From nonnegative matrices to nonnegative tensors

Shmuel Friedland
Univ. Illinois at Chicago

Workshop on Linear Algebra \& Applications, 17 October, 2011 Hamilton Institute, National University of Ireland

Overview

(1) Perron-Frobenius theorem for irreducible nonnegative matrices
(2) Irreducibility and weak irreducibility for tensors
(3) Perron-Frobenius for irreducible tensors
(4) Kingman, Karlin-Ost and Friedland inequalities
(5) Maxplus eigenvalues of tensors
(6) Friedland-Karlin characterization of spectral radius
(7) Diagonal scaling
(8) Rank one approximation of tensors
(0) Nonnegative multilinear forms

Nonnegative irreducible and primitive matrices

$A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ induces digraph $D G(A)=D G=(V, E)$
$V=[n]:=\{1, \ldots, n\}, E \subseteq[n] \times[n],(i, j) \in E \Longleftrightarrow a_{i j}>0$
DG strongly connected, SC,
if for each pair $i \neq j$ there exists a dipath from i to j
Claim: $D G$ SC iff for each $\emptyset \neq I \subset[n]$ $\exists j \in[n] \backslash I$ and $i \in I$ s.t. $(i, j) \in E$
A-primitive if $A^{N}>0$ for some $N>0 \Longleftrightarrow A^{N}\left(\mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}\right) \subset$ int \mathbb{R}_{+}^{n}
A primitive $\Longleftrightarrow A$ irreducible and g.c.d of all cycles in $D G(A)$ is one

Perron-Frobenius theorem

PF: $A \in \mathbb{R}_{+}^{n}$ irreducible. Then $0<\rho(A) \in \operatorname{spec}(A)$ algebraically simple $\mathbf{x}, \mathbf{y}>\mathbf{0} A \mathbf{x}=\rho(A) \mathbf{x}, \boldsymbol{A}^{\top} \mathbf{y}=\rho(\boldsymbol{A}) \mathbf{y}$.
$A \in \mathbb{R}_{+}^{n \times n}$ primitive iff in addition to above $|\lambda|<\rho(\boldsymbol{A})$ for $\lambda \in \operatorname{spec}(A) \backslash\{\rho(A)\}$

Collatz-Wielandt:
$\rho(A)=\min _{\mathbf{x}>0} \max _{i \in[n]} \frac{(A \mathbf{x})_{i}}{x_{i}}=\max _{\mathbf{x}>0} \min _{i \in[n]} \frac{(A \mathbf{x})_{i}}{x_{i}}$

Irreducibility and weak irreducibility of nonnegative tensors

$\mathcal{F}:=\left[f_{i_{1}, \ldots, i_{d}}\right]_{i_{1}=\ldots=i_{d}}^{n} \in\left(\mathbb{C}^{n}\right)^{\otimes d}$ is called d-cube tensor, $(d \geq 3)$
$\mathcal{F} \geq 0$ if all entries are nonnegative
\mathcal{F} irreducible: for each $\emptyset \neq I \varsubsetneqq[n]$, there exists
$i \in I, j_{2}, \ldots, j_{d} \in J:=[n] \backslash I$ s.t. $f_{i, j_{2}, \ldots, j_{d}}>0$.
$D(\mathcal{F})$ digraph $([n], A):(i, j) \in A$ if there exists $j_{2}, \ldots j_{d} \in[n]$ s.t.
$f_{i, j_{2}, \ldots, j_{d}}>0$ and $j \in\left\{j_{2}, \ldots, j_{d}\right\}$.
\mathcal{F} weakly irreducible if $D(\mathcal{F})$ is strongly connected.
Claim: irreducible implies weak irreducible
For $d=2$ irreducible and weak irreducible are equivalent
Example of weak irreducible and not irreducible $n=2, d=3$,
$f_{1,1,2}, f_{1,2,1}, f_{2,1,2}, f_{2,2,1}>0$
and all other entries of \mathcal{F} are zero

Perron-Frobenius theorem for nonnegative tensors I

$\mathcal{F}=\left[f_{i}, \ldots, i_{d}\right] \in\left(\mathbb{C}^{n}\right)^{\otimes d}$ maps \mathbb{C}^{n} to itself
$(\mathcal{F} \mathbf{x})_{i}=f_{i, \mathbf{0}} \mathbf{x}:=\sum_{i_{2}, \ldots, i_{d} \in[n]} f_{i, i_{2}, \ldots, i_{d}} x_{i_{2}} \ldots x_{i_{d}}, i \in[n]$
Note we can assume $f_{i, i_{2}, \ldots, i_{d}}$ is symmetric in i_{2}, \ldots, i_{d}.
\mathcal{F} has eigenvector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{C}^{n}$ with eigenvalue λ :
$(\mathcal{F} \mathbf{x})_{i}=\lambda x_{i}^{d-1}$ for all $i \in[n]$
Assume: $\mathcal{F} \geq 0,\left(\mathcal{F} \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}\right) \subseteq \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$
$\mathcal{F}_{1}: \Pi_{n} \rightarrow \Pi_{n}, \quad \mathbf{x} \mapsto \frac{1}{\sum_{i=1}^{n}(\mathcal{F} \mathbf{x})_{i}^{\frac{1}{d-1}}}(\mathcal{F} \mathbf{x})^{\frac{1}{d-1}}$
Brouwer fixed point: $\mathbf{x} \nexists \mathbf{0}$ eigenvector with $\lambda>0$ eigenvalue
Problem When there is a unique positive eigenvector with maximal eigenvalue?

Perron-Frobenius theorem for nonnegative tensors II

Theorem Chang-Pearson-Zhang 2009 [2]
Assume $\mathcal{F} \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$is irreducible.
Then there exists a unique nonnegative eigenvector which is positive with the corresponding maximum eigenvalue λ.
Furthermore the Collatz-Wielandt characterization holds
$\lambda=\min _{\mathbf{x}>0} \max _{i \in[n]} \frac{(\mathcal{F} \mathbf{x})_{i}}{x_{i}^{d-1}}=\max _{\mathbf{x}>0} \min _{i \in[n]} \frac{(\mathcal{F} \mathbf{x})_{i}}{x_{i}^{d-1}}$
Theorem Friedland-Gaubert-Han 2011 [5]
Assume $\mathcal{F} \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$is weakly irreducible.
Then there exists a unique positive eigenvector with the corresponding maximum eigenvalue λ.
Furthermore the Collatz-Wielandt characterization holds

Generalization of Kingman inequality: Friedland-Gaubert

Kingman's inequality: $D \subset \mathbb{R}^{m}$ convex,
$A: D \rightarrow \mathbb{R}_{+}^{n \times n}, A(\mathbf{t})=\left[a_{i j}(\mathbf{t})\right]$, each $\log a_{i j}(\mathbf{t}) \in[-\infty, \infty)$ is convex, (entrywise logconvex)
then $\log \rho(A): D \rightarrow[-\infty, \infty)$ convex, $(\rho(A(\cdot))$ logconvex)
Generalization: $\mathcal{F}: D \rightarrow\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$entrywise logconvex then $\rho(\mathcal{T}(\cdot))$ is logconvex (L. Qi \& collaborators)

Proof Outline:
$\mathcal{F}^{\circ S}=\left[f_{i_{1}, \ldots, i_{d}}^{S}\right],\left(0^{0}=0\right), \mathcal{F} \circ \mathcal{G}=\left[f_{i_{1}, \ldots, i_{d}} g_{i_{1}, \ldots, i_{d}}\right]$
GKI: $\rho\left(\mathcal{F}^{\circ \alpha} \circ \mathcal{G}^{\circ \beta}\right) \leq(\rho(\mathcal{F}))^{\alpha}(\rho(\mathcal{G}))^{\beta}, \alpha, \beta \geq 0, \alpha+\beta=1(*)$
Assume $\mathcal{F}, \mathcal{G}>0, \mathcal{F} \mathbf{x}=\rho(\mathcal{F}) \mathbf{x}^{\circ}(d-1), \mathcal{G} \mathbf{x}=\rho(\mathcal{G}) \mathbf{y}^{\circ}(d-1)$
Hölder's inequality for $p=\alpha^{-1}, q=\beta^{-1}$ yields
$\left(\left(\mathcal{F}^{\circ \alpha} \circ \mathcal{G}^{\circ \beta}\right)\left(\mathbf{x}^{\circ \alpha} \circ \mathbf{y}^{\circ \beta}\right)\right)_{i} \leq(\mathcal{F} \mathbf{x})_{i}^{\alpha}(\mathcal{G} \mathbf{x})_{i}^{\beta}=(\rho(\mathcal{F}))^{\alpha}(\rho(\mathcal{G}))^{\beta}\left(x_{i}^{\alpha} y_{i}^{\beta}\right)^{d-1}$
Collatz-Wielandt implies (*)

Karlin-Ost and Friedland inequalities-FG

$\rho\left(\mathcal{F}^{\circ s}\right)^{\frac{1}{s}}$ non-increasing on $(0, \infty)(*)$
Assume $\mathcal{F}>0, s>1$ use $\|\mathbf{y}\|_{s}$ non-increasing
$\left(\mathcal{F}^{\circ s} \mathbf{x}^{\circ s}\right)_{i}^{\frac{1}{s}} \leq(\mathcal{F} \mathbf{x})_{i}=\rho(\mathcal{F}) x_{i}^{d-1}$
use Collatz-Wielandt
$\rho_{\text {trop }}(\mathcal{F})=\lim _{s \rightarrow \infty} \rho\left(\mathcal{F}^{\circ s}\right)^{\frac{1}{s}}$ - the tropical eigenvalue of \mathcal{F}.
if \mathcal{F} weakly irreducible then \mathcal{F} has positive tropical eigenvector $\max _{i_{2}, \ldots, i_{d}} f_{i, i_{2}, \ldots, i_{d}} x_{i_{2}} \ldots x_{i_{d}}=\rho_{\text {trop }}(\mathcal{F}) x_{i}^{d-1}, \quad i \in[n], \mathbf{x}>\mathbf{0}$
Cor:
$\rho(\mathcal{F} \circ \mathcal{G}) \leq \rho\left(\mathcal{F}^{\frac{1}{2}} \circ \mathcal{G}^{\frac{1}{2}}\right)^{2} \leq \rho(\mathcal{F}) \rho(\mathcal{G})$
$\rho(\mathcal{F} \circ \mathcal{G}) \leq \rho\left(\mathcal{F}^{\circ \rho}\right)^{\frac{1}{\rho}} \rho\left(\mathcal{G}^{q}\right)^{\frac{1}{q}}, \frac{1}{\rho}+\frac{1}{q}=1$
$p=1, q=\infty \quad \Rightarrow \rho(\mathcal{F} \circ \mathcal{G}) \leq \rho(\mathcal{F}) \rho_{\text {trop }}(\mathcal{G})$
$\operatorname{pat}(\mathcal{G})$ pattern of \mathcal{G}, tensor with $0 / 1$ entries obtained by replacing every non-zero entry of \mathcal{G} by 1 .
$\mathcal{F}=\operatorname{pat}(\mathcal{G}) \Rightarrow \rho(\mathcal{G}) \leqslant \rho(\operatorname{pat}(\mathcal{G})) \rho_{\text {trop }}(\mathcal{G})$

Characterization of $\rho_{\text {trop }}(\mathcal{F})-I$

Friedland 1986: $\rho_{\text {trop }}(A)$
is the maximum geometric average of cycle products of $A \in \mathbb{R}_{+}^{n \times n}$.
$D(\mathcal{F}):=([n], \operatorname{Arc}),(i, j) \in \operatorname{Arc}$ iff $\sum_{j_{2}, \ldots, j_{d}} f_{i, j_{2}, \ldots, j_{d}} x_{j_{2}} \ldots x_{j_{d}}$ contains x_{j}. $d-1$ cycle on $[m]$ vertices is $d-1$ outregular strongly connected subdigraph $D=([m], \operatorname{Arc})$ of $D(\mathcal{F})$,
i.e. the digraph adjacency matrix $\left.A(D)=\left[a_{i j}\right]\right) \in \mathbb{Z}_{+}^{m \times m}$ of subgraph is irreducible with each row sum $d-1$.
$A(D) \mathbf{1}=(d-1) \mathbf{1}, \mathbf{v}^{\top} A(D)=(d-1) \mathbf{v}^{\top}, \mathbf{v}=\left(v_{1}, \ldots, v_{m}\right)^{\top}>\mathbf{0}$ probability vector
Assume for simplicity $d-1$ cycle on $[m]$
weighted-geometric average: $\prod_{i=1}^{m}\left(f_{i, j_{2}(i), \ldots, j_{d}(i)}\right)^{v_{i}}$
Friedland-Gaubert: $\rho_{\text {trop }}(\mathcal{F})$ is the maximum weighted-geometric average of $d-1$ cycle products of $\mathcal{F} \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$

Cor. $\rho_{\text {trop }}(\mathcal{F})$ is logconvex in entries of \mathcal{T}.

Characterization of $\rho_{\text {itrop }}(\mathcal{F})$ II

More general results Akian-Gaubert [1]
$\mathcal{Z}=\left(z_{i_{1}, \ldots, i_{d}}\right) \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$occupation measure:
$\sum_{i_{1}, \ldots, i_{d}} z_{i_{1}, \ldots, i_{d}}=1$ and for all $k \in[n]$
$\sum_{i,\left\{j_{2}, \ldots, j_{d}\right\} \ni k} z_{i, j_{2}, \ldots, i_{d}}=(d-1) \sum_{m_{2}, \ldots, m_{d}} z_{k, m_{2}, \ldots, m_{d}}$
first sum is over $i \in[n]$ and all $j_{2}, \ldots, j_{d} \in[n]$ s. t. $k \in\left\{j_{2}, \ldots, j_{d}\right\}$
Def: $\mathbf{Z}_{n, d}$ all occupation measures
Thm: $\log \rho_{\text {trop }}(\mathcal{F})=\max _{\mathcal{Z} \in \mathbf{Z}_{n, d}} \sum_{j_{1}, \ldots, j_{d} \in[n]} z_{j_{1}, \ldots, j_{d}} \log f_{i_{1}, \ldots, i_{d}}$
Proof: The extreme points of occupational measures correspond to geometric average

Diagonal similarity of nonnegative tensors

$\mathcal{F}=\left[f_{i}, \ldots, i_{d}\right] \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$is diagonally similar to
$\mathcal{G}=\left[g_{i}, \ldots, i_{d}\right] \in\left(\left(\mathbb{R}^{n}\right)^{\otimes d}\right)_{+}$if
$g_{i_{1}, \ldots, i_{d}}=e^{-(d-1) t_{i_{1}}+\sum_{j=2}^{d} t_{i j} f_{i_{1}, \ldots, i_{d}} \text { for some } \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\top} \in \mathbb{R}^{n}, ~}$
Diagonally similar tensors have the same eigenvalues and spectral radius
generalization of Engel-Schneider [3], (Collatz-Wielandt)
$\rho_{\text {trop }}(\mathcal{F})=\inf _{\left(t_{1}, \ldots, t_{n}\right)^{\top} \in \mathbb{R}^{n}} \max _{i_{1}, \ldots, j_{d}} e^{-(d-1) t_{1}+\sum_{j=2}^{d} t_{j} f_{i_{1}, \ldots, i_{d}}}$

Generalized Friedland-Karlin inequality I

Friedland-Karlin 1975: $\boldsymbol{A} \in \mathbb{R}_{+}^{n \times n}$ irreducible, $\boldsymbol{A} \mathbf{u}=\rho(\boldsymbol{A}) \mathbf{u}, \boldsymbol{A}^{\top} \mathbf{v}=\rho(\boldsymbol{A}) \mathbf{v}$, $\mathbf{u} \circ \mathbf{v}=\left(u_{1} v_{1}, \ldots, u_{n} v_{n}\right)>\mathbf{0}$ probability vector:
$\log \rho\left(\operatorname{diag}\left(e^{\mathbf{t}}\right) A\right) \geq \log \rho(A)+\sum_{i=1}^{n} u_{i} v_{i} t_{i}$
(graph of convex function above its supporting hyperplane)
$\left(e^{\mathbf{t}} \mathcal{F}\right)_{i_{1}, \ldots, i_{d}}=e^{t_{1}} f_{i_{1}, \ldots, i_{d}}$
GFKI: \mathcal{F} is weakly irreducible.
$A:=D(\mathbf{u})^{-(d-2)} \partial(\mathcal{F} \mathbf{x})(\mathbf{u}), A \mathbf{u}=\rho(A) \mathbf{u}, A^{\top} \mathbf{v}=\rho(\boldsymbol{A}) \mathbf{v}$ and $\mathbf{u} \circ \mathbf{v}>\mathbf{0}$ probability vector
$\log \rho\left(\operatorname{diag}\left(e^{t}\right) \mathcal{F}\right) \geq \log \rho(\mathcal{F})+\sum_{i=1}^{n} u_{i} v_{i} t_{i}$
\mathcal{F} super-symmetric: $\mathcal{F} \mathbf{x}=\nabla \phi(\mathbf{x}), \phi$ homog. pol. degree d $\log \rho\left(\operatorname{diag}\left(e^{\mathbf{t}}\right) \mathcal{F}\right) \geq \log \rho(\mathcal{F})+\sum_{i=1}^{n} u_{i}^{d} t_{i}, \quad \sum_{i=1}^{n} u_{i}^{d}=1$

Generalized Friedland-Karlin inequality II

$\min _{\mathbf{x}>0} \sum_{i=1}^{n} u_{i} v_{i} \log \frac{(\mathcal{F} \mathbf{x})_{i}}{x_{i}^{d-1}}=\log \rho(\mathcal{F})(*)$
equality iff \mathbf{x} the positive eigenvector of \mathcal{F}.
Gen. Donsker-Varadhan: $\rho(\mathcal{F})=\max _{\mathbf{p} \in \mathrm{K}_{n}} \inf _{\mathbf{x}>\mathbf{0}} \sum_{i=1}^{n} p_{i} \frac{(\mathcal{F} \mathbf{x})_{i}}{x_{i}^{d-1}}(* *)$ Prf: For $\mathbf{x}=\mathbf{u}$ RHS $(* *) \leq \rho(\mathcal{T})$.
For $\mathbf{p}=\mathbf{u} \circ \mathbf{v}(*) \Rightarrow \operatorname{RHS}(* *)=\rho(\mathcal{F})$.
Gen. Cohen: $\rho(\mathcal{F})$ convex in $\left(f_{1, \ldots, 1}, \ldots, f_{n, \ldots, n}\right)$:
$\rho(\mathcal{F}+\mathcal{D})=\max _{\mathbf{p} \in \Pi_{n}}\left(\sum_{i=1}^{n} p_{i} d_{i, \ldots, i}+\inf _{\mathbf{x}>\mathbf{0}} \sum_{i=1}^{n} p_{i} \frac{(\mathcal{F} \mathbf{x})_{i}}{x_{i}^{d-1}}\right)$
GFK: \mathcal{F} weakly irreducible, positive diagonal, $\mathbf{u}, \mathbf{v}>0, \mathbf{u} \circ \mathbf{v} \in \Pi_{n}$, $\exists \mathbf{t}, \mathbf{s} \in \mathbb{R}^{n}$ s.t. $e^{t_{i_{1}}} f_{i_{1}, \ldots, i_{d}} e^{s_{i_{2}}+\ldots+s_{i_{d}}}$ with eigenvector \mathbf{u} and \mathbf{v} left eigenvector of $D(\mathbf{u})^{-(d-2)} \partial \mathcal{F} \mathbf{x}(\mathbf{u})$
PRF: Strict convex function $g(\mathbf{z})=\sum_{i=1}^{n} u_{i} v_{i}\left(\log \mathcal{F} e^{\mathbf{z}}-(d-1) z_{i}\right)$ achieves unique minimum for some $\mathbf{z}=\log \mathbf{x}$, as $g\left(\partial\left(\mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}\right)=\infty\right.$
\mathcal{F} super-symmetric and $\mathbf{v}=\mathbf{u}^{d-1}$ then $\mathbf{t}=\mathbf{s}$

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ has given row, column and depth sums:
$\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}:$
$\sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0$
$\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum
Solution: Convert to the minimal problem:
$\min _{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k} t_{i, j, k} \mathrm{e}^{x_{i}+y_{j}+z_{k}}$
Any critical point of $f_{\mathcal{T}}$ on $\mathcal{S}:=\left\{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0\right\}$ gives rise to a solution of the scaling problem (Lagrange multipliers)
$f_{\mathcal{T}}$ is convex
$f_{\mathcal{T}}$ is strictly convex implies \mathcal{T} is not decomposable: $\mathcal{T} \neq \mathcal{T}_{1} \oplus \mathcal{T}_{2}$. For matrices indecomposability is equivalent to strict convexity

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum

Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities
$\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.
Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {/ }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm
True for matrices too

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$
Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors
How many distinct singular values are for a generic tensor?

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{X} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$
For which values of p we have an analog of Perron-Frobenius theorem?

Yes, for $p \geq 3$, No, for $p<3$,
Friedland-Gauber-Han [5]

Nonnegative multilinear forms

Associate with $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{d}}\right] \in \mathbb{R}_{+}^{m_{1} \times \ldots \times m_{d}}$
a multilinear form $f\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{d}\right): \mathbb{R}^{m_{1} \times \ldots \times m_{d}} \rightarrow \mathbb{R}$
$f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)=\sum_{i_{j} \in\left[m_{j}, j \in[d]\right.} t_{i_{1}, \ldots, i_{d}} x_{i_{i}, 1} \ldots x_{i_{d}, d}$,
$\mathbf{x}_{i}=\left(x_{1}, i, \ldots, x_{m_{i}, i} \in \mathbb{R}^{m_{i}}\right.$
For $\mathbf{u} \in \mathbb{R}^{m}, p \in(0, \infty]$ let $\|\mathbf{u}\|_{p}:=\left(\sum_{i=1}^{m}\left|u_{i}\right|^{p}\right)^{\frac{1}{p}}$ and
$\mathrm{S}_{p,+}^{m-1}:=\left\{\mathbf{0} \leq \mathbf{u} \in \mathbb{R}^{m},\|\mathbf{u}\|_{p}=1\right\}$
For $p_{1}, \ldots, p_{d} \in(1, \infty)$ critical point $\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{d}\right) \in \mathrm{S}_{p_{1},+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{p_{d},+}^{m_{d}-1}$ of $f \mid \mathrm{S}_{p_{1},+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{p_{d},+}^{m_{d}-1}$ satisfies Lim [4]:
$\sum t_{i, \ldots, \ldots, i_{d}} x_{i, 1} \ldots x_{i_{-1}, j-1} x_{i_{j+1}, j+1} \ldots x_{i_{d}, d}=\lambda x_{i_{j}, j}^{p_{j}-1}$,
$i_{j} \in\left[m_{j}\right], \mathbf{x}_{j} \in \mathrm{~S}_{m_{j},+}^{p_{j}-1}, j \in[d]$

Perron-Frobenius theorem for nonnegative multilinear forms

Theorem- Friedland-Gauber-Han [5]
$f: \mathbb{R}^{m_{1}} \times \ldots \times \mathbb{R}^{m_{d}} \rightarrow \mathbb{R}$, a nonnegative multilinear form,
\mathcal{T} weakly irreducible and $p_{j} \geq d$ for $j \in[d]$.
Then f has unique positive critical point on $\mathrm{S}_{+}^{m_{1}-1} \times \ldots \times \mathrm{S}_{+}^{m_{d}-1}$. If \mathcal{F} is irreducible then f has a unique nonnegative critical point which is necessarily positive

Eigenvectors of homogeneous monotone maps on \mathbb{R}_{+}^{n}

Hilbert metric on $\mathbb{P R}_{>0}^{n}$: for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}, \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}>\mathbf{0}$.
Then $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\max _{i \in[n]} \log \frac{y_{i}}{x_{i}}-\min _{i \in[n]} \log \frac{y_{i}}{x_{i}}$.
$\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right)^{\top}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous:
$\mathbf{F}(t \mathbf{x})=t \mathbf{F}(\mathbf{x})$ for $t>0, \mathbf{x}>\mathbf{0}$, and monotone $\mathbf{F}(\mathbf{y}) \geq \mathbf{F}(\mathbf{x})$ if $\mathbf{y} \geq \mathbf{x}>\mathbf{0}$. \mathbf{F} induces $\hat{\mathbf{F}}: \mathbb{P R}_{>0}^{n} \rightarrow \mathbb{P R}_{>0}^{n}$

F nonexpansive with respect to Hilbert metric $\operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq \operatorname{dist}(\mathbf{x}, \mathbf{y})$.
$\alpha_{\max } \mathbf{x} \leq \mathbf{y} \leq \beta_{\min } \mathbf{X} \Rightarrow$
$\alpha_{\max } \mathbf{F}(\mathbf{x})=\mathbf{F}\left(\alpha_{\max } \mathbf{x}\right) \leq \mathbf{F}(\mathbf{y}) \leq \mathbf{F}\left(\beta_{\min } \mathbf{x}\right)=\beta_{\min } \mathbf{F}(\mathbf{x})$
$\Rightarrow \operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq \log \frac{\beta_{\text {min }}}{\alpha_{\text {max }}}=\operatorname{dist}(\mathbf{x}, \mathbf{y})$
$\mathbf{x}>\mathbf{0}$ eigenvector of \mathbf{F} if $\mathbf{F}(\mathbf{x})=\lambda \mathbf{F}(\mathbf{x})$.
So $\mathbf{x} \in \mathbb{P R}_{+}^{n}$ fixed point of $\mathbf{F} \mid \mathbb{P} \mathbb{R}_{+}^{n}$.

Existence of positive eigenvectors of F

1. If \mathbf{F} contraction: $\operatorname{dist}(\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{y})) \leq K \operatorname{dist}(\mathbf{x}, \mathbf{y})$ for $K<1$, then \mathbf{F} has unique fixed point in $\mathbb{P R}_{+}^{n}$
and power iterations converge to the fixed point
2. Use Brouwer fixed and irreducibility to deduce existence of positive eigenvector
3. Gaubert-Gunawardena 2004:
for $u \in(0, \infty), J \subseteq[n]$ let $\mathbf{u}_{J}=\left(u_{1}, \ldots, u_{n}\right)^{\top}>\mathbf{0}: u_{i}=u$ if $i \in J$ and $u_{i}=1$ if $i \notin J . F_{i}\left(\mathbf{u}_{J}\right)$ nondecreasing in u.
di-graph $\mathcal{G}(\mathbf{F}) \subset[n] \times[n]:(i, j) \in \mathcal{G}(\mathbf{F})$ iff $\lim _{u \rightarrow \infty} F_{i}\left(\mathbf{u}_{\{j\}}\right)=\infty$.
Thm: $\mathbf{F}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous and monotone. If $\mathcal{G}(\mathbf{F})$ strongly connected then \mathbf{F} has positive eigenvector

Uniqueness and convergence of power method for F

Thm 2.5, Nussbaum 88: F: $\mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n}$ homogeneous and monotone. Assume; $\mathbf{u}>\mathbf{0}$ eigenvector \mathbf{F} with the eigenvalue $\lambda>0, \mathbf{F}$ is C^{1} in some open neighborhood of $\mathbf{u}, \boldsymbol{A}=\mathrm{DF}(\mathbf{u}) \in \mathbb{R}_{+}^{n \times n} \rho(A)(=\lambda)$ a simple root of $\operatorname{det}(x I-A)$. Then \mathbf{u} is a unique eigenvector of \mathbf{F} in $\mathbb{R}_{>0}^{n}$.

Cor 2.5, Nus88: In the above theorem assume $A=\mathrm{DF}(\mathbf{u})$ is primitive. Let $\psi \geqslant \mathbf{0}, \psi^{\top} \mathbf{u}=1$.
Define $\mathbf{G}: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}_{>0}^{n} \mathbf{G}(\mathbf{x})=\frac{1}{\psi^{\top} \mathbf{F}(\mathbf{x})} \mathbf{F}(\mathbf{x})$
Then $\lim _{m \rightarrow \infty} \mathbf{G}^{\circ m}(\mathbf{x})=\mathbf{u}$ for each $\mathbf{x} \in \mathbb{R}_{>0}^{n}$.

Outline of the uniqueness of pos. crit. point of f

Define: $F: \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime} \rightarrow \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime}$:
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{i, 1}=\left(\|\mathbf{x}\|_{p}^{p-3} \sum_{j=k=1}^{n, l} t_{i, j, k} y_{j} z_{k}\right)^{\frac{1}{p-1}}, i=1, \ldots, m$
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{j, 2}=\left(\|\mathbf{y}\|_{p}^{p-3} \sum_{i=k=1}^{m, l} t_{i, j, k} x_{i} z_{k}\right)^{\frac{1}{p-1}}, j=1, \ldots, n$
$F((\mathbf{x}, \mathbf{y}, \mathbf{z}))_{k, 3}=\left(\|\mathbf{z}\|_{p}^{p-3} \sum_{i=j=1}^{m, n} t_{i, j, k} x_{i} y_{j}\right)^{\frac{1}{p-1}}, k=1, \ldots, l$
Assume $\sum_{j=k=1}^{n, l} t_{i, j, k}>0, i=1, \ldots, m$,
$\sum_{i=k=1}^{m, I} t_{i, j, k}>0, j=1, \ldots, n, \sum_{i=j=1}^{m, n} t_{i, j, k}>0, k=1, \ldots, l$
F 1-homogeneous monotone, maps open positive cone $\mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{\prime}$ to itself.
$\mathcal{T}=\left[t_{i, j, k}\right]$ induces tri-partite graph on $\langle m\rangle,\langle n\rangle,\langle I\rangle$:
$i \in\langle m\rangle$ connected to $j \in\langle n\rangle$ and $k \in\langle I\rangle$ iff $t_{i, j, k}>0$, sim. for j, k
If tri-partite graph is connected then F has unique positive eigenvector If F completely irreducible, i.e. F^{N} maps nonzero nonnegative vectors to positive, nonnegative eigenvector is unique and positive

References I

(R. M. Akian and S. Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control, Nonlinear Analysis 52 (2003), 637-679.

畔 K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6, (2008), 507-520.
(G.M. Engel and H. Schneider, Diagonal similarity and equivalence for matrices over groups with 0, Czechoslovak Mathematical Journal 25 (1975), 389-403.
R. Friedland, Limit eigenvalues of nonnegative matrices, Linear Algebra Appl. 74 (1986), 173-178.
目 S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms, arXiv:0905.1626, to appear in LAA.

References II

S. Friedland and S. Karlin, Some inequalities for the spectral radius of nonnegative matrices and applications, Duke Math. J. 42 (1975), 459-490.
S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, Trans. Amer. Math. Soc. 356 (2004), 4931-4950.
S. Karlin and F. Ost, Some monotonicity properties of Schur powers of matrice and related inequalities, Linear Algebra Appl. 68 (1985), 47-65.
R.H. Lim, Singular values and eigenvalues of tensors: a variational approach, CAMSAP 05, 1 (2005), 129-132.
國 M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl. 31 (2009), 1090-1099.

References III

R R. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Memoirs Amer. Math. Soc., 1988, vol. 75.
围 L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005), 1302-1324.

