On the eigenvalues of graphs: results and conjectures

Shmuel Friedland
Univ. Illinois at Chicago

Waterloo Continuous Optimization Seminar, 19 November, 2009

Overview

- Maximal spectral radius of directed graphs
- A lower bound for spectral radius of directed Eulerian graphs
- Maximal spectral radius of undirected graphs with e edges
- The bipartite case
- The Grone-Merris conjecture

Figure: Uri Natan Peled, Photo - December 2006

Uri N. Peled

Uri was born in Haifa, Israel, in 1944.
Education:
Hebrew University, Mathematics-Physics, B.Sc., 1965.
Weizmann Institute of Science, Physics, M.Sc., 1967
University of Waterloo, Mathematics, Ph.D., 1976
University of Toronto, Postdoc in Mathematics, 1976-78
Appointments:
1978-82, Assistant Professor, Columbia University
1982-91, Associate Professor, University of Illinois at Chicago
1991-2009, Professor, University of Illinois at Chicago
Areas of research: Graphs, combinatorial optimization, boolean functions.
Uri published about 57 paper
Uri died September 6, 2009 after a long battle with brain tumor.

Maximal spectral radius of directed graphs

Maximal spectral radius of directed graphs

$D G=(V, E), V=\left\{v_{1}, \ldots, v_{m}\right\}$ directed graph $\left.\operatorname{deg}_{+}(v), \operatorname{deg}_{(} v\right)$ - out and in degree of $v \in V$ $\left.e=\sum_{v \in V} \operatorname{deg}_{+}(v)=\sum_{v \in V} \operatorname{deg}_{(} v\right)$ - the number of edges in $D G$ $D_{+}(G)=\left\{d_{1,+}(G) \geqslant d_{2,+}(G) \geqslant \cdots \geqslant d_{m,+}(G)\right\}$
rearranged set of degrees $\mathrm{deg}_{+} v_{1}, \ldots$, deg $_{+} v_{m}$

Maximal spectral radius of directed graphs

$D G=(V, E), V=\left\{v_{1}, \ldots, v_{m}\right\}$ directed graph $\left.\operatorname{deg}_{+}(v), \operatorname{deg}_{(} v\right)$ - out and in degree of $v \in V$ $\left.e=\sum_{v \in V} \operatorname{deg}_{+}(v)=\sum_{v \in V} \operatorname{deg}_{(} v\right)$ - the number of edges in $D G$ $D_{+}(G)=\left\{d_{1,+}(G) \geqslant d_{2,+}(G) \geqslant \cdots \geqslant d_{m,+}(G)\right\}$ rearranged set of degrees $\mathrm{deg}_{+} v_{1}, \ldots$, deg $_{+} v_{m}$ $D G$ represented by adjacency matrix $A=A(G)=\left[a_{i j}\right] \in\{0,1\}^{m \times m}$ $a_{i j}$ number of directed arcs from v_{i} to v_{j} $\rho(G):=\rho(A(G))$ spectral radius of G

Maximal spectral radius of directed graphs

$D G=(V, E), V=\left\{v_{1}, \ldots, v_{m}\right\}$ directed graph $\left.\operatorname{deg}_{+}(v), \operatorname{deg}_{(} v\right)$ - out and in degree of $v \in V$ $\left.e=\sum_{v \in V} \operatorname{deg}_{+}(v)=\sum_{v \in V} \operatorname{deg}_{(} v\right)$ - the number of edges in $D G$
$D_{+}(G)=\left\{d_{1,+}(G) \geqslant d_{2,+}(G) \geqslant \cdots \geqslant d_{m,+}(G)\right\}$
rearranged set of degrees $\mathrm{deg}_{+} v_{1}, \ldots$, deg $_{+} v_{m}$ $D G$ represented by adjacency matrix $A=A(G)=\left[a_{i j}\right] \in\{0,1\}^{m \times m}$ $a_{i j}$ number of directed arcs from v_{i} to v_{j}
$\rho(G):=\rho(A(G))$ spectral radius of G
$D=\left\{d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{m} \geqslant 1\right\}$ set of positive integers $\mathcal{D} \mathcal{G}_{D}$ set of directed graphs $D G$ with $D(D G)=D$.

Maximal spectral radius of directed graphs

$D G=(V, E), V=\left\{v_{1}, \ldots, v_{m}\right\}$ directed graph $\left.\operatorname{deg}_{+}(v), \operatorname{deg}_{(} v\right)$ - out and in degree of $v \in V$ $\left.e=\sum_{v \in V} \operatorname{deg}_{+}(v)=\sum_{v \in V} \operatorname{deg}_{(} v\right)$ - the number of edges in $D G$
$D_{+}(G)=\left\{d_{1,+}(G) \geqslant d_{2,+}(G) \geqslant \cdots \geqslant d_{m,+}(G)\right\}$
rearranged set of degrees $\mathrm{deg}_{+} v_{1}, \ldots, \mathrm{deg}_{+} v_{m}$
$D G$ represented by adjacency matrix $A=A(G)=\left[a_{i j}\right] \in\{0,1\}^{m \times m}$
$a_{i j}$ number of directed arcs from v_{i} to v_{j}
$\rho(G):=\rho(A(G))$ spectral radius of G
$D=\left\{d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{m} \geqslant 1\right\}$ set of positive integers
$\mathcal{D} \mathcal{G}_{D}$ set of directed graphs $D G$ with $D(D G)=D$.
B. Schwarz 1964: $\max _{D G \in \mathcal{D G}}^{D} 10(D G)$
achieved at an isomorphic graphs to directed "chain graph" $D G_{\text {chain }}$: from v_{i} outgoing arcs to $v_{1}, \ldots, v_{d_{i}}$ for $i=1, \ldots, m$

The adjacency matrix of $D G_{\text {chain }}$

Figure 1: The notation for the row sums of $A(D G)$.

Outline of proof

Fix $\varepsilon>0, J_{m}=\mathbf{1}_{m} \mathbf{1}_{m}^{\top}$ consider

$$
\max _{D G \in \mathcal{D} \mathcal{G}_{D}} \rho\left(A(D G)+\varepsilon J_{m}\right)=\rho\left(A\left(D G^{\star}\right)+\varepsilon J_{m}\right)=\mu
$$

choose representation $\left(A\left(D G^{\star}\right)+\varepsilon J_{m}\right) \mathbf{x}=\mu \mathbf{X}$

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)^{\top}, x_{1} \geqslant x_{2} \geqslant x_{3} \geqslant \ldots \geqslant x_{m}>0
$$

$A\left(D G^{\prime}\right)$ obtained by moving all ones to the left:

$$
\left(A\left(D G^{\prime}+\varepsilon J_{m}\right) \mathbf{x} \geq \mu \mathbf{x}\right.
$$

Wieland characterization:
$\rho\left(A\left(D G^{\prime}+\varepsilon J_{m}\right) \geq \mu\right.$
maximality of $\mu:\left(A\left(D G^{\prime}+\varepsilon J_{m}\right) \mathbf{x}=\mu \mathbf{x}\right.$
since $x_{1} \geqslant \ldots \geqslant x_{m}>0 A\left(D G^{\prime}\right)$ of the form in previous slide

Lower bound for spec. radius of Eulerian graphs

$D G$ Eulerian: $\operatorname{deg}_{+}\left(v_{i}\right)=\operatorname{deg}_{-}\left(v_{i}\right):=\operatorname{deg}\left(v_{i}\right)$ for $i=1, \ldots, m$
Friedland 1993: $\rho(D G) \geq \prod_{v \in V}^{m} \operatorname{deg}(v)^{\frac{\operatorname{deg}(v)}{e}}$ for Eulerian graphs (1)
Friedland-Karlin 1975: $B \in \mathbb{R}_{+}^{m \times}$ - irreducible $B \mathbf{x}=\rho(B) \mathbf{x}, B^{\top} \mathbf{y}=\rho(B) \mathbf{y}, \mathbf{x}, \mathbf{y}>\mathbf{0}, \mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{m} x_{i} y_{i}=1$ $\rho\left(\operatorname{diag}\left(t_{1}, \ldots, t_{m}\right) B\right) \geq \rho(B) \prod_{i=1}^{m} t_{i}^{x_{i} y_{i}}$ where $t_{1}, \ldots, t_{m}>0$

Proof of (1): $E=\operatorname{diag}\left(\operatorname{deg}\left(v_{1}\right), \ldots, \operatorname{deg}\left(v_{m}\right)\right)$
$B=E^{-1} A(D G)$ - stochastic
$B 1=1, B^{\top}\left(D 1_{m}\right)=\left(D 1_{m}\right)$
$\mathbf{1}_{i}(D 1)_{i}=\operatorname{deg}\left(v_{i}\right), i=1, \ldots, m, \mathbf{1}^{\top}(E 1)=e$

$$
\rho(A(D G))=\rho(E B) \geq \prod_{i=1} d\left(v_{i}\right)^{\frac{d\left(v_{i}\right)}{e}}
$$

Maximal spec. radius of undir. graphs on e edges

\mathcal{G}_{e} collection of simple undirected with graphs $G=(V, E)$ with no isolated vertices
for $G=(V, E) \in \mathcal{G}_{e}: \rho(G) \geq \frac{2 e}{\# V}=\frac{\mathbf{1}^{\top} A(G) \mathbf{1}}{\mathbf{1}^{\top} \mathbf{1}}$
To maximize the lower bound pack edges tightest possible
Characterize the graph which maximize $\rho(\mathcal{G})$ in \mathcal{G}_{e}
Brualdi-Hoffman 1985:
for $e=\frac{n(n-1)}{2}$ the maximal graph K_{n}-complete graph
Conjecture B-H 1985 for $e=\frac{n(n-1)}{2}+s, s \in[1, n-1]$
a maximal graph is $K_{n}+$ one vertex
for a maximal graph $A(G)$ if $a_{i j}=1, i<j$
then $a_{p q}=1, p<q$, for $p \leq i, j \leq q$
Friedland 1985:
$s=n-1$
s fixed and $n>N(s)$
Stanley $1987 \rho(G) \leq \frac{-1+\sqrt{1+8 e}}{2}$ sharp for $e=\frac{n(n-1)}{2}$
Rowlinson 1988 proved BH conjecture

The bipartite case

$B G=(V \cup W, E), V=\left\{v_{1}, \ldots, v_{m}\right\}, W=\left\{w_{1}, \ldots, w_{n}\right\}$
$R(B G)=\left[b_{i j}\right] \in\{0,1\}^{m \times n}$ representation matrix of $B G$
$b_{i j}$ the number of edges connecting v_{i} and w_{j}
$\sigma_{1}(B G):=\sigma_{1}\left(R(B G) \geqslant \sigma_{2}(B G):=\sigma_{2}(R(B G)) \geqslant \ldots \geqslant 0\right.$
$A(B G)=\left(\begin{array}{cc}0 & R(B G) \\ R(B G)^{\top} & 0\end{array}\right) \in\{0,1\}^{(m+n) \times(m+n)}$
$\lambda_{1}(B G)=\sigma_{1}(B G) \geqslant \lambda_{2}(B G)=\sigma_{2}(B G) \geqslant \ldots$
$\geqslant \lambda_{m+n-1}(B G)=-\sigma_{2}(B G) \geqslant \lambda_{m+n}(B G)=-\sigma_{1}(B G)$
$2 \sum_{i=1}^{m} \sigma_{i}(B G)^{2}=\sum_{k=1}^{m+n} \lambda_{k}(B G)=$
$\operatorname{tr} A(B G)^{2}=2 \operatorname{tr}\left(R(B G)^{\top} R(B G)=2 e\right.$
Cor: $\rho(B G) \leq \sqrt{e}$
Equality iff $B G=K_{p, q}$ plus isolated vertices
Conjecture: maximal $\rho(B G)$ for bipartite graphs with no isolated vertices and not a complete bipartite graph achieved for a complete bipartite graph plus one vertex

The Chain graph

$D(B G)=\left\{d_{1}(B G) \geqslant d_{2}(B G) \geqslant \cdots \geqslant d_{m}(B G)\right\}$ rearranged set of the degrees deg $v_{1}, \ldots, \operatorname{deg} v_{m}$ Chain graph G_{D}

Figure 1: The chain graph G_{D} for $D=\{5,2,2,1\}$.

The Chain graph II

\mathcal{B}_{D} class of bipartite graphs $B G$
with no isolated vertices, where $D(G)=D$
B-F-P 2008: $\max _{B G \in \mathcal{B}_{D}} \rho(B G)=\rho\left(G_{D}\right)$ unique up to isomorphism
Prf: $\sigma_{1}(B G)=\max _{\mathbf{y} \in \mathbb{R}_{+}^{n}, \mathbf{y}^{\top} \mathbf{y}=1}\|R(B G) \mathbf{y}\|$
$B G^{\star}$ maximal and $y_{1} \geqslant \ldots \geqslant y_{n} \geq 0$
$B G^{\prime}$ obtained from $R\left(B G^{\star}\right)$ by moving all ones to the left:
$\sigma_{1}\left(B G^{\prime}\right) \geq\left\|R\left(B G^{\prime}\right) \mathbf{y}\right\| \geq\|R(B G) \mathbf{y}\|=\sigma\left(B G^{\star}\right)$

Lower estimates for $\sigma_{1}\left(G_{D}\right) \sigma_{2}\left(G_{D}\right)$

second compound matrix $\Lambda_{2} R$ for $R=\left[r_{i j}\right] \in \mathbb{R}^{m \times n}$: $\binom{m}{2} \times\binom{ n}{2}$ rows indexed by $\left(i_{1}, i_{2}\right), 1 \leqslant i_{1}<i_{2} \leqslant m$
columns indexed by $\left(j_{1}, j_{2}\right), 1 \leqslant j_{1}<j_{2} \leqslant n$. entry in row $\left(i_{1}, i_{2}\right)$ and column $\left(j_{1}, j_{2}\right)$ of $\Lambda_{2} R$
$\Lambda_{2} R_{\left(i_{1}, i_{2}\right)\left(j_{1}, j_{2}\right)}=\operatorname{det}\binom{r_{i_{1}, j_{1}} r_{i_{1}, j_{2}}}{r_{i_{2}, j_{1}} r_{i_{2}, j_{2}}}$
$\sigma_{1}\left(\Lambda_{2} R\right)=\sigma_{1}(R) \sigma_{2}(R)$
Fact: $-\Lambda_{2}\left(R\left(G_{D}\right)\right) \in\{0,1\}\binom{m}{2} \times\binom{ n}{2}$
$\mathbf{w}=\left(w_{(1,2)}, \ldots, w_{(n-1, n)}\right)^{\top} \in\{0,1\}^{N}, N:=\binom{n}{2}$
$w_{(i, j)}=1$ iff the column of $\Lambda_{2}\left(R\left(G_{D}\right)\right)$ is nonzero
$\|w\|^{2}=\sum_{k=1}^{h-1} r_{k+1}\left(r_{k}-r_{k+1}\right)$
$\left\|\left(\Lambda_{2} R\left(G_{D}\right)\right) \mathbf{w}\right\|^{2}=\sum_{1 \leqslant k<1 \leqslant h} m_{k} m_{l}\left[r_{l}\left(r_{k}-r_{l}\right)\right]^{2}$
$\sigma_{1}\left(G_{D}\right)^{2} \sigma_{2}\left(G_{D}\right)^{2} \geqslant \omega \equiv \frac{\sum_{1 \leqslant k<l \leqslant n} m_{k} m_{l}\left[r_{l}\left(r_{k}-r_{1}\right)\right]^{2}}{\sum_{k=1}^{h-1} r_{k+1}\left(r_{k}-r_{k+1}\right)}$
$\sigma_{1}\left(G_{D}\right)^{2} \sigma_{2}\left(G_{D}\right)^{2} \geqslant \omega^{\prime} \equiv \frac{\sum_{1 \leqslant k<l \leqslant n} m_{k}^{\prime} m_{l}^{\prime}\left[r_{(}^{\prime}\left(r_{k}^{\prime}-r_{r}^{\prime}\right)\right]^{2}}{\sum_{k=1}^{h-1} r_{k+1}^{\prime}\left(r_{k}^{\prime}-r_{k+1}^{\prime}\right)}$

The representation matrix of G_{D}

Figure 1: The notation for the row sums of $A(D G)$.

Upper estimates of $\rho\left(G_{D}\right)$

$$
\begin{aligned}
& \sigma_{1}\left(G_{D}\right)^{2} \sigma_{2}\left(G_{D}\right)^{2} \geqslant \omega^{*} \equiv \max \left(\omega, \omega^{\prime}\right) \\
& \rho\left(G_{D}\right)^{2} \leqslant \frac{e\left(G_{D}\right)+\sqrt{e\left(G_{D}\right)^{2}-4 \omega^{*}\left(G_{D}\right)}}{2} \\
& \text { Prf: maximize } \rho\left(G_{D}\right)^{2}=\lambda_{1}\left(G_{D}\right)^{2} \text { under the constraints } \\
& \sum_{i=1}^{m} \sigma_{i}\left(G_{D}\right)^{2}=e\left(G_{D}\right) \text { and }(1)
\end{aligned}
$$

$\mathcal{K}(p, q, e)$ the family of subgraphs $\mathcal{K}_{p, q}$ with e edges, no isolated vertices and which are not complete bipartite graphs $\max _{B G \in \mathcal{K}(p, q, e)} \rho(B G)=\rho\left(G_{D^{*}}\right)$

Weak conjecture: $R\left(G_{D^{\star}}\right)$ has rank $2 \Longleftrightarrow h=2$
Strong conjecture: $h=2$ and $\min \left(m_{2}, m_{2}^{\prime}\right)=1$

Upper estimates of $\rho\left(G_{D}\right)$, rank $R\left(G_{D}\right)=2$

$h=2, n_{1}:=m_{1}^{\prime}=r_{2}, n_{2}:=m_{2}^{\prime}=r_{1}-r_{2}, \omega^{*}=m_{1} m_{2} n_{1} m_{2}$
$e=m_{1} n_{1}+m_{1} n_{2}+n_{1} m_{2}(1)$
$\min m_{1} m_{2} n_{1} n_{2}$ subject (1) and
$\max \left(m_{1}+m_{2}, n_{1}+n_{2}\right) \leq \max (p, q), \min \left(m_{1}+m_{2}, n_{1}+n_{2}\right) \leq \min (p, q)$
and $m_{1}, m_{2}, n_{1}, n_{2}$ are positive integers
Thm: for $e=3 k+1, k \in \mathbb{N} \min m_{1} m_{2} n_{1} n_{2}$, where $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{N}$ satisfy (1) and $m_{1}+m_{2} \geq 3, n_{1}+n_{2} \geq 3$
achieved in the two cases
$\left(m_{1}, m_{2}\right)=(1,2),\left(n_{1}, n_{2}\right)=(k, 1)$ or
$\left(m_{1}, m_{2}\right)=(k, 1),\left(n_{1}, n_{2}\right)=(1,2)$
(Here $\max (p, q)<\frac{e-1}{2}$)

Upper estim.s of $\rho\left(G_{D}\right)$, rank $R\left(G_{D}\right)=2$: spec. case

Thm: Let $m_{1}, m_{2}, n_{1}, n_{2} \in[1, \infty)$ satisfying
$m_{1}+m_{2} \geq r, n_{1}+n_{2} \geq r, m_{1} n_{1}+m_{1} n_{2}+m_{2} n_{1}=e \geq r^{2}+1$
$e=I r+r-1, r \leq p \leq q \leq I+1+\frac{l}{r-1}$ where $2 \leq r, I \in \mathbb{N}(1)$
then the minimum of $m_{1} m_{2} n_{1} n_{2}$ is $\frac{(r-1)(e-r+1)}{r}$, achieved only
a. $\left(m_{1}, m_{2}\right)=(r-1,1),\left(n_{1}, n_{2}\right)=\left(\frac{(e-r+1)}{r}, 1\right)$
b. $\left(m_{1}, m_{2}\right)=\left(\frac{e-r+1}{r}, 1\right),\left(n_{1}, n_{2}\right)=(r-1,1)$

Cor: if either $r=2,3 \leq e$ odd and $2 \leq p \leq q, I=\frac{e-1}{2}<q$ or $3 \leq r \in \mathbb{N}$ and (1) holds, then
$\min \rho\left(G_{D}\right)$, rank $R\left(G_{D}\right)=2$ is achieved only for $G_{D^{\star}}$ isomorphic to the graph obtained from $K_{r-1, l+1}$ by adding one vertex to the group of $r-1$ vertices and connecting it to I vertices in the group of $I+1$ vertices

Thm: Under the above conditions $\min _{B G \in \mathcal{K}(p, q, e)}=\rho\left(G_{D^{\star}}\right)$

C-matrices

$\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right), c_{1} \geqslant c_{2} \geqslant \ldots \geqslant c_{m} \geq 0$
$M(\mathbf{c})=\left[c_{\max (i, j)}\right]_{i, j=1}^{m}$
Example: $\left.R\left(G_{D}\right) R\left(G_{D}\right)^{\top}=M(\mathbf{d}), \mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right)\right)$
Fact: $M(\mathbf{c})$ is symmetric totally nonnegative matrix:
$\lambda_{1}(\mathbf{c}) \geqslant \lambda_{2}(\mathbf{c}) \geqslant \ldots \geqslant \lambda_{m}(\mathbf{c}) \geq 0$
rank $M(\mathbf{d})=h$ - number of distinct degrees in D
$\left(\max _{B G \in \mathcal{K}(p, q, e)} \rho(B G)\right)^{2}=\max \lambda_{1}(\mathbf{d})$
on all allowable degree sequences \mathbf{d}

A generalized maximal problem

As $\lambda_{1}(S)$ is a convex function on $S(n, \mathbb{R})$ -
($n \times n$ real symmetric matrices)
$\max _{S \in \mathcal{S}} \lambda_{1}(S)=\max _{\mathcal{E}(\mathcal{S})} \lambda_{1}(S)$
\mathcal{S} compact closed subset of $\mathrm{S}(n, \mathbb{R}), \mathcal{E}(\mathcal{S})$ - extreme points of \mathcal{S}
$\mathcal{F}=\left\{\mathbf{f} \in \mathbb{R}_{+, ~}^{m}, 1 \leq f_{m}, f_{1} \leq \max (p, q), \sum_{i=1}^{m} f_{i}=e\right\}$
Extreme points of \mathcal{F} are sequences $f_{1}=\ldots=f_{t}>f_{t+1}=\ldots=f_{m}$
$\left(\max _{B G \in \mathcal{K}(p, q, e)}\right)^{2} \leq \max _{\mathbf{f} \in \mathcal{F}} \lambda_{1}(M(\mathbf{f}))=\max _{\mathbf{f} \in \mathcal{E}(\mathcal{F})} \lambda_{1}(M(\mathbf{f}))$
Each $\mathbf{f} \in \mathcal{E}(\mathcal{F})$ induces $m_{1} m_{2} n_{1} n_{2}$
and the maximal $\lambda_{1}\left(\mathbf{f}^{\star}\right)$ corresponds to the minimum of $m_{1} m_{2} n_{1} n_{2}$ For $e=I r+r-1, r \leq I+1+\frac{I}{r-1}$ where $2 \leq r, I \in \mathbb{N}$
the minimum achieved at
a. $\left(m_{1}, m_{2}\right)=(r-1,1),\left(n_{1}, n_{2}\right)=\left(\frac{(e-r+1)}{r}, 1\right)$
b. $\left(m_{1}, m_{2}\right)=\left(\frac{e-r+1}{r}, 1\right),\left(n_{1}, n_{2}\right)=(r-1,1)$
which corresponds to $\mathbf{f}_{1}, \mathbf{f}_{2}$ and give rise to two isomorphic graphs obtained from $K_{r-1, l+1}$ by adding one vertex to the group of $r-1$ vertices and connecting it to I vertices in the group of $I+1$ vertices

The Grone-Merris conjecture

Laplacian of $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$ non-bipartite:
$L(G)=\operatorname{diag}(\mathbf{d})-A(G)$
Fact $L(G) \sqsupseteq 0$: is singular nonnegative definite $L(G) \mathbf{1}=\mathbf{0}$
$\alpha(G)=\left\{\alpha_{1}(G) \geqslant \ldots \geqslant \ldots \geqslant \alpha_{n-1}(G) \geqslant \alpha_{n}(G)=0\right\}$
For complementary graph $G^{c}: \alpha_{i}(G)+\alpha_{n-i-1}\left(G^{c}\right)=n$ for
$i=1, \ldots, n-1$
$d_{i}^{\prime}(G)$-number of degrees of G which greater or equal to i for
$i=1, \ldots, n$
$d_{1}^{\prime}(G) \geqslant d_{2}^{\prime}(G) \geqslant \ldots d_{n-1}^{\prime}(G) \geqslant d_{n}^{\prime}(G)=0, \mathbf{d}^{\prime}(G)=\left(d_{1}^{\prime}(G), \ldots, d_{n}^{\prime}(G)\right)$
\mathbf{d}^{\prime}-dual sequence to \mathbf{d} (The column sums in Ferre diagram)
Grone-Merris conjecture 1994:
$\sum_{i=1}^{k} \alpha_{i}(G) \leq \sum_{i=1}^{k} d_{i}^{\prime}(G)$ for $k=1, \ldots, n$
$\sum_{i=1}^{n} \alpha_{i}(G)=\operatorname{tr} L(G)=\sum_{i=1}^{n} d_{i}(G)=\sum_{i=1}^{n} d_{i}^{\prime}(G)$
Grone-Merris: Conjecture holds for threshold graphs

Cases $k=1,2$

$k=1: \alpha_{1}(G)=n-\alpha_{n-1}\left(G^{c}\right) \leq n=d_{1}^{\prime}(G)$
Equality holds if and only if G has no isolated vertices and G^{c} is disconnected
If $d_{i}(G) \geq j \geq 2$ for all i then $\sum_{i=1}^{k} \alpha_{i}(G) \leq k n=\sum_{i=1}^{k} d_{i}^{\prime}(G)$ for $k=1, \ldots, j$
for $k=j$ equality holds iff G^{c} has at least $j+1$ connected components
It is enough to consider the case where G connected and $k \geq 2$
Duval-Reiner 2002, Katz (2007?)
If $d_{2}^{\prime}=n-I, n>l \geq 1$ then GM conjecture holds for $k=2$
Equality holds if and only if G threshold graph obtained from K_{n-I-1}
first adding I isolated vertices and then one vertex connected to all $n-l-1$.
Observation: it is enough to consider the case where all $n-I$ vertices form a clique:
$L(G)+L(H) \sqsupseteq L(G)$ where H a graph on n vertices with one edge

Bibliography I

(1. R.A. Brualdi and A.J. Hoffman, On the spectral radius of (0, 1)-matrices, Linear Algebra Appl. 65 (1985), 133-146.
R. Duval and V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. AMS 354 (2002), 4313-4344.
S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number of ones, Linear Algebra Appl. 69 (1985), 33-69.

- S. Friedland, Bounds on the spectral radius of graphs with e edges, Linear Algebra Appl. 101 (1988), 81-86.

眉 S. Friedland, Estimates of the spectral radius of graphs, Linear Mulitlin. Algebra 34 (1993), 33-40.
S. Friedland and S. Karlin, Some inequalities for the spectral radius of nonnegative matrices and applications, Duke Math. J. 42 (1975), 459-490.

Bibliography II

R. Grone and R. Merris, The Laplacian spectrum of a graph, II, SIAM J. Discrete Math. 7 (1994), 221-229.
R S. Karlin, Total positivity, Stanford University Press, Stanford, Calif. 1968.
N.H. Katz, The Grone Merris conjecture and a quadratic eigenvalue problem, arXiv: math.CA/0512647 v1, 29 Dec. 2005.
R N.V.R. Mahadev and Uri N. Peled, Threshold Graphs and Related Topics, Annals of Discrete Mathematics 56, North-Holland, New York, 1995.
P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110 (1988), 43-53.
R R.P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra Appl. 87 (1987), 267-269.

Bibliography III

R
M. Yannakakis, The complexity of the partial order dimension problem, SIAM Journal on Algebraic and Discrete Methods, 3 (1982), 351-358.

