Perron-Frobenius theorem for nonnegative multilinear forms and extensions

Shmuel Friedland
Univ. Illinois at Chicago

JRI workshop on eigenvalues of nonnegative tensors 18 December, 2010, Hong-Kong

Overview

(1) Perron-Frobenius theorem for irreducible nonnegative matrices
(2) Irreducibility and weak irreducibility for tensors
(3) Perron-Frobenius for irreducible tensors
(4) Rank one approximation of tensors
(5) Nonnegative multilinear forms
(6) Monotone homogeneous maps
(Polynomial homogeneous maps
(8) Collatz-Wielandt
(9) Power iterations
(0) Numerical counterexamples

Nonnegative irreducible and primitive matrices

$A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ induces digraph $D G(A)=D G=(V, E)$
$V=[n]:=\{1, \ldots, n\}, E \subseteq[n] \times[n],(i, j) \in E \Longleftrightarrow a_{i j}>0$
DG strongly connected, SC,
if for each pair $i \neq j$ there exists a dipath from i to j
Claim: $D G S C$ iff for each $\emptyset \neq I \subset[n] \exists j \in[n] \backslash /$ s.t. $(i, j) \in E$
A-primitive if $A^{N}>0$ for some $N>0 \Longleftrightarrow A^{N}\left(\mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}\right) \subset$ int \mathbb{R}_{+}^{n}
A primitive $\Longleftrightarrow A$ irreducible and g.c.d of all cycles in $D G(A)$ is one

Perron-Frobenius theorem

PF: $A \in \mathbb{R}_{+}^{n}$ irreducible. Then $0<\rho(A) \in \operatorname{spec}(A)$ algebraically simple $\mathbf{x}, \mathbf{y}>\mathbf{0} A \mathbf{x}=\rho(A) \mathbf{x}, \boldsymbol{A}^{\top} \mathbf{y}=\rho(\boldsymbol{A}) \mathbf{y}$.
$A \in \mathbb{R}_{+}^{n \times n}$ primitive iff in addition to above $|\lambda|<\rho(\boldsymbol{A})$ for $\lambda \in \operatorname{spec}(A) \backslash\{\rho(A)\}$

Collatz-Wielandt:
$\rho(A)=\min _{\mathbf{x}>0} \max _{i \in[n]} \frac{(A \mathbf{x})_{i}}{x_{i}}=\max _{\mathbf{x}>0} \min _{i \in[n]} \frac{(A \mathbf{x})_{i}}{x_{i}}$

SVD

$A \in \mathbb{R}^{m \times n}, \sigma_{1}(A) \geq \ldots \geq 0$ singular values
$A \mathbf{y}_{i}=\sigma_{i}(A) \mathbf{x}_{i}, A^{\top} \mathbf{x}_{i}=\sigma_{i}(A) \mathbf{y}_{i}$
$\pm \sigma_{i}(A), i=1, \ldots$ are critical values of $f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} A \mathbf{y}$
restricted to $\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1$
SVD of A closely related to spectral theory
$B=\left[\begin{array}{cc}0_{m \times m} & A \\ A^{\top} & 0_{n \times n}\end{array}\right], \quad-\lambda(B)=\boldsymbol{\lambda}(B)$
positive singular values are the positive eigenvalues of B
$\sigma_{1}(A)=\max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1} \mathbf{y}^{\top} A \mathbf{x}$

SVD of nonnegative matrices

Perron-Frobenius for $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{m \times n}$:
$\mathbf{u} \in \mathbb{R}_{+}^{m}, \mathbf{v} \in \mathbb{R}_{+}^{n}, \mathbf{u}^{\top} \mathbf{u}=\mathbf{v}^{\top} \mathbf{v}=1 A \mathbf{v}=\sigma_{1}(A) \mathbf{u}, A^{\top} \mathbf{u}=\sigma_{1}(A) \mathbf{v}$
$\sigma_{1}(A)=\max _{\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n},\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1} \mathbf{x}^{\top} A \mathbf{y}=\mathbf{u}^{\top} A \mathbf{v}$.
$G(A):=D G(B)=G(B)=\left(V_{1} \cup V_{2}, E\right)$ bipartite graph on $V_{1}=[m], V_{2}=[n],(i, j) \in E \Longleftrightarrow a_{i j}>0$.

If $G(A)$ connected. Then \mathbf{u}, \mathbf{v} unique, $\sigma_{2}(A)<\sigma_{1}(A)$, (as B-irreducible).

Irreducibility and weak irreducibility of nonnegative tensors

$\mathcal{F}:=\left[f_{i_{1}}, \ldots, i_{d}\right] \in \otimes_{i=1}^{d} \mathbb{R}^{m_{i}}=\mathbb{R}^{m_{1} \times \cdots \times m_{d}}$ is called d-tensor, $(d \geq 3)$
$\mathcal{T} \geq 0$ if $\mathcal{T} \in \mathbb{R}_{+}^{m_{1} \times \cdots \times m_{d}}$
$G(\mathcal{F})=(V, E(\mathcal{F})), V=\cup_{j=1}^{d} V_{j}, d$-partite graph $V_{j}=\left[m_{j}\right], j \in[d]$.
$\left(i_{k}, i_{l}\right) \in V_{k} \times V_{l}, k \neq I$ is in $E(\mathcal{F})$ iff $f_{i_{1}, i_{2}, \ldots, i_{d}}>0$ for some $d-2$ indices $\left\{i_{1}, \ldots, i_{d}\right\} \backslash\left\{i_{k}, i_{l}\right\}$.
\mathcal{F} weakly irreducible if $G(\mathcal{F})$ is connected.
\mathcal{F} irreducible: for each $\emptyset \neq I \varsubsetneqq V, J:=V \backslash I$ there exists $k \in[d]$, $i_{k} \in I \cap V_{k}$ and $i_{j} \in J \cap V_{j}$ for each $j \in[d] \backslash\{k\}$ such that $f_{i_{1}, \ldots, i_{d}}>0$.

Claim: irreducible implies weak irreducible

Perron-Frobenius theorem for nonnegative tensors I

$\mathcal{T}=\left[t_{i}, \ldots, i_{d}\right] \in \otimes_{i=1}^{d} \mathbb{C}^{n}$ maps \mathbb{C}^{n} to itself
$\mathcal{T}(\mathbf{x})_{i}=\sum_{i_{2}, \ldots, i_{d} \in[n]} t_{i, i_{2}, \ldots, i_{d}} x_{i_{2}} \ldots x_{i_{d}}, i \in[n]$
\mathcal{T} has eigenvector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{C}^{n}$ with eigenvalue λ :
$\mathcal{T}(\mathbf{x})_{i}=\lambda x_{i}^{d-1}$ for all $i \in[n]$
Assume: $\mathcal{T} \geq 0, \mathcal{T}\left(\mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}\right) \subseteq \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$
$\mathcal{T}_{1}: \Pi_{n} \rightarrow \Pi_{n}, \quad \mathbf{x} \mapsto \frac{1}{\sum_{i=1}^{n} \mathcal{T}(\mathbf{x})_{i}^{\frac{1}{d-1}}}(\mathcal{T}(\mathbf{x}))^{\frac{1}{d-1}}$
Brouwer fixed point: $\mathbf{x} \ngtr \mathbf{0}$ eigenvector with $\lambda>0$ eigenvalue
Problem When there is a unique positive eigenvector with maximal eigenvalue?

Perron-Frobenius theorem for nonnegative tensors II

Theorem Chang-Pearson-Zhang 2009 [2]
Assume $\mathcal{T} \in\left(\otimes_{i=1}^{d} \mathbb{R}^{n}\right)_{+}$is irreducible.
Then there exists a unique nonnegative eigenvector which is positive with the corresponding maximum eigenvalue λ. Furthermore the Collatz-Wielandt characterization holds
$\lambda=\min _{\mathbf{x}>0} \max _{i \in[n]} \frac{(\mathcal{T}(\mathbf{x}))_{i}}{x_{i}^{d-1}}=\max _{\mathbf{x}>0} \min _{i \in[n]} \frac{(\mathcal{T}(\mathbf{x}))_{i}}{x_{i}^{d-1}}$

Rank one approximations for 3-tensors

$$
\begin{aligned}
& \mathbb{R}^{m \times n \times I} \text { IPS: }\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, I} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|_{2}=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle} \\
& \langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)
\end{aligned}
$$

Rank one approximations for 3-tensors

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|_{2}=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{x}(\mathcal{T})\|_{2}^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|_{2}^{2}=\|\operatorname{Px}(\mathcal{T})\|_{2}^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|_{2}^{2}$
Best rank one approximation of \mathcal{T} :

Rank one approximations for 3-tensors

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|_{2}=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{x}(\mathcal{T})\|_{2}^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|_{2}^{2}=\|\operatorname{Px}(\mathcal{T})\|_{2}^{2}+\|\mathcal{T}-\operatorname{Px}(\mathcal{T})\|_{2}^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|_{2}=\min _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=\|\mathbf{z}\|_{2}=1, a}\|\mathcal{T}-\mathbf{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|_{2}$

Equivalent: $\max _{\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=\|\mathbf{z}\|_{2}=1}^{\sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k} .}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors

Nonnegative multilinear forms

Associate with $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{d}}\right] \in \mathbb{R}_{+}^{m_{1} \times \ldots \times m_{d}}$
a multilinear form $f\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{d}\right): \mathbb{R}^{m_{1} \times \ldots \times m_{d}} \rightarrow \mathbb{R}$
$f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)=\sum_{i_{j} \in\left[m_{j}, j \in[d]\right.} t_{i_{1}, \ldots, i_{d}} x_{i_{i}, 1} \ldots x_{i_{d}, d}$,
$\mathbf{x}_{i}=\left(x_{1}, i, \ldots, x_{m_{i}, i} \in \mathbb{R}^{m_{i}}\right.$
For $\mathbf{u} \in \mathbb{R}^{m}, p \in(0, \infty]$ let $\|\mathbf{u}\|_{p}:=\left(\sum_{i=1}^{m}\left|u_{i}\right|^{p}\right)^{\frac{1}{p}}$ and $\mathrm{S}_{p,+}^{m-1}:=\left\{\mathbf{0} \leq \mathbf{u} \in \mathbb{R}^{m},\|\mathbf{u}\|_{p}=1\right\}$

For $p_{1}, \ldots, p_{d} \in(1, \infty)$ critical point $\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{d}\right) \in \mathrm{S}_{p_{1},+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{p_{d},+}^{m_{d}-1}$ of $f \mid \mathrm{S}_{p_{1},+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{p_{d},+}^{m_{d}-1}$ satisfies Lim [1]:
$\sum t_{i, \ldots, \ldots, i_{d}} x_{i, 1} \ldots x_{i_{j-1}, j-1} x_{i_{j+1}, j+1} \ldots x_{i, d}=\lambda x_{i, j}^{p_{j}-1}$,
$i_{j} \in\left[m_{j}\right], \mathbf{x}_{j} \in \mathrm{~S}_{m_{j},+}^{p_{j}-1}, j \in[d]$

Perron-Frobenius theorem for nonnegative multilinear forms

Theorem- Friedland-Gauber-Han [3]
$f: \mathbb{R}^{m_{1}} \times \ldots \times \mathbb{R}^{m_{d}} \rightarrow \mathbb{R}$, a nonnegative multilinear form,
\mathcal{T} weakly irreducible and $p_{j} \geq d$ for $j \in[d]$.
Then f has unique positive critical point on $\mathrm{S}_{+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{+}^{m_{d}-1}$. If \mathcal{F} is irreducible then f has a unique nonnegative critical point which is necessarily positive

Eigenvectors of homogeneous monotone maps on \mathbb{R}_{+}^{n}

Hilbert metric on $\mathbb{P R}_{>0}^{n}$: for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}, \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}>\mathbf{0}$.
Then $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\max _{i \in[n]} \log \frac{y_{i}}{x_{i}}-\min _{i \in[n]} \log \frac{y_{i}}{x_{i}}$.
$\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right)^{\top}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous:
$\mathbf{F}(t \mathbf{x})=t \mathbf{F}(\mathbf{x})$ for $t>0, \mathbf{x}>\mathbf{0}$, and monotone $\mathbf{F}(\mathbf{y}) \geq \mathbf{F}(\mathbf{x})$ if $\mathbf{y} \geq \mathbf{x}>\mathbf{0}$. \mathbf{F} induces $\hat{\mathbf{F}}: \mathbb{P R}_{>0}^{n} \rightarrow \mathbb{P R}_{>0}^{n}$

F nonexpansive with respect to Hilbert metric $\operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq \operatorname{dist}(\mathbf{x}, \mathbf{y})$.
$\alpha_{\max } \mathbf{x} \leq \mathbf{y} \leq \beta_{\min } \mathbf{X} \Rightarrow$
$\alpha_{\max } \mathbf{F}(\mathbf{x})=\mathbf{F}\left(\alpha_{\max } \mathbf{x}\right) \leq \mathbf{F}(\mathbf{y}) \leq \mathbf{F}\left(\beta_{\min } \mathbf{x}\right)=\beta_{\min } \mathbf{F}(\mathbf{x})$
$\Rightarrow \operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq \log \frac{\beta_{\text {min }}}{\alpha_{\text {max }}}=\operatorname{dist}(\mathbf{x}, \mathbf{y})$
$\mathbf{x}>\mathbf{0}$ eigenvector of \mathbf{F} if $\mathbf{F}(\mathbf{x})=\lambda \mathbf{F}(\mathbf{x})$.
So $\mathbf{x} \in \mathbb{P R}_{+}^{n}$ fixed point of $\mathbf{F} \mid \mathbb{P} \mathbb{R}_{+}^{n}$.

Existence of positive eigenvectors of F

1. If \mathbf{F} contraction: $\operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq K \operatorname{dist}(\mathbf{x}, \mathbf{y})$ for $K<1$, then \mathbf{F} has unique fixed point in $\mathbb{P R}_{+}^{n}$ and power iterations converge to the fixed point
2. Use Brouwer fixed and irreducibility to deduce existence of positive eigenvector
3. [4, Theorem 2]: for $u \in(0, \infty), J \subseteq[n]$ let $\mathbf{u}_{J}=\left(u_{1}, \ldots, u_{n}\right)^{\top}>\mathbf{0}$: $u_{i}=u$ if $i \in J$ and $u_{i}=1$ if $i \notin J . F_{i}\left(\mathbf{u}_{J}\right)$ nondecreasing in u. di-graph $\mathcal{G}(\mathbf{F}) \subset[n] \times[n]:(i, j) \in \mathcal{G}(\mathbf{F})$ iff $\lim _{u \rightarrow \infty} F_{i}\left(\mathbf{u}_{\{j\}}\right)=\infty$.

Thm: $\mathbf{F}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous and monotone. If $\mathcal{G}(\mathbf{F})$ strongly connected then \mathbf{F} has positive eigenvector

Uniqueness and convergence of power method for F

Thm 2.5, Nussbaum 88: F: $\mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous and monotone. Assume; $\mathbf{u}>\mathbf{0}$ eigenvector \mathbf{F} with the eigenvalue $\lambda>0, \mathbf{F}$ is C^{1} in some open neighborhood of $\mathbf{u}, \boldsymbol{A}=\mathrm{DF}(\mathbf{u}) \in \mathbb{R}_{+}^{n \times n} \rho(A)(=\lambda)$ a simple root of $\operatorname{det}(x I-A)$. Then \mathbf{u} is a unique eigenvector of \mathbf{F} in $\mathbb{R}_{>0}^{n}$.

Cor 2.5, Nus88: In the above theorem assume $A=\mathrm{DF}(\mathbf{u})$ is primitive. Let $\psi \geqslant \mathbf{0}, \psi^{\top} \mathbf{u}=1$.
Define $\mathbf{G}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n} \mathbf{G}(\mathbf{x})=\frac{1}{\psi^{\top} \mathbf{F}(\mathbf{x})} \mathbf{F}(\mathbf{x})$
Then $\lim _{m \rightarrow \infty} \mathbf{G}^{\circ m}(\mathbf{x})=\mathbf{u}$ for each $\mathbf{x} \in \mathbb{R}_{>0}^{n}$.

Outline of the uniqueness of pos. crit. point of f

Define: $F: \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime} \rightarrow \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime}$:
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{i, 1}=\left(\|\mathbf{x}\|_{p}^{p-3} \sum_{j=k=1}^{n, l} t_{i, j, k} y_{j} z_{k}\right)^{\frac{1}{p-1}}, i=1, \ldots, m$
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{j, 2}=\left(\|\mathbf{y}\|_{p}^{p-3} \sum_{i=k=1}^{m, l} t_{i, j, k} x_{i} z_{k}\right)^{\frac{1}{p-1}}, j=1, \ldots, n$
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{k, 3}=\left(\|\mathbf{z}\|_{p}^{p-3} \sum_{i=j=1}^{m, n} t_{i, j, k} x_{i} y_{j}\right)^{\frac{1}{p-1}}, k=1, \ldots, l$
Assume $\sum_{j=k=1}^{n, l} t_{i, j, k}>0, i=1, \ldots, m$,
$\sum_{i=k=1}^{m, I} t_{i, j, k}>0, j=1, \ldots, n, \sum_{i=j=1}^{m, n} t_{i, j, k}>0, k=1, \ldots, l$
F 1-homogeneous monotone, maps open positive cone $\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime}$ to itself.
$\mathcal{T}=\left[t_{i, j, k}\right]$ induces tri-partite graph on $\langle m\rangle,\langle n\rangle,\langle I\rangle$:
$i \in\langle m\rangle$ connected to $j \in\langle n\rangle$ and $k \in\langle I\rangle$ iff $t_{i, j, k}>0$, sim. for j, k
If tri-partite graph is connected then F has unique positive eigenvector If F completely irreducible, i.e. F^{N} maps nonzero nonnegative vectors to positive, nonnegative eigenvector is unique and positive

Perron-Frobenius theorem for nonnegative polynomial maps

$\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)^{\top}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ polynomial map $\operatorname{deg} P_{i}=d_{i} \geq 1$ with nonnegative coefficients. Let $\delta_{i} \geq d_{i}, i \in[n]$.
Consider the system $P_{i}(\mathbf{x})=\lambda x_{i}^{\delta_{i}}, i \in[n], \mathbf{x} \geq \mathbf{0}$
Assume \mathbf{P} weakly irreducible. Then for each $a, p>0 \exists!\mathbf{x}>\mathbf{0}$, depending on a, p, satisfying above equation and $\|\mathbf{x}\|_{p}=a$.
If \mathbf{P} irreducible then above system has a unique solution, depending on a, p satisfying $\|\mathbf{x}\|_{p}=a$, with all coordinates positive

Collatz-Wielandt

Collatz-Wielandt [1, Lemma 2.8]:
$\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)^{\top}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, P_{i}$ homogeneous polynomial of degree
$d \geq 1$ with nonnegative coefficients.
Assume \mathbf{P} weakly irreducible. Then there exists unique scalar λ, \mathbf{u} with
$P_{i}(\mathbf{u})=\lambda u_{i}^{d}, i \in[n]$ which satisfies
$\lambda=\inf _{\mathbf{x} \in \text { interior } \mathbb{R}_{+}^{n}} \max _{i \in[n]} \frac{P_{i}(\mathbf{x})}{x_{i}^{d}}=$
$\sup _{\mathbf{x} \in \mathbb{R}_{+}^{n} \backslash\{0\}} \min _{\substack{i \in[n] \\ x_{i} \neq 0}} \frac{P_{i}(\mathbf{x})}{x_{i}^{d}}$

Geometric convergence of power algorithm

\mathbf{P} weakly primitive if the di-graph $\mathbf{G (P)}$ is strongly connected and if the gcd of the lengths of its circuits is equal to one.
Cor. 2.5, Nussbaum 88 yields
Thm: Let \mathbf{P} and d be above and assume that \mathbf{P} is weakly primitive. Then
$x_{i}^{(k+1)}=\left(\psi^{\top} \mathbf{F}\left(\mathbf{x}^{(k)}\right)\right)^{-1} F_{i}\left(\mathbf{x}^{(k)}\right), k=1, \ldots$,
converges to the unique vector $\mathbf{u} \in$ interior \mathbb{R}_{+}^{n} satisfying $P_{i}(\mathbf{u})=\lambda u_{i}^{d}, i \in[n]$, where $\psi^{\top} \mathbf{u}=1$

Numerical counterexamples

Numerical counterexamples

$$
\mathcal{F}:=\left[f_{i, j, k}\right] \in \mathbb{R}_{+}^{2 \times 2 \times 2}: f_{1,1,1}=f_{2,2,2}=a>0 \text { otherwise, } f_{i, j, k}=b>0 .
$$

$$
f(\mathbf{x}, \mathbf{y}, \mathbf{z})=b\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)\left(z_{1}+z_{2}\right)+(a-b)\left(x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}\right) .
$$

Numerical counterexamples

$\mathcal{F}:=\left[f_{i, j, k}\right] \in \mathbb{R}_{+}^{2 \times 2 \times 2}: f_{1,1,1}=f_{2,2,2}=a>0$ otherwise, $f_{i, j, k}=b>0$.
$f(\mathbf{x}, \mathbf{y}, \mathbf{z})=b\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)\left(z_{1}+z_{2}\right)+(a-b)\left(x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}\right)$.
For $p_{1}=p_{2}=p_{3}=p>1$ positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z}=\left(0.5^{1 / p}, 0.5^{1 / p}\right)^{\top}$.

Numerical counterexamples

$\mathcal{F}:=\left[f_{i, j, k}\right] \in \mathbb{R}_{+}^{2 \times 2 \times 2}: f_{1,1,1}=f_{2,2,2}=a>0$ otherwise, $f_{i, j, k}=b>0$.
$f(\mathbf{x}, \mathbf{y}, \mathbf{z})=b\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)\left(z_{1}+z_{2}\right)+(a-b)\left(x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}\right)$.
For $p_{1}=p_{2}=p_{3}=p>1$ positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z}=\left(0.5^{1 / p}, 0.5^{1 / p}\right)^{\top}$.
For $a=1.2, b=0.2$ and $p=2$ additional positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.9342,0.3568)^{\top}$,
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.3568,0.9342)^{\top}$.

Numerical counterexamples

$\mathcal{F}:=\left[f_{i, j, k}\right] \in \mathbb{R}_{+}^{2 \times 2 \times 2}: f_{1,1,1}=f_{2,2,2}=a>0$ otherwise, $f_{i, j, k}=b>0$.
$f(\mathbf{x}, \mathbf{y}, \mathbf{z})=b\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)\left(z_{1}+z_{2}\right)+(a-b)\left(x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}\right)$.
For $p_{1}=p_{2}=p_{3}=p>1$ positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z}=\left(0.5^{1 / p}, 0.5^{1 / p}\right)^{\top}$.
For $a=1.2, b=0.2$ and $p=2$ additional positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.9342,0.3568)^{\top}$,
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.3568,0.9342)^{\top}$.
For $a=1.001, b=0.001$ and $p=2.99$ additional positive singular vectors:
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.9667,0.4570)^{\top}$,
$\mathbf{x}=\mathbf{y}=\mathbf{z} \approx(0.4570,0.9667)^{\top}$

References I

园M．Akian，S．Gaubert，and A．Guterman．Tropical polyhedra are equivalent to mean payoff games，Eprint arXiv：0912．2462， 2009.
國 K．C．Chang，K．Pearson，and T．Zhang，Perron－Frobenius theorem for nonnegative tensors，Commun．Math．Sci．6，（2008），507－520．
固 S．Friedland，S．Gauber and L．Han，Perron－Frobenius theorem for nonnegative multilinear forms，arXiv：0905．1626．
回 S．Gaubert and J．Gunawardena，The Perron－Frobenius theorem for homogeneous，monotone functions，Trans．Amer．Math．Soc． 356 （2004），4931－4950．

References II

E.H. Lim, Singular values and eigenvalues of tensors: a variational approach, CAMSAP 05, 1 (2005), 129-132.
: M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl. 31 (2009), 1090-1099.
圁 R. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Memoirs Amer. Math. Soc., 1988, vol. 75.
: L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005), 1302-1324.

