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§0. Introduction

Let n be a positive integer and denote < n >= {1, ..., n}. We view < n > as an
alphabet on n letters. Denote by < n >Zd

the set of all mappings of Zd to the set
< n >. By extending the Hamming metric on < n > × < n > to < n >Zd

one obtains
that < n >Zd

is a compact metric space. The group Zd acts as a group of (translation)
automorphisms on < n >Zd

. A set S ⊂ Zd which is closed and invariant under the action
of Zd is called a subshift. S is called a subshift of finite type (SFT) if there is a finite set of
finite admissible configurations which generates S under the action of Zd. More presicely,
let F ⊂ Zd be a finite set. Assume that P ⊂< n >F . Then (F, P ) defines a folowing
Zd-SFT S. For each a ∈ Zd let F + a ⊂ Zd be the corresponding translation of F . Then
x ∈ S iff for each a ∈ Zd, πF+a(x), the projection of x on the set F + a, is in P . See for
example [Sch, Ch. 5].

The case of Z action, i.e. d = 1, is well understood. In that case, it is relatively
easily to decide whether S is empty or not. Moreover, the topological entropy h(S) of the
restriction of the standard shift to S is a logarithm of an algebraic integer ρ(F, P ). The
number ρ(P, F ) is a the spectral radius of certain 0− 1 square matrix induced by (F, P ).
Furthermore, the topological entropy h(S) is equal to the rate of growth of the number of
periodic points. The case d > 1 is much more complicated. First, the problem wether S is
an empty set or not is undecidable. This result for d = 2 goes back to Berger [Ber]. See
also [K-M-W] and [Rob]. Second, there exists a SFT S 6= ∅ which does not have periodic
points. Moreover, in the case where S 6= ∅ the topological entropy may be uncomputable,
see [H-K-C] and [Gab].

The object of this paper to show that contrary to these results one has a natural and
a simple criterion which either determines that S = ∅ or calculates the topological entropy
of S 6= ∅. There is no contradition to the uncomputability of h(S) because we can not
estimate the rate of convergence of our sequence. However, if we introduce a symmetry in
Z2 we can estimate the rate of convergence of our sequence. Moreover, in this case h(S)
is the rate of growth the number of periodic points. Our main tool is to view a Zd-SFT
as a matrix SFT. See [M-P1,M-P2]. In fact our methods are very close to the methods
of [M-P1,M-P2].

We now describe briefly the content of the paper. In §1 we define combinatorial
entropy of Zd-SFT. It can is computed by finite configurations. We then observe, using
Köning’s method, that Zd-SFT is nonempty iff every finite configuration is nonempty. In
§2 we show that the combinatorial entropy is equal to the topological entropy of Zd-SFT.
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In §3 we show that simple symmetricity conditions yield that the topological entropy of
Zd-SFT is equal to the periodic entropy. (The periodic entropy is the rate growth of
the periodic points.) In the case d = 2 combined with the symmetricity assumption we
obtain an algorithm for computing the entropy at any given precision. This result is due
to [M-P2] under stricter conditions. The last section is devoted to various remarks.

§1. Preliminary results

Let Γ ⊂< n > × < n >. Set

ΓN = {x = (xi)N
1 , (xi, xi+1) ∈ Γ, i = 1, ..., N − 1},

Γ∞ = {x = (xi)i∈Z : (xi, xi+1) ∈ Γ, i ∈ Z}.

Assume that Γi ⊂< n > × < n >, i = 1, ..., d. Set Γ = (Γ1, ..., Γd) and let

Γ∞ = {f : f ∈< n >Zd

, (f(i1,...,id))ik∈Z ∈ Γ∞k ,

(i1, ..., ik−1, ik+1, ..., id) ∈ Zd−1, k = 1, ..., d, }

to be a Zd-SFT induced by Γ. We now show that a standard Zd-SFT is a equivalent the Zd

-SFT induced by Γ. For the case d = 2 this can be deduced from [Moz] who proved that
every Z2-SFT is equivariant to Wang-tiling-space. It is easy to see that Wang-tiling-space
is Z2-SFT induced by some special Γ = (Γ1,Γ2).

Let S be a SFT is given by the pair (F, P ) as in §0. Let N = (N1, ..., Nd) ∈ Zd, Ni ≥
1, i = 1, ..., d. By B(N) we denote the box < N1 > × · · ·× < Nd >⊂ Zd. Let f =
(f(i1,...,id))N

(1,...,1) ∈< n >B(N). Then f is called (F, P ) admissible if for all a ∈ Zd such
that F + a ⊂ B(N) we have the condition that πF+a(f) - the projection of f on the set
F +a is P -admissible, i.e. πF+a(f) ∈ P . Let (1, ..., 1) ≤ M(F ) = (M1(F ), ..., Md(F )) ∈ Zd

be the dimension of the smallest box containing F . That is, B(M(F )) ⊃ F + a for some
a ∈ Zd and B(M(F )) is minimal with respect to this property. For M(F ) ≤ N ∈ Zd let
w(N, F, P ) be the number of (F, P ) admissible words in B(N). We then let

hcom(F, P ) = lim sup
N1,...,Nd→∞

log w(N, F, P )
N1 · · ·Nd

to be the combinatorial entropy of induced by (F, P ). We agree that log 0 = −∞. That
is hcom(F, P ) ≥ 0 iff every box B(N) has at least one (P, F ) admissible configuration
f ∈< n >B(N). Observe next that if Mi(F ) = 1 for some some i then we effectively can
consider the corresponding Zd−1-SFT. For

N = (N1, ..., Nd) ∈ Zd, Nk > 1, k = 1, ..., d

let
ΓN = {f = (f(i1,...,id))

N1,...,Nd

i1=...=id=1 : (f(i1,...,id))
Nk
ik=1 ∈ ΓNk

k , k = 1, ..., d},
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for every i1, ..., ik−1, ik+1, ..., id.
Set

F = {1, 2}d = B(2, ..., 2), P = Γ(2,...,2), w(N, Γ) = w(N, F, P ).

Then for any N = (N1, ..., Nd) > (1, ..., 1) the set ΓN consists of all (F, P ) admissible
words in < n >B(N). Define hcom(Γ) = hcom(F, P ).

(1.1) Theorem. Let F ⊂ Zd be a finite set such that 1 < Mi(F ), i = 1, ..., d. Assume
that P ⊂< n >F . Denote by T ⊂< n >B(M(F )) the set of all F, P admissible words in
< n >B(M(F )). For each i = 1, ..., d, and u ∈ T let πi,−(u), πi,+(u) be the projection of u
on the sets

B(M1(F ), ..., Mi−1(F ),Mi(F )− 1,Mi+1(F ), ..., Md(F )),
B(M1(F ), ..., Mi−1(F ),Mi(F )− 1,Mi+1(F ), ..., Md(F )) + (δi1, ..., δid).

Set

Γi = {(u, v) : u, v ∈ T, πi,+(u) = πi,−(v)} ⊂ T × T, i = 1, ..., d, Γ = (Γ1, ..., Γd).

Then for any N = (k1 + M1(F ), ..., kd + Md(F )), ki ≥ 1, i = 1, ..., d, the set of all (F, P )
admissible words in B(N) is in one to one correspondence with Γ(k1+1,...,kd+1) on the
alphabet T . In particular the set of all admissible (F, P ) words in < n >Zd

is in one to
one correspondence with Γ∞. Furthermore hcom(F, P ) = hcom(Γ).

Proof. Let N = (k1 + M1(F ), ..., kd + Md(F )), ki ≥ 1, i = 1, ..., d. Assume that f ∈<
n >B(N) be an (F, P ) admissible word. For (l1, ..., ld), 1 ≤ lj ≤ kj + 1, j = 1, ..., d, let
g(l1,...,ld) be the word in T which has the following coordinates in f :

li ≤ ji ≤ li + Mi(F )− 1, i = 1, ..., d. (1.2)

It is straightforward to check that g = (g(l1,...,ld))
(k1+1,...,kd+1)
(1,...,1) ∈ Γ(k1+1,...,kd+1). Assume

that g ∈ Γ(k1+1,...,kd+1). Use the above formula to find a unique f ∈< n >B(N) so that g is
constructed from f as above. We claim that f is a (F, P ) admissible word in < n >B(N).
Assume that F + a ⊂ B(N). Then there exists l1, ..., ld, 1 ≤ li ≤ ki + 1, i = 1, ..., d, so that
the coordinates of F + a satisfy the inequalities (1.2). That is, πF+a(f) lies in the word u
generated by the projection of f on the coordinates specified by (1.2). By the construction,
u ∈ T . In particular, πF+a(f) = πF+a(u) ∈ P . Hence, f is a (F, P ) admissible word.
Therefore, w(N, F, P ) is equal to ω(k1 + 1, ..., kd + 1) = card(Γ(k1+1,...,kd+1)). All other
assertions of the Theorem follow straightforward. ¦

Let (1, ..., 1) ≤ N ∈ Zd. Partition the box B(N) to p nontrivial boxes of dimensions
N i ∈ Zd, i = 1, ..., p. It then follows that w(N,F, P ) ≤ ∏p

1 w(N i, F, P ). We thus deduce

hcom(F, P ) = lim
N1,...,Nd→∞

log w((N1, ..., Nd), F, P )
N1 · · ·Nd

= lim
m→∞

log w((m, ...,m), F, P )
md

.
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(1.3) Theorem. Let S be a Zd-SFT given by (F, P ). Then

S 6= ∅ ⇐⇒ w((m, ...,m), F, P ) ≥ 1,m = 2, ..., .

That is, S = ∅ ⇐⇒ hcom = −∞.

Proof. Clearly, if S 6= ∅ then hcom(F, P ) ≥ 0. In particular, w((m, ...,m), Γ) ≥ 1,m =
2, ...,. Assume now that w((m, ..,m),Γ) ≥ 1,m = 2, ...,. Consider the box B((2m, ..., 2m))
- B2m in Rd whose center is at the origin (0, ..., 0). Let Θm ∈ Γ(2m,...,2m) be an admissible
filling of B2m by the alphabet {1, ..., n}. Consider the sequence {Θm}∞1 . Look at the
projection of this sequence on B2. Pick up an infinite subsequence {Θn1

i
}∞i=1 whose so

that the projection of each Θn1
i

on B2 is the same element Ψ1 ∈ Γ(2,...,2). From the
sequence Θn1

i
pick a subsequence Θn2

i
so that the projection of each element Θn2

i
on B4 is

the same element Ψ2 ∈ Γ(4,...,4). Continue this construction to obtain that the sequence
Ψk ∈ Γ(2m,...,2m), k = 1, ..., which are 2m× · · · × 2m sections of an element Ψ ∈ Γ∞. The
above argument is due to Köning [Kön]. ¦

Introduce on < n > the Hamming metric d(i, i) = 0, d(i, j) = 1, i 6= j ∈< n >. For
i = (i1, ..., id) ∈ Zd we let |i| = ∑d

1 |ip|. On < n >Zd

define the following metric

d(f, g) =
1

22d

∑

i=(i1,...,id)∈Zd

d(fi, gi)
2|i|

, f = (fi), g = (gi) ∈< n >Zd

.

It then follows that < n >Zd

is a compact metric space. Let ei = (δi1, ..., δid), i = 1, ..., d,

be the standard basis in Zd. Denote by Ti :< n >Zd→< n >Zd

the following automorphism
of < n >Zd

:
Ti(fj) = (fj+ei), j ∈ Zd, f = (fj) ∈< n >Zd

.

S ⊂< n >Zd

is called a subshift (SF) if S is closed and TiS = S, i = 1, ..., d. In that
case one defines a topological entropy h(S) as follows. For (1, ..., 1) ≤ N = (N1, ..., Nk)
introduce the following new metric on < n >Zd

:

dN (f, g) = max
0≤ip<Np,p=1,...,d

d(T i1
1 · · ·T id

d f, T i1
1 · · ·T id

d g), f, g ∈< n >Zd

.

Fix a positive ε > 0 and let K(S, N, ε) be the maximal number of ε separated points in S
in the metric dN (·, ·). We then let

h(S) = lim
ε→∞

lim sup
N1,...,Nd→∞

log K(S,N, ε)
N1 · · ·Nd

. (1.4)

(1.5) Theorem. Let Γi ⊂< n > × < n >, i = 1, ..., d, and set Γ = (Γ1, ..., Γd). Assume
that Γ∞ 6= ∅. Define h(Γ) = h(Γ∞). For (1, ..., 1) ≤ N ∈ Zd let w(N, Γ∞) be the number
of all possible projections of f ∈ Γ∞ on a fixed box B(N). Then

h(Γ) = lim sup
N1,...,Nd→∞

log w(N, Γ∞)
N1 · · ·Nd

.
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In particular, h(Γ) ≤ hcom(Γ).

Proof. It is quite straightforward to see from the definition of K(Γ∞, N, ε) that for a
small enough ε > 0 there exist some constants 1 ≤ a(ε), 1 ≤ b(ε) ∈ Z so that

w(N, Γ∞) ≤ K(Γ∞, N, ε) ≤ a(ε)w(N + (b(ε), ..., b(ε)), Γ∞).

Now the characterization of h(Γ) follows straightforward from (1.4). As w(N, Γ∞) ≤
w(N, Γ) we deduce that h(Γ) ≤ hcom(Γ). ¦.

§2. The equality of topological and combinatorial entropy for SFT

Let Γ ⊂< n > × < n >. Denote by A = A(Γ) the 0− 1 matrix induced by the graph
Γ. Let ρ(A) be the spectral radius of A. Set

per(ΓN ) = {(xi)N
1 : (xi)N

1 ∈ ΓN , x1 = xN}.

Assume that Γi ⊂< n > × < n >, i = 1, ..., d. Set

Γ = (Γ1, ..., Γd), Γ{i} = (Γ1, ..., Γi−1,Γi+1, ..., Γd), i = 1, ..., d.

For
N = (N1, ..., Nd) ∈ Zd, Nk > 1, k = 1, ..., d,

M = (M1, ..., Md−1) ∈ Zd−1,Mj > 1, j = 1, ..., d− 1,

let

per(ΓN ) = {f = (f(i1,...,id))
N1,...,Nd

i1=...=id=1 : (f(i1,...,id))
Nk
ik=1 ∈ per(ΓNk

k ), k = 1, ..., d},
wp(N, Γ) = card(per(ΓN )),

Γ(k, M) = {(a, b) : a = (a(i1,...,id−1)), b = (b(i1,...,id−1)) ∈ (Γ{k})M ,

(a(i1,...,id−1), b(i1,...,id−1)) ∈ Γk, ij = 1, ...,Mj , j = 1, ..., d− 1, }, k = 1, ..., d,

p(Γ(k, M)) = {(a, b) : a = (a(i1,...,id−1)), b = (b(i1,...,id−1)) ∈ per((Γ{k})M ),

(a(i1,...,id−1), b(i1,...,id−1)) ∈ Γk, ij = 1, ...,Mj , j = 1, ..., d− 1, }, k = 1, ..., d,

A(k,M) = A(Γ(k, M)), ρ(k, M) = ρ(A(k,M)),
Ap(k,M) = A(p(Γ(k, M))), ρp(k, M) = ρ(Ap(k,M)), k = 1, ..., d.

Note that any f ∈ per(ΓN ) has a unique minimal periodic extension to Γ∞. Set

hp(Γ) = lim sup
N1,...,Nd→∞

log wp((N1, ..., Nd), Γ)
N1 · · ·Nd
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to be the periodic entropy of Γ∞.

(2.1) Theorem. Let d ≥ 2 and assume that Γi ⊂< n > × < n >, i = 1, ..., d. Consider
Zd-SFT given by Γ = (Γ1, ..., Γd). Then

hcom(Γ) = −∞ ⇐⇒ ∀M = (M1, ..., Md−1) >> (1, ..., 1) ρ(k, M) = 0, k = 1, ..., d,

hp(Γ) = −∞ ⇐⇒ ∀M = (M1, ..., Md−1) ρp(k, M) = 0, k = 1, ..., d.

Furthermore

lim
M1,...,Md−1→∞

log ρ(k, (M1, ..., Md−1))
M1 · · ·Md−1

= hcom(Γ), k = 1, ..., d,

log ρ(k, (M1, ..., Md−1))
M1 · · ·Md−1

≥ hcom(Γ),Mi > 1, i = 1, ..., d− 1, k = 1, ..., d,

lim sup
M1,...,Md−1→∞

log ρp(k, (M1, ..., Md−1))
M1 · · ·Md−1

≤ hp(Γ), k = 1, ..., d.

Proof. We first prove the theorem for d = 2. In that case M = (m) and we let Γ(k, M) =
Γ(k,m), ρ(k, M) = ρ(k, m) for k = 1, 2. Suppose first that there exists N = (N1, N2) so
that ΓN = ∅. We then claim that ρ(1,m) = 0 for m ≥ N2. Suppose to the contrary that
ρ(1,m) ≥ 1. That is, A(1,m) is not a nilpotent matrix. That is, Γ(1,m)l 6= ∅, l = 2, ...,.
Clearly,

Γ(1,m)l = Γ(l,m). (2.2)

Set l = N1 to obtain a contradiction. Similarly, ρ(2,m) = 0 for m ≥ N2. Assume now
that ρ(1,m) = 0 for some m ≥ 1. Let L2(m) = card(Γm

2 ). Then Γ(1,m)L2(m) = ∅. Use
(2.2) to deduce that Γ(L2(m),m) = ∅. Similar results hold if ρ(2,m) = 0.

Assume now hcom(Γ) ≥ 0, i.e. ρ(1, m) ≥ 1, ρ(2,m) ≥ 1,m = 1, ...,. We now prove the
conditions related to the characterization of hcom(Γ) in terms of ρ(1,m). We claim that

log ρ(1, p + q) ≤ log ρ(1, p) + log ρ(1, q), p, q ≥ 1. (2.3)

Indeed, let w((l, p), Γ), w((l, q), Γ), w((l, p + q), Γ) be the total number of words of length l
corresponding to the subshifts Γ(1, p),Γ(1, q), Γ(1, p + q) respectively. Clearly, every word
of length l in Γ(1, p + q) splits (from bottom to top) as a word in Γ(1, p) followed by a
word in Γ(1, q). That is w((l, p + q), Γ) ≤ w((l, p), Γ)w((l, q), Γ). Take the logarithm of
this inequality, divide by l and take the lim sup to deduce (2.3). It is a well known fact
that (2.3) implies that the sequence { log ρ(1,m)

m }∞1 converges to a (nonnegative) limit h.
Furthermore, h ≤ log ρ(1,m)

m , m = 1, ...,. We now show that h = hcom(Γ). Let {εm}∞1 be
a positive sequence which converges to zero. Clearly, there exists a sequence of positive
integers {lm}∞1 converging to ∞ so that

log w((lm,m),Γ)
lm

> log ρ(1, m)− εm,m = 1, ..., .

6



Hence,

hcom(Γ) ≥ lim sup
log w((lm,m), Γ)

lmm
≥ h.

We now show the reversed inequality. Let {mi}∞1 , {ni}∞1 be two sequences of positive
integers which converge to ∞. We claim that

lim sup
log w((ni,mi),Γ)

nimi
≤ h.

Pick a positive δ > 0. Pick a positive integer m so that log ρ(1,m)
m < h + δ. Let K >> 1 so

that

∀n > K max
1≤k≤m

(
log w((n, k),Γ)

n
− log ρ(1, k)) < δ.

Assume that mi, ni > K. Set mi = pim + qi, 1 ≤ qi ≤ m. Consider a word of length ni

corresponding to SFT induced by Γ(1,mi). This word splits (from bottom to top) as pi

words induced by Γ(1,m) and a word induced by Γ(1, qi) of length ni respectively. Hence,
w((ni,mi), Γ) ≤ w((ni, m), Γ)piw((ni, qi), Γ). That is

log w((ni,mi), Γ)
nimi

≤ log w((ni,m), Γ)
nim

+
log w((ni, qi),Γ)

nimi
≤

log ρ(1,m)
m

+
δ

m
+

max1≤k≤m ρ(1, k) + δ

mi
,mi, ni > K.

Thus, lim supmi,ni→∞
log w((ni,mi),Γ)

mini
< h + 2δ. These arguments prove the theorem for

ρ(1,m). Similar arguments verify the theorem for ρ(2,m).
We now consider the periodic solutions. Assume first that per(ΓN ) 6= ∅ for some

N = (N1, N2), N1 > 1, N2 > 1. It then follows that

per(ΓM ) 6= ∅, M = (N1 + i(N1 − 1), N2 + j(N2 − 1)), i, j = 0, ..., . (2.4)

We then claim that ρp(1, N2) ≥ 1, ρp(2, N1) ≥ 1. Consider first the matrix Ap(1, N2). If
ρp(1, N2) = 0, i.e. Ap(1, N2) is nilpotent, we could not have arbitrary long words in the
SFT induced by p(Γ(1, N2)). This contradicts (2.4) for j = 0. Similarly, ρp(2, N1) ≥ 1.
Assume now that ρp(1, N2) ≥ 1 for some N2 > 1. Then the SFT induced by p(Γ(1, N2))
has at least one periodic word of length N1 > 1, i.e. per((p(Γ(1, N2))N1) 6= ∅. As every
periodic word of length N1 in the SFT corresponding to p(Γ(1, N2)) is an element of
per(Γ(N1,N2)) we deduce in particular per(Γ(N1,N2)) 6= ∅. That is,

hp(Γ) = −∞ ⇐⇒ ρp(1,m) = ρp(2,m) = 0,m = 2, ..., .

Assume now that hp(Γ) ≥ 0. We now prove the theorem for ρp(1,m). Consider the SFT
induced by p(Γ(1,m)). Then wp((l,m),Γ) is the number of periodic words of length l
of this SFT. As ρp(1,m) ≥ 1 we know that for any δ > 0 there exists l = l(δ) so that
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log wp((l,m),Γ)
l ≥ log ρp(1,m) − δ. Assume that {mi}∞1 is a strictly increasing sequence of

positive integers so that

lim sup
m→∞

log ρp(1,m)
m

= lim
i→∞

log ρp(1,mi)
mi

.

Let {li}∞1 be a stricly increasing sequence so that log wp((li,mi),Γ)
li

≥ log ρp(1, mi) − 1, i =

2, ...,. We then deduce lim supm→∞
log ρp(1,m)

m ≤ hp(Γ). The analogous result for ρp(2,m)
is proved similarly.

Let d > 2. Assume that (1, ..., 1) < M ∈ Zd−1. Partition the box B(M) to p nontrivial
boxes of dimensions M i ∈ Zd−1

+ , i = 1, ..., p. We denote this fact by M = ∪p
1M

i. We then
have the following generalization of (2.3).

log ρ(k, M) ≤
p∑
1

log ρ(k, M i), k = 1, ..., d. (2.3)′

Similarly, all assertions of the theorem for d > 2 are derived in an analogous way. ¦

(2.5) Theorem. Let d ≥ 2 and assume that Γi ⊂< n > × < n >, i = 1, ..., d. Consider
the Zd-SFT given by Γ = (Γ1, ..., Γd). Then

hcom(Γ) = h(Γ).

To prove the theorem we need the following result.

(2.6) Lemma. Let the assumptions of Theorem 2.5 hold. Assume furthermore that
Γ∞ 6= ∅. Let M, N1, N2 ∈ Zd and assume that (1, ..., 1) ≤ M ≤ N1 ≤ N2. Then

πB(2M)+N1−M (Γ2N1) ⊃ πB(2M)+N2−M (Γ2N2).

Assume that f ∈ Γ2M . Then

∃g ∈ Γ∞πB(2M)g = f ⇐⇒ ∀Nf ∈ πB(2M)+N−M (Γ2N ).

Proof. The first claim of the lemma is trivial. Assume that g ∈ Γ∞. Let f = πB(2M)g.
Clearly, ∀Nf ∈ πB(2M)+N−M (Γ2N ). The reverse implication is proved by using Köning’s
argument as in the proof of Theorem 1.3. ¦

Proof of Theorem 2.5 By Theorem 1.3 hcom(Γ) = −∞ ⇐⇒ h(Γ) = −∞. Thus, it is
enough to consider the case hcom(Γ) ≥ 0. As w(N, Γ) ≥ w(N, Γ∞) Theorem 1.5 implies
that hcom(Γ) ≥ h(Γ). Thus hcom(Γ) = 0 ⇒ h(Γ) = 0. Hence, it is left to prove the theorem
in the case hcom(Γ) > 0. For simplicity of the exposition we consider the case d = 2.
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Fix k ≥ 1 and let m ≥ k. Consider the graph Γ(1, 2m). It represents a SFT induced
by an infinite horizontal strip of width 2m in the vertical direction. Erase from the above
infinite horizontal strip m − k first and last infinite rows. We then obtain a S(2m)(2k)
a SFT induced by the graph Γ(1, 2m). Furthermore, S(2m)(2k) is a subshift of S(2k)
induced by Γ(1, 2m). Clearly, we have the inclusions

S(2k) ⊃ S(2(k + 1))(2k) ⊃ · · · ⊃ S(2m)(2k) ⊃ · · · .

Fix a box of dimension (2l, 2k) and let w2m(2l, 2k) be the projection of S(2m)(2k) on this
box. Clearly

w((2l, 2k), Γ) > w2(k+1)(2l, 2k) > · · · > w2m(k)(2l, 2k) = w2(m(k)+1)(2l, 2k) = ... .

Köning’s argument yield that

w((2l, 2k), Γ∞) = w2m(k)(2l, 2k).

We claim that

w((2l, 2k),Γ∞)p−2m(k) ≥ ρ(1, p2k)2l

ρ(1, 2k)2l2m(k)
, p >> 1. (2.7)

To prove this inequality consider the infinite horizontal strip of width p2k where p > 2m(k).
In this strip pick up a box of dimension (rl, p2k) where r >> 1. It then follows that

w((rl, p2k), Γ) ≈ K1(rl)s1ρ(1, p2k)rl

for some fixed integer s1. We view the above strip as composed of p infinite strips of width
2k. For m(k) the most upper strips and for m(k)the most lower strips the number of words
in the box (rl, 2k) does not exceed

w((rl, 2k),Γ) ≈ K2(rl)s2ρ(1, 2k)rl.

We now consider all the other infinite horizontal strip of width 2k. Observe that they
are all SFT contained in S(2m(k))(2k). Denote by C(l, 2k) all distinct projections of Γ∞

on a box B(l, 2k). Denote by ∆(l, 2k) ⊂ C(l, 2k) × C(l, 2k) the following graph induced
by all distinct projections of Γ∞ on the box B((2l, 2k)). That is (x, y) ∈ ∆(l, 2k) iff
(x, y) is obtained by the projection on B(2l, 2k) of some possible configuration in Γ∞. Let
w(t,∆(l, 2k)) be the number of words of length t in the SFT induced by ∆(l, 2k). Set
ρ̃(l, 2k) = ρ(A(∆(l, 2k)) It then follows that for r >> 1

w(r,∆(l, 2k)) ≈ K3r
s3 ρ̃(l, 2k)r.

We next claim that
w((2l, 2k),Γ∞) ≥ ρ̃(l, 2k)2. (2.8)

9



Indeed, we trivially have that w(2r,∆(l, 2k)) ≤ w((2l, 2k), Γ∞)r. Use the asymptotic value
of w((2r, 2k),∆(l, 2k)) for r >> 1 to deduce (2.8). From the definitions of m(k) and ρ̃(l, 2k)
it follows that for p > 2m(k)

w((2rl, p2k), Γ) ≤ w((2rl, 2k),Γ)2m(k)w(2r,∆(l, 2k))p−2m(k).

Use the asymptotic equalites for the above words and the inequality (2.8) to deduce
(2.7). Take the 2lp− th root of (2.7) and let p →∞. Use Theorem 2.1 to deduce that

lim inf
l→∞

log w((2l, 2k), Γ∞)
2l

≥ 2khcom(Γ).

Hence,

h(Γ) = lim sup
k,l→∞

log w((l, k), Γ∞)
kl

≥ lim inf
k→∞

1
2k

lim inf
l→∞

log w((2l, 2k), Γ∞)
2l

≥ hcom(Γ).

Thus, h(Γ) = hcom(Γ) and the proof of the theorem is completed. ¦

§3. A symmetricity condition

(3.1) Theorem. Let Γi ⊂< n > × < n >, i = 1, ..., d, and consider Zd-SFT given by
Γ = (Γ1, ..., Γd). Assume that Γ1, ..., Γd−1 are symmetric. Then hp(Γ) = h(Γ).

Proof. We prove the theorem by the induction on d. Assume first that d = 2. From
Theorem 1.3 we deduce that ρ(2, 2) = 0 ⇒ h(Γ) = −∞. Assume that ρ(2, 2) ≥ 1. We now
show that hp(Γ) ≥ 0. Observe first that per(Γ(2, 2)l) 6= ∅ for some l > 1. In particular,
per(Γl

2)) 6= ∅, i.e. ρ(A(Γ2)) = ρ(2, 1) ≥ 1. Consider p(Γ(1, l)). The above assumption
means that p(Γ(1, l)) has at least one edge. As Γ1 is symmetric we deduce that p(Γ(1, l))
is also a symmetric matrix. Hence, ρp(1, l) ≥ 1. Theorem 2.1 implies that hp(Γ) ≥ 0.
Thus hp(Γ) = h(Γ) = −∞ ⇐⇒ ρ(2, 2) = 0.

In what follows we assume that ρ(2, 2) ≥ 1. We now prove that hp(Γ) = h(Γ). Clearly,
hp(Γ) ≤ h(Γ). As we showed that hp(Γ) ≥ 0 it is enough to consider the case h(Γ) > 0.
Note that Theorems 2.1 and Theorem 2.5 yield that ρ(2,m) > 1,m = 2, ...,. Fix m ≥ 1.
Let wp(l) be the number of periodic words in the SFT induced by Γ(2, 2m + 1) of length
l. Set

Lp2(l) = card(per(Γm
2 )), B = (bij)

Lp2(l)
1 = A(p(Γ(1, l))), B2m = (b(2m)

ij )Lp2(l)
1 .

It then follows that wp(l) =
∑Lp2(l)

i=j=1 b
(2m)
ij . Recall that B is a nonnegative symmetric

matrix. Hence, its spectral norm is equal to its spectral radius ρp(1, l). As wp(l) =
eB2meT , e = (1, ..., 1) we deduce that wp(l) ≤ ρp(1, l)2mLp2(l). Observe next that
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trace(B2m) = wp(2m + 1, l). As B2m is a symmetric matrix with nonnegative eigenvalues
it follows that trace(B2m) ≥ ρp(1, l)2m. Combine the above inequalities to deduce

wp(l) ≤ wp(2m + 1, l)Lp2(l) ≤ wp(2m + 1, l)nl−1.

Fix δ, 0 < δ. Choose a strictly increasing sequence {lm}∞1 so that log wp(lm)
lm

> log ρ(2, 2m+
1)− δ. Use Theorem 2.1 and the above inequalities to deduce

h(Γ) = lim
m→∞

log ρ(2, 2m + 1)
2m + 1

≤ lim inf
m→∞

log wp(lm)
(2m + 1)lm

≤ lim inf
m→∞

log wp(2m + 1, lm)
(2m + 1)lm

≤ hp(Γ).

This proves the equality hp(Γ) = h(Γ) for d = 2.
Assume that the result holds for d ≥ l ≥ 2 and let d = l + 1. Choose δ > 0 and

M = (M1, ...,Ml) >> (1, ..., 1) so that log ρ(l+1,M)
M1···Ml

< h(Γ) + δ. (We are assuming the
nontrivial case ρ(l + 1,M) ≥ 1 ⇐⇒ h(Γ) ≥ 0.) Furthermore, we assume that M1, ..., Ml

are odd numbers. Choose Nl+1 >> 1 so that w(M1, ..., Ml, Nl+1)- the total number of
words in (Γ(l + 1,M))Nl+1 is not greater then (1 + δ)Nl+1 times wpl+1(M1, ..., Ml, Nl+1) =
card(per(Γ(l+1,M)Nl+1)). Let pl+1(Γ(1, (M2, ..., Ml, Nl+1))) ⊂ Γ(1, (M2, ...,Ml, Nl+1)) be
the subgraph generated by all the words of length (M2, ...,Ml, Nl+1) in the SFT induced
by (Γ2, ..., Γl+1) which are periodic with respect to the last coordinate. Note that this
graph is symmetric. Moreover,

(pl+1(Γ(1, (M2, ..., Ml, Nl+1))))M1 = per(Γ(l + 1,M)Nl+1) ne∅.
The arguments of the proof for d = 2 show that h(Γ) - the density of words of length
(N1, ..., Nl+1) is equal to the density of the words periodic in the last and the first co-
ordinates. Let p1,l+1(Γ(2, (M1,M3, ..., Ml, Nl+1))) ⊂ Γ(2, (M1,M3, ..., Ml, Nl+1)) be the
subgraph generated by all the words of length (M1,M3, ...,Ml, Nl+1) in SFT induced by
(Γ1,Γ3, ..., Γl+1) which are periodic in the first and the last coordinate. As Γ2 is symmet-
ric it follows that p1,l+1(Γ(2, (M1,M3, ..., Ml, Nl+1))) is also symmetric. Use the previous
arguments to deduce that h(Γ) is the density of words periodic in 1, 2, l + 1 cordinates.
Continue in this manner to deduce that h(Γ) = hp(Γ). ¦

Our results yield a new proof that the periodic entropy hp(Γ) computed by Lieb [Lie]
is equal to the standard entropy h(Γ). See [B-K-W] for a specific proof of the above
equality for the ice rule model in zero field.

Under the assumptions of Theorem 3.1 it is possible to give lower estimates for h(Γ).
To do that we need to introduce the following notation. Let U ⊂< d > be a set of cardi-
nality p. We then agree that U = {i1, ..., ip}, 1 ≤ i1 < · · · < ip ≤ d. For N = (N1, ..., Nd)
set NU = (Ni1 , ..., Nip). In particular, N{k} = (N1, ..., Nk−1, Nk+1, ..., Nd), k = 1, ..., d.
Assume the assumptions of Theorem 3.1. For any nontrivial set U ⊂< d > we con-
sider the SFT on Zcard(U)) induced on ΓU = (Γi1 , ..., Γip). Suppose that k ∈ U, V =
U\{k}, card(V ) ≥ 1. Then Γ(k,NV ) is graph induced by the SFT corresponding to ΓU .
Let ρ(k,NV ) be the spectral radius of this graph. Given three pairwise disjoint sets
V, {k},W ⊂< d > we consider the following contraction of ρ(k,NV ∪W ) on V indices

ρV (k, NW )) = lim
Ni→∞,i∈V

ρ(k,NV ∪W )
1∏

i∈V
Ni .
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Let U = {k} ∪ V . Observe that log ρV (k, NV ) = h(ΓU ).

(3.2) Theorem. Let Γi ⊂< n > × < n >, i = 1, ..., d, and consider the Zd -SFT given by
Γ = (Γ1, ..., Γd). Assume that Γk is symmetric. Then

ρ(i, N{i}) ≤ ρ{i}(k, N{i,k})Nk−1ρ(i,N{i,k}),

N = (N1, ..., Nd) ≥ (1, ..., 1), i = 1, ..., k − 1, k + 1, ..., d.

Proof. Fix Nj ≥ 1, j = 1, ..., i− 1, i + 1, ..., d. For a small positive δ > 0 choose Ni >> 1
so that

(1− h)Niρ(i,N{i})Ni ≤ w(N) = card((Γ(i,N{i}))Ni),

ω(N{k}) = card((Γ(i,N{i,k}))Ni) ≤ (1 + δ)Niρ(i,N{i,k})Ni .

Let C = A(Γ(k, N{k})). Then C is ω(N{k})×ω(N{k}) symmetric matrix with the spectral
norm equal to ρ(k,N{k}). Set e = (1, ..., 1). The maximal characterization of the maximal
eigenvalue of CNk−1 yields

w(N, Γ) = eCNk−1eT ≤ ρ(k,N{k})Nk−1ω(N{k}).

Taking the Ni−th root in the above inequality and letting Ni →∞ we deduce the theorem.
¦.

Combine Theorems 3.1-3.2 for d = 2, k = 1 with Theorems 2.1 and 2.5 to obtain.

(3.3) Corollary. Let Γ1,Γ2 ⊂< n > × < n >. Assume that Γ1 is symmetric and consider
the Z2-SFT induced by Γ = (Γ1,Γ2). Then

log ρ(2, k)
k − 1

− log ρ(2, 1)
k − 1

≤ hp(Γ) = h(Γ) ≤ log ρ(2, k)
k

, k = 2, ..., .

The above Corollary under stronger assumptions is due to [M-P2]. Note that Corol-
lary 3.3 enables one to calculate effectively the entropy h(Γ) up to an arbitrary precision.

We now apply Theorem 3.2 for d = 3 assuming that Γ2 is symmetric. Let N1 = p ≥
1, N2 = q ≥ 2, k = 2, i = 3 to deduce

log ρ(3, (p, q))
p(q − 1)

− log ρ(3, p)
p(q − 1)

≤ log ρ{3}(2, p)
p

.

Let p →∞. We then get the inequalites

log ρ{1}(3, q)
q − 1

− h(Γ{1,3})
q − 1

≤ h(Γ). (3.4)
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This yields a lower bound for h(Γ) which converges to h(Γ) as q → ∞. To obtain com-
putable lower bounds for h(Γ) in terms of various ρ(k, M) we assume that Γ3 is symmetric.
First observe that Theorem 2.1 gives an upper bound on h(Γ{1,3}). Use Theorem 3.2 with
k = 3, i = 1,M2 = q,M3 = r to deduce

log ρ(1, (q, r))
r − 1

− log ρ(1, q)
r − 1

≤ log ρ{1}(3, q).

Use the above inequalites in (3.4) to obtain a lower bound for h(Γ) which in principle can
be arbitrary close to h(Γ). (Choose all the numbers entering in this inequality to be big
enough.)

§4. Observations

Let Γ ⊂< n > × < n > be a directed graph on n vertices. For any nontrivial set
V ⊂< n > set Γ(V ) = Γ∩V ×V . Γ is called a strongly connected graph if any two vertices
i, j ∈< n > are connected by a path in a graph. This is equivalent to the statement that
A(Γ) is an irreducible matrix. If Γ is not strongly connected then < n > is decomposed to
a disjoint union

< n >= ∪p
0Ui, Ui ∩ Uj = ∅, 0 ≤ i < j ≤ p, card(Ui) ≥ 1, i = 1, ..., p,

A(Γ(U0))n = 0, (A(Γ(Ui)) + I)n > 0, i = 1, ..., p.
(4.1)

Here I stands for the identity matrix and B > 0 denote a real valued matrix whose
all entries are positive. The set U0 is called a transient set. That is, if we consider
any path with edges in our graph Γ each transient vertex will appear at most once.
Equivalently, any closed path will not contain any transient vertex, while for each ver-
tex in ∪p

1Ui there exists a closed path which contains this vertex. The set ∪p
1Ui is

the set of nontransient vertices. Moreover, each graph Γ(Ui) is a strongly connected
for i = 1, ..., p. Furthermore, U1, ..., Up are maximal sets with this property. That is,
for 1 ≤ i < j ≤ p either there is no path of Γ connecting Ui to Uj or Uj to Ui

(or both). The reduced graph red(Γ) is defined as follows. The states (vertices) of
the reduced graph are the transient vertices U0 and the new states [U1], ..., [Up]. Let
red(n) = card(U0) + p. Then red(Γ) ⊂< red(n) > × < red(n) > does not have self loops,
i.e. (i, i) 6∈ red(Γ), i ∈< red(n) >. Furthermore (i, j) ∈ red(Γ) iff there is at least one edge
in Γ which goes from one vertex represented by the state i to one vertex represented by the
state j. It then follows that A(red(Γ)) is a nilpotent matrix. Let x = (xj)m

1 ∈ Γm,m >> 1.
The generic picture dictated by the reduced graph is as follows. First we may have a couple
of transient vertices x1, ..., xt1 ∈ U0, (xi, xi+1) ∈ red(Γ), i = 1, ..., t1 − 1. (It may happen
that we do not have transient vertices, i.e. t1 = 0.) Then we have a sequence of an arbi-
trary length k1 xt1+1, ..., xt1+k1 ∈ Uj1 , (xt1 , [Uj1 ]) ∈ red(Γ).. Then we may have another
few transient states xt1+k1+1, ..., xt1+k1+t2 ∈ U0, ([Uj1 ], xt1+k1+1), (xi, xi+1) ∈ red(Γ), i =
t1 +k1 +1, ..., t1 +k1 + t2−1, (t2 ≥ 0). This sequence may be followed by another arbitrary
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long sequence xt1+k1+t2+1, ..., xt1+k1+t2+k2 ∈ Uj2 , (xt1+k1+t2 , [Uj2 ]) ∈ red(Γ). If t2 = 0 we
then have the condition ([Uj1 ], [Uj2 ]) ∈ red(Γ). This process may continue until we reach
the final state of the reduced graph. In particular, the arbitrary long sequences belong
to pairwise distinct components Uj1 , ..., Ujl

whose order depends on the structure of the
reduced graph. In particular, 1 ≤ l ≤ n.

These properties can be deduced straightforward from the Frobenius normal form of a
nonnegative matrix, e.g. [Gan]. Consult for example with [F-S]. In particular, ρ(A(Γ)) =
max1≤i≤p ρ(A(Γ(i))). A graph Γ ⊂< n > × < n > is called nontransient if it does not have
a transient set, i.e. U0 = ∅. For a general graph we let Γ′ = Γ(∪p

1Ui) to be the nontransient
part of Γ. As h(Γ) = log ρ(A(Γ)) we deduce that h(Γ) = max1≤i≤p h(Γ(Ui)) = h(Γ′).
Finally observe that the periodic orbits under the shift correspond to closed paths in the
graph Γ. Hence, any periodic orbit has vertices only in one per((Γ(Ui))N ). We now show
that some these results can be generalised to SFT in higher dimension.

(4.2) Lemma. Let Γi ⊂< n > × < n >, i = 1, ...,m. Then one of the following mutually
exclusive conditions hold:
(i) For any nontrivial subset V ⊂< n > there exists k ∈< m > so that Γk(V ) has a
nontrivial transient set of vertices in V .
(ii) There exist a maximal (nontrivial) subset V ⊂< n >, so that Γk(V ) is a nontransient
graph on V for k = 1, ...,m.

Proof. Let U0,i ⊂< n > be the set of transient vertices of the graph Γi, i = 1, ...,m. If
U0,i = ∅, i = 1, ..., m, then we have the condition (ii) with V =< n >. Let V1 =< n >
\(∪m

1 U0,i). If V1 = ∅ then the condition (i) holds. Assume that < n > 6= V1 6= ∅. Repeat
the above process for Γi(V1), 1 =, ...,m to deduce either (i) or (ii). ¦

(4.3) Theorem. Γi ⊂< n > × < n >, i = 1, ..., d, and consider Zd -SFT given by
Γ = (Γ1, ..., Γd). Assume first that condition (i) of Lemma 4.2 holds. Then h(Γ) =
−∞. Assume now that V is the maximal (nontrivial) subset of < d > so that Γk(V ) is
nontransient for k = 1, ..., d. Set Γ(V ) = (Γ1(V ), ..., Γd(V )). Then h(Γ) = h(Γ(V )).

Proof. Clearly, the theorem trivially holds if h(Γ) = −∞. Assume that h(Γ) ≥ 0. That is
for each N = (N1, ..., Nd), Ni ≥ 1, i = 1, ..., d, ρ(k, N{k}) ≥ 1, k = 1, ..., d. As in the proof
of Lemma 4.2 consider the transient set U0,k for the graph Γk for k = 1, ..., d. If all U0,k = ∅
then V =< n > and the theorem is trivial in this case. Supppose that U0,k 6= ∅. Fix N{k}.
As ρ(k,N{k}) ≥ 1 we know that h(Γ(k,N{k}) is given by the density of the periodic words
per(Γ(k, N{k})Nk). Observe next that every periodic word in per(Γ(k, N{k})Nk) is induced
by a word f = (f(j1,...jd))

N1,...,Nd

j1=···=jd=1 such that

(f(j1,...,jd))
Nk
jk=1 ∈ per((Γk)Nk), jl = 1, ..., Nl, l = 1, ..., k − 1, k + 1, ..., d.

Hence, the coordinates of each vector (f(j1,...,jd))
Nk
jk=1 belong to some set Uk,i appearing

in the decomposition (4.1) of the nontransient set for Γk. Note that the value of i may
depend on (j1, ..., jk−1, jk+1, ..., jd). In particular, all the coordinates of f are in the set
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V1 =< n > \U0,k. Let Γ(V1) = (Γ1(V1), ..., Γd(V1)). Theorems 2.1 and 2.5 yield that
h(Γ) = h(Γ(V1)). Repeat this process as in the proof of Lemma 4.2. If we obtain the
condition (i) of Lemma 4.2 we deduce that h(Γ) = −∞ which contradicts our assumption
that h(Γ) ≥ 0. Hence, the second condition of Lemma 4.2 holds. By the above arguments
h(Γ) = h(Γ(V )) and the proof of the theorem is concluded. ¦

Let Γ1, Γ2 ⊂< n >. Set X = (Γ2)∞. Then X is a closed compact space in the
Tychonoff topology. (More precisely, X is a Cantor set.) Set ∆ = ∆(Γ1, Γ2) ⊂ X ×X be
the following closed graph

∆ = {(x, y) : x = (xi)i∈Z, (yi)i∈Z ∈ X, (xi, yi) ∈ Γ1, i ∈ Z}.

Define ∆m, ∆∞ as in the introduction. Note that

∆m = ∅ ⇐⇒ ρ(2,m) = 0,m = 2, ...,

∆∞ = ∅ ⇐⇒ Γ∞ = ∅, Γ = (Γ1, Γ2).

Observe that if Γ1 is symmetric then ∆ is also symmetric.
In [Fri1-2] we studied the entropy h(∆) of the shift σ restricted to ∆∞. Here

σ((xi)i∈Z) = (xi+1)i∈Z. It is not difficult to show that if h(Γ) > 0 then h(∆) = ∞.
Thus, h(Γ) can be considered as the renormalization of the entropy h(∆). More precisely
if N(k, ε) is the number of k−ε separated sets then one can show that up to a multiplicative
constant that the right renormalization is:

h(Γ) = lim
ε→0

lim sup
k→∞

log N(k, ε)
k log 1

ε

.

Moreover, the dynamics of Z2 shift restricted to Γ∞ is related to the dynamics of the
standard shift restricted to ∆∞. It would be interesting to explore in more details this
relation. Similar ideas apply to higher dimensional Zd -SFT.
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