Tensors

Shmuel Friedland Univ. Illinois at Chicago

University of Kansas, August 20, 2010

Foreword

In the past ten years, tensors again became a hot topic of research in pure and applied mathematics. In applied mathematics it is driven by data which has a few parameters. In pure math. it is quantum information theory, and multilinear algebra. There are many interesting numerical and theoretical problems that need to be resolved. Tensors are related to matrices one one hand and on the other hand are related to polynomial maps.

Foreword

In the past ten years, tensors again became a hot topic of research in pure and applied mathematics. In applied mathematics it is driven by data which has a few parameters. In pure math. it is quantum information theory, and multilinear algebra. There are many interesting numerical and theoretical problems that need to be resolved. Tensors are related to matrices one one hand and on the other hand are related to polynomial maps.

To paraphrase Max Noether:
Matrices were created by God and tensors by Devil.

Overview

Ranks of 3-tensors

Overview

Ranks of 3-tensors
(1) Basic facts.

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.

Overview

Ranks of 3-tensors
© Basic facts.
(2) Complexity.
(3) Matrix multiplication

Overview

Ranks of 3-tensors
(1) Basic facts.
(2) Complexity.
(3) Matrix multiplication
(9) Results and conjectures

Overview

Ranks of 3-tensors

- Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors

Overview

Ranks of 3-tensors
© Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.

Overview

Ranks of 3-tensors
© Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem

Overview

Ranks of 3-tensors
© Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(0) Rank (R_{1}, R_{2}, R_{3}) approximations

Overview

Ranks of 3-tensors
© Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(0) Rank (R_{1}, R_{2}, R_{3}) approximations
(9) CUR approximations

Overview

Ranks of 3-tensors

- Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(0) Rank (R_{1}, R_{2}, R_{3}) approximations
(9) CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows, columns and depth sums

Overview

Ranks of 3-tensors

- Basic facts.
(2) Complexity.
(Matrix multiplication
(9) Results and conjectures

Approximations of tensors
(1) Rank one approximation.
(2) Perron-Frobenius theorem
(3) Rank (R_{1}, R_{2}, R_{3}) approximations
(9) CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows, columns and depth sums

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of $\mathbb{U}: \quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,

Basic notions

scalar $a \in \mathbb{F}$, vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}^{n}$, matrix $A=\left[a_{i j}\right] \in \mathbb{F}^{m \times n}$, 3-tensor $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times 1}$, p-tensor $\mathcal{T}=\left[t_{i_{1}, \ldots, i_{p}}\right] \in \mathbb{F}^{n_{1} \times \ldots \times n_{p}}$

Abstractly $\mathbb{U}:=\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3} \operatorname{dim} \mathbb{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbb{U}=m_{1} m_{2} m_{3}$ Tensor $\tau \in \mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}$

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus, T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
basis of $\mathbb{U}_{j}: \quad\left[\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right] j=1,2,3$
basis of \mathbb{U} : $\quad \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,
$\tau=\sum_{i_{1}=i_{2}=i_{3}=1}^{m_{1}} t_{i_{1}, i_{2}, i_{2}} \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}$

Ranks of tensors

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1

$$
T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}
$$

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2,3
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,

Ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$:
dimension of row or column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$R_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Similarly, unfolding in directions 2, 3
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
(CANDEC, PARFAC)

Basic facts

Basic facts

FACT I: $\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

Basic facts

FACT I: rank $\mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)$
Reason $\mathbb{U}_{2} \otimes \mathbb{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

FACT II: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$
minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

COR $\operatorname{rank} \mathcal{T} \leq \min (m n, m l, n l)$

Complexity of rank of 3-tensor

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and NP-hard for rational numbers

PRF: 3-sat with n variables m clauses
satisfiable iff $\left.\operatorname{rank} \mathcal{T}=4 n+2 m, \mathcal{T} \in \mathbb{F}^{(2 n+3 m) \times(3 n) \times(3 n+m)}\right)$ otherwise rank is larger

Generic and typical ranks

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}:$ all tensors of rank $\leq r$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.

Generic and typical ranks

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$. generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, l) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, l)$ not closed variety for $r \geq 2$

Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.
typical rank takes all the values $k=\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$

Generic and typical ranks

$\mathcal{R}_{r}(m, n, I) \subset \mathbb{F}^{m \times n \times I}: \quad$ all tensors of rank $\leq r$
$\mathcal{R}_{r}(m, n, I)$ not closed variety for $r \geq 2$
Border rank of \mathcal{T} the minimum k s.t. \mathcal{T} is a limit of $\mathcal{T}_{j}, j \in \mathbb{N}$, rank $T_{j}=k$.
generic rank is the rank of a random tensor $\mathcal{T} \in \mathbb{C}^{m \times n \times I}: \operatorname{grank}(m, n, l)$
typical rank is a rank of a random tensor $\mathcal{T} \in \mathbb{R}^{m \times n \times I}$.
typical rank takes all the values $k=\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, l)$
In all the examples we know $\operatorname{mtrank}(m, n, I) \leq \operatorname{grank}(m, n, I)+1$

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I \leq(m-1)(n-1)+1$:

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at / lines which contain / linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I \leq(m-1)(n-1)+1$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I \leq(m-1)(n-1)+1$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$
$\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+l-2) \geq m n l \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, l) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I \leq(m-1)(n-1)+1$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$ $\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+l-2) \geq m n l \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, l) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
Conjecture $\operatorname{grank}_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Generic rank of $\mathbb{C}^{m \times n \times I}$

THM: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1)+1 \leq I$.
Reason: For $I=(m-1)(n-1)+1$ a generic subspace of matrices of dimension / in $\mathbb{C}^{m \times n}$ intersect the variety of rank one matrices in $\mathbb{C}^{m \times n}$ at least at I lines which contain I linearly independent matrices

COR: $\operatorname{grank}_{\mathbb{C}}(2, n, I)=\min (I, 2 n)$ for $2 \leq n \leq I$
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I \leq(m-1)(n-1)+1$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}, \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=(a \mathbf{x}) \otimes(b \mathbf{y}) \otimes\left((a b)^{-1} \mathbf{z}\right)$ $\operatorname{grank}_{\mathbb{C}}(m, n, l)(m+n+l-2) \geq m n l \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, l) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
Conjecture $\operatorname{grank}_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$
for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$
Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{1}\right]$ bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$
$M=N=L=2, \operatorname{grank}_{\mathbb{C}}(4,4,4)=\left\lceil\frac{4 \times 4 \times 4}{4+4+4-2}\right\rceil=\lceil 6.4\rceil=7$

Bilinear maps and product of matrices

bilinear map: $\phi: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{W}$
$\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right],\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right],\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{]}\right]$bases in $\mathbf{U}, \mathbf{V}, \mathbf{W}$
$\phi\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)=\sum_{k=1} t_{i, j, k} \mathbf{w}_{k}, \mathcal{T}:=\left[t_{i, j, k}\right] \in \mathbb{F}^{m \times n \times I}$
$\mathcal{T}=\sum_{a=1}^{r} \mathbf{x}_{a} \otimes \mathbf{y}_{a} \otimes \mathbf{z}_{a}, r=\operatorname{rank} \mathcal{T}$
$\phi(\mathbf{c}, \mathbf{d})=\sum_{a=1}^{r}\left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\mathbf{d}^{\top} \mathbf{y}\right) \mathbf{z}_{a}, \mathbf{c}=\sum_{i=1}^{m} c_{i} \mathbf{u}_{i}, \mathbf{d}=\sum_{j=1}^{n} d_{j} \mathbf{v}_{j}$
Complexity: r-products
Matrix product $\tau: \mathbb{F}^{M \times N} \times \mathbb{F}^{N \times L} \rightarrow \mathbb{F}^{M \times L},(A, B) \mapsto A B$
$M=N=L=2, \operatorname{grank}_{\mathbb{C}}(4,4,4)=\left\lceil\frac{4 \times 4 \times 4}{4+4+4-2}\right\rceil=\lceil 6.4\rceil=7$
Product of two 2×2 matrices is done by 7 multiplications

Known cases of rank conjecture

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$ $(n, n, n+2)$ if $n \neq 2(\bmod 3)$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{l+2 p+2 q-2}$ is integer

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{l+2 p+2 q-2}$ is integer
Easy to compute $\operatorname{grank}_{\mathbb{C}}(m, n, I)$:

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 l p}{l+2 p+2 q-2}$ is integer
Easy to compute $\operatorname{grank}_{\mathbb{C}}(m, n, I)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{I+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$ The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{I+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Avoid round-off error:
$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic

Known cases of rank conjecture

$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, I)$ (Terracini Lemma 1915)

Avoid round-off error:

$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic
I checked the conjecture up to $m, n, I \leq 14$

Generic rank III - the real case

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
$\operatorname{Closure}\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$ $\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, l)$ for each $\mathcal{T} \in V_{1}$

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$ $\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, l)$ for each $\mathcal{T} \in V_{1}$ $\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
rank $\mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$ $\left\{\rho_{1}, \ldots, \rho_{c(m, n, l)}\right\}=\{\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, I)\}$

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$ $\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, l)$ for each $\mathcal{T} \in V_{1}$
rank $\mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$ $\left\{\rho_{1}, \ldots, \rho_{c(m, n, l)}\right\}=\{\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, I)\}$
$\operatorname{mtrank}(2, n, I)=\operatorname{grank}(2, n, I)=\min (I, 2 n)$ if $2 \leq n<I$ - one typical rank $\operatorname{mtrank}(2, n, n)=\operatorname{grank}(2, n, n)+1=n+1$ if $2 \leq n-$ two typical ranks

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$ $\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, l)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$ $\left\{\rho_{1}, \ldots, \rho_{c(m, n, l)}\right\}=\{\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, I)\}$
$\operatorname{mtrank}(2, n, I)=\operatorname{grank}(2, n, I)=\min (I, 2 n)$ if $2 \leq n<I$ - one typical rank $\operatorname{mtrank}(2, n, n)=\operatorname{grank}(2, n, n)+1=n+1$ if $2 \leq n-$ two typical ranks

For $I=(m-1)(n-1)+1 \exists m, n$:
$c(m, n, I)>1, \operatorname{mtrank}(m, n, I) \geq \operatorname{grank}(m, n, l)+1$

Generic rank III - the real case

For $m n \leq I \operatorname{mtrank}(m, n, I)=\operatorname{grank}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.

Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times l}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}(m, n, l)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$ $\left\{\rho_{1}, \ldots, \rho_{c(m, n, l)}\right\}=\{\operatorname{grank}(m, n, l), \ldots, \operatorname{mtrank}(m, n, I)\}$
$\operatorname{mtrank}(2, n, I)=\operatorname{grank}(2, n, I)=\min (I, 2 n)$ if $2 \leq n<I$ - one typical rank $\operatorname{mtrank}(2, n, n)=\operatorname{grank}(2, n, n)+1=n+1$ if $2 \leq n-$ two typical ranks

For $I=(m-1)(n-1)+1 \exists m, n$:
$c(m, n, I)>1, \operatorname{mtrank}(m, n, I) \geq \operatorname{grank}(m, n, l)+1$

Rank one approximations

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$

Rank one approximations

$$
\begin{aligned}
& \mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle} \\
& \langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)
\end{aligned}
$$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
X subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\operatorname{Px}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{Px}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$ $\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$ $\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{X}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$ $\|\mathcal{T}\|^{2}=\|\operatorname{Px}(\mathcal{T})\|^{2}+\left\|\mathcal{T}-\operatorname{Pr}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-\boldsymbol{a} \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors
How many distinct singular values are for a generic tensor?

ℓ_{p} maximal problem and Perron-Frobenius

ℓ_{p} maximal problem and Perron-Frobenius

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{\rho}\right)^{\frac{1}{\rho}}
$$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{\rho}}$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
Problem: $\max _{\|\mathbf{x}\|_{\rho}=\|\mathbf{y}\|_{\rho}=\|\mathbf{z}\|_{\rho=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k} .}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{Z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{Z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
Problem: $\max _{\|\mathbf{x}\|_{p}=\|\mathbf{y}\|_{p}=\|\mathbf{z}\|_{p}=1}^{\left.\sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k},{ }^{2}\right)}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{X} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{X} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$

For which values of p we have an analog of Perron-Frobenius theorem?

Yes, for $p \geq 3$, No, for $p<3$,
Friedland-Gauber-Han [1]

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{\mathbb{U}_{1} \otimes \mathbb{U}_{2} \otimes \mathbb{U}_{3}}(\mathcal{T})\right\|$.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal
$\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.
Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices:

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.

Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbb{U}_{2}, \mathbb{U}_{3}$. Then $\mathbb{V}=\mathbb{U}_{1} \otimes\left(\mathbb{U}_{2} \otimes \mathbb{U}_{3}\right) \subset \mathbb{R}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.

Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbb{U}_{2}, \mathbb{U}_{3}$. Then $\mathbb{V}=\mathbb{U}_{1} \otimes\left(\mathbb{U}_{2} \otimes \mathbb{U}_{3}\right) \subset \mathbb{R}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbb{U}_{1}}\left\|P_{\mathrm{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ by rank $\left(R_{1}, R_{2}, R_{3}\right)$ 3 -tensor.

Best (R_{1}, R_{2}, R_{3}) approximation problem:
Find $\mathbb{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{\mathbb{U}_{1} \otimes \mathrm{U}_{2} \otimes \mathrm{U}_{3}}(\mathcal{T})\right\|$.

Relaxation method:
Optimize on $\mathbb{U}_{1}, \mathbb{U}_{2}, \mathbb{U}_{3}$ by fixing all variables except one at a time This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbb{U}_{2}, \mathbb{U}_{3}$. Then $\mathbb{V}=\mathbb{U}_{1} \otimes\left(\mathbb{U}_{2} \otimes \mathbb{U}_{3}\right) \subset \mathbb{R}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbb{U}_{1}}\left\|P_{\mathrm{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Fast low rank approximation I:

Fast low rank approximations II:

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C} P \times a}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{I \times r}$,

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times a}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$
$\min _{\mathcal{U} \in \mathbb{C}^{p \times q \times r}}\|\mathcal{A}-\mathcal{U} \times F \times E \times G\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times G^{\dagger}$

Fast low rank approximations II:

Approximate $A \in \mathbb{R}^{m \times n}$ by $C U R$ where $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ for some submatrices of A.
$\min _{U \in \mathbb{C}^{p \times q}}\|A-C U R\|_{F}$ achieved for $U=C^{\dagger} A R^{\dagger}$
Faster choice: $U=A[I, J]^{\dagger}$
(corresponds to best CUR approximation on the entries read)
For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$
$\min _{\mathcal{U} \in \mathbb{C}^{p \times q \times r}}\|\mathcal{A}-\mathcal{U} \times F \times E \times G\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times G^{\dagger}$
CUR approximation of \mathcal{A} obtained by choosing E, F, G submatrices of unfolded \mathcal{A} in the mode $1,2,3$.

List of applications

List of applications

Face recognition

List of applications

Face recognition

Video tracking

List of applications

Face recognition

Video tracking

Factor analysis

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$$
\begin{aligned}
& 0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I} \text { has given row, column and depth sums: } \\
& \mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0} \text { : }
\end{aligned}
$$

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$$
\begin{aligned}
& 0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I} \text { has given row, column and depth sums: } \\
& \mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}: \\
& \sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0 \\
& \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}
\end{aligned}
$$

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$$
\begin{aligned}
& 0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I} \text { has given row, column and depth sums: } \\
& \mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}: \\
& \sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0 \\
& \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}
\end{aligned}
$$

Find nec. and suf. conditions for scaling: $\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$$
\begin{aligned}
& 0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I} \text { has given row, column and depth sums: } \\
& \mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}: \\
& \sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0 \\
& \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}
\end{aligned}
$$

Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum
Solution: Convert to the minimal problem: $\min _{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k} t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}$

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ has given row, column and depth sums:
$\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}$:
$\sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0$
$\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum
Solution: Convert to the minimal problem:
$\min _{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k} t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}$
Any critical point of $f_{\mathcal{T}}$ on $\mathcal{S}:=\left\{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0\right\}$ gives rise to a solution of the scaling problem (Lagrange multipliers)

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ has given row, column and depth sums:
$\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}$:
$\sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0$
$\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum
Solution: Convert to the minimal problem:
$\min _{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k} t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}$
Any critical point of $f_{\mathcal{T}}$ on $\mathcal{S}:=\left\{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0\right\}$ gives rise to a solution of the scaling problem (Lagrange multipliers) $f_{\mathcal{T}}$ is convex

Scaling of nonnegative tensors to tensors with given row, column and depth sums

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ has given row, column and depth sums:
$\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\top}, \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}, \mathbf{d}=\left(d_{1}, \ldots, d_{l}\right)^{\top}>\mathbf{0}$:
$\sum_{j, k} t_{i, j, k}=r_{i}>0, \sum_{i, k} t_{i, j, k}=c_{j}>0, \sum_{i, j} t_{i, j, k}=d_{k}>0$
$\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}=\sum_{k=1}^{l} d_{k}$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}$ such that \mathcal{T}^{\prime} has given row, column and depth sum
Solution: Convert to the minimal problem:
$\min _{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0} f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad f_{\mathcal{T}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k} t_{i, j, k} e^{x_{i}+y_{j}+z_{k}}$
Any critical point of $f_{\mathcal{T}}$ on $\mathcal{S}:=\left\{\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0\right\}$ gives rise to a solution of the scaling problem (Lagrange multipliers)
$f_{\mathcal{T}}$ is convex
$f_{\mathcal{T}}$ is strictly convex implies \mathcal{T} is not decomposable: $\mathcal{T} \neq \mathcal{T}_{1} \oplus_{\mathcal{I}} \mathcal{T}_{2}$.

Scaling of nonnegative tensors II

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities
$\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0} /$.

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities
$\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.
Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities $\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.

Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities $\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.

Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities $\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.

Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm
True for matrices too

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities
$\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.
Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm
True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?

Scaling of nonnegative tensors II

if $f_{\mathcal{T}}$ is strictly convex and is ∞ on $\partial \mathcal{S}, f_{\mathcal{T}}$ achieves its unique minimum
Equivalent to: the inequalities $x_{i}+y_{j}+z_{k} \leq 0$ if $t_{i, j, k}>0$ and equalities
$\mathbf{r}^{\top} \mathbf{x}=\mathbf{c}^{\top} \mathbf{y}=\mathbf{d}^{\top} \mathbf{z}=0$ imply $\mathbf{x}=\mathbf{0}_{m}, \mathbf{y}=\mathbf{0}_{n}, \mathbf{z}=\mathbf{0}_{/}$.
Fact: For $\mathbf{r}=\mathbf{1}_{m}, \mathbf{c}=\mathbf{1}_{n}, \mathbf{d}=\mathbf{1}_{\text {, }}$ Sinkhorn scaling algorithm works.
Newton method works, since the scaling problem is equivalent finding the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear convergence of Sinkhorn algorithm
True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case? Yes for Menon, unknown for Brualdi

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]
W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$
If \mathbf{W} contains identity matrix then \mathbf{W} space of commuting matrices

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$
If \mathbf{W} contains identity matrix then \mathbf{W} space of commuting matrices
If \mathbf{W} contains an invertible matrix Z then any other $X, Y \in \mathbf{W}$ satisfy $X(\operatorname{adj} Z) Y=Y(\operatorname{adj} Z) X-$ equations of degree 5

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$
If \mathbf{W} contains identity matrix then \mathbf{W} space of commuting matrices
If \mathbf{W} contains an invertible matrix Z then any other $X, Y \in \mathbf{W}$ satisfy $X(\operatorname{adj} Z) Y=Y(\operatorname{adj} Z) X-$ equations of degree 5
 equations of degree 6

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$
If \mathbf{W} contains identity matrix then \mathbf{W} space of commuting matrices
If \mathbf{W} contains an invertible matrix Z then any other $X, Y \in \mathbf{W}$ satisfy $X(\operatorname{adj} Z) Y=Y(\operatorname{adj} Z) X$ - equations of degree 5 similarly $\mathrm{C}_{2}(X) \widetilde{\mathrm{C}_{2}(Z) \mathrm{C}_{2}(Y)=} \mathrm{C}_{2}(Y) \widetilde{\mathrm{C}_{2}(Z) \mathrm{C}_{2}(Z) \text { - }}$ equations of degree 6

Strassen's condition hold for any $3 \times 3 \times 3$ subtensor of \mathcal{T} : $\operatorname{det}(U(\operatorname{adj} W) V-V(\operatorname{adj} W) U)=0, \quad U, V, W \in \mathbb{C}^{3 \times 3 \times 3}$ equations of degree 9

Characterization of tensor in $\mathbb{C}^{4 \times 4 \times 4}$ of border rank 4

Major problem in algebraic statistics: phylogenic trees and their invariants [1]

W $\subset \mathbb{C}^{4 \times 4}$ subspace spanned by four sections of $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$
If \mathbf{W} contains identity matrix then \mathbf{W} space of commuting matrices
If \mathbf{W} contains an invertible matrix Z then any other $X, Y \in \mathbf{W}$ satisfy $X(\operatorname{adj} Z) Y=Y(\operatorname{adj} Z) X$ - equations of degree 5
 equations of degree 6

Strassen's condition hold for any $3 \times 3 \times 3$ subtensor of \mathcal{T} : $\operatorname{det}(U(\operatorname{adj} W) V-V(\operatorname{adj} W) U)=0, \quad U, V, W \in \mathbb{C}^{3 \times 3 \times 3}$ equations of degree 9

Friedland [5] one needs a equations of degree 16

References I

目 E.S. Allman and J.A. Rhodes, Phylogenic ideals and varieties for general Markov model, Advances in Appl. Math., 40 (2008) 127-148.
R.B. Bapat $D_{1} A D_{2}$ theorems for multidimensional matrices, Linear Algebra Appl. 48 (1982), 437-442.
R.B. Bapat and T.E.S. Raghavan, An extension of a theorem of Darroch and Ratcliff in loglinear models and its application to scaling multidimensional matrices, Linear Algebra Appl. 114/115 (1989), 705-715.
R. R.A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math 20 (1968), 144-157.
R.A. Brualdi, S.V. Parter and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J . Math. Anal. Appl. 16 (1966), 31-50.

References II

(eldén and B. Savas, A Newton Grassmann method for computing the Best Multi-Linear Rank-(r1; r2; r3) Approximation of a Tensor, SIAM J. Matrix Anal. Appl. 31 (2009), 248-271.
國 J. Franklin and J. Lorenz, On the scaling of multidimensional matrices, Linear Algebra Appl. 114/115 (1989), 717-735.
S. Friedland, On the generic rank of 3-tensors, arXiv: 0805.3777v2.

围 S. Friedland, Positive diagonal scaling of a nonnegative tensor to one with prescribed slice sums, to appear in Linear Algebra Appl., arXiv:0908.2368v1, http://arxiv.org/abs/0908.2368v2.
S. Friedland, On tensors of border rank / in $\mathbb{C}^{m \times n \times I}$, arXiv:1003.1968v1.

References III

固 S．Friedland，S．Gauber and L．Han，Perron－Frobenius theorem for nonnegative multilinear forms，arXiv：0905．1626．
目 S．Friedland，V．Mehrmann，A．Miedlar，and M．Nkengla，Fast low rank approximations of matrices and tensors，submitted， www．matheon．de／preprints／4903．
围 S．Friedland and V．Mehrmann，Best subspace tensor approximations，arXiv：0805．4220v1， http：／／arxiv．org／abs／0805．4220v1．
© S．A．Goreinov，E．E．Tyrtyshnikov，N．L．Zmarashkin，A theory of pseudo－skeleton approximations of matrices，Linear Algebra Appl． 261 （1997），1－21．
R．H．Lim，Singular values and eigenvalues of tensors：a variational approach，CAMSAP 05， 1 （2005），129－132．

References IV

圊 M.W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, PNAS 106, (2009), 697-702.

目 M.V. Menon, Matrix links, an extremisation problem and the reduction of a nonnegative matrix to one with with prescribed row and column sums, Canad. J. Math 20 (1968), 225-232.
(V. Strassen, Rank and optimal computations of generic tensors, Linear Algebra Appl. 52/53: 645-685, 1983.

