From nonnegative matrices to nonnegative tensors

Shmuel Friedland Univ. Illinois at Chicago

Workshop on Linear Algebra & Applications, 17 October, 2011 Hamilton Institute, National University of Ireland

Shmuel Friedland Univ. Illinois at Chicago () From nonnegative matrices to nonnegative ter

- Perron-Frobenius theorem for *irreducible* nonnegative matrices
- Irreducibility and weak irreducibility for tensors
- Perron-Frobenius for irreducible tensors
- 8 Kingman, Karlin-Ost and Friedland inequalities
- Maxplus eigenvalues of tensors
- Friedland-Karlin characterization of spectral radius
- Oiagonal scaling
- 8 Rank one approximation of tensors
- Nonnegative multilinear forms

Nonnegative irreducible and primitive matrices

 $A = [a_{ij}] \in \mathbb{R}^{n \times n}_+$ induces digraph DG(A) = DG = (V, E)

 $V = [n] := \{1, \ldots, n\}, \ E \subseteq [n] \times [n], \ (i, j) \in E \iff a_{ij} > 0$

DG strongly connected, SC, if for each pair $i \neq j$ there exists a dipath from *i* to *j*

Claim: DG SC iff for each $\emptyset \neq I \subset [n]$ $\exists j \in [n] \setminus I$ and $i \in I$ s.t. $(i, j) \in E$

A -primitive if $A^N > 0$ for some $N > 0 \iff A^N(\mathbb{R}^n_+ \setminus \{\mathbf{0}\}) \subset \operatorname{int} \mathbb{R}^n_+$

A primitive \iff A irreducible and g.c.d of all cycles in DG(A) is one

< 🗇 > < 🖻 > < 🖻 >

PF: $A \in \mathbb{R}^n_+$ irreducible. Then $0 < \rho(A) \in \text{spec}(A)$ algebraically simple $\mathbf{x}, \mathbf{y} > \mathbf{0} A \mathbf{x} = \rho(A) \mathbf{x}, A^\top \mathbf{y} = \rho(A) \mathbf{y}.$

 $A \in \mathbb{R}^{n \times n}_+$ primitive iff in addition to above $|\lambda| < \rho(A)$ for $\lambda \in \text{spec} (A) \setminus \{\rho(A)\}$

Collatz-Wielandt:

$$\rho(\mathbf{A}) = \min_{\mathbf{x} > \mathbf{0}} \max_{i \in [n]} \frac{(\mathbf{A}\mathbf{x})_i}{x_i} = \max_{\mathbf{x} > \mathbf{0}} \min_{i \in [n]} \frac{(\mathbf{A}\mathbf{x})_i}{x_i}$$

Irreducibility and weak irreducibility of nonnegative tensors

 $\mathcal{F} := [f_{i_1,...,i_d}]_{i_1=...=i_d}^n \in (\mathbb{C}^n)^{\otimes d}$ is called *d*-cube tensor, ($d \ge 3$)

 $\mathcal{F} \ge 0$ if all entries are nonnegative

 \mathcal{F} irreducible: for each $\emptyset \neq I \subsetneq [n]$, there exists $i \in I, j_2, \ldots, j_d \in J := [n] \setminus I$ s.t. $f_{i,j_2,\ldots,j_d} > 0$.

 $D(\mathcal{F})$ digraph ([n], A): $(i, j) \in A$ if there exists $j_2, \ldots, j_d \in [n]$ s.t. $f_{i, j_2, \ldots, j_d} > 0$ and $j \in \{j_2, \ldots, j_d\}$.

 \mathcal{F} weakly irreducible if $D(\mathcal{F})$ is strongly connected.

Claim: irreducible implies weak irreducible

For d = 2 irreducible and weak irreducible are equivalent

Example of weak irreducible and not irreducible $n = 2, d = 3, f_{1,1,2}, f_{1,2,1}, f_{2,1,2}, f_{2,2,1} > 0$ and all other entries of \mathcal{F} are zero

Perron-Frobenius theorem for nonnegative tensors I

 $\mathcal{F} = [f_{i_1, \dots, i_d}] \in (\mathbb{C}^n)^{\otimes d}$ maps \mathbb{C}^n to itself $(\mathcal{F}\mathbf{X})_i = f_{i,\bullet}\mathbf{X} := \sum_{i_0,\ldots,i_d \in [n]} f_{i,i_0,\ldots,i_d} x_{i_0} \ldots x_{i_d}, \ i \in [n]$ Note we can assume f_{i, j_2, \dots, j_d} is symmetric in i_2, \dots, i_d . \mathcal{F} has eigenvector $\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{C}^n$ with eigenvalue λ : $(\mathcal{F}\mathbf{x})_i = \lambda x_i^{d-1}$ for all $i \in [n]$ Assume: $\mathcal{F} > 0, (\mathcal{F}\mathbb{R}^n_+ \setminus \{\mathbf{0}\}) \subset \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ $\mathcal{F}_1: \Pi_n \to \Pi_n, \quad \mathbf{X} \mapsto \frac{1}{\sum_{i=1}^n (\mathcal{F}\mathbf{X})_i^{\frac{1}{d-1}}} (\mathcal{F}\mathbf{X})_i^{\frac{1}{d-1}}$

Brouwer fixed point: $\mathbf{x} \geqq \mathbf{0}$ eigenvector with $\lambda > \mathbf{0}$ eigenvalue

Problem When there is a unique positive eigenvector with maximal eigenvalue?

Theorem Chang-Pearson-Zhang 2009 [2] Assume $\mathcal{F} \in ((\mathbb{R}^n)^{\otimes d})_+$ is irreducible. Then there exists a unique nonnegative eigenvector which is positive with the corresponding maximum eigenvalue λ . Furthermore the Collatz-Wielandt characterization holds

$$\lambda = \min_{\mathbf{x}>0} \max_{i \in [n]} \frac{(\mathcal{F}\mathbf{x})_i}{x_i^{d-1}} = \max_{\mathbf{x}>0} \min_{i \in [n]} \frac{(\mathcal{F}\mathbf{x})_i}{x_i^{d-1}}$$

Theorem Friedland-Gaubert-Han 2011 [5] Assume $\mathcal{F} \in ((\mathbb{R}^n)^{\otimes d})_+$ is weakly irreducible. Then there exists a unique positive eigenvector with the corresponding maximum eigenvalue λ .

Furthermore the Collatz-Wielandt characterization holds

Generalization of Kingman inequality: Friedland-Gaubert

Kingman's inequality: $D \subset \mathbb{R}^m$ convex, $A : D \to \mathbb{R}^{n \times n}_+, A(\mathbf{t}) = [a_{ij}(\mathbf{t})]$, each log $a_{ij}(\mathbf{t}) \in [-\infty, \infty)$ is convex, (entrywise logconvex) then log $\rho(A) : D \to [-\infty, \infty)$ convex, $(\rho(A(\cdot))$ logconvex) Generalization: $\mathcal{F} : D \to ((\mathbb{R}^n)^{\otimes d})_+$ entrywise logconvex then $\rho(\mathcal{T}(\cdot))$ is logconvex (L. Qi & collaborators)

Proof Outline:

$$\mathcal{F}^{\circ s} = [f^{s}_{i_{1},...,i_{d}}], \ (0^{0} = 0), \ \mathcal{F} \circ \mathcal{G} = [f_{i_{1},...,i_{d}}g_{i_{1},...,i_{d}}]$$

 $\begin{array}{l} \mathsf{GKI:} \ \rho(\mathcal{F}^{\circ\alpha}\circ\mathcal{G}^{\circ\beta})\leq (\rho(\mathcal{F}))^{\alpha}(\rho(\mathcal{G}))^{\beta}, \ \alpha,\beta\geq \mathsf{0}, \alpha+\beta=\mathsf{1} \ (*)\\ \mathsf{Assume} \ \mathcal{F},\mathcal{G}>\mathsf{0}, \ \mathcal{F}\mathbf{x}=\rho(\mathcal{F})\mathbf{x}^{\circ(d-1)}, \ \mathcal{G}\mathbf{x}=\rho(\mathcal{G})\mathbf{y}^{\circ(d-1)} \end{array}$

Hölder's inequality for $p = \alpha^{-1}$, $q = \beta^{-1}$ yields $((\mathcal{F}^{\circ\alpha} \circ \mathcal{G}^{\circ\beta})(\mathbf{x}^{\circ\alpha} \circ \mathbf{y}^{\circ\beta}))_i \leq (\mathcal{F}\mathbf{x})_i^{\alpha}(\mathcal{G}\mathbf{x})_i^{\beta} = (\rho(\mathcal{F}))^{\alpha}(\rho(\mathcal{G}))^{\beta}(x_i^{\alpha}y_i^{\beta})^{d-1}$ Collatz-Wielandt implies (*)

Karlin-Ost and Friedland inequalities-FG

$$\rho(\mathcal{F}^{\circ s})^{\frac{1}{s}}$$
 non-increasing on $(0, \infty)$ (*)
Assume $\mathcal{F} > 0$, $s > 1$ use $\|\mathbf{y}\|_s$ non-increasing
 $(\mathcal{F}^{\circ s}\mathbf{x}^{\circ s})^{\frac{1}{s}}_i \leq (\mathcal{F}\mathbf{x})_i = \rho(\mathcal{F})x_i^{d-1}$
use Collatz-Wielandt

$$\rho_{\mathsf{trop}}(\mathcal{F}) = \lim_{s \to \infty} \rho(\mathcal{F}^{\circ s})^{\frac{1}{s}}$$
 - the tropical eigenvalue of \mathcal{F} .

if \mathcal{F} weakly irreducible then \mathcal{F} has positive tropical eigenvector $\max_{i_2,...,i_d} f_{i,i_2,...,i_d} x_{i_2} \dots x_{i_d} = \rho_{\text{trop}}(\mathcal{F}) x_i^{d-1}, \quad i \in [n], \mathbf{x} > \mathbf{0}$

$$\begin{split} \rho(\mathcal{F} \circ \mathcal{G}) &\leq \rho(\mathcal{F}^{\frac{1}{2}} \circ \mathcal{G}^{\frac{1}{2}})^{2} \leq \rho(\mathcal{F})\rho(\mathcal{G}) \\ \rho(\mathcal{F} \circ \mathcal{G}) &\leq \rho(\mathcal{F}^{\circ p})^{\frac{1}{p}}\rho(\mathcal{G}^{q})^{\frac{1}{q}}, \ \frac{1}{p} + \frac{1}{q} = 1 \\ p &= 1, q = \infty \quad \Rightarrow \rho(\mathcal{F} \circ \mathcal{G}) \leq \rho(\mathcal{F})\rho_{\text{trop}}(\mathcal{G}) \\ \text{pat}(\mathcal{G}) \ pattern \ of \ \mathcal{G}, \ \text{tensor with } 0/1 \ \text{entries obtained by replacing} \\ \text{every non-zero entry of } \mathcal{G} \ \text{by } 1. \\ \mathcal{F} &= \text{pat}(\mathcal{G}) \Rightarrow \rho(\mathcal{G}) \leq \rho(\text{pat}(\mathcal{G}))\rho_{\text{trop}}(\mathcal{G}) \end{split}$$

Characterization of $\rho_{trop}(\mathcal{F}) - I$

Friedland 1986: $\rho_{\text{trop}}(A)$ is the maximum geometric average of cycle products of $A \in \mathbb{R}^{n \times n}_+$.

 $D(\mathcal{F}) := ([n], Arc), (i, j) \in Arc \text{ iff } \sum_{j_2, \dots, j_d} f_{i, j_2, \dots, j_d} x_{j_2} \dots x_{j_d} \text{ contains } x_j.$ d - 1 cycle on [m] vertices is d - 1 outregular strongly connectedsubdigraph $D = ([m], Arc) \text{ of } D(\mathcal{F}),$

i.e. the digraph adjacency matrix $A(D) = [a_{ij}] \in \mathbb{Z}_+^{m \times m}$ of subgraph is irreducible with each row sum d - 1.

$$A(D)\mathbf{1} = (d-1)\mathbf{1}, \mathbf{v}^{\top}A(D) = (d-1)\mathbf{v}^{\top}, \mathbf{v} = (v_1, \dots, v_m)^{\top} > \mathbf{0}$$

probability vector

Assume for simplicity d - 1 cycle on [m]weighted-geometric average: $\prod_{i=1}^{m} (f_{i,j_2(i),...,j_d(i)})^{v_i}$

Friedland-Gaubert: $\rho_{trop}(\mathcal{F})$ is the maximum weighted-geometric average of d - 1 cycle products of $\mathcal{F} \in ((\mathbb{R}^n)^{\otimes d})_+$

Cor. $\rho_{trop}(\mathcal{F})$ is logconvex in entries of \mathcal{T} .

More general results Akian-Gaubert [1] $\mathcal{Z} = (z_{i_1,...,i_d}) \in ((\mathbb{R}^n)^{\otimes d})_+ \text{ occupation measure:}$ $\sum_{i_1,...,i_d} z_{i_1,...,i_d} = 1 \text{ and for all } k \in [n]$ $\sum_{i,\{j_2,...,j_d\} \ni k} z_{i,j_2,...,i_d} = (d-1) \sum_{m_2,...,m_d} z_{k,m_2,...,m_d}$ first sum is over $i \in [n]$ and all $j_2, \ldots, j_d \in [n]$ s. t. $k \in \{j_2, \ldots, j_d\}$ Def: $\mathbf{Z}_{n,d}$ all occupation measures

Thm: log
$$\rho_{\text{trop}}(\mathcal{F}) = \max_{\mathcal{Z} \in \mathbf{Z}_{n,d}} \sum_{j_1,...,j_d \in [n]} z_{j_1,...,j_d} \log f_{i_1,...,i_d}$$

Proof: The extreme points of occupational measures correspond to geometric average

$$\begin{aligned} \mathcal{F} &= [f_{i_1,...,i_d}] \in ((\mathbb{R}^n)^{\otimes d})_+ \text{ is diagonally similar to} \\ \mathcal{G} &= [g_{i_1,...,i_d}] \in ((\mathbb{R}^n)^{\otimes d})_+ \text{ if} \\ \\ g_{i_1,...,i_d} &= e^{-(d-1)t_{i_1} + \sum_{j=2}^d t_{i_j}} f_{i_1,...,i_d} \text{ for some } \mathbf{t} = (t_1,...,t_n)^\top \in \mathbb{R}^n \\ \\ \\ \text{Diagonally similar tensors have the same eigenvalues and spectral radius} \end{aligned}$$

generalization of Engel-Schneider [3], (Collatz-Wielandt) $\rho_{\text{trop}}(\mathcal{F}) = \inf_{(t_1,...,t_n)^\top \in \mathbb{R}^n} \max_{i_1,...,i_d} e^{-(d-1)t_{i_1} + \sum_{j=2}^d t_{i_j}} f_{i_1,...,i_d}$ Friedland-Karlin 1975: $A \in \mathbb{R}^{n \times n}_+$ irreducible, $A\mathbf{u} = \rho(A)\mathbf{u}, A^{\top}\mathbf{v} = \rho(A)\mathbf{v},$ $\mathbf{u} \circ \mathbf{v} = (u_1v_1, \dots, u_nv_n) > \mathbf{0}$ probability vector: $\log \rho(\operatorname{diag}(e^t)A) \ge \log \rho(A) + \sum_{i=1}^{n} u_i v_i t_i$ (graph of convex function above its supporting hyperplane)

$$(e^{t}\mathcal{F})_{i_{1},...,i_{d}}=e^{t_{i_{1}}}f_{i_{1},...,i_{d}}$$

GFKI: \mathcal{F} is weakly irreducible. $A := D(\mathbf{u})^{-(d-2)}\partial(\mathcal{F}\mathbf{x})(\mathbf{u}), A\mathbf{u} = \rho(A)\mathbf{u}, A^{\top}\mathbf{v} = \rho(A)\mathbf{v} \text{ and } \mathbf{u} \circ \mathbf{v} > \mathbf{0}$ probability vector

 $\log \rho(\operatorname{diag}(\boldsymbol{e^{t}})\mathcal{F}) \geq \log \rho(\mathcal{F}) + \sum_{i=1}^{n} u_{i} v_{i} t_{i}$

 \mathcal{F} super-symmetric: $\mathcal{F}\mathbf{x} = \nabla \phi(\mathbf{x}), \phi$ homog. pol. degree d

 $\log \rho(\operatorname{diag}(\boldsymbol{e^{t}})\mathcal{F}) \geq \log \rho(\mathcal{F}) + \sum_{i=1}^{n} u_{i}^{d} t_{i}, \quad \sum_{i=1}^{n} u_{i}^{d} = 1$

Generalized Friedland-Karlin inequality II

$$\min_{\mathbf{x}>0} \sum_{i=1}^{n} u_i v_i \log \frac{(\mathcal{F}\mathbf{x})_i}{x_i^{d-1}} = \log \rho(\mathcal{F}) (*)$$
equality iff **x** the positive eigenvector of \mathcal{F} .

Gen. Donsker-Varadhan: $\rho(\mathcal{F}) = \max_{\mathbf{p}\in\Pi_n} \inf_{\mathbf{x}>\mathbf{0}} \sum_{i=1}^n p_i \frac{(\mathcal{F}\mathbf{x})_i}{x_i^{d-1}} (**)$ Prf: For $\mathbf{x} = \mathbf{u}$ RHS $(**) \le \rho(\mathcal{T})$. For $\mathbf{p} = \mathbf{u} \circ \mathbf{v} (*) \Rightarrow$ RHS $(**) = \rho(\mathcal{F})$.

Gen. Cohen:
$$\rho(\mathcal{F})$$
 convex in $(f_{1,\dots,1},\dots,f_{n,\dots,n})$:
 $\rho(\mathcal{F}+\mathcal{D}) = \max_{\mathbf{p}\in\Pi_n} (\sum_{i=1}^n p_i d_{i,\dots,i} + \inf_{\mathbf{x}>\mathbf{0}} \sum_{i=1}^n p_i \frac{(\mathcal{F}\mathbf{x})_i}{x_i^{d-1}})$

GFK: \mathcal{F} weakly irreducible, positive diagonal, $\mathbf{u}, \mathbf{v} > 0, \mathbf{u} \circ \mathbf{v} \in \Pi_n$, $\exists \mathbf{t}, \mathbf{s} \in \mathbb{R}^n \text{ s.t. } e^{t_{i_1}} f_{i_1,...,i_d} e^{s_{i_2} + \dots + s_{i_d}}$ with eigenvector \mathbf{u} and \mathbf{v} left eigenvector of $D(\mathbf{u})^{-(d-2)} \partial \mathcal{F} \mathbf{x}(\mathbf{u})$

PRF: Strict convex function $g(\mathbf{z}) = \sum_{i=1}^{n} u_i v_i (\log \mathcal{F}e^{\mathbf{z}} - (d-1)z_i)$ achieves unique minimum for some $\mathbf{z} = \log \mathbf{x}$, as $g(\partial(\mathbb{R}^n_+ \setminus \{\mathbf{0}\}) = \infty$

 \mathcal{F} super-symmetric and $\mathbf{v} = \mathbf{u}^{d-1}$ then $\mathbf{t} = \mathbf{s}$

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$$0 \leq \mathcal{T} = [t_{i,j,k}] \in \mathbb{R}^{m \times n \times l} \text{ has given row, column and depth sums:}$$

$$\mathbf{r} = (r_1, \dots, r_m)^\top, \mathbf{c} = (c_1, \dots, c_n)^\top, \mathbf{d} = (d_1, \dots, d_l)^\top > \mathbf{0}:$$

$$\sum_{j,k} t_{i,j,k} = r_i > 0, \ \sum_{i,k} t_{i,j,k} = c_j > 0, \ \sum_{i,j} t_{i,j,k} = d_k > 0$$

$$\sum_{i=1}^m r_i = \sum_{j=1}^n c_j = \sum_{k=1}^l d_k$$

Find nec. and suf. conditions for scaling:

 $\mathcal{T}' = [t_{i,j,k} e^{x_i + y_j + z_k}], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}' has given row, column and depth sum

Solution: Convert to the minimal problem:

 $\min_{\mathbf{r}^{\top}\mathbf{x}=\mathbf{c}^{\top}\mathbf{y}=\mathbf{d}^{\top}\mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x},\mathbf{y},\mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x},\mathbf{y},\mathbf{z})=\sum_{i,j,k} t_{i,j,k} e^{x_i+y_j+z_k}$

Any critical point of f_T on $S := {\mathbf{r}^\top \mathbf{x} = \mathbf{c}^\top \mathbf{y} = \mathbf{d}^\top \mathbf{z} = 0}$ gives rise to a solution of the scaling problem (Lagrange multipliers) f_{-} is convex

 f_T is convex

 $f_{\mathcal{T}}$ is strictly convex implies \mathcal{T} is not decomposable: $\mathcal{T} \neq \mathcal{T}_1 \oplus \mathcal{T}_2$. For matrices indecomposability is equivalent to strict convexity if f_T is strictly convex and is ∞ on ∂S , f_T achieves its unique minimum

Equivalent to: the inequalities $x_i + y_j + z_k \le 0$ if $t_{i,j,k} > 0$ and equalities $\mathbf{r}^{\top} \mathbf{x} = \mathbf{c}^{\top} \mathbf{y} = \mathbf{d}^{\top} \mathbf{z} = 0$ imply $\mathbf{x} = \mathbf{0}_m, \mathbf{y} = \mathbf{0}_n, \mathbf{z} = \mathbf{0}_l$.

Fact: For $\mathbf{r} = \mathbf{1}_m$, $\mathbf{c} = \mathbf{1}_n$, $\mathbf{d} = \mathbf{1}_l$ Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm True for matrices too

Rank one approximations

$$\begin{array}{l} \mathbb{R}^{m \times n \times l} \text{ IPS: } \langle \mathcal{A}, \mathcal{B} \rangle = \sum_{i=j=k}^{m,n,l} a_{i,j,k} b_{i,j,k}, \ \|\mathcal{T}\| = \sqrt{\langle \mathcal{T}, \mathcal{T} \rangle} \\ \langle \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} \rangle = (\mathbf{u}^{\top} \mathbf{x}) (\mathbf{v}^{\top} \mathbf{y}) (\mathbf{w}^{\top} \mathbf{z}) \end{array}$$

X subspace of $\mathbb{R}^{m \times n \times l}$, $\mathcal{X}_1, \ldots, \mathcal{X}_d$ an orthonormal basis of **X** $P_{\mathbf{X}}(\mathcal{T}) = \sum_{i=1}^{d} \langle \mathcal{T}, \mathcal{X}_i \rangle \mathcal{X}_i, \quad \|P_{\mathbf{X}}(\mathcal{T})\|^2 = \sum_{i=1}^{d} \langle \mathcal{T}, \mathcal{X}_i \rangle^2$ $\|\mathcal{T}\|^2 = \|P_{\mathbf{X}}(\mathcal{T})\|^2 + \|\mathcal{T} - P_{\mathbf{X}}(\mathcal{T})\|^2$

Best rank one approximation of \mathcal{T} : $\min_{\mathbf{x},\mathbf{y},\mathbf{z}} \|\mathcal{T} - \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\| = \min_{\|\mathbf{x}\| = \|\mathbf{y}\| = \|\mathbf{z}\| = 1, a} \|\mathcal{T} - a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max_{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m,n,l} t_{i,j,k} x_i y_j z_k$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z} := \sum_{j=k=1} t_{i,j,k} y_j z_k = \lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z} = \lambda \mathbf{y}, \ \mathcal{T} \times \mathbf{x} \otimes \mathbf{y} = \lambda \mathbf{z}$ λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors How many distinct singular values are for a generic tensor?

ℓ_p maximal problem and Perron-Frobenius

$$\|(x_1,\ldots,x_n)^{\top}\|_{p} := (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

Problem: $\max_{\|\mathbf{x}\|_{p}=\|\mathbf{y}\|_{p}=\|\mathbf{z}\|_{p}=1} \sum_{i=j=k}^{m,n,l} t_{i,j,k} x_{i} y_{j} z_{k}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z} := \sum_{j=k=1} t_{i,j,k} y_j z_k = \lambda \mathbf{x}^{p-1}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z} = \lambda \mathbf{y}^{p-1}, \ \mathcal{T} \times \mathbf{x} \otimes \mathbf{y} = \lambda \mathbf{z}^{p-1} \ (p = \frac{2t}{2s-1}, t, s \in \mathbb{N})$

p = 3 is most natural in view of homogeneity Assume that $T \ge 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \ge 0$

For which values of *p* we have an analog of Perron-Frobenius theorem?

Yes, for $p \ge 3$, No, for p < 3, Friedland-Gauber-Han [5]

Nonnegative multilinear forms

Associate with $\mathcal{T} = [t_{i_1,...,i_d}] \in \mathbb{R}^{m_1 \times ... \times m_d}_+$ a multilinear form $f(\mathbf{x}_1, \dots, \mathbf{x}_d) : \mathbb{R}^{m_1 \times ... \times m_d} \to \mathbb{R}$

$$f(\mathbf{x}_{1},...,\mathbf{x}_{d}) = \sum_{i_{j}\in[m_{j}],j\in[d]} t_{i_{1},...,i_{d}} x_{i_{1},1}...x_{i_{d},d},$$

$$\mathbf{x}_{i} = (x_{1,i},...,x_{m_{i},i}\in\mathbb{R}^{m_{i}}$$

For
$$\mathbf{u} \in \mathbb{R}^{m}$$
, $p \in (0, \infty]$ let $\|\mathbf{u}\|_{p} := (\sum_{i=1}^{m} |u_{i}|^{p})^{\frac{1}{p}}$ and $S_{p,+}^{m-1} := \{\mathbf{0} \le \mathbf{u} \in \mathbb{R}^{m}, \|\mathbf{u}\|_{p} = 1\}$

For $p_1, ..., p_d \in (1, \infty)$ critical point $(\xi_1, ..., \xi_d) \in S_{p_1,+}^{m_1-1} \times ... \times S_{p_d,+}^{m_d-1}$ of $f | S_{p_1,+}^{m_1-1} \times ... \times S_{p_d,+}^{m_d-1}$ satisfies Lim [4]: $\sum t_{i_1,...,i_d} x_{i_1,1} ... x_{i_{j-1},j-1} x_{i_{j+1},j+1} ... x_{i_d,d} = \lambda x_{i_j,j}^{p_j-1},$ $i_j \in [m_j], \mathbf{x}_j \in S_{m_j,+}^{p_j-1}, j \in [d]$

Perron-Frobenius theorem for nonnegative multilinear forms

Theorem- Friedland-Gauber-Han [5]

 $f : \mathbb{R}^{m_1} \times \ldots \times \mathbb{R}^{m_d} \to \mathbb{R}$, a nonnegative multilinear form,

 \mathcal{T} weakly irreducible and $p_j \ge d$ for $j \in [d]$.

Then *f* has unique positive critical point on $S_{+}^{m_1-1} \times \ldots \times S_{+}^{m_d-1}$. If \mathcal{F} is irreducible then *f* has a unique nonnegative critical point which is necessarily positive

Eigenvectors of homogeneous monotone maps on \mathbb{R}^n_+

Hilbert metric on $\mathbb{PR}_{>0}^n$: for $\mathbf{x} = (x_1, \dots, x_n)^\top$, $\mathbf{y} = (y_1, \dots, y_n)^\top > \mathbf{0}$. Then dist $(\mathbf{x}, \mathbf{y}) = \max_{i \in [n]} \log \frac{y_i}{x_i} - \min_{i \in [n]} \log \frac{y_i}{x_i}$.

$$\begin{split} \mathbf{F} &= (F_1, \dots, F_n)^\top : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0}^n \text{ homogeneous:} \\ \mathbf{F}(t\mathbf{x}) &= t\mathbf{F}(\mathbf{x}) \text{ for } t > 0, \mathbf{x} > \mathbf{0}, \text{ and monotone } \mathbf{F}(\mathbf{y}) \geq \mathbf{F}(\mathbf{x}) \text{ if } \mathbf{y} \geq \mathbf{x} > \mathbf{0}. \\ \mathbf{F} \text{ induces } \hat{\mathbf{F}} : \mathbb{P}\mathbb{R}_{>0}^n \to \mathbb{P}\mathbb{R}_{>0}^n \end{split}$$

F nonexpansive with respect to Hilbert metric $dist(F(x), F(y)) \le dist(x, y)$.

$$\begin{array}{l} \alpha_{\max} \mathbf{x} \leq \mathbf{y} \leq \beta_{\min} \mathbf{x} \Rightarrow \\ \alpha_{\max} \mathbf{F}(\mathbf{x}) = \mathbf{F}(\alpha_{\max} \mathbf{x}) \leq \mathbf{F}(\mathbf{y}) \leq \mathbf{F}(\beta_{\min} \mathbf{x}) = \beta_{\min} \mathbf{F}(\mathbf{x}) \\ \Rightarrow \operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq \log \frac{\beta_{\min}}{\alpha_{\max}} = \operatorname{dist}(\mathbf{x}, \mathbf{y}) \end{array}$$

 $\mathbf{x} > \mathbf{0}$ eigenvector of \mathbf{F} if $\mathbf{F}(\mathbf{x}) = \lambda \mathbf{F}(\mathbf{x})$. So $\mathbf{x} \in \mathbb{P}\mathbb{R}^{n}_{+}$ fixed point of $\mathbf{F}|\mathbb{P}\mathbb{R}^{n}_{+}$.

Existence of positive eigenvectors of F

1. If **F** contraction: dist(**F**(**x**), **F**(**y**)) $\leq K$ dist(**x**, **y**) for K < 1, then **F** has unique fixed point in \mathbb{PR}^{n}_{+} and power iterations converge to the fixed point

2. Use Brouwer fixed and irreducibility to deduce existence of positive eigenvector

3. Gaubert-Gunawardena 2004:

for $u \in (0, \infty)$, $J \subseteq [n]$ let $\mathbf{u}_J = (u_1, \dots, u_n)^\top > \mathbf{0}$: $u_i = u$ if $i \in J$ and $u_i = 1$ if $i \notin J$. $F_i(\mathbf{u}_J)$ nondecreasing in u. di-graph $\mathcal{G}(\mathbf{F}) \subset [n] \times [n]$: $(i, j) \in \mathcal{G}(\mathbf{F})$ iff $\lim_{u \to \infty} F_i(\mathbf{u}_{\{j\}}) = \infty$.

Thm: $\mathbf{F} : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0}^n$ homogeneous and monotone. If $\mathcal{G}(\mathbf{F})$ strongly connected then \mathbf{F} has positive eigenvector

不得る とうちょうちょ

Thm 2.5, Nussbaum 88: $\mathbf{F} : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0}^n$ homogeneous and monotone. Assume; $\mathbf{u} > \mathbf{0}$ eigenvector \mathbf{F} with the eigenvalue $\lambda > 0$, \mathbf{F} is C^1 in some open neighborhood of \mathbf{u} , $A = D\mathbf{F}(\mathbf{u}) \in \mathbb{R}_+^{n \times n} \rho(A) (= \lambda)$ a simple root of det(xI - A). Then \mathbf{u} is a unique eigenvector of \mathbf{F} in $\mathbb{R}_{>0}^n$.

Cor 2.5, Nus88: In the above theorem assume $A = DF(\mathbf{u})$ is primitive. Let $\psi \ge \mathbf{0}, \psi^\top \mathbf{u} = 1$. Define $\mathbf{G} : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0}^n \mathbf{G}(\mathbf{x}) = \frac{1}{\psi^\top F(\mathbf{x})} \mathbf{F}(\mathbf{x})$ Then $\lim_{m\to\infty} \mathbf{G}^{\circ m}(\mathbf{x}) = \mathbf{u}$ for each $\mathbf{x} \in \mathbb{R}_{>0}^n$.

Outline of the uniqueness of pos. crit. point of f

Define:
$$F : \mathbb{R}^{m}_{+} \times \mathbb{R}^{n}_{+} \times \mathbb{R}^{l}_{+} \to \mathbb{R}^{m}_{+} \times \mathbb{R}^{n}_{+} \times \mathbb{R}^{l}_{+}$$
:
 $F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{i,1} = \left(\|\mathbf{x}\|_{p}^{p-3} \sum_{j=k=1}^{n,l} t_{i,j,k} y_{j} z_{k} \right)^{\frac{1}{p-1}}, i = 1, \dots, m$
 $F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{j,2} = \left(\|\mathbf{y}\|_{p}^{p-3} \sum_{i=k=1}^{m,l} t_{i,j,k} x_{i} z_{k} \right)^{\frac{1}{p-1}}, j = 1, \dots, n$
 $F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{k,3} = \left(\|\mathbf{z}\|_{p}^{p-3} \sum_{i=j=1}^{m,n} t_{i,j,k} x_{i} y_{j} \right)^{\frac{1}{p-1}}, k = 1, \dots, l$
Assume $\sum_{j=k=1}^{n,l} t_{i,j,k} > 0, i = 1, \dots, m,$
 $\sum_{i=k=1}^{m,l} t_{i,j,k} > 0, j = 1, \dots, n, \sum_{i=j=1}^{m,n} t_{i,j,k} > 0, k = 1, \dots, l$
 F 1-homogeneous monotone, maps open positive cone $\mathbb{R}^{m}_{+} \times \mathbb{R}^{n}_{+}$
to itself.

 $T = [t_{i,j,k}]$ induces tri-partite graph on $\langle m \rangle$, $\langle n \rangle$, $\langle n \rangle$, $\langle l \rangle$: $i \in \langle m \rangle$ connected to $j \in \langle n \rangle$ and $k \in \langle l \rangle$ iff $t_{i,j,k} > 0$, sim. for j, kIf tri-partite graph is connected then F has unique positive eigenvector If F completely irreducible, i.e. F^N maps nonzero nonnegative vectors to positive, nonnegative eigenvector is unique and positive

 $\times \mathbb{R}'_{\perp}$

- M. Akian and S. Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control, *Nonlinear Analysis* 52 (2003), 637-679.
- K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, *Commun. Math. Sci.* 6, (2008), 507-520.
- G.M. Engel and H. Schneider, Diagonal similarity and equivalence for matrices over groups with 0, *Czechoslovak Mathematical Journal* 25 (1975), 389–403.
- S. Friedland, Limit eigenvalues of nonnegative matrices, *Linear Algebra Appl.* 74 (1986), 173-178.
- S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms, *arXiv:0905.1626*, to appear in LAA.

< 回 > < 三 > < 三 >

References II

- S. Friedland and S. Karlin, Some inequalities for the spectral radius of nonnegative matrices and applications, *Duke Math. J.* 42 (1975), 459-490.
- S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, *Trans. Amer. Math. Soc.* 356 (2004), 4931-4950.
- S. Karlin and F. Ost, Some monotonicity properties of Schur powers of matrice and related inequalities, *Linear Algebra Appl.* 68 (1985), 47–65.
- L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, *CAMSAP* 05, 1 (2005), 129-132.
- M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl. 31 (2009), 1090–1099.

・ロト ・聞ト ・ ヨト ・ ヨト

- R. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, *Memoirs Amer. Math. Soc.*, 1988, vol. 75.
- L. Qi, Eigenvalues of a real supersymmetric tensor, *J. Symbolic Comput.* 40 (2005), 1302-1324.