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§0. Introduction

Let X be a compact metric space and T : X → X is continuous transformation. Then
the dynamics of T is a widely studied subject. In particular, h(T ) - the entropy of T is a
well understood object. Let Γ ⊂ X ×X be a closed set. Then Γ induces certain dynamics
and entropy h(Γ). If X is a finite set then Γ can be naturally viewed as a directed graph.
That is, if X = {1, ..., n} then Γ consists of all directed arcs i → j so that (i, j) ∈ Γ. Then
Γ induces a subshift of finite type which is a widely studied subject. However, in the case
that X is infinite, the subject of dynamic of Γ and its entropy are relatively new. The first
paper treating the entropy of a graph is due to [Gro]. In that context X is a compact
Riemannian manifold and Γ can be viewed as a Riemannian submanifold. (Actually, Γ
can have singularities.) We treated this subject in [Fri1-3]. See Bullet [Bul1-2] for the
dynamics of quadratic correspondences and [M-R] for iterated algebraic functions.

The object of this paper is to study the entropy of a corresponding map induced by Γ.
We now describe briefly the main results of the paper. Let X be a compact metric space
and assume that Γ ⊂ X ×X is a closed set. Set

Γ∞+ = {(xi)∞1 : (xi, xi+1) ∈ Γ, i = 1, ..., }.
Let σ : Γ∞+ → Γ∞+ be the shift map. Denote by h(Γ) be the topological entropy of σ

∣∣Γ∞+ .
It then follows that σ unifies in a natural way the notion of a (continuous) map T : X → X
and a (finitely generated) semigroup or group of (continuous) transformations S : X → X.
Indeed, let Ti : X → X, i = 1, ..., m, be m continuous transformations. Denote by Γ(Ti) the
graphs corresponding to Ti, i = 1, ..., m. Set Γ = ∪m

1 Γ(Ti). Then the dynamics of σ is the
dynamics of the semigroup generated by T = {T1, ..., Tm}. If T is a set of homeomorphisms
and T −1 = T then the dynamics of σ is the dynamics of the group G(T ) generated by T .
In particular, we let h(G(T )) = h(Γ) be the entropy of G(T ) using the particular set of
generators T . For a finitely generated group G of homeomorphisms of X we define

h(G) = inf
T ,G=G(T )

h(G(T )).

In the second section we study the entropy of graphs, semigroups and groups acting on
the finite space X. The results of this section give a good motivation for the general case.
In particular we have the following simple inequality

h(∪m
i=1Γi) ≤ h(∪m

i=1(Γi ∪ ΓT
i )) ≤ log

m∑

i=1

eh(Γi∪ΓT
i ). (0.1)
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Here ΓT = {(y, x) : (x, y) ∈ Γ}. Let Card(X) = n. Then any group of homeomorphisms
G of X is a subgroup of the symmetric group Sn acting on X as a group of permutations.
We then show that if G is commutative then h(G) = log k for some integer k. If G acts
transitively on X then k is the minimal number of generators for G. Moreover, h(G) = 0
iff G is a cyclic group. For each n ≥ 3 we produce a group G generated by two elements so
that 0 < h(G) < log 2.

In §3 we discuss the entropy of graphs on compact metric spaces. We show that if
Ti : X → X, i = 1, ..., m, is a set of Lipschitzian transformations of a compact Riemannian
manifold X of dimension n then

h(∪m
1 Γ(Ti)) ≤ log

m∑
1

L+(Ti)n. (0.2)

Here, L+(Ti) is the maximum of the Lipschitz constant of Ti and 1. Thus, L+(Ti)n is
analogous to the norm of a graph on a finite space X. The above inequality generalizes
to semi-Riemannian manifolds which have a Hausdorff dimension n ∈ R+ and a finite
volume with respect to a given metric d on X. Thus, if X is a compact smooth Riemannian
manifold and G is a finitely generated group of diffeomorphisms (0.2) yields that h(G) < ∞.
Let X be a compact metric space and T : X → X a noninvolutive homeomorphism
(T 2 6= Id). We then show that h(Γ(T ) ∪ Γ(T−1)) ≥ log 2. The following example due to
M. Boyle shows that (0.1) does not apply in general. Let X be a compact metric space
for which there exists a homeomorphism T : Y → Y with h(T ) = h(T 2) = ∞. (See for
example [Wal, p. 192].) Set

X = X1 ∪X2, X1 = Y,X2 = Y, Ti(X1) = X2, Ti(X2) = X1,

T1(x1) = Tx1, T1(x2) = T−1x2, T2(x1) = T−1x1, T2(x2) = Tx2, x1 ∈ X1, x2 ∈ X2.

As T 2
1 = T 2

2 = Id it follows that 2h(T1) = 2h(T2) = h(Id) = 0. Clearly, T2T1

∣∣X1 = T 2

and h(Γ) = ∞. The last section discusses mainly the entropy of semigroups and groups of
Möbius transformations on the Riemann sphere. Let T = {T1, ..., Tk} is a set of Möbius
transformations. Inequality (0.2) yield that h(G(T )) ≤ log k. Let Ti(z) = z + ai, i = 1, 2,
be two translations of C. Assume that a1

a2
is a negative rational number. We then show

that

h(Γ(T1) ∪ Γ(T2)) = − |a|
|a|+ |b| log

|a|
|a|+ |b| −

|b|
|a|+ |b| log

|b|
|a|+ |b| .

Assume now that a1 and a2 are linearly independent over R. We then show that

h(∪2
1(Γ(Ti) ∪ Γ(T−1

i )) = log 4.

It is of great interest to see if h(G) has any geometric meaning for a finitely generated
Kleinian group G. Consult with [G-L-W], [L-W], [N-P], [L-P] and [Hur] for other
definitions of the entropy of relations and foliations.
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§1. Basic definitions

Let X be a compact metric space and assume that Γ ⊂ X ×X is a closed set. Set

Xk =
k∏
1

Xi, X
∞
+ =

∞∏
1

Xi, X
∞ =

∏

i∈Z

Xi, Xi = X, i ∈ Z,

Γk = {(xi)k
1 : (xi, xi+1) ∈ Γ, i = 1, ..., k − 1, }, k = 2, ...,

Γ∞+ = {(xi)∞1 : (xi, xi+1) ∈ Γ, i = 1, ..., }, Γ∞ = {(xi)i∈Z : (xi, xi+1) ∈ Γ, i ∈ Z}.

We shall assume that Γk 6= ∅, k = 2, ..., unless stated otherwise. (In any case, if this
assumption does not hold we set h(Γ) = 0.) This in particular implies that Γ∞+ 6= ∅, Γ∞ 6=
∅. Let

πl
p,q : X l → Xq−p+1, {xi}l

1 7→ {xi}q
p, 1 ≤ p ≤ q ≤ l.

If no ambiguity arise we shall denote πl
p,q by πp,q. The maps πp,q are well defined for

X∞
+ , X∞. For p ≤ 0, p ≤ q we let πp,q : X∞ → Xq−p+1. Similarly, for a finite p we have

the obvious maps π−∞,p, πp,∞ whose range is Γ∞+ . Let d : X × X → R+ be a metric
on X. As X is compact we have that X is a bounded diameter 0 < D < ∞. That is,
d(x, y) ≤ D, ∀x, y ∈ X. On Xk, X∞

+ , X∞ one has the induced metric

d({xi}k
1 , {yi}k

1) = max
1≤i≤k

d(xi, yi)
ρi−1

,

d({xi}∞1 , {yi}∞1 ) = sup
1≤i

d(xi, yi)
ρi−1

,

d({xi}i∈Z, {yi}i∈Z) = sup
i∈Z

d(xi, yi)
ρ|i−1| .

Here ρ > 1 to be fixed later. Since X is compact it follows that Xk, X∞
+ , X∞ are compact

metric spaces where the infinite products have the Tychonoff topology. Let

σ : X∞
+ → X∞

+ , σ((xi)∞1 ) = (xi+1)∞1 ,

σ : X∞ → X∞, σ((xi)i∈Z) = (xi+1)i∈Z

be the one sided shift and two sided shift respectively. We refer to Walters [Wal] for the
definitions and properties of dynamical systems used here. Note that Γ∞+ , Γ∞ are invariant
subsets of one sided and two sided shifts, i.e.

σ : Γ∞+ → Γ∞+ , σ : Γ∞ → Γ∞.

We call the above restrictons of σ as the dynamics (maps) induced by Γ. As Γ was assumed
to be closed it follows that Γ∞+ ,Γ∞ are closed too. Hence, we can define the topological
entropies h(σ

∣∣Γ∞+ ), h(σ
∣∣Γ∞) of the corresponding restrictions. We shall show that these

two entropies are equal. The above entropy is h(Γ).
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Denote by C(X) the Banach space of all continuous functions f : X → R. For
f ∈ C(X) it is possible to define the topological pressure P (Γ, f) as follows. First observe
that f induces the following continuous functions

f1 : Γ∞+ → R, f1((xi)∞1 ) = f(x1),
f2 : Γ∞ → R, f2((xi)i∈Z) = f(x1).

Let P (σ, f1), P (σ, f2) be the topological pressures of f1, f2 with respect to the map σ acting
on Γ∞+ , Γ∞ respectively. We shall show that the above topological pressures coincide. We
then let P (Γ, f) = P (σ, f1) = P (σ, f2).

Let T : X → X be a continuous map. Set Γ = Γ(T ) = {(x, y) : x ∈ X, y = T (x)}
be the graph of T . Denote by h(T ) the topological entropy of T . It then follows that
h(T ) = h(Γ). Indeed, observe that x 7→ orbT (x) = (T i−1(x))∞1 induces a homeomorphism
φ : X → Γ(T )∞+ such that T = φ−1 ◦ σ ◦ φ and the equality h(T ) = h(σ

∣∣Γ∞+ ) follows.
Similarly, for f ∈ C(X) we have the equality P (T, f) = P (σ, f1) = P (Γ(T ), f).

Let Γα, α ∈ A be a family of closed graphs in X ×X. Set

∨α∈AΓα = Closure(∪α∈AΓα).

Note that if A is finite then ∨Γα = ∪Γα. The dynamics of Γ = ∨Γα is called the product
dynamics induced by Γα, α ∈ A. Let Tα : X → X,α ∈ A be a set of continuous maps. Set

T = ∪α∈ATα, Γ(T ) = Closure(∪α∈AΓ(Tα)).

Then the dynamics of Γ(T ) is the dynamics of a semigroup S(T ) generated by T . If each
Tα, α ∈ A is a homeomorphism and T −1 = T then the dynamics of Γ(T ) is the dynamics
of a group G(T ) generated by T . Note that for a fixed x ∈ X the orbit of x is given by
the formula

orbT (x) = {(xi)∞1 , x1 = x, xi ∈ Closure(Tαi−1 ◦ · · · ◦ Tα1(x)), α1, ..., αi−1 ∈ A, i = 2, ..., }.

If A is finite then we can drop the closure in the above definition.
Let T be a set of continuous transformations of X as above. We then define

h(S(T )) = h(Γ(T )), P (S(T ), f) = P (Γ(T ), f), f ∈ C(X)

to be the entropy of S(T ) and the topological pressure of f with respect to the set of
generators T . In order to ensure that the above quantities are finite we shall assume that
T is a finite set. Given a finitely generated semigroup S of T : X → X let

h(S) = inf
T ,S=S(T )

h(S(T )), P (S, f) = inf
T ,S=S(T )

P (S(T ), f), f ∈ C(X).

Here, the infimum is taken over all finite generators of S.
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§2. Entropy of graphs on finite spaces

Let X be a finite space. We assume that X = {1, ..., n}. Then each Γ ⊂ X×X is in one
to one correspondence with a n×n 0−1 matrix A = (aij)n

1 . That is (i, j) ∈ Γ ⇐⇒ aij = 1.
As usual we let Mn({0 − 1}) be the set of 0 − 1 n × n matrices. For Γ ⊂ X × X we let
A(Γ) ∈ Mn({0− 1}) to be the matrix induced by Γ and for A ∈ Mn({0− 1}) we let Γ(A)
to be the graph induced by A. The assumption that Γk 6= ∅, k = 1, 2, ..., is equivalent
to ρ(A(Γ)) > 0 ⇐⇒ ρ(A(Γ)) ≥ 1. Here, for any A in the set of n × n complex valued
matrices Mn(C) we let ρ(A) to be the spectral radius of A. For Γ ⊂ X ×X consider the
sets Xl = πl,l(Γl), l = 2, ...,. It easily follows that X2 ⊃ X3 ⊃ · · ·Xn = Xn+1 = · · · = X ′.
Then Γl 6= ∅, l = 2, ..., iff X ′ 6= ∅. Set Γ′ = Γ ∩X ′ ×X ′. It then follows that Γ∞ = Γ′∞.
Moreover,

π1,∞(Γ∞) = π1,∞(Γ′∞) = Γ′∞+ ⊂ Γ∞+ .

Here the containment is strict iff X ′ 6= X. It is well known fact in symbolic dynamics that
if X ′ 6= ∅ then

h(σ
∣∣Γ∞+ ) = h(σ

∣∣Γ∞) = log ρ(A(Γ)) = log ρ(A(Γ′)) = h(σ
∣∣Γ′∞) = h(σ

∣∣Γ′∞+ ).

See for example [Wal]. We thus let h(Γ) - the entropy of the graph Γ to be any of the
above numbers. In fact, X ′ can be viewed as a limit set of the ”transformation” induced
by Γ on X ′. If ρ(A(Γ)) = 0, i.e. X ′ = ∅ we then let h(Γ) = log+ ρ(A(Γ)). Here,
log+ x = log max(x, 1).

Let Γα ⊂ X ×X, α ∈ A be a family of graphs. Set Aα = (a(α)
ij )n

1 = A(Γα), α ∈ A. It
then follows that

∨α∈AAα
def=(max

α∈A
a
(α)
ij )n

1 = A(∨α∈AΓα).

The Perron-Frobenius theory of nonnegative matrices yields straightforward that ρ(Aα) ≤
ρ(∨Aβ). This is equivalent to the obvious inequality h(Γα) ≤ h(∨Γβ). We now point out
that we can not obtain an upper bound on h(∨Γα) as a function of h(Γα), α ∈ A. It
suffices to pass to the corresponding matrices and their spectral radii. Let A = (aij)n

1 ∈
Mn({0 − 1}) matrix such that aij = 1 ⇐⇒ i ≤ j. Assume that B = AT . Then
ρ(A) = ρ(B) = 1, ρ(A ∨B) = n.

Let ‖ · ‖ : Cn → R+ be a norm on Cn. Denote by ‖ · ‖ : Mn(C) → R+ the induced
operator norm. Clearly, ρ(A) ≤ ‖A‖. Hence

ρ(∨α∈AAα) ≤ ρ(
∑

α∈A
Aα) ≤

∑

α∈A
‖Aα‖.

Thus
h(∨α∈AΓα) ≤ log+

∑

α∈A
‖Aα‖. (2.1)

In the next section we shall consider analogs of ‖A(Γ)‖ for which we have the inequality
(2.1) for any set A. For a graph Γ ⊂ X × X let ΓT = {(x, y) : (y, x) ∈ Γ}. That
is, A(ΓT ) = AT (Γ). A graph Γ is symmetric if ΓT = Γ. Assume that Γ is symmetric.
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It then follows that ρ(A(Γ)) = ‖A(Γ)‖ where ‖ · ‖ is the spectral norm on Mn(C), i.e.
‖A‖ = ρ(AA∗)

1
2 . Thus, for a family Γα, α ∈ A of symmetric graphs we have the inequalites

h(∨α∈AΓα) ≤ log
∑

α∈A
eh(Γα). (2.2)

More generally, for any family of graphs we have the inequalites

h(∨α∈AΓα) ≤ h(∨α∈A(Γα ∨ ΓT
α)) ≤ log

∑

α∈A
eh(Γα∨ΓT

α ). (2.3)

Let T : X → X be a transformation. Then A(T ) = A(Γ(T )) is a 0− 1 stochastic matrix,
i.e. each row of A(T ) contains exactly one 1. Vice versa, if A ∈ Mn({0−1}) is a stochastic
matrix then A = A(T ) for some transformation T : X → X. Furthermore, T : X → X
is a homeomorphism iff A(T ) is a permutation matrix. For T = {T1, ..., Tk} S(T ) is a
group iff each Ti is a homeomorphism, i.e. A(Ti) is a permutation matrix for i = 1, ..., k.
Clearly, any group of homeomorphisms S of X is a subgroup of the symmetric group
Sn, n = Card(X).

(2.4) Theorem. Let X be a finite space and assume that Ti : X → X, i = 1, ..., k, be a
set of transformation. Set

T = {T1, ..., Tk}, Γ = Γ(T ) = ∪k
1Γ(Ti), A = A(Γ).

Then h(S(T )) ≤ log k. Furthermore, h(S(T )) = 0 iff A(Γ′) is a permutation matrix.
Assume that k ≥ 2. Then h(S(T )) = log k iff there exists an irreducible component
X̂ ⊂ X ′ on which S(T ) acts transitively such that A(Γ ∩ X̂ × X̂) is 0 − 1 matrix with k
ones in each row. In particular, h(S({T, T−1})) = log 2 for T 2 6= Id. Assume finally that
S(T ) is a commutative group. Then h(S(T )) = log k′ for some integer 1 ≤ k′ ≤ k.

Proof. Recall that h(S(T )) = log ρ(A). As A(Ti) is a stochasic matrix it follows that
ρ(A(Ti)) = 1, i = 1, ..., k. Since A ≥ A(Ti) we deduce that ρ(A) ≥ 1. Thus, X ′ 6= ∅.
Then X ′ = ∪m

1 Xi, Xi ∩Xj = ∅, 1 ≤ i < j ≤ m. Here, A acts transitively on each Xi. Set
Γi = Γ ∩ Xi × Xi, Ai = A(Γi), i = 1, ..., m. Note that each Ai is an irreducible matrix.
It then follow that h(Γ) = max log ρ(Ai). Set ui : Xi → {1}. Then Aiui ≤ kui. The
minmax characterization of Wielandt for an irreducible Ai yields that ρ(Ai) ≤ k. The
equality holds iff each row of Ai has exactly k ones. Thus, h(Γ) = log k, k > 1 iff each row
of some Ai has k ones.

Assume next that T is a homeomorphism such that T 2 6= Id. Set Γ = Γ(T )∪Γ(T−1).
Then X ′ = X = ∪m

1 Xi and least one Xi contains more then one point. Clearly, this Ai

has two ones in each row and column. Hence, h(Γ) = log 2.
Assume now that G = S(T ) is a commutative group. Then X = X ′ = ∪m

1 Xl.
We claim that the following dichotomy holds for each pair Ti, Tj , i 6= j. Either Ti(x) 6=
Tj(x)∀x ∈ Xl or Ti(x) = Tj(x)∀x ∈ Xl. Indeed, assume that Ti(x) = Tj(x) for some x ∈
Xl. As G acts transitively on Xl and is commutative we deduce that Ti(x) = Tj(x)∀x ∈ Tl.
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Thus Γ(Ti) ∩ Xl × Xl, i = 1, ..., k, consists of kl distinct permutation matrices which do
not have any 1 in common. That is Γl = Γ∩Xl ×Xl is a matrix with kl ones in each row
and column. Hence,

h(Γl) = log kl, l = 1, ..., m, h(Γ) = log max
1≤l≤m

kl.

¦

(2.5) Theorem. Let X be a finite space of n points. If G is commutative then h(G) = log k
for some integer k which is not greater then the number of the minimal generators of G.
If G acts transitively on X or the restriciton of G to one of the irreducible (transitive)
components is faithful then k is the minimal number of generators of G. In particular, for
any G h(G) = 0 iff G is cyclic. For each n ≥ 3 there exists a group G which acts transitively
on X so that 0 < h(G) < log 2.

Proof. Assume first that G is commutative. Let T = {T1, ..., Tp} be a set of generators.
Theorem 2.4 yields that h(G(T )) = log k(T ), k(T ) ≤ p. Choose a minimal subset of
generators T ′ ⊂ T . Clearly, h(G(T ′)) ≤ h(G(T )). Thus, to compute h(G) it is enough to
assume that T consists of a minimal set of generators of G. Hence, h(G) = log k and k is
at most the number of the minimal generators of G.

Assume now that G acts transitively on X. The arguments of the proof of Theorem
2.4 yield that x ∈ X, Ti(x) 6= Tj(x) for i 6= j. Therefore, h(G(T )) = log p. In particular,
h(G) = log k where k is the minimal number of generators for G. Suppose now that X is
reducible under the action of G and the restriction of G to one of its irreducible components
is faithful. Then the above results yield that h(G) = log k where k is the minimal number
of generators of G.

Assume now that h(G) = 0. Let h(G) = h(G(T )). Assume first that G acts irreducibly
on X. If T consists of one element T we are done. Assume to the contrary that T =
{T1, ..., Tq}, q > 1. Then A(Γ) ≥ A(T1). Since A(Γ) is irreducible as G acts transitively,
and A(Γ) 6= A(T1) we deduce that ρ(A(Γ)) > 1. See for example [Gan]. This contradicts
our assumption that h(G) = 0. Hence, G is generated by one element, i.e. G is cyclic.
Assume now that X = ∪m

1 Xi is the decompostion of X to its irreducible components.
According to the above arguments Γ(T ) ∩Xi ×Xi is a permutation matrix. Hence Γ(T )
is a permutation matrix corresponding to the homeomorphism T . Thus G is generated by
T .

Assume that Card(X) = n ≥ 3. Let T : X → X be a homeomorphism that acts
transitively on X, i.e. Tn = Id, Tn−1 6= Id. Let Q : X → X, Q 6= T be another
homeomorphism so that Q(x) = T (x) for some x ∈ X. Set G = G({T,Q}). According to
Theorem 2.4 h(G({T,Q})) < log 2. Hence, h(G) < log 2. As G is not cyclic it follows that
h(G) > 0. ¦

It is an interesting problem to determine the entropy of a commutative group in the
general case.
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§3. Entropy of graphs on compact spaces

Let X be a compact metric space and Γ ⊂ X×X be a closed graph. As in the previous
section set Xl = πl,l(Γl), l = 2, ...,. Then {Xl}∞2 is a sequence of decreasing closed spaces.
Let X ′ = ∩∞2 Xl, Γ′ = Γ ∩X ′ ×X ′. Clearly,

Γ∞ = Γ′∞, π1,∞(Γ∞) = π1,∞(Γ′∞) = Γ′∞+ ⊂ Γ∞+ .

(3.1) Theorem. Let X be a compact metric space and Γ ⊂ X ×X be a closed set. Then

h(σ
∣∣Γ∞+ ) = h(σ

∣∣Γ′∞+ ) = h(σ
∣∣Γ∞),

P (Γ∞+ , f) = P (Γ′∞+ , f) = P (Γ∞, f), f ∈ C(X).

Proof. The equality h(σ
∣∣Γ∞+ ) = h(σ

∣∣Γ′∞+ ) follows from the observation that Γ′∞+ =
∩∞0 σl(Γ∞+ ). See [Wal, Cor. 8.6.1.]. We now prove the equality h(σ

∣∣Γ′∞+ ) = h(σ
∣∣Γ∞)

It is enough to assume that X ′ = X. Set X1 = Γ∞+ , X2 = Γ∞. Let π : X2 → X1 be
the projection π1,∞. It then follows that π(X2) = X1, π ◦ σ2 = σ1 ◦ π. Denote by σi the
restriction of σ to Xi and let hi = h(σi) be the topological entropy of σi. As σ1 is a factor
of σ2 one deduces h1 ≤ h2.

We now prove the reversed inequality h1 ≥ h2. Let Y be a compact metric space
and assume that T : Y → Y is a continuous transformation. Denote by Π(Y ) the set
of all probability measures on the Borel σ-algebra generated by all open sets of Y . Let
M(T ) ⊂ Π(Y ) be the set of all T -invariant probability measures. Assume that µ ∈M(T ).
Then one defines the Kolmogorov-Sinai entropy hµ(T ). The variational principle states
that

h(T ) = sup
µ∈M(T )

hµ(T ), P (T, f) = sup
µ∈M(T )

(
hµ(T ) +

∫
fdµ

)
, f ∈ C(X).

Let B2 be the σ-algebra generated by open sets in X2. An open set A ⊂ X2 is called
cylindrical if there exist p ≤ q with the following property. Let y ∈ πi,i(A). Then for i ≤ p

we have the property π2
1,1((π

2
2,2)

−1(y)) ⊂ πi−1,i−1(A). For i ≥ q we have the property
π2

2,2((π
2
1,1)

−1(y)) ⊂ πi+1,i+1(A). Let C ⊂ B2 be the finite Borel subalgebra generated by
open cylindrical sets. Note that each set in C is cylindrical. Since σ2 is a homeomorphism
it follows that for any µ ∈ M(σ2) B(C) o=B2. That is up a set of zero µ-measure every
set in B2 can be presented as a set in σ-Borel algebra generated by C. Let α ⊂ C be
a finite partition of X2. One then can define the entropy h(σ2, α) with respect to the
measure µ [Wal, Ch.4]. Since σ2 is a homeomorphism and µ is σ2 invariant it follows
that h(σ2, α) = h(σ2, σ

m
2 (α)) for any m ∈ Z. The assumption that B(C) o=B2 implies that

supα∈C h(σ2, α) = hµ(σ2). Taking m big enough in the previous equality we deduce that
it is enough to consider all finite partitions α ⊂ C with the following property. For each
A ∈ α and each i ≤ 1, y ∈ πi,i(A) we have the condition π2

1,1((π
2
2,2)

−1(y)) ⊂ πi−1,i−1(A).
It then follows that µ projects on µ′ ∈ M(σ1) and hµ(σ2) = hµ′(σ1). The variational
principle yields h2 ≤ h1 and the equalities of all three entropies are established.
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To prove the three equalities on the topological pressure we use the analogous argu-
ments for the topological pressure. ¦

Let h(Γ) to be one of the entropies in Theorem 3.1. We call h(Γ) the entropy of Γ.
For f ∈ C(X) we denote by P (Γ, f) to be one of the topological in Theorem 3.1. Let X
be a complete metric space with a metric d. Denote by B(x, r) the open ball of radius
r centered in x. Let B̄(x, r) = Closure(B(x, r)). We say that X is semi-Riemannian
of Hausdorff dimension n ≥ 0 if for every open ball B(x, r), 0 < r < δ the Hausdorff
dimension of B̄(x, r) is n and its Hausdorf volume vol(B̄(x, r)) satisfies the inequality

αrn ≤ vol(B̄(x, r))

for some 0 < α. Recall that if the Hausdorff dimension of a compact set Y ⊂ X is m then
its Hausdorff volume is defined as follows.

vol(Y ) = lim
ε→0

lim inf
xi,0<εi≤ε,i=1,...,k,∪B(xi,εi)⊃Y

k∑
1

εm
i .

The following lemma is a straightforward generalization of Bowen’s inequality [Bow], [Wal,
Thm. 7.15].

(3.2) Lemma. Let X be a semi-Riemannian compact metric space of Hausdorff dimension
n. Assume that T : X → X is Lipschitzian - d(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ X and
some λ ≥ 1. Suppose furthermore that X has a finite n dimensional Hausdorff volume.
Then h(T ) ≤ log λn.

Proof. As X is compact and semi-Riemannian it follows that X has the Hausdorff dimen-
sion n. Let N(k, ε) be the cardinality of the maximal (k, ε) separated set. Assume that
{x1, ..., xN(k,ε)} is a maximal (k, ε) separated set. That is for i 6= j

max
0≤l≤k−1

d(T l(xi), T l(xj)) > ε.

We claim that
B̄(xi, εk) ∩ B̄(xj , εk) = ∅, i 6= j, εk =

ε

3λk−1
.

This is immediate from the inequality d(T l(x), T l(y)) ≤ λld(x, y) and the (k, ε) separability
of {x1, ..., xN(k,ε)}. We thus deduce the obvious inequality

N(k,ε)∑

l=1

vol(B̄(xl, εk)) ≤ vol(X).

In the above inequality assume that ε ≤ δ. Then the lower bound on vol(B̄(xl, εk)) yields

N(k, ε) ≤ vol(X)3nλn(k−1)

αεn
.
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Thus

h(T ) = lim
ε→0

lim sup
k→∞

log N(k, ε)
k

≤ n log λ

and the proof of the lemma is completed. ¦

The above estimate can be improved as follows. Let X be a compact metric space
and T : X → X. Set

L(T ) = sup
x 6=y∈X

d(T (x), T (y))
d(x, y)

, L+(T ) = max(L(T ), 1).

Thus T is Lipschitzian iff L(T ) < ∞. Let

l(T ) = lim inf
k→∞

L
1
k
+(T k).

Note that T k is Lipschtzian for some k ≥ 1 iff l(T ) < ∞. l(T ) can be considered as
a generalization of the maximal Lyapunov exponent for the mapping T . As h(T k) =
kh(T ), k ≥ 0 from Lemma 3.2 we obtain.

(3.3) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimen-
sion n. Assume that T : X → X is a continuous map. Suppose furthermore that X has a
finite n dimensional Hausdorff measure. Then h(T ) ≤ n log l(T ).

We have in mind the following application. Let T : CP1 → CP1 be a rational map
of the Riemann sphere CP1. Let X = J(T ) be its Julia set. It is plausible to assume that
log l(T ) on X is the Lyapunov exponent corresponding to T and the maximal T -invariant
measure on X. Suppose that the Hausdorff dimension of X is n and X has a finite Hausdorff
volume. Assume furthermore that X is semi-Riemannian of Hausdorff dimension n. We
then can apply Theorem 3.3. As h(T ) = log deg(T ) we have the inequality deg(f) ≤ l(f)n.

(3.4) Theorem. Let X be a semi-Riemannian compact metric space of Hausdorff dimen-
sion n. Assume that Ti : X → X, i = 1, ..., m, are continuous maps. Let Γ(Ti) be the graph
of Ti = 1, ...,m. Set Γ = ∪m

1 Γ(Ti). Suppose furthermore that X has a finite n dimensional
Hausdorff volume. Then

h(Γ) ≤ log
m∑
1

L+(Ti)n.

.

Proof. It is enough to consider the nontrivial case where each Ti is Lipschitzian. In the
definitions of the metrics on Γk, Γ∞+ set

ρ > max
1≤i≤m

L+(Ti).
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Let M = {1, ..., m}. Then for ω = (ω1, ..., ωk−1) ∈ Mk−1 we let

Γ(ω) = {(xi)k
1 : x1 ∈ X, xi = Tωi−1 ◦ · · · ◦ Tω1(x1), i = 2, ..., k} ⊂ Γk, ω ∈ Mk−1.

Clearly, each Γ(ω) is isometric to X. Hence, the Hausdorff dimension of Γ(ω) is n and
vol(Γ(ω)) = vol(X). Furthermore, ∪ω∈Mk−1Γ(ω) = Γk. It then follows that each Γk

has Hausdorff dimension n, has finite Hausdorff volume not exceeding mk−1vol(X) and is
semi-Riemannian compact metric space of Hausdorff dimension n. Moreover, the volume
of any closed ball B̄(y, r) ⊂ Γk is at least αrn where α is the constant for X. Let Y = Γ∞+
and consider a maximal (k, ε) separated set in Y of cardinality N(k, ε) - yj ∈ Y, j =
1, ..., N(k, ε). That is

yj = (xj
i )
∞
i=1, (x

j
i , x

j
i+1) ∈ Γ, i = 1, ..., j = 1, ..., N(k, ε),

max
1≤i

d(xj
i , x

l
i)

ρ(i−k)+
> ε, 1 ≤ j 6= l ≤ N(k, ε).

Here, a+ = max(a, 0), a ∈ R. Fix ε, 0 < ε < δ. Assume that D is the diameter of X and
let K(ε) = dlogρD − logρεe. It then follows that

max
1≤i≤k+K(ε)

d(xj
i , x

l
i) > ε, 1 ≤ j 6= l ≤ N(k, ε). (3.5)

Set zj = (xj
i )

k+K(ε)
i=1 ⊂ Γk+K(ε), j = 1, ..., N(k, ε). Clearly,

{zj}N(k+K(ε))
1 = ∪ω∈Mk+K(ε)−1({zj}N(k,ε)

1 ∩ Γ(ω)) ⇒
N(k, ε) ≤

∑

ω∈Mk+K(ε)−1

Card({zj}N(k,ε)
1 ∩ Γ(ω)).

We now estimate Card({zj}N(k,ε)
1 ∩Γ(ω)) for a fixed ω = (ω1, ..., ωk+K(ε)−1) ∈ Mk+K(ε)−1.

For each zj = (xj
i )

k+K(ε)
i=1 ∈ Γ(ω) consider the closed set ball

B̄(zj , ε(ω)) ⊂ Γ(ω), ε(ω) =
ε

3
∏k+K(ε)−1

1 L+(Tωi)
.

(We restrict here our discussion to the compact metric space Γ(ω) with the metric in-
duced from Γk+K(ε).) Let zj 6= zl ∈ Γ(ω). The condition (3.5) yields that B̄(zj , ε(ω)) ∩
B̄(zl, ε(ω)) = ∅. As Γ(ω) is isometric to X we deduce that

Card({zj}N(k,ε)
1 ∩ Γ(ω)) ≤ vol(X)3n

∏k+K(ε)−1
i=1 L+(Tωi)

n

αεn
.

Hence,

N(k, ε) ≤
∑

ω∈Mk+K(ε)−1

vol(X)3n
∏k+K(ε)−1

i=1 L+(Tωi)
n

αεn
=

vol(X)3n
(∑m

i=1 L+(Ti)n
)k+K(ε)−1

αεn
.
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Thus

h(Γ) = lim
ε→0

lim sup
k→∞

logN(k, ε)
k

≤ log
n∑

i=1

L+(Ti)n

and the theorem is proved. ¦

We remark that the inequality of Theorem 3.4 holds if we replace the assumption that
X has a finite n-Hausdorff volume by the following one: the number of points of every
r − separated set in X does not exceed Cr−n for some positive constant C.

Let X satisfies the assumptions of Theorem 3.4. It then follows that for the Lips-
chitzian maps f : X → X the quantity L+(T )n is the ”norm” of the graph Γ(f) discussed
in §2.

(3.6) Lemma. Let X be a compact metric space and T : X → X be a noninvolutive
homeomorphism (T 2 6= Id). Then log 2 ≤ h(Γ(T ) ∪ Γ(T−1)). If T, T−1 : X → X are
noninvolutive isometries then h(Γ(T ) ∪ Γ(T−1)) = log 2.

Proof. Assume first that T has a periodic orbit Y = {y1, ..., yp} of period p > 2. Restrict
T, T−1 to this orbit. Theorem 2.4 yields the desired inequality. Assume now that we
have an infinite orbit yi = T i(y), i = 1, 2, ...,. Fix n ≥ 3. Let Yn = {y1, ..., yn}. Denote
by Γn ⊂ Yn × Yn the graph corresponding to the undirected linear graph on the vertices
y1, ..., yn. That (i, j) ∈ Γn ⇐⇒ |i− j| = 1. Clearly

Γ∞n ⊂ Γ∞, Γ = Γ(T ) ∪ Γ(T−1).

Hence h(Γn) ≤ h(Γ). Obviuosly, h(Γn) = logρ(A(Γn)). It is well known that ρ(A(Γn)) =
2cos π

n+1 . (The eigenvalues of A(Γn) are the roots of the Chebycheff polynomial.) Let
n →∞ and deduce h(Γ) ≥ log 2. Assume now that T and T−1 are noninvolutive isometries.
Then Theorem 3.4 and the above inequality implies that h(Γ(T ) ∪ Γ(T−1)) = log 2. ¦

Thus, Theorem 3.4 is sharp for m = 2. Similar examples using isometries and Theorem
2.4 show that Theorem 3.4 is sharp in general.

Let X be a compact metric space and Ti : X → X, i = 1, ..., m, be a set of continuous
transformations. Let T = {T1, ..., Tm}. Then h(S(T )) was defined to be the entropy of
the graph Γ = ∪m

1 Γ(Ti). As in the case of m = 1 this entropy can be defined in terms of
”(k, ε)” separated (spanning) sets as follows. Set

dk+1(x, y) = max( max
1≤i1,j1,...,ik,jk≤m,

d(Ti1 . . . Tik
(x), Tj1 . . . Tjk

(y)), d(x, y)), k = 1, 2, ..., .

Let M(k, ε) be the maximal cardinality the ε separated set in the metric dk.

(3.7) Lemma. Let X be a compact metric space and assume that Ti : X → X, i = 1, ..., m,
are continuous transformations. Then

h(S({T1, ..., Tm}) = lim
ε→0

lim sup
k→∞

log M(k, ε)
k

.
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Proof. From the definiton of the (k, ε) separated set for Γ∞+ it immediately follows that

M(k, ε) ≤ N(k, ε).

The arguments in the proof of Theorem 3.4 yield that

N(k, ε) ≤ M(k + K(ε))

and the lemma follows. ¦

§4. Approximating entropy of graphs by entropy of subshifts of finite type

Let X be a set. U = {U1, ..., Um} ⊂ 2X is called a finite cover of X if X = ∪m
1 Ui. The

cover U is called minimal if any strict subset of U is not a cover of X. Let Γ ⊂ X × X
be any subset. Introduce the following graph and its corresponding matrix on the space
< m >= {1, ...,m}:

U = {U1, ..., Um}, Γ(U) = {(i, j) : Γ ∩ Ui × Uj 6= ∅} ⊂< m > × < m >,

A(Γ(U)) = (aij)m
1 ∈ Mm({0− 1}), aij = 1 ⇐⇒ (i, j) ∈ Γ(U)}.

Note that Γ(U) induces a subshift of a finite type on < m >. Thus, log+ ρ(Γ(U)) is the
entropy of Γ induced by the cover U . Let V be also a finite cover of X. Then V is called
a refinement of U , written U < V, if every member of V is a subset of a member of U .
Assume that V = {V1, ..., Vm} is a refinement of U such that Vi ⊂ Ui, i = 1, ..., m. It then
follows that A(Γ(U)) ≥ A(Γ(V)) for any Γ ⊂ X × X. Hence, ρ(A(Γ(U))) ≥ ρ(A(Γ(V))).
If Ui ∩ Uj = ∅, 1 ≤ i < j ≤ m, then U is called a finite partition of X. Given a finite
minimal cover U = {U1, ..., Um} there always exist a partition V = {V1, ..., Vm} such that
Vi ⊂ Ui, i = 1, ...,m. Indeed, consider a partition U ′ corresponding to the subalgebra
generated by U . This partition is a refinement of U . Then each Ui is union of some sets
in U ′. Set V1 = U1. Let V2 ⊂ U2 be the union of sets of U ′ which are subsets of U2\U1.
Continue this process to construct V. In particular, ρ(A(T,U)) ≥ ρ(A(T,V)).

Let U < V be finite partitions of X. Assume that Γ ⊂ X × X. In general, there is
no relation between ρ(A(Γ(U))) and ρ(A(Γ(V))). Indeed, if A(Γ(V)) is a matrix whose all
entries are equal to 1 then A(Γ(U)) is also a matrix whose all entries are equal to 1. Hence

ρ(A(Γ(V))) = Card(V) > ρ(A(Γ(U))) = Card(U) ⇐⇒ U 6= V.

Assume now that Card(V) = n,A(Γ(V)) = (δ(i+1)j)n
1 , n + 1 ≡ 1 be the matrix cor-

responding to a cyclic graph on < n >. Suppose furthermore that n ≥ 3 and let
U1 = V1∪V2, Ui = Vi+1, i = 2, ..., n−1. It then follows that ρ(A(Γ(U))) > ρ(A(Γ(V))) = 1.

Let Fε, 0 < ε < 1 be a family of finite covers of X increasing in ε. That is, Fδ ⊂
Fε, 0 < δ ≤ ε < 1. Assume that Γ ⊂ X ×X be any set. We then set

e(Γ,F) = lim
ε→0+

inf
U∈Fε

log+ ρ(A(Γ(U))).

13



Thus, e(Γ,F) can be considered as the entropy of Γ induced by the family Fε. Its definition
is reminiscent of the definition of the Hausdorff dimension of a metric space X. Let U be
a finite cover of X. Clearly, A(ΓT (U)) = AT (Γ(U)). Hence, ρ(A(Γ(U))) = ρ(A(ΓT (U)))
and e(Γ,F) = e(ΓT ,F).

(4.1) Lemma. Let U = {U1, ..., Um} be a finite cover of compact metric space X. Assume
that diam(U)def= max diam(Ui) ≤ δ

2 . Let Γ ⊂ X ×X be a closed set. Assume that Nk(δ) is
the maximal cardinality of (k, δ) separated set for σ : Γ∞+ → Γ∞+ . Then

lim sup
k→∞

log Nk(δ)
k

≤ log ρ(A(Γ(U))).

Proof. Set

Ak(Γ(U)) = (a(k)
ij )m

1 , νk(U) =
m∑
1

a
(k−1)
ij .

Then νk(U) is counting the number of distinct point

(yi)k
1 ∈< m >k, (yi, yi+1) ∈ Γ(U), i = 1, ..., k − 1.

Let K(δ) be defined as in the proof of Theorem 3.4. We claim that N(k, δ) ≤ νk+K(δ)(U).
Indeed, assume that xi = (xi

j)
∞
j=1, i = 1, ..., N(k, δ), is a (k, δ) separated set. Then each

xi generates at least one point yi = (yi
1, ..., y

i
p) ∈< m >p as follows: xi

j ∈ Uyi
j
, j = 1, ..., p.

From (3.5) and the assumption that diam(U) < δ
2 we deduce that for p = k + K(δ)

i 6= l ⇒ yi 6= yl. Hence N(k, δ) ≤ νk+K(δ)(U). As a point xi may generate more then one
point yi in general we have strict inequality. Since A(T,U) is a nonnegative matrix it is
well known that

K1ρ(A)k ≤ νk ≤ K2k
m−1ρ(A(T,U))k, k = 1, ..., .

See for example [F-S]. The above inequalities yield the lemma. ¦

Let {Ui}∞1 be sequence of finite open covers such diam(Ui) → 0. Assume that Γ ⊂
X ×X is closed. Then {Ui}∞1 is called an approximation cover sequence for Γ if

limi→∞ log+ ρ(A(Γ(Ui))) = h(Γ).

Note as ρ(AT ) = ρ(A), ∀A ∈ Mn(C) and h(Γ) = h(ΓT ) we deduce that {Ui}∞1 is also an
approximation cover for ΓT . Use Lemma 4.1 and (2.2) for finite graphs to obtain sufficient
conditions for the validity of the inequality (2.2) for infinite graphs.

(4.2) Corollary. Let X be a compact metric space and ΓT
j = Γj ⊂ X ×X, j = 1, ..., m be

closed sets. Assume that there exist a sequence of open finite covers

{Ui}∞1 , lim
i→∞

diam(Ui) = 0,
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which is an approximation cover for Γ1, ..., Γm. Then

h(∪m
1 Γj) ≤ log

m∑
1

eh(Γj).

Let Z be a compact metric space and T : Z → Z is a homeomorphism. Then T is
called expansive if there exists δ > 0 such that

sup
n∈Z

d(Tn(x), Tn(y)) > δ,∀x, y ∈ Z, x 6= y.

A finite open cover U of Z is called a generator for homeomorphism T if for every bisequence
{Un}∞−∞ of members of U the set ∩∞n=−∞T−nŪn contains at most one point of X. If this
condition is replaced by ∩∞n=−∞Un then U is called a weak generator. A basic result due
to Keynes and Robertson [K-R] and Reddy [Red] claims that T is expansive iff T has
a generator iff T has a weak generator. See [Wal, §5.6]. Moreover, T is a factor of the
restriction of a shift S on a finite number of symbols to a closed S−invariant set ∆ [Wal,
Thm 5.24]. If ∆ is a subshift of a finite type then T is called FP. See [Fr] for the theory
of FP maps. In particular, for any expansive T , h(T ) < ∞.

Let Γ ⊂ X ×X be a closed set such that Γ∞ 6= ∅. Then Γ is called expansive if

sup
n∈Z

d(σn(x), σn(y)) > δ, ∀x, y ∈ Γ∞, x 6= y

for some δ > 0. A finite open cover U of X is called a generator for Γ if for every bisequence
{Un}∞−∞ of members of U the set

x = (xn)∞−∞ ∈ Γ∞, xn ∈ Ūn, n ∈ Z

contains at most one point of Γ∞. If this condition is replaced by xn ∈ Un then U is called
a weak generator. We claim that Γ is expansive iff Γ has a generator iff Γ has a weak
generator. Indeed, observe first that the condition that Γ is expansive is equivalent to the
assumption that σ is expansive on Γ∞. Let Vi = π−1

1,1(Ui) ⊂ X∞, i = 1, ..., m. That is, Vi

is an open cylindrical set in X∞ whose projection on the first coordinate is Ui while on all
other coordinates is X. Set Wi = Vi ∩ Γ∞, i = 1, ..., m. It now follows that W1, ..., Wm is
a standard set of generators for the map σ : Γ∞ → Γ∞.

Assume that T : X → X is expansive with the expansive constant δ. It is known
[Wal, Thm. 7.11] that

h(T ) = lim sup
k→∞

log N(k, δ0)
k

, δ0 <
δ

4
.

Thus, according to Lemma 4.1 h(Γ) ≤ log ρ(A(Γ(U))) if Γ is expansive with an expansive
constant δ and diam(U) < δ

8 . Assume that Ti : X → X, i = 1, ..., m, are expansive maps.
We claim that for m > 1 it can happen that h(∪m

1 Γ(Ti)) is infinite. Let T1 be Anosov
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map on the 2-torus X in the standard coordinates. Now change the coordinates in X by a
homeomorphism and let T2 be Anosov with respect to the new coordinates. It is possible
to choose a homeomorphism (which is not diffeo!) so that that T2 ◦T1 contains horseshoes
of arbitrary many folds. Hence h(Γ(T1) ∪ Γ(T2) ≥ h(T2 ◦ T1) = ∞.

§5. Entropy of semigroups of Möbius transformations

Let X ⊂ CPn be an irreducible smooth projective variety of complex dimension n.
Assume that Γ ⊂ X×X be a projective variety such that the projections πi,i : Γ → X, i =
1, 2 are onto and finite to one. Then Γ can be viewed as a graph of an algebraic function.
In algebraic geometry such a graph is called a correspondence. Furthermore, Γ induces a
linear operator

Γ∗ : H∗,a(X) → H∗,a(X), H∗,a(X) =
n∑

j=0

H2j,a(X),

Γ∗ : H2j,a(X) → H2j,a(X), j = 0, ..., n.

Here, H2j,a(X) is the homology generated by the algebraic cycles of X of complex dimen-
sion j over the rationals Q. Indeed, if Y ⊂ X is an irreducible projective variety then
Γ∗([Y ]) = [π2

2,2((π
2
1,1)

−1(Y ))]. Let ρ(Γ∗) be the spectral radius of Γ∗. Assume that first
that Γ is irreducible. In [Fri3] we showed that h(Γ) ≤ log ρ(Γ∗). However our arguments
apply also to the case Γ is reducible. We also conjectured in [Fri3] that in the case that
Γ is irreducible we have the equality h(Γ) = log ρ(Γ∗). We now doubt the validity of
this conjecture. We will show that in the reducible case we can have a strict inequality
h(Γ) < log ρ(Γ∗). Let Γi ⊂ X×X, i = 1, ...,m, be algebraic correspondences as above. Set
Γ = ∪m

1 Γi. Then

Γ∗ =
m∑
1

Γ∗i , h(Γ) ≤ logρ(
m∑
1

Γ∗i ).

Thus, there is a close analogy between the entropy of algebraic (finite to one) correspon-
dences and entropy of shifts of finite types. Consider the simplest case of the above situa-
tion. Let X = CP1 be the Riemann sphere and Γ be an algebraic curve given by a poly-
nomial p(x, y) = 0 on some chart C2 ⊂ CP1 ×CP1. Let d1 = degy(p), d2 = degx(p), d1 ≥
1, d2 ≥ 1. It then follows that ρ(Γ∗) = max(d1, d2). Note that ρ(Γ∗) = 1 iff Γ is the
graph of a Möbius transformation. Observe next that if fi : CP1 → CP1, i = 1, ..., m, are
nonconstant rational maps then the correspondance given by p(x, y) =

∏m
1 (y − fi(x)) is

induced by Γ = ∪m
1 Γ(fi). In particular,

h(Γ) ≤ log
m∑
1

deg(fi). (5.1)

Here, by deg(fi) we denote the topological degree of the map fi. Combine the above
inequality with Lemma 3.6 to deduce that for any noninvolutive Möbius transformation f
we have the equality h(Γ(f) ∪ Γ(f−1)) = log 2.
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(5.2) Lemma. Let f, g : CP1 → CP1 be two Möbius transformations such that x as a
common fixed attracting point of f and g and y is a common repelling point of f and g,
Then h(Γ(f) ∪ Γ(g)) = 0.

Proof. We may assume that

f = az, g = bz, 0 < |a|, |b| < 1.

Set Γ = Γ(f) ∪ Γ(g). It the follows that for any point ζ = (zi)∞1 6= η = (∞)∞1 σl(z)
converges to the fixed point ξ = (0)∞1 . That is, the nonwondering set of σ is the set {ξ, η}
on which σ acts trivially. Hence h(Γ) = 0. ¦

(5.3) Lemma. Let f, g : CP1 → CP1 be two parabolic Möbius transformation with the
same fixed point -∞, i.e. f = z + a, g = z + b. If either a, b are linearly independent over
R or b = αa, α ≥ 0 then h(Γ(f) ∪ Γ(g)) = 0.

Proof. Let Γ = Γ(f) ∪ Γ(g), η = (∞)∞1 . If ether a, b are linearly independent over R
or b = αa, α > 0, a 6= 0 then for any point ζ ∈ Γ∞+ σl(ζ) converges to the fixed point η.
Hence h(Γ) = 0. Suppose next that a = b = 0. Then σ is the identity map on Γ∞+ and
h(Γ) = 0. Assume finally that b = 0, a 6= 0. Then Ω limit set of σ consists of all points
ζ = (zi)∞1 , zi = z1, i = 2, ...,. So σ

∣∣Ω is identity and h(Γ) = 0. ¦

(5.4) Theorem. Let T = z +a,Q = z + b, ab 6= 0 be two Möbius transformations of CP1.
Assume that there b

a is a negative rational number. Then

h(Γ) = − |a|
|a|+ |b| log

|a|
|a|+ |b| −

|b|
|a|+ |b| log

|b|
|a|+ |b| .

We first state an approximation lemma which will be used later.

(5.5) Lemma. Let X be compact metric space and T : X → X be a continuous trans-
formation. Assume that we have a sequence of closed subsets Xi ⊂ X, i = 1, ..., which are
T−invariant, i.e. T (Xi) ⊂ Xi, i = 1, 2, ...,. Suppose furthermore that ∀δ > 0∃M(δ) with
the following property. ∀x ∈ X\Xi∃y = y(x, i) ∈ Xi, supn≥0 d(Tn(x), Tn(y)) ≤ δ for each
i > M(δ). Then limi→∞ h(T

∣∣Xi) = h(T ).

Proof. Observe first that h(T ) ≥ h(T
∣∣Xi). Thus it is left to show

lim inf
i→∞

h(T
∣∣Xi) ≥ h(T ).

Let N(k, ε), Ni(k, ε) be the cardinality of maximal (k, ε) separating set of X and Xi re-
spectively. Clearly, Ni(k, ε) ≤ N(k, ε). Let x1, ..., xN(k,ε) be a (k, ε) separating set of X.
Then

∀i > M(
ε

4
), ∀xj∃yj,i ∈ Xi, sup

n≥0
d(Tn(xj), Tn(yj,i)) ≤ ε

4
.
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Hence, yj,i, j = 1, ..., N(k, ε), is ε
2 separated set in Xi. In particular, N(k, ε) ≤ Ni(k, ε

2 ), i >
M( ε

4 ). Thus

lim sup
k→∞

log N(k, ε)
k

≤ lim sup
k→∞

log Ni(k, ε
2 )

k
≤ h(T

∣∣Xi), i > M(
ε

4
).

The characterization of h(T ) yields the lemma. ¦

Proof of Theorem 5.4. W.l.o.g. (without loss of generality) we may assume that
a = p, b = −q where p, q are two positive coprime integers. First note that CP1 is foliated
by the invariant lines =z = Const. Hence, the maximal characterization of h(σ) as the
supremum over all measure entropy hµ(σ) for all extremal σ invariant measures yields that
it enough to restrict ourselves to the action of T, Q on (closure of) the real line. Using the
same argument again it is enough to consider the action on the lattice Z ⊂ R plus the
point at ∞. We may view Y = Z ∪ {∞} as a compact subspace of S1 = {z : |z| = 1}.

0 7→ 1,∞ 7→ −1, j 7→ e
π
√
−1(1+2j)

2j , 0 6= j ∈ Z.

For a positive integer i let Yi = {−ipq,−ipq + 1, ..., ipq − 1, ipq}. Set

Γ = Γ(T ) ∪ Γ(Q) ⊂ Y × Y, X = Γ∞+ , Γi = Γ ∩ Yi × Yi, Xi = (Γi)∞+ , i = 1, ..., .

We will view a point x = (xj)∞1 ∈ X a path of a particle who starts at time 1 at x1 and
jumps from the place xi at time i to the place xi+1 at time i+1. At each point of the lattice
Z a particle is allowed to jump p steps forward and q backwards. The point ξ = (∞)∞1 is
the fixed point of our random walk. Observe next that Γi is a subshift of a finite type on
2ipq + 1 points corresponding to the random walk in which a particle stays in the space
Yi. Note that Ai = A(Γi) is a matrix whose almost each row (column) sums to two,
except the first and the last max(p, q)− 1 rows (columns). Moreover, h(σ

∣∣Xi) = log ρ(Ai).
We claim that X, Xi = 1, ..., satisfy the assumption of Lemma 5.5. That is any point
x = (xj)∞1 ∈ X can be approximated up to an arbitrary ε > 0 by yi = (yj,i)∞j=1 ∈ Xi for
i > M(ε). We assume that i > L some fixed big L. Suppose first that xj > ipq, j = 1, ...,.
That is the path described by the vector x never enters Xi. Then consider the following
path yi = (yj,i)∞j=1 ∈ Xi. It starts at the point ipq, i.e. y1,i = ipq. Then it jumps p
times to the left to the point (i − 1)pq. Then it the particle jumps q time to the right
back to the the point ipq and so on. Clearly, supn≥0 d(σn(x), σn(yi)) ≤ d((i − 1)pq,∞).
Hence for i big enough the above distance is less than ε. Same arguments apply to the case
xj < −ipq, j = 1, ...,. Consider next a path x = (xj)∞1 which starts outside Xi and then
enters Xi at some time. If the particle enters to Xi and then stays for a short time, e.g.
≤ pq, every time it enters Xi then we can approximate this path by a path looping around
the vertex ipq or −ipq in Xi as above. Now suppose that we have a path which enters to
Xi at least one time for a longer period of time. We then approximate this path by a path
(yi,j)∞j=1 ∈ Xi such that this path coincide with x for all time when x is in Xi except the
short period when x leaves Xi. One can show that such path exists. (Start with the simple
example p = 1, q = 2.) It then follows that supn≥0 d(σn(x), σn(yi)) ≤ d((i−K)pq,∞) for
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some K = K(p, q). If i is big enough then we have the desired approximation. Lemma 5.5
yields

h(Γ) = lim
i→∞

log ρ(Ai).

We now estimate log ρ(Ai) from above and from below. Recall the well known formula for
the spectral radius of a nonnegative n× n matrix A:

ρ = lim sup
m→∞

(
trace(Am)

) 1
m = lim sup

m→∞

(
max

1≤j≤n
a
(m)
jj

) 1
m , Am = (a(m)

ij )n
1 .

Let A = Ai. We now estimate a
(m)
jj . Obviously, a

(m)
jj is positive if m = (p+ q)k as we have

to move kq times to the right and kp times to the left. Assume that m = (p + q)k. To
estimate a

(m)
jj we assume that we have an uncostrained motion on Z. Then the number of

all possible moves on Z bringing us back to the original point is equal to

((p + q)k)!
(qk)!(pk)!

≤ K
√

p + q
(p + q)(p+q)k

qqkppk
.

The last part of inequality follows from the Stirling formula for some suitable K. The
characterization of ρ(A) gives the inequality

log ρ(Ai) ≤ log α = log(p + q)− p

p + q
log p− q

p + q
log q.

We thus deduce the upper bound on h(Γ) ≤ log α. Let 0 < δ < α. The Stirling formula
yields that for k > M(δ)

((p + q)k)!
(qk)!(pk)!

≥ (α− δ)(p+q)k.

Fix k > M(δ) and let i > k. Then for m = (p + q)k

a
(m)
00 =

((p + q)k)!
(qk)!(pk)!

.

Clearly,
ρ(A)m = ρ(Am) ≥ a

(m)
00 .

Thus, h(Γ) ≥ log ρ(Ai) ≥ log(α− δ). Let δ → 0 and deduce the theorem. ¦

Note that h(Γ) is the entropy of the Bernoulli shift on two symbols with the distri-
bution ( p

p+q , q
p+q ). This can be explained by the fact that to have a closed orbit of length

k(p + q) we need move to the right kq times and to the left kp. That is, the frequency of
the right motion is q

p+q and the left motion is p
p+q . It seems that Theorem 5.4 remains

valid as long as a
b is a real negative number.

(5.6) Theorem. Let f, g : CP1 → CP1 be two parabolic Möbius transformations with the
same fixed point - ∞, i.e. f = z + a, g = z + b where a, b are linearly independent over R.
Let Γ = Γ(f) ∪ Γ(f−1) ∪ Γ(g) ∪ Γ(g−1). Then h(Γ) = log 4.
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Proof. The orbit of any fixed point z ∈ C under the action of the group generated by
f, g is a lattice in C which has one accumulation point ∞ ∈ CP1. Let Y is defined in the
proof of Theorem 5.4. Consider the dynamics of σ × σ on Yj × Yj , for j = 1, ..., as in the
proof Theorem 5.4. It then follows that h(Γ) = 2h(σ

∣∣X) = 2 log 2. ¦

Let T = {f1, ..., fk} be a set of k - Möbius transformations. Set Γ = ∪k
1Γ(fi). Then

(5.1) yields h(Γ) ≤ log k. Our examples show that we may have a strict inequality even
for the case k = 2. Let Γ be the correspondence of the Gauss arithmetic-geometric mean
y2 = (x+1)2

4x [Bul2]. Our inequality in [Fri3] yield that h(Γ) ≤ log 2. According to
Bullet [Bul2] it is possible to view the dynamics of Γ as a factor of the dynamics of
Γ̃ = Γ(f1) ∪ Γ(f2) for some two Möbius transformations f1, f2. Hence, h(Γ) ≤ h(Γ̃). If
h(Γ̃) < log 2 we will have a counterexample to our conjecture that h(Γ) = log 2. Even
if h(Γ̃) = log 2 we can still have the inequality h(Γ) < log 2 as the dynamics of Γ is a
subfactor of the dynamics of h(Γ̃). Thus, it would be very interesting to compute h(Γ).

Assume that T generates nonelementary Kleinian group. Theorem 2.5 suggests that
eh(Γ) may have a noninteger value. It would be very interesting to find such a Kleinian
group.

We now state an open problem which is inspired by Furstenberg’s conjecture [Fur].
Assume that 1 < p < q are two co-prime integers. (More generally pm = qn ⇒ m = n = 0.)
Let

f, g : CP1 → CP1, T1(z) = zp, T2(z) = zq, z ∈ C1, f(∞) = g(∞). = ∞
Note that for f and g 0,∞ are two attractive points with the interior and the exterior of the
unit disk as basins of attraction respectively. Thus, the nontrivial dynamics takes place on
the unit circle S1. Note that f◦g = g◦f . Hence f and g have common invariant probability
measures. LetM be the convex set of all probability measures invariant under f, g. Denote
by E ⊂ M the set of the extreme points of M in the standard w∗ topology. Then E is
the set of ergodic measures with respect to f, g. (For a recent discussion on the common
invariant measure of a semigroup of commuting transformation see [Fri4]). Furstenberg’s
conjecture (for p = 2, q = 3) is that any ergodic measure µ ∈ E is either supported on a
finite number of points or is the Lebesgue (Haar) measure on S1. See [Rud] and [K-S]
for the recent results on this conjecture. Let G be the semigroup generated by T = {f, g}.
Then (0.2) for X = S1 or the results of [Fri3] yield the inequality h(G(T )) ≤ log(p + q).
What is the value of h(G(T ))? It is plausible to conjecture equality in this inequality.
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