The global and local additivity problems in quantum information theory

Shmuel Friedland
Univ. Illinois at Chicago

IQIS Seminar, University of Calgary 9 November, 2011

Overview

- Capacity of a classical noisy channel
- Capacity of a quantum channel
- Three additivity conjectures
- Hastings's counterexample to additivity conjectures
- Local additivity of the minimum entropy output

Capacity of a classical noisy channel

$\mathcal{X}:=\left\{x_{1}, \ldots, x_{m}\right\}, \mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ two finite alphabets.
$p(x, y)$-probability sending $x \in \mathcal{X}$ and receiving $y \in \mathcal{Y}$.
$P(\mathcal{X}, \mathcal{Y}):=[p(x, y)]_{x \in \mathcal{X}, y \in \mathcal{Y}} \in \mathbb{R}_{+}^{m \times n}$ stochastic matrix
Noiseless channel: $\mathcal{X}=\mathcal{Y}, P(\mathcal{X}, \mathcal{Y})=I_{m}$
Completely noisy channel: $p(x, y)=\frac{1}{n}$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$
Capacity of a channel: $\operatorname{Cap}(P(\mathcal{X}, \mathcal{Y})):=$
the length of the message to transmit
the length of the actual message transmitted to overcome the noise
Capacity of noiseless channel is 1 , Capacity of completely noisy channel 0 .

Classical entropies

X, Y two random variables $X \in \mathcal{X}, Y \in \mathcal{Y}$
$\pi(x, y):=\operatorname{Prob}(X=x, Y=y)$
$\pi_{X}(x):=\operatorname{Prob}(X=x)=\sum_{y \in \mathcal{Y}} \pi(x, y), \pi_{Y}(y):=\sum_{x \in \mathcal{X}} \pi(x, y)$
Entropy: $H(X):=-\sum_{x \in \mathcal{X}} \pi_{X}(x) \log \pi_{X}(x)$
$H(X, Y):=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \pi(x, y) \log \pi(x, y)$
Conditional entropy: $0 \leq H(X \mid Y):=H(X, Y)-H(Y)(\leq H(X, Y))$
Mutual information:
$H(X: Y)=H(Y: X)=H(X)+H(Y)-H(X, Y)=H(X)-H(X \mid Y) \geq 0$

Shannon's formula for capacity of noisy channel

$\kappa\left(\pi_{X}\right)=\kappa(X):=H\left(\pi_{X} P(\mathcal{X}, \mathcal{Y})\right)-\sum_{x \in \mathcal{X}} \pi(x) H\left(\delta_{X} \mathcal{P}(\mathcal{X}, \mathcal{Y})\right)$
$\operatorname{Cap}(P(\mathcal{X}, \mathcal{Y}))=\max _{\pi_{\chi} \in \Pi(\mathcal{X})} \kappa(X)$
$\Pi(\mathcal{X})$ the simplex of probability vectors $\pi=\pi_{X}, H(\pi):=H(X)$
$\delta_{x} \in \Pi(\mathcal{X})$ probability vector concentrated on $x \in \mathcal{X}$
$H(\pi)$ strictly concave on $\Pi(\mathcal{X}), \kappa(\pi)$ is concave.
Critical points of $\kappa(\pi)$ are the intersection of a hyperplane and $\Pi(\mathcal{X})$ induced by the kernel of $P(\mathcal{X}, \mathcal{Y})^{\top}$
the critical value of $\kappa(\pi)$ is unique, and is the maximum the crit. pt. unique when $\operatorname{ker} P((\mathcal{X}, \mathcal{Y}))^{\top}=\{\mathbf{0}\}$ - Generic if $m \leq n$

Shannon's capacity is additive under the tensor product: $\operatorname{Cap}\left(P(\mathcal{X}, \mathcal{Y}) \otimes P\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)\right)=\operatorname{Cap}(P(\mathcal{X}, \mathcal{Y}))+\operatorname{Cap}\left(P\left(\mathcal{X}, \mathcal{Y}^{\prime}\right)\right)$

As the tensor product of critical points is critical

Von Neumann and related quantum entropies

$\mathrm{H}_{n} \supset \mathrm{H}_{n,+, 1}$ the space of hermitian matrices and density matrices acting on \mathbb{C}^{n} with the inner product $\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{y}^{*} \mathbf{x}$
$S^{2 n-1}:=\left\{\mathbf{u} \in \mathbb{C}^{n}, \mathbf{u}^{*} \mathbf{u}=1\right\}$
$\mathbf{u} \mathbf{u}^{*}, \mathbf{u} \in \mathrm{~S}^{2 n-1}$ (pure states) is the set of extreme points of $\mathrm{H}_{n,+, 1}$
$\boldsymbol{\lambda}(\rho):=\left(\lambda_{1}(\rho) \geq \ldots \geq \lambda_{n}(\rho)\right)$ eigenvalues of $\rho \in \mathrm{H}_{n,+, 1}$
Von Neumann Entropy: $S(\rho):=H(\boldsymbol{\lambda}(\rho))=-\operatorname{tr}(\rho \log \rho)$
strictly concave on $\mathrm{H}_{n,+, 1}$
$S(\rho \otimes \sigma)=S(\rho)+S(\sigma)$ analog of independent random variable $S(A, B)=-\operatorname{tr}\left(\rho^{A B} \log \rho^{A B}\right), \rho^{A B} \in \mathrm{H}_{m n,+, 1}$
$S(A \mid B)=S(A, B)-S(B)$-conditional entropy, but may be negative! $S(A: B):=S(A)+S(B)-S(A, B)(\geq 0)$

Holevo's bound and channel capacity of QC

Alice prepares a state $\rho_{X} \in \mathrm{H}_{m n,+, 1}$
$X=1, \ldots, k, \operatorname{Prob}(X=i)=\pi_{i}, \rho_{X}=\sum_{i=1}^{k} \pi_{i} \rho_{i}$
Bob performs POVM measurements E_{1}, \ldots, E_{l} with outcome Y.
$S(X: Y) \leq \chi\left(\sum_{i=1}^{k} \pi_{i} \rho_{i}\right):=S\left(\sum_{i=1}^{k} \pi_{i} \rho_{i}\right)-\sum_{i=1}^{k} \mathbf{p}_{i} S\left(\rho_{i}\right)$
Quantum channel $\Phi: \mathrm{H}_{m,+, 1} \rightarrow \mathrm{H}_{n,+, 1}$
$\Phi(\rho)=\sum_{j=1}^{k} A_{j}^{*} \rho A_{j}, A_{j} \in \mathbb{C}^{m \times n}, \sum_{j=1}^{k} A_{j} A_{j}^{*}=I_{m}$
Stinespring dilatation theorem:
$\Phi(\rho)=\operatorname{tr}_{B} U(\rho)=\operatorname{tr}_{B} U \rho U^{*}, U^{*}=\left[A_{1} A_{2} \ldots A_{k}\right] \in \mathbb{C}^{m \times k n}$
$\operatorname{Cap}_{\chi}(\Phi):=\max _{\pi \in \Pi_{m^{2}}, \mathbf{u}_{i} \in \text { S }^{m-1}} \chi\left(\sum_{i=1}^{m^{2}} \pi_{i} \Phi\left(\mathbf{u}_{i} \mathbf{u}_{i}^{*}\right)\right)$ [2]

Entanglement of formation and channel capacity

Entanglement of formation
$E_{F}(\rho):=\inf _{M \in \mathbb{N}} \min \left\{\sum_{i=1}^{M} \pi_{i} S\left(\Phi\left(\mathbf{u}_{i} \mathbf{u}_{i}^{*}\right)\right), \pi \in \Pi_{M}\right\}$,
$\sum_{i=1}^{M} \pi_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{*}=\rho \in \mathrm{H}_{m,+, 1}$ Equivalent to
$E_{F}(\rho):=\min \left\{\sum_{i=1}^{m^{2}} \pi_{i} S\left(\Phi\left(\mathbf{u}_{i} \mathbf{u}_{i}^{*}\right)\right), \pi \in \Pi_{m^{2}}, \sum_{i=1}^{m^{2}} \pi_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{*}=\rho \in \mathrm{H}_{m,+, 1}\right\}$
$E_{F}(\rho)$ convex (in view of the minimum characterization)
$\chi_{N}(\rho):=S(\Phi(\rho))-E_{F}(\rho)$ - concave, but not smooth!
$\operatorname{Cap}_{\chi}(\Phi):=\max _{\rho \in \mathrm{H}_{m,+, 1}} \chi_{N}(\rho)$
can be found in polynomial time?

Additivity conjectures for channel capacity and entanglement of formation

$\operatorname{Cap}_{\chi}\left(\Phi_{1} \otimes \Phi_{2}\right) \geq \operatorname{Cap}_{\chi}\left(\Phi_{1}\right)+\operatorname{Cap}_{\chi}\left(\Phi_{1}\right)$
As $S\left(\sigma_{1} \otimes \sigma_{2}\right)=S\left(\sigma_{1}\right)+S\left(\sigma_{2}\right)$ and
$\left(\sum_{i} \pi_{i, 1} \mathbf{u}_{i} \mathbf{u}_{i}^{*}\right) \otimes\left(\sum_{j} \pi_{j, 2} \mathbf{v}_{j} \mathbf{v}_{j}^{*}\right)=\sum_{i, j} \pi_{i, 1} \pi_{j, 2}\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right)\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right)^{*}$
$E_{F}\left(\sigma_{1} \otimes \sigma_{2}\right) \geq E_{F}\left(\sigma_{1}\right)+E_{F}\left(\sigma_{2}\right)$
Additivity conjectures
$\operatorname{Cap}_{\chi}\left(\Phi_{1} \otimes \Phi_{2}\right)=\operatorname{Cap}_{\chi}\left(\Phi_{1}\right)+\operatorname{Cap}_{\chi}\left(\Phi_{1}\right)$
$E_{F}\left(\sigma_{1} \otimes \sigma_{2}\right)=E_{F}\left(\sigma_{1}\right)+E_{F}\left(\sigma_{2}\right)$

The minimum entropy output of a quantum channel

$S_{\min }(\Phi):=\min _{\rho \in \mathrm{H}_{m,+, 1}} S(\Phi(\rho))$
Minimum of concave function is achieved on extreme points
$S_{\min }(\Phi)=\min _{\mathbf{u} \in \mathrm{S}^{2 m-1}} S\left(\Phi\left(\mathbf{u u}^{*}\right)\right)$
Computation of $S_{\min }(\Phi)$ seems to be NP hard theoretically?
$S_{\text {min }}\left(\Phi_{1} \otimes \Phi_{2}\right) \leq S_{\text {min }}\left(\Phi_{1}\right)+S_{\text {min }}\left(\Phi_{2}\right)$
Additivity conjecture: $S_{\min }\left(\Phi_{1} \otimes \Phi_{2}\right)=S_{\min }\left(\Phi_{1}\right)+S_{\min }\left(\Phi_{2}\right)$

All three additivity conjectures are equivalent

Main steps in establishing the equivalence of the three additivity conjectures

1. Stinespring dilatation theorem relates a constrained version of Holevo capacity formula to the entanglement of formation MSW [1]
2. Using the duality of a corresponding linear programming problem AD [1]
3. P. Shor put all the above ingredients together [3]

Hastings' counterexample to additivity conjectures 09

Φ random unitary channel

$$
\Phi_{1}(\rho)=\Phi(\rho):=\sum_{i=1}^{d} w_{i} U_{i} \rho U_{i}^{*}, \Phi_{2}(\rho)=\bar{\Phi}(\rho)=\sum_{i=1}^{d} w_{i} \bar{U}_{i} \rho U_{i}^{\top}
$$

U_{1}, \ldots, U_{d} randomly chosen unitary matrices in $\mathbf{U}(n) \subset \mathbb{C}^{n \times n}$
$\left(w_{1}, \ldots, w_{k}\right) \in \Pi_{k}$ randomly chosen probability vector-uniformly
For $n \gg d \gg 1$ there exists unitary random channel with
$\Delta S(\Phi):=S_{\min }(\Phi)+S_{\min }(\bar{\Phi})-S_{\min }(\Phi \otimes \bar{\Phi})>0$ Hastings [5]
Estimates for the counterexample Fukuda-King-Moser [4]
$d_{\text {min }}<3.910^{4}, \quad n_{\text {min }}<7.810^{32}, \quad \Delta S_{\max }>9.510^{-6}$

Outline of the counterexample steps

$\mathcal{R}_{d}(n)$ The set of unitary random channels with parameters n, d
Lemma 1: $S_{\min }(\Phi \otimes \bar{\Phi}) \leq 2 \log d-\frac{\log d}{d}$ for all $\Phi \in \mathcal{R}_{d}(n)$
Theorem 2: There is $h_{\min }<\infty$, such that for all $h>h_{\min }$, all d satisfying $d \log d \geq h$ and all n sufficiently large, there is $\Phi \in \mathcal{R}_{d}(n)$ satisfying
$S_{\text {min }}(\Phi)>\log d-\frac{h}{d}$
Choosing d large so that $2 h_{\min }<\log d$ we deduce the existence of $\Phi \in \mathcal{R}_{d}(n)$
$S_{\min }(\Phi)>d-\frac{\log d}{2 d}$
Since $S_{\min }(\bar{\Phi})=S_{\min }(\Phi)$ we deduce from Lemma 1 the inequality
$S_{\min }(\Phi \otimes \bar{\Phi})<S_{\text {min }}(\Phi)+S_{\text {min }}(\bar{\Phi})$

Minimum entropy output of a matrix subspace

$\mathrm{S}(p, n):=\left\{A \in \mathbb{C}^{p \times n},\|A\|_{F}^{2}=\operatorname{tr}\left(A^{*} A\right)=1\right\}$
$\phi: \mathrm{S}(p, n) \rightarrow \mathrm{H}_{n,+, 1}, \phi(A)=A^{*} A$
\mathbf{V} m-dimensional subspace of $\mathbb{C}^{p \times n}$, denote $\mathrm{S}(\mathbf{V}):=\mathbf{V} \cap \mathrm{S}(p, n)$
$S_{\min }(\mathbf{V}):=\min _{A \in \mathrm{~S}(\mathbf{V}) \cap \mathbf{V}} S\left(A^{*} A\right)$
Claim $S_{\min }(\mathbf{V})=S_{\min }(\Phi)$ for corresponding QC $\Phi: \mathrm{H}_{m,+, 1} \rightarrow \mathrm{H}_{n,+, 1}$
Choose an orthonormal base $C_{1}, \ldots, C_{m} \in \mathbf{V}$:
$\operatorname{tr}\left(C_{i}^{*} C_{j}\right)=\delta_{i j}, i, j=1, \ldots, m$
$\Phi(B)=\sum_{i, j=1}^{m} b_{i j} C_{i}^{*} C_{j}, \quad B=\left[b_{i j}\right] \in \mathrm{H}_{m}$
$\Phi: \mathrm{H}_{m} \rightarrow \mathrm{H}_{n}$
$\Phi\left(\mathbf{u u}^{*}\right)=C^{*} C \succeq 0, \quad C=\sum_{j=1}^{m} \overline{\mathbf{u}}_{j} C_{j}, \quad \operatorname{tr}\left(\Phi\left(\mathbf{u u}^{*}\right)\right)=\sum_{j=1}^{m}\left|u_{j}\right|^{2}$
So Φ is a QC and $S_{\min }(\mathbf{V})=S_{\text {min }}(\Phi)$
All QC can be obtained this way

Critical points of the subspace entropy function

$f: \mathbf{V} \rightarrow \mathbb{R}, f(A)=S\left(A^{*} A\right)=-\operatorname{tr}\left(A^{*} A \log \left(A^{*} A\right)\right)$.
B is a critical point of $\left.f\right|_{\mathrm{S}(\mathrm{V})}$ if $\left.D f\right|_{\mathrm{S}(\mathrm{v})}(B)=0$.
One has to be careful with derivative of $S\left(A^{*} A\right)$
as $(-x \log x)^{\prime}=-1-\log x$ not defined at $x=0$
$T(A):=\left[\begin{array}{cc}0_{p \times n} & A \\ A^{*} & 0_{n \times p}\end{array}\right] \in \mathrm{H}_{p+n}$
$\sigma_{1}(A)=\lambda_{1}(T(A)) \geq \ldots \geq \sigma_{r}(A)=\lambda_{r}(T(A))>$
$0=\lambda_{r+1}(T(A))=\ldots=\lambda_{p+n-r}(T(A))>$
$\lambda_{p+n-r+1}=-\sigma_{1}(A) \geq \ldots \geq \lambda_{p+n}(A)=-\sigma_{1}(A)$
$S\left(A^{*} A\right)=-\frac{1}{2} \sum_{i=1}^{p+n} \lambda_{i}(T(A))^{2} \log \lambda_{i}(T(A))^{2}$
As $-x^{2} \log x^{2}$ is continuously differentiable $\left.f\right|_{\mathrm{V} \cap \mathrm{S}(p, n)}$
is continuously differentiable critical point is well defined

Tensor product of critical points is critical

Lemma AIM workshop July 21-25, 2008
If B_{i} is a critical point of $\left.f\right|_{\mathrm{S}\left(\mathbf{V}_{i}\right)}$ for $i=1,2$ then
$B_{1} \otimes B_{2}$ is a critical point of $\left.f\right|_{\mathrm{S}\left(\mathbf{v}_{1} \otimes V_{2}\right)}$

First and second variations

$B, C \in \mathrm{~S}(\mathbf{V}), \operatorname{tr}\left(B C^{*}\right)=0, \mathrm{~s}(\mathbf{V}) \ni B(t)=\frac{1}{\sqrt{1+t^{2}}}(B+t C)=$
$B+t C-\frac{1}{2} t^{2} B+O\left(t^{3}\right)$
$X, Y \in \mathrm{H}_{N}, \quad X=T(B), Y=T(C)$
$F: \mathrm{H}_{N} \rightarrow \mathrm{H}_{N}$, special case $F_{0}(X)=-X^{2} \log X^{2}, f(B)=\frac{1}{2} \operatorname{tr} F(T(B))$.
$F(X+t Y)=F(P)+t L_{X}(Q)+t^{2} Q_{X}(Y)+O\left(t^{3}\right)-$ Caution for F_{0}
$L_{X}: \mathrm{H}_{N} \rightarrow \mathrm{H}_{N}$ a linear map
$Q_{X}: \mathrm{H}_{N} \rightarrow \mathrm{H}_{N}$ is a quadratic map in the entries of Y
Criticality of F at $X: \operatorname{tr}\left(L_{X}(Y)\right)=0$ if $\operatorname{tr}(X Y)=0$
Local strict minimum at critical X if the second derivative of
$\operatorname{tr}\left(F_{0}\left(\frac{1}{\sqrt{1+t^{2}}}(X+t Y)\right)\right)$ at $t=0$ positive or $+\infty$ for all above Y

Simple formulas for first and second variation

Assume that $X=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{N}\right), Y=\left[\eta_{i j}\right] \in \mathrm{H}_{N}$ then
$L_{X}(Y)=\left[\frac{F\left(\xi_{i}\right)-F\left(\xi_{j}\right)}{\xi_{i}-\xi_{j}} y_{i j}\right], \operatorname{tr}\left(L_{X}(Y)\right)=\sum_{i=1}^{N} F^{\prime}\left(x_{i}\right) y_{i i} .\left(^{*}\right)$
$\left[Q_{X}(Y)\right]_{i j}=\sum_{k=1}^{n} \triangle^{2} F\left(\xi_{i}, \xi_{k}, \xi_{j}\right) y_{i k} y_{k j}$
$\operatorname{tr}\left(Q_{X}(Y)\right)=\sum_{i, j=1}^{n} \frac{F^{\prime}\left(\xi_{i}\right)-F^{\prime}\left(\xi_{j}\right)}{2\left(\xi_{i}-\xi_{j}\right)} y_{i j} y_{j i}$
Linearization:
$\operatorname{tr}\left(F_{0}\left(\frac{1}{\sqrt{1+t^{2}}}(X+t Y)\right)\right)=\operatorname{tr}\left(F_{0}(X+t Y)\right)+t^{2}\left(1-\operatorname{tr}\left(F_{0}(X)\right)\right)+O\left(t^{4}\right)$
Why critical points of f are stable under the tensor product?
Use $\left(^{*}\right), \log (a b)=\log a+\log b$ and the structure of
the tangent hyperplane of $S\left(\mathbf{V}_{1} \otimes \mathbf{V}_{2}\right)$ at $B_{1} \otimes B_{2}$

The minimum entropy output of a quantum channel is locally additive

Theorem Gour-Friedland [3]

Assume that $B_{i} \in \mathbf{V}_{i} \subset \mathbb{C}^{p_{i} \times n_{i}}$ is a local strict minimum of $S \mid S\left(\mathbf{V}_{i}\right)$ for $i=1$, 2 .

Then $B_{1} \otimes B_{2}$ is a local strict minimum of $S \mid S\left(\mathbf{V}_{1} \otimes \mathbf{V}_{2}\right)$
The proof is tour de force
The assumption that each subspace $\mathbf{V}_{\boldsymbol{i}}$ is complex valued is crucial

Open problems

1. When one can expect generically that all local minimal points of $S \mid S(\mathbf{V})$ are strict local minima?
Necessary condition $\operatorname{dim} \mathbf{V} \leq(p-1)(n-1)+1$
If $\operatorname{dim} V>(p-1)(n-1)+1$ then $\mathbf{V} \subset \mathbb{C}^{p \times n}$ contains a variety of matrices of rank one of dimension $\operatorname{dim} \mathbf{V}-(p-1)(n-1)-1$, hence $S_{\min }(\mathbf{V})=0$ is attained at a connected set of rank one matrices in \mathbf{V}.
2. Suppose that $S_{\text {min }}\left(\mathbf{V}_{i}\right)=S\left(B_{i}\right)$ and B_{i} is unique and strict minimum for $i=1,2$
Is $S_{\min }\left(\mathbf{V}_{1} \otimes \mathbf{V}_{2}\right)=S\left(B_{1} \otimes B_{2}\right)$?

References 1

國 K.M.R. Audenaert and S.L. Braunstein, On strong superadditivity of the entanglement of formation, Commun. Math. Phys. 246 (2004) , 443-452.
S. Friedland, G. Gour and A. Roy, Local extrema of entropy functions under tensor products, arXiv:1105.5380, to appear in Quantum Info. Comp.
E. Gour and S. Friedland, The minimum entropy output of a quantum channel is locally additive, arXiv:1105.6122.
R M. Fukuda, C. King and D.K. Moser, Comments on Hastings' additivity counterexamples, Commun. Math. Phys. 296 (2010), 111-143.
M.B. Hastings, A counterexample to additivity of minimum output entropy, Nature Physics 5 (2009),255-257.

References 2

R. Matsumoto, T. Shimono and A. Winter, Remarks on additivity of the Holevo capacity and of entanglement of formation, Commun. Math. Phys. 246 (2004), 427-442.
B. Bchumacher and M.D. Westmoreland, Optimal signal ensembles, Phys. Rev. A 63 (2001), 022308.
围 P. Shor, Equivalence of additivity questions in quantum information theory, Commun. Math. Phys. 246 (2004), 453-472.

