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1 Symmetric matrices

1.1 General matrices

For a positive integer n let [n] = {1, . . . , n}. Denote by Rn the n-dimensional space
of real vectors x = (x1, . . . , xn)>. On Rn we have the standard inner product
〈x,y〉 = x>y. Denote by Rm×n the vector space of m × n matrices. A matrix
A ∈ Rm×n has entry aij in the row i and column j. It would be convenient to denote
sometime the (i, j) entry of A as (A)ij = aij . So we abbreviate is as A = [aij ]

m,n
i,j=1 or

simply A = [aij ]. Recall that dimRm×n = mn. A standard basis in Rm×n is the set
of matrices Epq , for p ∈ [m], q ∈ [n], whose (i, j)− th entry is δpiδpj , i ∈ [m], j ∈ [n],
where δst is the Kronecker δ. Recall that A> ∈ Rn×m and (A>)ij = (A)ji.

Assume that A = [aij ] ∈ Rn×n. A has n-complex eigenvalues λ1(A), . . . , λn(A),
which are all the n-complex roots, counting with their multiplicities, of det(zIn−A).
(Here In = [δij ] ∈ Rn×n is the identity matrix of order n.) Then the trace of A,
denoted as trA, is

∑n
i=1 aii. Recall that trA =

∑n
i=1 λi(A). Clearly trA = trA>.

The space Rm×n has a standard inner product, when one identifies Rm×n with
Rmn. Namely, if A = [aij ], B = [bij ] ∈ Rm×n, then 〈A,B〉 =

∑m,n
i,j=1 aijbij . Note

that the standard basis Epq, p ∈ [m], q ∈ [n] is an orthonormal basis for this inner
product. It is straightforward to show that

〈A,B〉 = trAB> = trB>A = trBA>.

The induced Euclidean norm ‖A‖ =
√

trAA> =
√∑m,n

i,j=1 a
2
ij is called the Frobenius

norm on Rm×n.

1.2 Space of symmetric matrice

A matrix A ∈ Rn×n is called symmetric if A = A>. Denote by Sn ⊂ Rn×n the
subspace of symmetric matrices of order n. Recall that dim Sn = n(n+1)

2 =
(
n+1
2

)
.

Then the induced inner product on Sn is 〈A,B〉 = trAB. An orthogonal basis in
Sn is 1

2(Epq + Eqp) for 1 ≤ p ≤ q ≤ n.
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A system of linear equations in Sn is

〈Ai, X〉 = bi, X,Ai ∈ Sn, i ∈ [m]. (1.1)

Here, we view X as an unknown vector, and A1, . . . , Am ∈ Sn are given. Geomet-
rically, (1.1) is a hyperplane in Sn. Recall the necessary and sufficient conditions
of solvability of (1.1). For each nontrivial linear combination of A1, . . . , Am which
vanish the corresponding linear combination of b1, . . . , bm also vanish:

m∑
i=1

aiAi = 0⇒
m∑
i=1

aibi = 0.

Assume that (1.1) is solvable. Perform the Gram-Schmidt process on A1, . . . , Am
to obtain an orthonormal basis in span(A1, . . . , Am): A′1, . . . , A

′
m′ . The the system

(1.1)is equivalent to

〈A′i, X〉 = b′i, X,A′i ∈ Sn, 〈A′i, A′j〉 = δij , i, j ∈ [m′]. (1.2)

For simplicity of notation we will assume sometimes that the system (1.1) is already
in the form (1.2). That is, in addition to (1.1) we have the condition

〈Ai, Aj〉 = δij , i, j ∈ [m]. (1.3)

Next recall that A ∈ Sn has n real eigenvalues with corresponding set of or-
thonormal eigenvectors:

Axi = λi(A)xi, xi ∈ Rn, x>j xi = δij , i, j ∈ [n], (1.4)

λmax(A) = λ1(A) ≥ · · · ≥ λn(A) = λmin(A). (1.5)

The eigenvalues max and min of A have the Rayleigh characterization [2]

λmax(A) = max
x 6=0

x>Ax

x>x
, λmin(A) = min

x 6=0

x>Ax

x>x
.

1.3 The cone of positive semidefinite matrices

A ∈ Sn is called positive definite or positive semidefinite,(nonnegative definite),
denoted as A � 0 or A � 0, if λmin(A) > 0 or λmin(A) ≥ 0. This is equivalent to
x>Ax > 0 or x>Ax ≥ 0 for all x 6= 0.

The following results are well known [2]. A � 0 if and only if all leading principal
minors are positive:

det([aij ]
k
i,j=1) > 0, k ∈ [n].

A � 0 if and only if all principal minors of A are nonnegative.
Deciding if A � 0 or A � 0 is polynomial if A ∈ Sn(Q), where Sn(Q) = Sn∩Qn×n.

Algorithm 1.1 Let A = [aij ] ∈ Sn.

1. If a11 < 0 then A is not positive semidefinite.

2. If a11 = 0 then A is not positive semidefinite if
∑n

i=2 a
2
1i + a2i1 > 0. (This is

implied by the fact that all 2× 2 principal minors are nonnegative.)
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3. Assume that a1i = ai1 = 0 for i ∈ [n]. Thus A = [0] ⊕ A1, where A1 ∈ Sn−1.
Then A � 0 ⇐⇒ A1 � 0.

4. Assume a11 > 0. Perform the following Gauss eliminations: For i = 2, . . . , n
subtract from row i ai1

a11
times row one, and from column i a1i

a11
times column

one. Call the resulting matrix A′ ∈ Sn. So A′ = [a11]⊕A1. Then

A � 0 ⇐⇒ A1 � 0, A � 0 ⇐⇒ A1 � 0.

Denote by Sn,+ = {A ∈ Sn, A � 0}. Note that Sn,+ is a closed set, with the
interior Son,+ = {A ∈ Sn, A � 0}. So Sn,+ is a cone: A,B ∈ Sn,+ ⇒ aA+ bB ∈ Sn,+
for a, b ≥ 0. It is a pointed cone: Sn,+ ∩ (−Sn,+) = {0}. (Here −Sn,+ = {A,−A ∈
Sn,+}.) It is a generating cone: Sn = Sn,+ − Sn,+.

Indeed, for x ∈ R let x+ = max(x, 0), x− = max(−x, 0). So x = x+−x−. Recall
that the spectral decomposition of A induced by (1.4) is

A = QΛQ>, Q = [x1, . . . ,xn],Λ = diag(λ1(A), . . . , λn(A)).

So Q is an orthogonal matrix, i.e., Q>Q = In. Here D = diag(d1, . . . , dn) denotes
the diagonal matrix with the diagonal entries d1, . . . , dn. For a diagonal matrix D
as above set

D+ = diag((d1)+, . . . , (dn)+), D− = (diag((d1)−, . . . , (dn)−).

So D+, D− ∈ Sn,+, and D = D+ −D− and A = QΛ+Q
> −QΛ−Q

> are the decom-
positions of D and A to a difference of two positive semidefinite matrices.

Recall that any linear functional φ : Sn → R is of the form φ(X) = 〈X,C〉 for
some C ∈ Sn.

Lemma 1.2 Denote by S∨n,+ the dual cone of all linear functionals on Sn which
are nonnegative on Sn,+. Then S∨n,+ = Sn,+.

Proof. Assume that C = QΛ(C)Q> is the spectral decomposition of C. Then
〈X,C〉 = tr(XC) = tr((Q>XQ)Λ(C)). Clearly Q>Sn,+Q = Sn,+. So it is enough
to show that tr(Y D) ≥ 0 for a diagonal D for each Y ∈ Sn,+ if and only if the
diagonal entries of D = diag(d1, . . . , dn) are nonnegative. Clearly, a diagonal Y is
positive semidefinite if and only if the diagonal entries are nonnegative. Hence if
tr(EiiD) ≥ 0 for i ∈ [n] then D has nonnegative diagonal entries. Suppose now that
Y = [yij ] � 0. Hence yii ≥ 0 for i ∈ [n]. Now tr(Y D) =

∑n
i=1 yiidi ≥ 0 if all the

diagonal entries of D are nonnegative. 2

The cone Sn,+ induces the partial order A � B and A � B which is equivalent
to A−B � 0 and A−B � 0 respectively.

Corollary 1.3 Let A,B,X ∈ Sn. Suppose that A � B and X � 0. Then
〈A,X〉 ≥ 〈B,X〉. Suppose furthermore that A � B and X 6= 0. Then 〈A,X〉 >
〈B,X〉.
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2 Semidefinite programming

2.1 The duality theorem of linear programming

Let A ∈ Rm×n, c ∈ Rn,b ∈ Rm. Then one has the following two linear programming
problems, (LP problems):

inf{c>x, x ≥ 0, Ax = b}, (2.1)

sup{b>y, A>y ≤ c}. (2.2)

These two LP problems are called dual LP problems. It is understood that if the
set x ≥ 0, Ax = b is empty then the infimum in (2.1) is ∞, and if the set A>y ≤ c
is empty the the supremum in (2.2) is −∞.

Proposition 2.1 (Weak duality) Assume that Ax0 = b,x0 ≥ 0 and A>y0 ≤ c.
Then b>y0 ≤ c>x0.

Proof. The above conditions imply straightforward

b>y0 = (Ax0)
>y0 = x>0 (A>y0) ≤ x>0 c = c>x0.

Theorem 2.2 Assume that at least one of the sets in (2.1) and (2.2) is feasible.
Then the infimum in (2.1) is equal to the supremum in (2.2). Suppose furthermore
that the assumption of Proposition 2.1 holds. Then the infimum in (2.1) is min and
the supremum in (2.2) are max, i.e., they are both attained and equal.

See for example [1, Appendix A].

2.2 The weak duality theorem of semidefinite programming

Let C ∈ Sn,b = (b1, . . . , bm)> ∈ Rm,y = (y1, . . . , ym)> ∈ Rm. The dual semidefi-
nite programming problems are

inf{〈C,X〉, X � 0, 〈Ai, X〉 = bi, i ∈ [m]}, (2.3)

sup{b>y,y = (y1, . . . , ym)> ∈ Rm,
m∑
i=1

yiAi � C}. (2.4)

Again, we have the same convention as in the LP case. If the set in (2.3) is empty
then the inf =∞, and if the set in (2.4) is empty then the sup = −∞.

Proposition 2.3 Assume that the system (1.1) is solvable. Then the problem
(2.4) can be stated as a following supremum problem

sup{〈F, Y 〉, Y � 0, 〈Bi, Y 〉 = ei, i ∈ [`]}, (2.5)

plus a constant, for some Y,B1, . . . , B` ∈ Sn,+.

Proof. Since the system (1.1) is solvable, it is equivalent to the system (1.2).
We first show that (2.4) is equivalent to the set of dual problems:

inf{〈C,X〉, X � 0, 〈A′i, X〉 = b′i, i ∈ [m′]}, (2.6)

sup{(b′)>y′,b′ = (b′1, . . . , b
′
m′)
>,y′ = (y′1, . . . , y

′
m)> ∈ Rm

′
,
m′∑
i=1

y′iA
′
i � C}. (2.7)
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Indeed, since (1.1) and (1.2) gives the same hyperplane in Sn we obtain that the
problems (2.3) is equal to the problem of (2.6). To show that (2.4) and (2.7) are
equivalent problems, it is enough to recall

Ai =

m′∑
j=1

tijA
′
j , bi =

m′∑
j=1

tijb
′
j .

Then
m∑
i=1

yiAi =
m′∑
j=1

y′jA
′
j , y′j =

m∑
i=1

yitij .

Hence b>y = (b′)>y′.
By abusing the notation, we can assume that 〈Ai, Aj〉 = δij for i, j ∈ [m]. Let

A1, . . . , Am, Am+1, . . . , An(n+1)
2

be an orthonormal basis in Sn. Observe next that

the inequality
∑m

i=1 yiAi � C is equivalent to

Y +

m∑
i=1

yiAi = C, Y � 0. (2.8)

Let

` =
n(n+ 1)

2
−m,Bi = Am+i, ei = 〈Bi, C〉 for i ∈ [`].

Assume that Y � 0 and 〈Bi, Y 〉 = ei for i ∈ [`]. Hence C − Y ∈ span(A1, . . . , Am),
i.e. (2.8) holds. Set F = −

∑m
i=1 biAi. Then

m∑
i=1

biyi = 〈−F,
m∑
i=1

yiAi〉 = 〈F, Y 〉 − 〈F,C〉.

Hence the supremum in (2.4) is equal to the supremum in (2.7) plus the constant
−〈F,C〉. 2

Proposition 2.4 (Weak duality) Assume that X0 � 0 satisfies (1.1), and Y0 �
0,y0 = (y1,0, . . . , ym,0)

> satisfies (2.8). Then b>y0 ≤ 〈C,X0〉.

Proof. As 〈Y0, X0〉 ≥ 0 it follows that

〈C,X0〉 = 〈Y0 +

m∑
i=1

yi,0Ai, X0〉 = 〈Y0, X0〉+

m∑
i=1

yi,0〈Ai, X0〉 ≥
m∑
i=1

yi,0bi = b>y0.

2

Corollary 2.5 The infimum in (2.3) is not less than the supremum in (2.4).

Note that when the both sets in (2.3) and in (2.4) are not feasible we have the trivial
gap −∞ < ∞. Same situation holds for the LP programs. However, it is possible
that at least one of the sets in (2.3) and in (2.4) are feasible and the infimum in
(2.3) is strictly bigger than the supremum in (2.4). This strict inequality is called
the gap of SDP. Also the analog of Theorem 2.2 can fail as we see in the following
simple examples in the next subsection.
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2.3 Examples

Example 2.6 Let

X =

[
x11 x12
x12 x22

]
, C =

[
1 0
0 0

]
, A1 =

[
0 1

2
1
2 0

]
, b1 = 1.

Then the infimum in (2.3) is 0 but not attainable. The supremum in (2.4) is 0 and
is attainable.

Proof. Observe that 〈A1, X〉 = 1 yields that x12 = 1. As X � 0 it follows that
x11, x22 ≥ 0 and x11x22 − 1 ≥ 0. Hence x11 > 0. Next, 〈C,X〉 = x12. Note that

Xε =

[
ε 1
1 1

ε

]
is a feasible solution for any ε > 0. Hence the infimum in (2.3) is 0

but is not achievable.
The dual SDP problem (2.4) is y1A1 ≤ C, i.e., C − y1A1 � 0. In particular

0 ≤ det(C − y1A1) = −y21
4 . So y1 = 0 gives a unique feasible solution. Hence

b1y1 = y1 = 0. So the supremum is attainable and is equal to 0. 2

In this example we do not have a gap.

Example 2.7 Let

X =

[
x11 x12
x12 x22

]
, C =

[
0 −1

2
−1

2 −1

]
, A1 =

[
1 1
1 1

]
, b1 = 0.

Then the infimum in (2.3) is 0 and is attainable. The equality (2.8) is not feasible.
Hence the supremum (2.4) is −∞.

Proof. Note that 〈A1, X〉 = 1>X1,1 = (1, 1)>. As X � 0 it follows that 1 is
an eigenvector of X corresponding to the eigenvalue 0. So x11 +x12 = x12 +x22 = 0.
Hence x11 = x22 = −x12 = a ≥ 0. Now 〈C,X〉 = −x12 − x22 = 0. So the infimum
is 0 and is achieved. The dual set is y1A � C ⇐⇒ 0 � C − y1A = D. First the
diagonal elements of D are nonnegative. This condition yields that y1 ≤ −1. The
determinant condition is

0 ≤ −y1(−1− y1)− (
1

2
+ y1)

2 = −1

4
,

which is impossible. Hence the supremum in (2.4) is −∞. 2

In this example we do have a gap. This situation can not happen for the linear
programming problem. Another situation that can not happen in LP is that not all
SDP are polynomially solvable with given precision ε > 0. See
https://cstheory.stackexchange.com/questions/14548/solving-semidefinite-programs-
in-polynomial-time/14550

2.4 Strong SDP duality

Theorem 2.8 (Strong duality first version) Assume that (2.8) solvable with
Y � 0. Denote by β the supremum in (2.4). Then the infimum in (2.3) is equal to
β. Furthermore, β <∞ if and only if the infimum in (2.3) is attainable.
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To prove the theorem we need the following results.

Theorem 2.9 (Separation theorem.) Let Σ1,Σ2 ⊂ Rp be two convex closed sets,
such that Σ1 ∩ Σ2 = ∅. Suppose furthermore that Σ1 is compact and Σ2 is a cone.
Then there exists a linear functional φ : Rp → R such that φ(u) ≥ 0 for each u ∈ Σ2

and φ(v) < 0 for each v ∈ Σ1.

See for example [9].

Lemma 2.10 Let F1, . . . , Fp ∈ Sn. Consider the linear map L : Sn → Rp given
by X 7→ (〈F1, X〉, . . . , 〈Fp, X〉)>. Assume that span(F1, . . . , Fp) contains a positive
definite matrix Z � 0. Then L(Sn,+) is closed. That is if Xi � 0 for i ∈ N, and
limi→∞ L(Xi) = x = (x1, . . . , xp)

> ∈ Rp, then there exists a convergent subsequence
Xij , 1 ≤ i1 < · · · such that limj→∞Xij = X ≥ 0.

Proof. Assume that Z =
∑p

k=1 ziFi � 0. We claim that

lim sup
i→∞

λmax(Xi) ≤
∑p

k=1 xizi
λmin(Z)

. (2.9)

First recall the spectral decomposition ofA ∈ Sn given by (1.4): A =
∑n

l=1 λi(A)xix
>
i .

As In =
∑n

l=1 xix
>
i it follows that A−λmin(A)In =

∑n−1
l=1 (λi(A)−λmin)(A)xix

>
i � 0.

Recall that Z � 0 ⇐⇒ λmin(Z) > 0. So Z � λmin(Z)In � 0.
Next consider the spectral decomposition of Xi:

Xi =

n∑
l=1

λl(Xi)xl,ix
>
l,i, λ1(Xi) ≥ . . . ≥ λn(Xi) ≥ 0,x>p,ixq,i = δp,q, p, q ∈ [n], i ∈ N.

Hence Xi � λmaxx1,ix
>
1,i. Therefore:

p∑
k=1

zk〈Bk, Xi〉 = 〈Z,Xi〉 = 〈Z,Xi〉 ≥ 〈Z, λmax(Xi)x1,ix
>
1,i〉 ≥

〈λmin(Z)In, λmax(Xi)x1,ix
>
1,i〉 = λmin(Z)λmax(Xi) tr(Inx1,ix

>
1,i) = λmin(Z)λmax(Xi).

Let i → ∞ and recall the assumption that limi→∞ L(Xi) = x = (x1, . . . , xp)
>.

Combine that with the above inequality to deduce (2.9).
We claim that the sequence Xi, i ∈ N is bounded. Assume that X = [xij ] ∈ Sn,+.

The the maximal characterization and the minimal characterization of λmax(X) and
λmin(X) yield that 0 ≤ xii ≤ λmax(X) for i ∈ [n]. As all 2 × 2 principal minors of
X are nonnegative we deduce that |xij | ≤

√
xiixjj ≤ λmax(X) for i, j ∈ [n]. The

inequality (2.9) yields that all the entries of Xi, i ∈ N are uniformly bounded. Hence
there exists a subsequence Xij , j ∈ N that converges to X ∈ Sn,+. 2

Proof of Theorem 2.8. Assume first that β =∞. The weak duality theorem
yields that there is no X � 0 which satisfies (1.1). Hence the the infimum in (2.3)
is β by definition.

Assume now that the infimum in (2.3) is attainable. The weak duality theorem
yields that β <∞.

Assume now that β < ∞. We will show that there exists X � 0 satisfying the
equalities (1.1), such that 〈C,X〉 = β. Let L : Sn → Rm+1 be given by L(X) =
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(〈C,X〉, 〈A1, X〉, . . . , 〈Am, X〉)>. Clearly L(Sn,+) ⊂ Rm+1 is a cone. The assump-
tion that (2.8) solvable with Y � 0 implies that Y ∈ span(C,A1, . . . , Am). Lemma
(2.10) implies that L(Sn,+) is a closed convex set in Rm+1. Let x = (β, b1, . . . , bm)>.
Suppose first x ∈ L(Sn,+). This is equivalent to the existence of X � 0 satisfying
the equalities (1.1), such that 〈C,X〉 = β.

It is left to show that we can’t have the possibility x 6∈ L(Sn,+). Assume to
the contrary that x 6∈ L(Sn,+). Theorem 2.9 yields that there exists a linear func-
tional φ : Rm+1 → R such that φ(y) ≥ 0 for y ∈ L(Sn,+) and φ(x) < 0. Let
φ((y0, y1, . . . , ym+1)

>) =
∑m

l=0 fiyi for y ∈ Rm+1. Hence

f0〈C,X〉+
m∑
i=1

fi〈Ai, X〉 = 〈f0C +
m∑
l=1

fiAi, X〉 ≥ 0 if X � 0.

Lemma (1.2) yields that f0C +
∑m

l=1 fiAi � 0. The assumption that φ(x) < 0 is
f0β +

∑m
i=1 fibi < 0.

Suppose first that f0 > 0. by dividing by f0 we can assume that f0 = 1.
That is C +

∑m
i=1 fiAi = Z � 0. Equivalently, C �

∑m
i=1(−fi)Ai. The maximal

characterization of β yields that β ≥
∑n

i=1 bi(−fi). This contradicts the assumption
that φ(x) < 0.

Assume second that f0 = 0. Then
∑m

i=1 fibi < 0 and
∑m

i=1 fiAi � 0. Recall that
we assumed that (2.8) solvable with Y � 0. Let t > 0. Then

∑m
i=1(yi− tfi)Ai ≺ C.

Hence β ≥
∑m

i=1 bi(yi − tfi) = −t
∑m

i=1 bifi +
∑m

i=1 biyi. Letting t→∞ we we will
obtain a contradiction.

Assume now that f0 < 0. By dividing by −f0 we can assume that f0 = −1.
Hence β >

∑
i=1 fibi. Furthermore−C+

∑m
i=1 fiAi � 0. Let us choose an admissible

point z = (z1, . . . , zm)> such
∑m

i=1 ziAi � C and
∑m

i=1 bifi <
∑m

i=1 bizi < β. Let
t > 0. Then

m∑
i=1

(yi+t(zi−fi))Ai = (

m∑
i=1

yiAi)+t

m∑
i=1

ziAi+t

m∑
i=1

(−fiAi) ≺ (C+tC+t(−C)) = C.

As β is the supremum of (2.4) it follows that

β ≥ t((
m∑
i=1

bizi)− (

m∑
i=1

bifi)) +
m∑
i=1

fiyi.

Letting t→∞ we obtain a contradiction. 2

Theorem 2.11 (Strong duality second version) Assume that there exists X � 0
satisfying (1.1). Let α be the infimum in (2.3). Then the supremum in (2.4) is equal
to α. Furthermore, α > −∞ if and only if the supremum in (2.4) is attainable.

Proof. The assumption that there existsX � 0 satisfying (1.1), implies that the
system (1.1) is solvable. We now use Proposition 2.3 and the arguments of its proof.
For simplicity of notation we can assume that A1, . . . , An(n+1)

2

is an orthonormal

basis in Sn,+. Hence the problem (2.4) is equivalent to the problem (2.7). Clearly,
(2.7) is equal to

− inf{〈−F, Y 〉, Y � 0, 〈Bi, Y 〉 = ei, i ∈ [`]}, (2.10)
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Recall that

−F =
m∑
i=1

biAi, Bi = Am+i, ei = 〈Bi, C〉, i ∈ [`], ` =
n(n+ 1)

2
−m.

Note that the system 〈Bi, Y 〉 = ei, i ∈ [`] is solvable in Sn. We claim that the dual
to (2.10) is (2.3) plus a constant. To show that we apply the arguments of the proof
of Proposition 2.3. Thus the dual to (2.10) is

− sup{〈G,X〉, X � 0, 〈Ai, X〉 = 〈Ai,−F 〉, i ∈ [m].

Here G = −
∑`

j=1 eiBi. Recall that 〈Ai,−F 〉 = bi for i ∈ [m]. Recall next C =∑n(n+1)
2

k=1 〈Ak, C〉Ak. Hence −G = C −
∑m

i=1〈Ai, C〉Ai. If 〈Ai, X〉 = bi, i ∈ [m] we
obtain

〈−G,X〉 = 〈C,X〉 −
m∑
i=1

〈Ai, C〉bi.

Thus the dual to (2.10) is (2.3) plus a constant. Now use Theorem 2.8 to deduce
the theorem. 2

2.5 Flexibility of SDP

We first observe that the problems of linear programming can be stated as an SDP
problem. Consider first the system Ax = b,x ≥ 0, where x ∈ Rn and A ∈ Rm×n.
For x = (x1, . . . , xn)> ∈ Rn denote by D(x) = diag(x1, . . . , xn) ∈ Sn. Let X =

[xij ] ∈ Sn. Then the set of all diagonal matrices in Sn is given by the n(n−1)
2 linear

conditions
〈Epq + Eqp, X〉 = 0 for 1 ≤ p < q ≤ n.

Furthermore x ≥ 0 if and only if D(x) � 0. Let ai be the i-th row of A for i ∈ [m].
Then the system Ax = b is equivalent to

〈D(ai), D(x)〉 = bi, i ∈ [m].

Hence the LP (2.1) can be stated as (2.3).
Suppose we have an SDP problem with k matrices X1, . . . , Xk ∈ Sn,+:

inf{
k∑
i=1

〈Ck, Xk〉, Xj ∈ Sn,+, 〈Aij , Xj〉 = bij , i ∈ [mj ], j ∈ [k]}. (2.11)

Then it is possible convert this problem to the problem (2.3) for X ∈ Skn,+. Consider
the block diagonal symmetric matrix X = diag(X1, . . . , Xk) ∈ Skn. The subspace
of such matrices X ∈ Skn is given by a corresponding number homogeneous linear
conditions. Then X1, . . . Xk ∈ Sn,+ ⇐⇒ X = diag(X1, . . . , Xk) ∈ Skn,+. Let

C = diag(C1, . . . , Ck). Then 〈C,X〉 =
∑k

i=1〈Ci, Xi〉.

3 Applications of SDP to combinatorial optimization

A good reference to this topic is [5].
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3.1 Max and min boolean problems

Let
{−1, 1}n = {x = (x1, . . . , xn)> ∈ Rn, x21 = · · · = x2n = 1}.

A vector x ∈ {−1, 1}n is called a boolean vector. (Note that x is boolean if and only
if x = 2y − 1n, where y = (y1, . . . , yn)> and yi ∈ {1, 0}, i ∈ [n].) For a symmetric
matrix B ∈ Sn denote

νmax(B) = max
x∈{−1,1}n

x>Bx, νmin(B) = min
x∈{−1,1}n

x>Bx (3.1)

The above two quantities are called the boolean (binary) optimizations. Clearly

νmax(B) = −νmin(−B). (3.2)

It is straightforward to show that

nλn(A) = nλmin(B) ≤ νmin(B) ≤ νmax(B) ≤ nλmax(B) = nλ1(B). (3.3)

Actually, we have better bounds. We state these bounds for νmax(B).

Lemma 3.1 For B ∈ Sn let

ωmin(B) = min{nλmax(B +D(u)),u = (u1, . . . , un)> ∈ Rn,1>nu = 0}. (3.4)

Then
νmax(B) ≤ ωmin(B). (3.5)

Proof. Note that if x ∈ {−1, 1}n then ‖x‖2 = x>x = n. The maximum
Rayleigh characterization yields that

λmax(B) ≥ x>Ax

x>x
=

1

n
x>Bx for x ∈ {−1, 1}n.

Hence the right hand side of (3.3) hold. (The minimum characterization of λmin(B)
yields the left hand side of (3.3).) Observe that for u = (u1, . . . , un)>,x = (x1, . . . , xn)> ∈
Rn we have the equality x>D(u)x =

∑n
i=1 x

2
i . Thus if 1>u = 0 and x ∈ {−1, 1}n

we obtain that x>D(u)x = 0. In particular, νmax(B) = νmax(B +D(u)). Use (3.3)
to deduce (3.5). 2

For x1, . . . ,xn ∈ Rm denote by G(x1, . . . ,xn) = [〈xi,xj〉] ∈ Sn the Gramian
matrix.

Lemma 3.2 1. Let x1, . . . ,xn ∈ Rm. Then G(x1, . . . ,xn) ∈ Sn,+. Further-
more, G(x1, . . . ,xn) � 0 if and only if x1, . . . ,xn are linearly independent.
Moreover, rank G(x1, . . . ,xn) is the dimension of span(x1, . . . ,xn).

2. Let X ∈ Sn and assume that rank X = m ≥ 1. Then X ∈ Sn,+ if and only
if X = G(x1, . . . ,xn) for some x1, . . . ,xn ∈ Rm. Furthermore, the vectors
x1, . . . ,xn are determined uniquely up the action of the orthogonal group on
Rm: {x1, . . . ,xn} → O{x1, . . . ,xn} = {Ox1, . . . , Oxn}.
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Proof. 1. Let x1, . . . ,xn ∈ Rm an y = (y1, . . . , yn)>. Then y>G(x1, . . . ,xn)y =
〈
∑n

i=1 yixi,
∑n

j=1 yjxj〉 ≥ 0. HenceG(x1, . . . ,xn) � 0. Note that y>G(x1, . . . ,xn)y =
0 if and only if

∑n
i=1 yixi = 0. In particular, G(x1, . . . ,xn) � 0 if and only if

x1, . . . ,xn are linearly independent.
It is left to show that rank G(x1, . . . ,xn) = dim span(x1, . . . ,xn). Let m =

dim span(x1, . . . ,xn). Assume that dim span(x1, . . . ,xn) = m ≥ 1. So n ≥ m.
If m = n then x1, . . . ,xn are linearly independent. Hence G(x1, . . . ,xn) � 0 and
rank G(x1, . . . ,xn) = n. Vice versa, if rank G(x1, . . . ,xn) = n then G(x1, . . . ,xn) �
0 and x1, . . . ,xn are linearly independent.

Let us assume that n > m ≥ 1 and 1 ≤ rank G(x1, . . . ,xn) < n. By renaming
the x1, . . . ,xn we can assume that x1, . . . ,xm are llinearly independent. Observe
that G(x1, . . . ,xm) is a prinicple submatrix of G(x1, . . . ,xm). Our previous results
show that G(x1, . . . ,xm) � 0. In particular, the m rows of G(x1, . . . ,xm) are linearly
independent. Therefore the first m-row of G(x1, . . . ,xn) are linearly independent.
Hence rank G(x1, . . . ,xn) ≥ m. Recall that xj =

∑m
i=1 ajixi for j > m. Now

subtract from row j the sum of aji times row ri for j = m+ 1, . . . , n to deduce that
the new matrix has n−m zero rows. So the rank of G(x1, . . . ,xn) ≤ m. Therefore
rank G(x1, . . . ,xm) = m.

Suppose now that rank G(x1, . . . ,xn) = r, 1 ≤ r < n. If G(xi) = ‖xi‖2 = 0, i.e.,
the i-th diagonal entry is zero then xi = and the row i and the column i are zero.
Perform Algorithm 1.1 to deduce that r = dim{x1, . . . ,xn}.
2. Suppose that X ∈ Sn,+. Then X = QΛQ>, where QQ> = Q>Q = In and

Λ = diag(λ1(X), . . . , λn(X)) where λ1(X) ≥ · · ·λn(X) ≥ 0 for i ∈ [n]. Set Λ
1
2 =

diag(
√
λ1(X), . . . ,

√
λn(X)). Let Y = Λ

1
2Q>. Then X = Y >Y . Set yi to be the

i-th column of Y for i ∈ [n]. Then X = G(y1, . . . ,yn). Assume that rank X = m.
So λm(X) > 0 and λm+1(X) = · · · = λn(X) = 0. So the last n −m rows of Y are
zero. That is y>i = (x>i ,0), where xi ∈ Rm for i ∈ [n]. Thus X = G(x1, . . . ,xn),
where x1, . . . ,xn ∈ Rm. As we claimed.

Let O ∈ Rm×m be an ortthogonal matrix: O>O = Im. Denote zi = Oxi for
i ∈ [n]. Then x>i xj = z>i zj for i, j ∈ [n]. Thus G = G(x1, . . . ,xn) = G(z1, . . . , zn),
x1, . . . ,xn, z1, . . . , zn ∈ Rm and rank G = m.

Assume that G = G(x1, . . . ,xn) = G(z1, . . . , zn), x1, . . . ,xn, z1, . . . , zn ∈ Rm
and rank G = m. By renaming x1, . . . ,xn and z1, . . . , zn accordingly, we can as-
sume that x1, . . . ,xm are linearly independent. So G(x1, . . . ,xm) � 0. Hence
G(z1, . . . , zm) = G(x1, . . . ,xm) � 0, so z1, . . . , zm are linearly idependent. Thus
X = [x1 · · ·xm], Z = [z1 · · · zm] ∈ Rm×m are two invertible matrices. Therefore

G(x1, . . . ,xm) = X>X = G(z1, . . . , zm) = Z>Z ⇒
(
(X>)−1Z>

)(
ZX−1) = In.

Hence the matrix O = ZX−1 is an orthogonal matrix. Thus Oxi = zi for i ∈ [m].
Let yj = Oxj for j = m+ 1, . . . , n. Observe next that

G(x1, . . . ,xn) = G(Ox1, . . . , Oxn) = G(z1, . . . , zm,ym+1, . . . ,yn) = G(z1, . . . , zn).

Hence 〈yj , zi〉 = 〈zj , zi〉 for i ∈ [m]. That is 〈yj − zj , zi〉 = 0 for i ∈ [m]. As
z1, . . . , zm are linearly independent in Rm they span Rm. Therefore yj = zj for
jm+ 1, . . . , n. That is zj = Oxj for j = m+ 1, . . . , n. 2
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X = [xij ] ∈ Sn,+ is called a correlation matrix if xii = 1 for i ∈ [n]. So X is a
correlation matrix if and only if X = G(x1, . . . ,xn) where ‖x1‖ = . . . = ‖xn‖ = 1.
Denote by Kn the convex set of correlation matrices:

Kn = {X ∈ Sn,+, 〈Eii, X〉 = 1, i ∈ [n]}. (3.6)

Note that Kn is a compact set. Denote

Xn = {xx>, x ∈ {−1, 1}n}. (3.7)

Clearly, Xn ⊂ Kn. Observe next that

νmax(B) = max{〈B,X〉, X ∈ Xn} νmin(B) = min{〈B,X〉, X ∈ Xn}. (3.8)

The following max and min problems are called the SDP relaxations of the above
max and min problems:

γmax(B) = {〈B,X〉, X ∈ Kn}, γmin(B) = min{〈B,X〉, X ∈ Kn}. (3.9)

Clearly
νmax(B) ≤ γmax(B), γmin(B) ≤ νmin(B). (3.10)

Theorem 3.3 Let B ∈ Sn. The the dual SDP problem to the maximum problem
characterizing γmax(B) is the following minimum problem

min{
n∑
i=1

zi,
n∑
i=1

ziEii � B}. (3.11)

Both problems has positive definite feasible solutions. Hence the strong duality holds.
Furthermore, the dual problem (3.11) is equal to the minimum problem (3.4).

Proof. Let
Hn = {X ∈ Sn, 〈Eii, X〉 = 1, i ∈ [n]}. (3.12)

Then Kn = Hn ∩ Sn,+. Thus

γmax(B) = {max〈B,X〉, X � 0, 〈Eii, X〉 = 1, for i ∈ [n]}. (3.13)

Note that 0 ≺ In ∈ Kn. Hence (3.11) is the dual problem of (3.13). The inequality∑n
i=1 ziEii � B can be stated as an equation:

−Y +

n∑
i=1

ziEii = B, Y � 0. (3.14)

By choosinf zi � 0 for i ∈ [n] we deduce that there is a feasible solution in the above
system with Y � 0. Hence the dual also a positive definite solution. In particular
the strong duality holds.

It is left to show that the minimum in (3.11) is the minimum in (3.4). Clearly∑n
i=1 ziEii = D(z), where z = (z1, . . . , zn)>. Set ui = −zi + 1

n

∑n
i=1 zi. Let

u = (u1, . . . , un)>. Note that 1>nu = 0. Then the condition D(z) � B is equiv-

alent to
∑n

i=1 zi
n In � (B + D(u)). The last condition is equivalent to

∑n
i=1 zi ≥

nλ1(B + D(u)). Since we are minimizing
∑n

i=1 zi for fixed u satisfying 1>nu = 0
we choose

∑n
i=1 zi = nλ1(B + D(u)). This arguments yields that the minimum in

(3.11) is the minimum in (3.4). 2

In a similar way we deduce:
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Corollary 3.4 The dual SDP problem to γmin(B) is

ωmax(B) = max{nλmin(B +D(u)),u = (u1, . . . , un)> ∈ Rn,1>nu = 0}. (3.15)

For a given B ∈ Sn ∩ Qn×n and 0 < ε ∈ Q one can find a ε aprroximation of
γmax(B) in a polynomial time in the data 〈B〉+ 〈ε〉 by an interior method. Indeed,

consider the hyperplane (3.12) It can be identified with R
n(n−1

2 . So Kn is a convex
set in Hn, with an interior point In. The open ball

B(In, 1) = {X ∈ Hn, 〈X − In, X − In〉 < 1} (3.16)

is contained in the interior of Kn. Hence the interior method for finding γ(A) is
applicable. So we can have an approximate solution X0 ∈ Kn: 〈B,X0〉 ≤ γmax(B),
such that (theoretically) 〈B,X0〉 ≥ γmax(B)− ε.

Next, the dual problem (3.11) has also a feasible solution Y = aIn for some
zi = b, i ∈ [n]. Hence we also apply the interior method to find upper bound
γmax(B). Combining together we obtain the practical bound for γmax(B):

〈B,X0〉 ≤ γmax(B) ≤ 1>n z0. (3.17)

In particular, if 1>n z0−〈B,X0〉 are not satisfactory small, we can iterate the interiror
methods for X0 and z0 to improve (3.17).

A theoretical problem is to supply an estimate how far γmax(B) is from νmax(B),
(and similarly how far γmin(B) is from νmin(B))?

The major result in this area is a result contained in Rietz [6] and usually
attributed to Nesterov [7]:

Theorem 3.5 Let B ∈ Sn,+. Then

νmax(B) ≥ 2

π
γmax(B). (3.18)

We will point out a proof of this inequality in §3.3. We also explain Rietz’s result
in the context of the Grothendieck inequality.

3.2 Boolean least square

Given A ∈ Rm×n,b ∈ Rm find

α(A) = min{‖Ax− b‖2, x = (x1, . . . , xn)> subject x ∈ {−1, 1}}. (3.19)

See Stephen Boyd ’s Zaborsky Disitnguished Lecture Series, September 18, 2016:
https://ese.wustl.edu/eseatwashu/Documents/Seminars/BoydLecture1.pdf

SDP approximation: Observe first

‖Ax− b‖2 = x>A>Ax− 2b>Ax + b>b.

Set

A1 =

[
A>A b>

b b>b

]
.

Note that A1 � 0. Then

α(A) = min{y>Ay,y ∈ {−1, 1}n+1} = νmin(A1).
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Indeed, by considering ±y it is enough to assume that y> = (x>,−1). Then we get
y>A1y = ‖Ax− b‖2. Hence a lower bound for α(A) is the γmin(A1):

α(A) ≥ γmin(A1).

Since A1 � 0 and X ∈ Kn+1 is positive semidefinite then by Lemma 1.2 〈A1, X〉 ≥ 0.
Hence γmin(A1) ≥ 0. The strong duality theorem combined with Corollary 3.4 yields
that γmin(A1) = ωmax(A1). Note that Theorem 3.5 is not applicable here. Of course
it would be nice if there was an explicit constant not depending on n such that
α(A) ≤ Cγmin(A1) at least for some interesting cases of A!

3.3 Max-cut

Let G = (V,E) be a simple graph. Assume that |V | = n and |E| = m. Let
V = {v1, . . . , vn}We associate with G the symmetric 0−1 matrix A(G) = [aij ] ∈ Sn
as follows: aij = 1 if and only if the edge vivj ∈ E. All other entries are zero. (In
particular aii = 0 for i ∈ [n].) A(G) is called the adjacency matrix of the G.
Suppose that each edge e ∈ E in the graph has weight w(e). Let w : E → R. Then
we have a weighted graph Gw = (V,E,w). Denote by w(E) =

∑
e∈E w(e). The the

corresponding weighted matrix is a weighted adjacency matrix A(G,w) = [aij ] ∈ Sn.
So aij = 0 if vivj 6∈ E and aij = aji = w(e) if e = vivj . A cut in G is a of nonempty
strict subset of vertices W ⊂ V . Denote δ(W ) ⊂ E the set of all edges whose one
end is in W and the other one in V \W . The set δ(W ) is called a cut, (an edge-cut),
Then the weight of is given as

w(δ(W )) =
∑

e∈δ(W )

w(e) =
∑

vi∈W,vj∈V \W

aij . (3.20)

Denote by xW = (x1, . . . , xn)> ∈ {−1, 1}n a modified characteristic vector of the
set W . Namely xi = 1 if vi ∈ W and xj = −1 if j ∈ V \W . Denote by 1V = 1n =
(1, . . . 1)>, the characteristic vector of V . A straightforward calculation shows

w(δ(W )) =
1

2
(1>nA(G,w)1n − 1>WA(G,w)1W ). (3.21)

Recall that if w ≥ 0 then the min-cut problem min{w(δ(W ), W, ∅ 6= W ⊂ V } can
be solved in polynomial time using flows or contraction algorithms [1]. The max-cut
problem is

µ(G,w) = max{w(δ(W ), W, ∅ 6= W ⊂ V }. (3.22)

If w = 1E , i.e., all edges in G are given the weight 1, then µ(G) = µ(G,1E), and
µ(G) is called the max-cut of G. The problem of deciding if µ(G) ≤ k for an integer

k(≤ n(n−1)
2 ) is NP-complete [3].

Assume that w ≥ 0. Then 2w(E) = 1>nA(G,w)1n ≥ 1>WA(G,w)1W . Hence
(3.21) yields

µ(G,w) = w(E) +
1

2
ν(−A(G,w)), w ≥ 0, w(E) =

1

2
1nA(G,w)1n. (3.23)

For w ≥ 0 denote by L(G,w) ∈ Sn,+ the weighted Laplacian matrix corresponding
Gw:

L(G,w) = D(A(G,w)1n)−A(G,w). (3.24)
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So the off-diagonal entries of L(G,w) are the off-diagonal of −A(G,w), the diagonal
entry are nonnegative and each row sum is 0: L(G,w)1n = 0. It is well known that
L(G,w) � 0 [2, §6.6]. As

x>D(A(G,w)1n)x = 2w(E), for each x ∈ {−1, 1}n,

it follows that

µ(G,w) =
1

2
νmax(L(G,w)) for w ≥ 0. (3.25)

Hence the SDP relaxation of µ(G,w) is 1
2γmax(L(G,w)). Combine the above

result to deduce that with Theorem 3.5 to deduce the inequality

1

π
γmax(L(G,w)) ≤ µ(G,w) ≤ 1

2
γmax(L(G,w)).

We now point out briefly a “proof” of (3.18) using the identity of Goemens-
Williamson[4]. For x ∈ [−1, 1] denote by arcsinx the principal value of the Arcsine
of x. Hence arcsinx ∈ [−π

2 ,
π
2 ]. Recall that teh convergent series of arcsinx:

arcsinx = x+
1

2

x3

3
+

1× 3

2× 4

x5

4
+ · · · , |x| < 1. (3.26)

Note that the coefficients of even powers are zero and the coefficient of odd powers
are positive. For X =]xij ] ∈ Sn and a positive integer k denote by X◦k = [xkij ], the

k − th Schur power of X. It is well known that if X ∈ Sn,+ then X◦k ∈ Sn,+ [2,
Chapter 5]. (Note that ⊗kX � 0. Then X◦k is a principal submatrix of ⊗kX.)

Let
Sn([−1, 1]) = {Y = [yij ] ∈ Sn, |yij | ≤ 1, for i, j ∈ [n]}. (3.27)

Observe next that if X = [xij ] ∈ Kn then |xij | ≤ 1. (This follows from the fact that
all 2× 2 minors of X are nonnegative.) Hence Kn ⊂ Sn([−1, 1]).

For Y = [yij ] ∈ Sn([−1, 1]) define arcsinY = [arcsin yij ]. Observe that the
following map maps Sn([−1, 1]) to itself:

φ : Sn([−1, 1])→ Sn([−1, 1], φ(Y ) =
2

π
arcsinY. (3.28)

Denote the set of fixed points of φ by Fix(φ). As 2
πarcsinx has exactly 3 fixed

points on [−1, 1] it follows that Y ∈Fix(φ) if and only if all the entries of Y are in
{−1, 0, 1}. (The graph of y = arcsinx is strictly convex on [0, 1] and strictly concave
on [−1, 0].)

Assume that Y = [yij ] is in the interior of Sn([−1, 1]), i.e., |yij | < 1 for i, j ∈ [n].
In view of (3.26) it follows that

arcsinY = Y +
1

2

Y ◦3

3
+

1× 3

2× 4

Y ◦5

4
+ · · · .

Suppose furthermore that Y � 0. The above identity yields that arcsinY � Y . The
continuity argument yield that

arcsinX � X for X ∈ Kn. (3.29)
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Lemma 1.2 yields:

〈A, arcsinX〉 ≥ 〈A,X〉 if A ∈ Sn,+ and X ∈ Kn. (3.30)

The last step in the proof of (3.18) is the identity of Goemans-Williamson [4]:

νmax(A) =
2

π
max{〈A, arcsinX〉, X ∈ Kn}, for A ∈ Sn. (3.31)

This result is equivalent to the following statement:

Lemma 3.6 The closed set φ(Kn) is contained in the convex hull spanned Xn =
{xx>,x ∈ {−1, 1}n}.

Proof. Recall that Xn ⊂Fix(φ). Hence φ(Kn) ⊃ Xn. Suppose to the contrary
that conv Xn does not φ(Kn). Hence conv φ(Kn) contains an extreme point X ∈
φ(Kn) which is not in Xn. Then there must be a linear functional on Hn which
supports conv φ(Kn) at X. This linear functional is 〈A, ·〉 for some A ∈ Sn. (We
can assume that A has zero diagonal.) That is ν(A) < 〈A,X〉 which contradicts
(3.31).

3.4 The Grothendieck inequality
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