$. Clearly

$$\Gamma_n^{\infty} \subset \Gamma^{\infty}, \ \Gamma = \Gamma(T) \cup \Gamma(T^{-1}).$$

Hence $h(\Gamma_n) \leq h(\Gamma)$. Obviuosly, $h(\Gamma_n) = log\rho(A(\Gamma_n))$. It is well known that $\rho(A(\Gamma_n)) = 2cos \frac{\pi}{n+1}$. (The eigenvalues of $A(\Gamma_n)$ are the roots of the Chebycheff polynomial.) Let $n \to \infty$ and deduce $h(\Gamma) \geq \log 2$. Assume now that T and T^{-1} are noninvolutive isometries. Then Theorem 3.4 and the above inequality implies that $h(\Gamma(T) \cup \Gamma(T^{-1})) = \log 2$.

Thus, Theorem 3.4 is sharp for m = 2. Similar examples using isometries and Theorem 2.4 show that Theorem 3.4 is sharp in general.

Let X be a compact metric space and $T_i: X \to X, i = 1, ..., m$, be a set of continuous transformations. Let $\mathcal{T} = \{T_1, ..., T_m\}$. Then $h(\mathcal{S}(\mathcal{T}))$ was defined to be the entropy of the graph $\Gamma = \bigcup_1^m \Gamma(T_i)$. As in the case of m = 1 this entropy can be defined in terms of " (k, ϵ) " separated (spanning) sets as follows. Set

$$d_{k+1}(x,y) = \max(\max_{1 \le i_1, j_1, \dots, i_k, j_k \le m, d} (T_{i_1} \dots T_{i_k}(x), T_{j_1} \dots T_{j_k}(y)), d(x,y)), k = 1, 2, \dots, .$$

Let $M(k, \epsilon)$ be the maximal cardinality the ϵ separated set in the metric d_k .

(3.7) Lemma. Let X be a compact metric space and assume that $T_i: X \to X, i = 1, ..., m$, are continuous transformations. Then

$$h(\mathcal{S}(\{T_1, ..., T_m\}) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \frac{\log M(k, \epsilon)}{k}.$$

Proof. From the definiton of the (k, ϵ) separated set for Γ^{∞}_{+} it immediately follows that

$$M(k,\epsilon) \le N(k,\epsilon).$$

The arguments in the proof of Theorem 3.4 yield that

$$N(k,\epsilon) \le M(k+K(\epsilon))$$

and the lemma follows. \diamond

$\S4$. Approximating entropy of graphs by entropy of subshifts of finite type

Let X be a set. $\mathcal{U} = \{U_1, ..., U_m\} \subset 2^X$ is called a finite cover of X if $X = \bigcup_1^m U_i$. The cover \mathcal{U} is called minimal if any strict subset of \mathcal{U} is not a cover of X. Let $\Gamma \subset X \times X$ be any subset. Introduce the following graph and its corresponding matrix on the space $\langle m \rangle = \{1, ..., m\}$:

$$\mathcal{U} = \{U_1, ..., U_m\}, \ \Gamma(\mathcal{U}) = \{(i, j) : \Gamma \cap U_i \times U_j \neq \emptyset\} \subset \langle m \rangle \times \langle m \rangle, A(\Gamma(\mathcal{U})) = (a_{ij})_1^m \in M_m(\{0-1\}), a_{ij} = 1 \iff (i, j) \in \Gamma(\mathcal{U})\}.$$

Note that $\Gamma(\mathcal{U})$ induces a subshift of a finite type on $\langle m \rangle$. Thus, $\log^+ \rho(\Gamma(\mathcal{U}))$ is the entropy of Γ induced by the cover \mathcal{U} . Let \mathcal{V} be also a finite cover of X. Then \mathcal{V} is called a refinement of \mathcal{U} , written $\mathcal{U} < \mathcal{V}$, if every member of \mathcal{V} is a subset of a member of \mathcal{U} . Assume that $\mathcal{V} = \{V_1, ..., V_m\}$ is a refinement of \mathcal{U} such that $V_i \subset U_i, i = 1, ..., m$. It then follows that $A(\Gamma(\mathcal{U})) \geq A(\Gamma(\mathcal{V}))$ for any $\Gamma \subset X \times X$. Hence, $\rho(A(\Gamma(\mathcal{U}))) \geq \rho(A(\Gamma(\mathcal{V})))$. If $U_i \cap U_j = \emptyset, 1 \leq i < j \leq m$, then \mathcal{U} is called a finite partition of X. Given a finite minimal cover $\mathcal{U} = \{U_1, ..., U_m\}$ there always exist a partition $\mathcal{V} = \{V_1, ..., V_m\}$ such that $V_i \subset U_i, i = 1, ..., m$. Indeed, consider a partition \mathcal{U}' corresponding to the subalgebra generated by \mathcal{U} . This partition is a refinement of \mathcal{U} . Then each U_i is union of some sets in \mathcal{U}' . Set $V_1 = U_1$. Let $V_2 \subset U_2$ be the union of sets of \mathcal{U}' which are subsets of $U_2 \setminus U_1$. Continue this process to construct \mathcal{V} . In particular, $\rho(A(T, \mathcal{U})) \geq \rho(A(T, \mathcal{V}))$.

Let $\mathcal{U} < \mathcal{V}$ be finite partitions of X. Assume that $\Gamma \subset X \times X$. In general, there is no relation between $\rho(A(\Gamma(\mathcal{U})))$ and $\rho(A(\Gamma(\mathcal{V})))$. Indeed, if $A(\Gamma(\mathcal{V}))$ is a matrix whose all entries are equal to 1 then $A(\Gamma(\mathcal{U}))$ is also a matrix whose all entries are equal to 1. Hence

$$\rho(A(\Gamma(\mathcal{V}))) = Card(\mathcal{V}) > \rho(A(\Gamma(\mathcal{U}))) = Card(\mathcal{U}) \iff \mathcal{U} \neq \mathcal{V}.$$

Assume now that $Card(\mathcal{V}) = n, A(\Gamma(\mathcal{V})) = (\delta_{(i+1)j})_1^n, n+1 \equiv 1$ be the matrix corresponding to a cyclic graph on $\langle n \rangle$. Suppose furthermore that $n \geq 3$ and let $U_1 = V_1 \cup V_2, U_i = V_{i+1}, i = 2, ..., n-1$. It then follows that $\rho(A(\Gamma(\mathcal{U}))) > \rho(A(\Gamma(\mathcal{V}))) = 1$.

Let $\mathcal{F}_{\epsilon}, 0 < \epsilon < 1$ be a family of finite covers of X increasing in ϵ . That is, $\mathcal{F}_{\delta} \subset \mathcal{F}_{\epsilon}, 0 < \delta \leq \epsilon < 1$. Assume that $\Gamma \subset X \times X$ be any set. We then set

$$e(\Gamma, \mathcal{F}) = \lim_{\epsilon \to 0^+} \inf_{\mathcal{U} \in \mathcal{F}_{\epsilon}} \log^+ \rho(A(\Gamma(\mathcal{U}))).$$

Thus, $e(\Gamma, \mathcal{F})$ can be considered as the entropy of Γ induced by the family \mathcal{F}_{ϵ} . Its definition is reminiscent of the definition of the Hausdorff dimension of a metric space X. Let \mathcal{U} be a finite cover of X. Clearly, $A(\Gamma^{T}(\mathcal{U})) = A^{T}(\Gamma(\mathcal{U}))$. Hence, $\rho(A(\Gamma(\mathcal{U}))) = \rho(A(\Gamma^{T}(\mathcal{U})))$ and $e(\Gamma, \mathcal{F}) = e(\Gamma^{T}, \mathcal{F})$.

(4.1) Lemma. Let $\mathcal{U} = \{U_1, ..., U_m\}$ be a finite cover of compact metric space X. Assume that diam $(\mathcal{U}) \stackrel{\text{def}}{=} \max \operatorname{diam}(U_i) \leq \frac{\delta}{2}$. Let $\Gamma \subset X \times X$ be a closed set. Assume that $N_k(\delta)$ is the maximal cardinality of (k, δ) separated set for $\sigma : \Gamma^{\infty}_+ \to \Gamma^{\infty}_+$. Then

$$\limsup_{k \to \infty} \frac{\log N_k(\delta)}{k} \le \log \rho(A(\Gamma(\mathcal{U}))).$$

Proof. Set

$$A^{k}(\Gamma(\mathcal{U})) = (a_{ij}^{(k)})_{1}^{m}, \nu_{k}(\mathcal{U}) = \sum_{1}^{m} a_{ij}^{(k-1)}.$$

Then $\nu_k(\mathcal{U})$ is counting the number of distinct point

$$(y_i)_1^k \in \langle m \rangle^k, (y_i, y_{i+1}) \in \Gamma(\mathcal{U}), i = 1, ..., k - 1.$$

Let $K(\delta)$ be defined as in the proof of Theorem 3.4. We claim that $N(k, \delta) \leq \nu_{k+K(\delta)}(\mathcal{U})$. Indeed, assume that $x^i = (x_j^i)_{j=1}^{\infty}, i = 1, ..., N(k, \delta)$, is a (k, δ) separated set. Then each x^i generates at least one point $y^i = (y_1^i, ..., y_p^i) \in \langle m \rangle^p$ as follows: $x_j^i \in U_{y_j^i}, j = 1, ..., p$. From (3.5) and the assumption that diam $(\mathcal{U}) < \frac{\delta}{2}$ we deduce that for $p = k + K(\delta)$ $i \neq l \Rightarrow y^i \neq y^l$. Hence $N(k, \delta) \leq \nu_{k+K(\delta)}(\mathcal{U})$. As a point x^i may generate more then one point y^i in general we have strict inequality. Since $A(T, \mathcal{U})$ is a nonnegative matrix it is well known that

$$K_1 \rho(A)^k \le \nu_k \le K_2 k^{m-1} \rho(A(T, \mathcal{U}))^k, k = 1, ..., .$$

See for example $[\mathbf{F}-\mathbf{S}]$. The above inequalities yield the lemma. \diamond

Let $\{\mathcal{U}_i\}_1^\infty$ be sequence of finite open covers such diam $(\mathcal{U}_i) \to 0$. Assume that $\Gamma \subset X \times X$ is closed. Then $\{\mathcal{U}_i\}_1^\infty$ is called an approximation cover sequence for Γ if

$$\lim_{i \to \infty} \log^+ \rho(A(\Gamma(\mathcal{U}_i))) = h(\Gamma).$$

Note as $\rho(A^T) = \rho(A), \forall A \in M_n(\mathbb{C})$ and $h(\Gamma) = h(\Gamma^T)$ we deduce that $\{\mathcal{U}_i\}_1^\infty$ is also an approximation cover for Γ^T . Use Lemma 4.1 and (2.2) for finite graphs to obtain sufficient conditions for the validity of the inequality (2.2) for infinite graphs.

(4.2) Corollary. Let X be a compact metric space and $\Gamma_j^T = \Gamma_j \subset X \times X, j = 1, ..., m$ be closed sets. Assume that there exist a sequence of open finite covers

$$\{\mathcal{U}_i\}_1^\infty, \lim_{i\to\infty} \operatorname{diam}(\mathcal{U}_i) = 0,$$

which is an approximation cover for $\Gamma_1, ..., \Gamma_m$. Then

$$h(\cup_1^m \Gamma_j) \le \log \sum_1^m e^{h(\Gamma_j)}.$$

Let Z be a compact metric space and $T: Z \to Z$ is a homeomorphism. Then T is called expansive if there exists $\delta > 0$ such that

$$\sup_{n \in \mathbf{Z}} d(T^n(x), T^n(y)) > \delta, \forall x, y \in \mathbb{Z}, x \neq y.$$

A finite open cover \mathcal{U} of Z is called a generator for homeomorphism T if for every bisequence $\{U_n\}_{-\infty}^{\infty}$ of members of \mathcal{U} the set $\bigcap_{n=-\infty}^{\infty} T^{-n} \overline{U}_n$ contains at most one point of X. If this condition is replaced by $\bigcap_{n=-\infty}^{\infty} U_n$ then \mathcal{U} is called a weak generator. A basic result due to Keynes and Robertson [**K-R**] and Reddy [**Red**] claims that T is expansive iff T has a generator iff T has a weak generator. See [**Wal**, §5.6]. Moreover, T is a factor of the restriction of a shift S on a finite number of symbols to a closed S-invariant set Δ [**Wal**, Thm 5.24]. If Δ is a subshift of a finite type then T is called FP. See [**Fr**] for the theory of FP maps. In particular, for any expansive $T, h(T) < \infty$.

Let $\Gamma \subset X \times X$ be a closed set such that $\Gamma^{\infty} \neq \emptyset$. Then Γ is called expansive if

$$\sup_{n \in \mathbf{Z}} d(\sigma^n(x), \sigma^n(y)) > \delta, \forall x, y \in \Gamma^\infty, x \neq y$$

for some $\delta > 0$. A finite open cover \mathcal{U} of X is called a generator for Γ if for every bisequence $\{U_n\}_{-\infty}^{\infty}$ of members of \mathcal{U} the set

$$x = (x_n)_{-\infty}^{\infty} \in \Gamma^{\infty}, x_n \in \overline{U}_n, n \in \mathbf{Z}$$

contains at most one point of Γ^{∞} . If this condition is replaced by $x_n \in U_n$ then \mathcal{U} is called a weak generator. We claim that Γ is expansive iff Γ has a generator iff Γ has a weak generator. Indeed, observe first that the condition that Γ is expansive is equivalent to the assumption that σ is expansive on Γ^{∞} . Let $V_i = \pi_{1,1}^{-1}(U_i) \subset X^{\infty}, i = 1, ..., m$. That is, V_i is an open cylindrical set in X^{∞} whose projection on the first coordinate is U_i while on all other coordinates is X. Set $W_i = V_i \cap \Gamma^{\infty}, i = 1, ..., m$. It now follows that $W_1, ..., W_m$ is a standard set of generators for the map $\sigma : \Gamma^{\infty} \to \Gamma^{\infty}$.

Assume that $T: X \to X$ is expansive with the expansive constant δ . It is known [Wal, Thm. 7.11] that

$$h(T) = \limsup_{k \to \infty} \frac{\log N(k, \delta_0)}{k}, \delta_0 < \frac{\delta}{4}.$$

Thus, according to Lemma 4.1 $h(\Gamma) \leq \log \rho(A(\Gamma(\mathcal{U})))$ if Γ is expansive with an expansive constant δ and diam $(\mathcal{U}) < \frac{\delta}{8}$. Assume that $T_i : X \to X, i = 1, ..., m$, are expansive maps. We claim that for m > 1 it can happen that $h(\cup_1^m \Gamma(T_i))$ is infinite. Let T_1 be Anosov

map on the 2-torus X in the standard coordinates. Now change the coordinates in X by a homeomorphism and let T_2 be Anosov with respect to the new coordinates. It is possible to choose a homeomorphism (which is not diffeo!) so that that $T_2 \circ T_1$ contains horseshoes of arbitrary many folds. Hence $h(\Gamma(T_1) \cup \Gamma(T_2) \ge h(T_2 \circ T_1) = \infty$.

§5. Entropy of semigroups of Möbius transformations

Let $X \subset \mathbb{CP}^n$ be an irreducible smooth projective variety of complex dimension n. Assume that $\Gamma \subset X \times X$ be a projective variety such that the projections $\pi_{i,i} : \Gamma \to X, i = 1, 2$ are onto and finite to one. Then Γ can be viewed as a graph of an algebraic function. In algebraic geometry such a graph is called a correspondence. Furthermore, Γ induces a linear operator

$$\Gamma^*: H_{*,a}(X) \to H_{*,a}(X), \quad H_{*,a}(X) = \sum_{j=0}^n H_{2j,a}(X),$$

$$\Gamma^*: H_{2j,a}(X) \to H_{2j,a}(X), \quad j = 0, \dots, n.$$

Here, $H_{2j,a}(X)$ is the homology generated by the algebraic cycles of X of complex dimension j over the rationals \mathbf{Q} . Indeed, if $Y \subset X$ is an irreducible projective variety then $\Gamma^*([Y]) = [\pi_{2,2}^2((\pi_{1,1}^2)^{-1}(Y))]$. Let $\rho(\Gamma^*)$ be the spectral radius of Γ^* . Assume that first that Γ is irreducible. In [Fri3] we showed that $h(\Gamma) \leq \log \rho(\Gamma^*)$. However our arguments apply also to the case Γ is reducible. We also conjectured in [Fri3] that in the case that Γ is irreducible we have the equality $h(\Gamma) = \log \rho(\Gamma^*)$. We now doubt the validity of this conjecture. We will show that in the reducible case we can have a strict inequality $h(\Gamma) < \log \rho(\Gamma^*)$. Let $\Gamma_i \subset X \times X, i = 1, ..., m$, be algebraic correspondences as above. Set $\Gamma = \bigcup_1^m \Gamma_i$. Then

$$\Gamma^* = \sum_{1}^{m} \Gamma_i^*, \ h(\Gamma) \le log\rho(\sum_{1}^{m} \Gamma_i^*).$$

Thus, there is a close analogy between the entropy of algebraic (finite to one) correspondences and entropy of shifts of finite types. Consider the simplest case of the above situation. Let $X = \mathbf{CP}^1$ be the Riemann sphere and Γ be an algebraic curve given by a polynomial p(x, y) = 0 on some chart $\mathbf{C}^2 \subset \mathbf{CP}^1 \times \mathbf{CP}^1$. Let $d_1 = deg_y(p), d_2 = deg_x(p), d_1 \geq$ $1, d_2 \geq 1$. It then follows that $\rho(\Gamma^*) = \max(d_1, d_2)$. Note that $\rho(\Gamma^*) = 1$ iff Γ is the graph of a Möbius transformation. Observe next that if $f_i : \mathbf{CP}^1 \to \mathbf{CP}^1, i = 1, ..., m$, are nonconstant rational maps then the correspondance given by $p(x, y) = \prod_{i=1}^{m} (y - f_i(x))$ is induced by $\Gamma = \bigcup_{i=1}^{m} \Gamma(f_i)$. In particular,

$$h(\Gamma) \le \log \sum_{1}^{m} deg(f_i).$$
(5.1)

Here, by $deg(f_i)$ we denote the topological degree of the map f_i . Combine the above inequality with Lemma 3.6 to deduce that for any noninvolutive Möbius transformation f we have the equality $h(\Gamma(f) \cup \Gamma(f^{-1})) = \log 2$.

(5.2) Lemma. Let $f, g : \mathbb{CP}^1 \to \mathbb{CP}^1$ be two Möbius transformations such that x as a common fixed attracting point of f and g and y is a common repelling point of f and g, Then $h(\Gamma(f) \cup \Gamma(g)) = 0$.

Proof. We may assume that

$$f = az, g = bz, 0 < |a|, |b| < 1.$$

Set $\Gamma = \Gamma(f) \cup \Gamma(g)$. It the follows that for any point $\zeta = (z_i)_1^\infty \neq \eta = (\infty)_1^\infty \sigma^l(z)$ converges to the fixed point $\xi = (0)_1^\infty$. That is, the nonwondering set of σ is the set $\{\xi, \eta\}$ on which σ acts trivially. Hence $h(\Gamma) = 0$.

(5.3) Lemma. Let $f, g : \mathbb{CP}^1 \to \mathbb{CP}^1$ be two parabolic Möbius transformation with the same fixed point $-\infty$, i.e. f = z + a, g = z + b. If either a, b are linearly independent over **R** or $b = \alpha a, \alpha \ge 0$ then $h(\Gamma(f) \cup \Gamma(g)) = 0$.

Proof. Let $\Gamma = \Gamma(f) \cup \Gamma(g), \eta = (\infty)_1^{\infty}$. If ether a, b are linearly independent over \mathbf{R} or $b = \alpha a, \alpha > 0, a \neq 0$ then for any point $\zeta \in \Gamma_+^{\infty} \sigma^l(\zeta)$ converges to the fixed point η . Hence $h(\Gamma) = 0$. Suppose next that a = b = 0. Then σ is the identity map on Γ_+^{∞} and $h(\Gamma) = 0$. Assume finally that $b = 0, a \neq 0$. Then Ω limit set of σ consists of all points $\zeta = (z_i)_1^{\infty}, z_i = z_1, i = 2, ..., So \sigma | \Omega$ is identity and $h(\Gamma) = 0$.

(5.4) Theorem. Let T = z + a, Q = z + b, $ab \neq 0$ be two Möbius transformations of \mathbb{CP}^1 . Assume that there $\frac{b}{a}$ is a negative rational number. Then

$$h(\Gamma) = -\frac{|a|}{|a|+|b|} \log \frac{|a|}{|a|+|b|} - \frac{|b|}{|a|+|b|} \log \frac{|b|}{|a|+|b|}.$$

We first state an approximation lemma which will be used later.

(5.5) Lemma. Let X be compact metric space and $T: X \to X$ be a continuous transformation. Assume that we have a sequence of closed subsets $X_i \subset X, i = 1, ...,$ which are T-invariant, i.e. $T(X_i) \subset X_i, i = 1, 2, ...,$ Suppose furthermore that $\forall \delta > 0 \exists M(\delta)$ with the following property. $\forall x \in X \setminus X_i \exists y = y(x, i) \in X_i, \sup_{n \ge 0} d(T^n(x), T^n(y)) \le \delta$ for each $i > M(\delta)$. Then $\lim_{i \to \infty} h(T|X_i) = h(T)$.

Proof. Observe first that $h(T) \ge h(T|X_i)$. Thus it is left to show

$$\liminf_{i \to \infty} h(T | X_i) \ge h(T).$$

Let $N(k,\epsilon)$, $N_i(k,\epsilon)$ be the cardinality of maximal (k,ϵ) separating set of X and X_i respectively. Clearly, $N_i(k,\epsilon) \leq N(k,\epsilon)$. Let $x_1, ..., x_{N(k,\epsilon)}$ be a (k,ϵ) separating set of X. Then

$$\forall i > M(\frac{\epsilon}{4}), \ \forall x_j \exists y_{j,i} \in X_i, \sup_{n \ge 0} d(T^n(x_j), T^n(y_{j,i})) \le \frac{\epsilon}{4}$$

Hence, $y_{j,i}, j = 1, ..., N(k, \epsilon)$, is $\frac{\epsilon}{2}$ separated set in X_i . In particular, $N(k, \epsilon) \leq N_i(k, \frac{\epsilon}{2}), i > M(\frac{\epsilon}{4})$. Thus

$$\limsup_{k \to \infty} \frac{\log N(k,\epsilon)}{k} \le \limsup_{k \to \infty} \frac{\log N_i(k,\frac{\epsilon}{2})}{k} \le h(T|X_i), i > M(\frac{\epsilon}{4}).$$

The characterization of h(T) yields the lemma. \diamond

Proof of Theorem 5.4. W.l.o.g. (without loss of generality) we may assume that a = p, b = -q where p, q are two positive coprime integers. First note that \mathbb{CP}^1 is foliated by the invariant lines $\Im z = Const$. Hence, the maximal characterization of $h(\sigma)$ as the supremum over all measure entropy $h_{\mu}(\sigma)$ for all extremal σ invariant measures yields that it enough to restrict ourselves to the action of T, Q on (closure of) the real line. Using the same argument again it is enough to consider the action on the lattice $\mathbb{Z} \subset \mathbb{R}$ plus the point at ∞ . We may view $Y = \mathbb{Z} \cup \{\infty\}$ as a compact subspace of $S^1 = \{z : |z| = 1\}$.

$$0 \mapsto 1, \infty \mapsto -1, j \mapsto e^{\frac{\pi\sqrt{-1}(1+2j)}{2j}}, 0 \neq j \in \mathbf{Z}.$$

For a positive integer i let $Y_i = \{-ipq, -ipq+1, ..., ipq-1, ipq\}$. Set

$$\Gamma = \Gamma(T) \cup \Gamma(Q) \subset Y \times Y, X = \Gamma^{\infty}_{+}, \Gamma_{i} = \Gamma \cap Y_{i} \times Y_{i}, X_{i} = (\Gamma_{i})^{\infty}_{+}, i = 1, ...,$$

We will view a point $x = (x_j)_1^\infty \in X$ a path of a particle who starts at time 1 at x_1 and jumps from the place x_i at time i to the place x_{i+1} at time i+1. At each point of the lattice **Z** a particle is allowed to jump p steps forward and q backwards. The point $\xi = (\infty)_1^{\infty}$ is the fixed point of our random walk. Observe next that Γ_i is a subshift of a finite type on 2ipq + 1 points corresponding to the random walk in which a particle stays in the space Y_i . Note that $A_i = A(\Gamma_i)$ is a matrix whose almost each row (column) sums to two, except the first and the last $\max(p,q) - 1$ rows (columns). Moreover, $h(\sigma|X_i) = \log \rho(A_i)$. We claim that $X, X_i = 1, ...,$ satisfy the assumption of Lemma 5.5. That is any point $x = (x_i)_1^\infty \in X$ can be approximated up to an arbitrary $\epsilon > 0$ by $y_i = (y_{j,i})_{j=1}^\infty \in X_i$ for $i > M(\epsilon)$. We assume that i > L some fixed big L. Suppose first that $x_j > ipq, j = 1, ..., i$ That is the path described by the vector x never enters X_i . Then consider the following path $y_i = (y_{j,i})_{i=1}^{\infty} \in X_i$. It starts at the point ipq, i.e. $y_{1,i} = ipq$. Then it jumps p times to the left to the point (i-1)pq. Then it the particle jumps q time to the right back to the point ipq and so on. Clearly, $\sup_{n\geq 0} d(\sigma^n(x), \sigma^n(y_i)) \leq d((i-1)pq, \infty)$. Hence for i big enough the above distance is less than ϵ . Same arguments apply to the case $x_j < -ipq, j = 1, \dots,$ Consider next a path $x = (x_j)_1^\infty$ which starts outside X_i and then enters X_i at some time. If the particle enters to X_i and then stays for a short time, e.g. $\leq pq$, every time it enters X_i then we can approximate this path by a path looping around the vertex ipq or -ipq in X_i as above. Now suppose that we have a path which enters to X_i at least one time for a longer period of time. We then approximate this path by a path $(y_{i,j})_{i=1}^{\infty} \in X_i$ such that this path coincide with x for all time when x is in X_i except the short period when x leaves X_i . One can show that such path exists. (Start with the simple example p = 1, q = 2.) It then follows that $\sup_{n>0} d(\sigma^n(x), \sigma^n(y_i)) \le d((i-K)pq, \infty)$ for some K = K(p,q). If *i* is big enough then we have the desired approximation. Lemma 5.5 yields

$$h(\Gamma) = \lim_{i \to \infty} \log \rho(A_i).$$

We now estimate $\log \rho(A_i)$ from above and from below. Recall the well known formula for the spectral radius of a nonnegative $n \times n$ matrix A:

$$\rho = \limsup_{m \to \infty} \left(trace(A^m) \right)^{\frac{1}{m}} = \limsup_{m \to \infty} \left(\max_{1 \le j \le n} a_{jj}^{(m)} \right)^{\frac{1}{m}}, A^m = (a_{ij}^{(m)})_1^n.$$

Let $A = A_i$. We now estimate $a_{jj}^{(m)}$. Obviously, $a_{jj}^{(m)}$ is positive if m = (p+q)k as we have to move kq times to the right and kp times to the left. Assume that m = (p+q)k. To estimate $a_{jj}^{(m)}$ we assume that we have an uncostrained motion on \mathbf{Z} . Then the number of all possible moves on \mathbf{Z} bringing us back to the original point is equal to

$$\frac{((p+q)k)!}{(qk)!(pk)!} \le K\sqrt{p+q} \frac{(p+q)^{(p+q)k}}{q^{qk}p^{pk}}$$

The last part of inequality follows from the Stirling formula for some suitable K. The characterization of $\rho(A)$ gives the inequality

$$\log \rho(A_i) \le \log \alpha = \log(p+q) - \frac{p}{p+q} \log p - \frac{q}{p+q} \log q.$$

We thus deduce the upper bound on $h(\Gamma) \leq \log \alpha$. Let $0 < \delta < \alpha$. The Stirling formula yields that for $k > M(\delta)$

$$\frac{((p+q)k)!}{(qk)!(pk)!} \ge (\alpha - \delta)^{(p+q)k}.$$

Fix $k > M(\delta)$ and let i > k. Then for m = (p+q)k

$$a_{00}^{(m)} = \frac{((p+q)k)!}{(qk)!(pk)!}$$

Clearly,

$$\rho(A)^m = \rho(A^m) \ge a_{00}^{(m)}.$$

Thus, $h(\Gamma) \ge \log \rho(A_i) \ge \log(\alpha - \delta)$. Let $\delta \to 0$ and deduce the theorem. \diamond

Note that $h(\Gamma)$ is the entropy of the Bernoulli shift on two symbols with the distribution $(\frac{p}{p+q}, \frac{q}{p+q})$. This can be explained by the fact that to have a closed orbit of length k(p+q) we need move to the right kq times and to the left kp. That is, the frequency of the right motion is $\frac{q}{p+q}$ and the left motion is $\frac{p}{p+q}$. It seems that Theorem 5.4 remains valid as long as $\frac{a}{b}$ is a real negative number.

(5.6) Theorem. Let $f, g: \mathbb{CP}^1 \to \mathbb{CP}^1$ be two parabolic Möbius transformations with the same fixed point $-\infty$, i.e. f = z + a, g = z + b where a, b are linearly independent over \mathbb{R} . Let $\Gamma = \Gamma(f) \cup \Gamma(f^{-1}) \cup \Gamma(g) \cup \Gamma(g^{-1})$. Then $h(\Gamma) = \log 4$. **Proof.** The orbit of any fixed point $z \in \mathbb{C}$ under the action of the group generated by f, g is a lattice in \mathbb{C} which has one accumulation point $\infty \in \mathbb{CP}^1$. Let Y is defined in the proof of Theorem 5.4. Consider the dynamics of $\sigma \times \sigma$ on $Y_j \times Y_j$, for j = 1, ..., as in the proof Theorem 5.4. It then follows that $h(\Gamma) = 2h(\sigma|X) = 2\log 2$.

Let $\mathcal{T} = \{f_1, ..., f_k\}$ be a set of k - Möbius transformations. Set $\Gamma = \bigcup_1^k \Gamma(f_i)$. Then (5.1) yields $h(\Gamma) \leq \log k$. Our examples show that we may have a strict inequality even for the case k = 2. Let Γ be the correspondence of the Gauss arithmetic-geometric mean $y^2 = \frac{(x+1)^2}{4x}$ [Bul2]. Our inequality in [Fri3] yield that $h(\Gamma) \leq \log 2$. According to Bullet [Bul2] it is possible to view the dynamics of Γ as a factor of the dynamics of $\tilde{\Gamma} = \Gamma(f_1) \cup \Gamma(f_2)$ for some two Möbius transformations f_1, f_2 . Hence, $h(\Gamma) \leq h(\tilde{\Gamma})$. If $h(\tilde{\Gamma}) < \log 2$ we will have a counterexample to our conjecture that $h(\Gamma) = \log 2$. Even if $h(\tilde{\Gamma}) = \log 2$ we can still have the inequality $h(\Gamma) < \log 2$ as the dynamics of Γ is a subfactor of the dynamics of $h(\tilde{\Gamma})$. Thus, it would be very interesting to compute $h(\Gamma)$.

Assume that \mathcal{T} generates nonelementary Kleinian group. Theorem 2.5 suggests that $e^{h(\Gamma)}$ may have a noninteger value. It would be very interesting to find such a Kleinian group.

We now state an open problem which is inspired by Furstenberg's conjecture [Fur]. Assume that $1 are two co-prime integers. (More generally <math>p^m = q^n \Rightarrow m = n = 0$.) Let

 $f, g: \mathbf{CP}^1 \to \mathbf{CP}^1, T_1(z) = z^p, T_2(z) = z^q, z \in \mathbf{C}^1, f(\infty) = g(\infty). = \infty$

Note that for f and g 0, ∞ are two attractive points with the interior and the exterior of the unit disk as basins of attraction respectively. Thus, the nontrivial dynamics takes place on the unit circle S^1 . Note that $f \circ g = g \circ f$. Hence f and g have common invariant probability measures. Let \mathcal{M} be the convex set of all probability measures invariant under f, g. Denote by $\mathcal{E} \subset \mathcal{M}$ the set of the extreme points of \mathcal{M} in the standard w^* topology. Then \mathcal{E} is the set of ergodic measures with respect to f, g. (For a recent discussion on the common invariant measure of a semigroup of commuting transformation see [Fri4]). Furstenberg's conjecture (for p = 2, q = 3) is that any ergodic measure $\mu \in \mathcal{E}$ is either supported on a finite number of points or is the Lebesgue (Haar) measure on S^1 . See [**Rud**] and [**K-S**] for the recent results on this conjecture. Let \mathcal{G} be the semigroup generated by $\mathcal{T} = \{f, g\}$. Then (0.2) for $X = S^1$ or the results of [**Fri3**] yield the inequality $h(\mathcal{G}(\mathcal{T})) \leq \log(p+q)$. What is the value of $h(\mathcal{G}(\mathcal{T}))$? It is plausible to conjecture equality in this inequality.

References

[Bow] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, *Trans. Amer. Math. Soc.* 153 (1971), 404-414.

[Bul1] S. Bullett, Dynamics of quadratic correspondences, Nonlinearity 1 (1988), 27-50.

[**Bul2**] S. Bullett, Dynamics of the arithmetic-geometric mean, *Topology* 30 (1991), 171-190.

[**Fr**] D. Fried, Finitely presented dynamical systems, *Ergod. Th. & Dynam. Sys.* 7 (1987), 489-507.

[Fri1] S. Friedland, Entropy of polynomial and rational maps, Annals Math. 133 (1991), 359-368.

[Fri2] S. Friedland, Entropy of rational selfmaps of projective varieties, Advanced Series in Dynamical Systems Vol. 9, pp. 128-140, World Scientific, Singapore 1991.

[Fri3] S. Friedland, Entropy of algebraic maps, J. Fourier Anal. Appl. 1995, to appear.

[Fri4] Invariant measures of groups of homeomorphisms and Auslander's conjecture, J. Ergod. Th. & Dynam. Sys. 1995, to appear.

[F-S] S. Friedland and H. Schneider, The growth of powers of nonnegative matrix, *SIAM J. Algebraic Discrete Methods* 1 (1980), 185-200.

[Fur] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem on diophantine approximation, *Math. Sys. Theory* 1 (1967), 1-49.

[Gan] F.R. Gantmacher, Theory of Matrices, II, Chelsea Pub. Co., New York, 1960.

[**G-L-W**] E. Ghys, R. Langenvin and P. Walczak, Entropie géométrique des feuilletages, *Acta Math.* 160 (1988), 105-142.

[Gro] M. Gromov, On the entropy of holomorphic maps, preprint, 1977.

 $[\mathbf{Hur}]$ M. Hurley, On topological entropy of maps, Ergod. Th. & Dynam. Sys. 15 (1995), 557-568.

[K-S] A. Katok and R.J. Spatzier, Invariant measures for higher rank hyperbolic abelian actions, *preprint*.

[K-R] B. Keynes and J.B. Robertson, Generators for topological entropy and expansiveness, *Math. Systems Theory* 3 (1969), 51-59.

[**L-P**] R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, *Bull Soc. Math. France* 120 (1992), 237-250.

[L-W] R. Langevin and Walczak, Entropie d'une dynamique, C.R. Acad. Sci. Paris, 1991.
 [M-R] H.F. Münzner and H.M. Rasch, Iterated algebraic functions and functional equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1 (1991), 803-822.

[N-P] Z. Nitecki and F. Przytycki, The entropy of the relation inverse to a map II, *Preprint*, 1990.

[**Red**] W.L. Reddy, Lifting homeomorphisms to symbolic flows, *Math. Systems Theory* 2 (1968), 91-92.

[**Rud**] D.J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, *Ergod. Th. & Dynam.* Sys. 10 (1990), 823-827.

[Wal] P. Walters, An Introduction to Ergodic Theory, Springer 1982.

Acknowledgement. I would like to thank to M. Boyle, M. Gromov and F. Przytycki for useful remarks.