On the entropy of Z^{d} subshifts of finite type

Shmuel Friedland
University of Illinois at Chicago

August 23, 1995

§0. Introduction

Let n be a positive integer and denote $<n>=\{1, \ldots, n\}$. We view $<n>$ as an alphabet on n letters. Denote by $<n>\mathbf{Z}^{d}$ the set of all mappings of \mathbf{Z}^{d} to the set $<n>$. By extending the Hamming metric on $<n>\times<n>$ to $<n>\mathbf{z}^{d}$ one obtains that $\langle n\rangle \mathbf{Z}^{d}$ is a compact metric space. The group \mathbf{Z}^{d} acts as a group of (translation) automorphisms on $<n>\mathbf{Z}^{d}$. A set $S \subset \mathbf{Z}^{d}$ which is closed and invariant under the action of \mathbf{Z}^{d} is called a subshift. S is called a subshift of finite type (SFT) if there is a finite set of finite admissible configurations which generates S under the action of \mathbf{Z}^{d}. More presicely, let $F \subset \mathbf{Z}^{d}$ be a finite set. Assume that $P \subset<n>^{F}$. Then (F, P) defines a folowing \mathbf{Z}^{d}-SFT S. For each $a \in \mathbf{Z}^{d}$ let $F+a \subset \mathbf{Z}^{d}$ be the corresponding translation of F. Then $x \in S$ iff for each $a \in \mathbf{Z}^{d}, \pi_{F+a}(x)$, the projection of x on the set $F+a$, is in P. See for example [Sch, Ch. 5].

The case of \mathbf{Z} action, i.e. $d=1$, is well understood. In that case, it is relatively easily to decide whether S is empty or not. Moreover, the topological entropy $h(S)$ of the restriction of the standard shift to S is a logarithm of an algebraic integer $\rho(F, P)$. The number $\rho(P, F)$ is a the spectral radius of certain $0-1$ square matrix induced by (F, P). Furthermore, the topological entropy $h(S)$ is equal to the rate of growth of the number of periodic points. The case $d>1$ is much more complicated. First, the problem wether S is an empty set or not is undecidable. This result for $d=2$ goes back to Berger [Ber]. See also $[\mathbf{K}-\mathbf{M}-\mathbf{W}]$ and $[\mathbf{R o b}]$. Second, there exists a SFT $S \neq \emptyset$ which does not have periodic points. Moreover, in the case where $S \neq \emptyset$ the topological entropy may be uncomputable, see $[\mathbf{H}-\mathbf{K}-\mathbf{C}]$ and $[\mathbf{G a b}]$.

The object of this paper to show that contrary to these results one has a natural and a simple criterion which either determines that $S=\emptyset$ or calculates the topological entropy of $S \neq \emptyset$. There is no contradition to the uncomputability of $h(S)$ because we can not estimate the rate of convergence of our sequence. However, if we introduce a symmetry in \mathbf{Z}^{2} we can estimate the rate of convergence of our sequence. Moreover, in this case $h(S)$ is the rate of growth the number of periodic points. Our main tool is to view a \mathbf{Z}^{d}-SFT as a matrix SFT. See [M-P1,M-P2]. In fact our methods are very close to the methods of [M-P1,M-P2].

We now describe briefly the content of the paper. In $\S 1$ we define combinatorial entropy of \mathbf{Z}^{d}-SFT. It can is computed by finite configurations. We then observe, using Köning's method, that \mathbf{Z}^{d}-SFT is nonempty iff every finite configuration is nonempty. In $\S 2$ we show that the combinatorial entropy is equal to the topological entropy of \mathbf{Z}^{d}-SFT.

In $\S 3$ we show that simple symmetricity conditions yield that the topological entropy of \mathbf{Z}^{d}-SFT is equal to the periodic entropy. (The periodic entropy is the rate growth of the periodic points.) In the case $d=2$ combined with the symmetricity assumption we obtain an algorithm for computing the entropy at any given precision. This result is due to $[\mathbf{M}-\mathbf{P} 2]$ under stricter conditions. The last section is devoted to various remarks.

§1. Preliminary results

Let $\Gamma \subset<n>\times<n>$. Set

$$
\begin{aligned}
& \Gamma^{N}=\left\{x=\left(x_{i}\right)_{1}^{N},\left(x_{i}, x_{i+1}\right) \in \Gamma, i=1, \ldots, N-1\right\}, \\
& \Gamma^{\infty}=\left\{x=\left(x_{i}\right)_{i \in \mathbf{Z}}:\left(x_{i}, x_{i+1}\right) \in \Gamma, i \in \mathbf{Z}\right\} .
\end{aligned}
$$

Assume that $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$. Set $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$ and let

$$
\begin{aligned}
& \Gamma^{\infty}=\left\{f: f \in<n>^{\mathbf{z}^{d}},\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)_{i_{k} \in \mathbf{Z}} \in \Gamma_{k}^{\infty}\right. \\
& \left.\left(i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{d}\right) \in \mathbf{Z}^{d-1}, k=1, \ldots, d,\right\}
\end{aligned}
$$

to be a \mathbf{Z}^{d}-SFT induced by Γ. We now show that a standard \mathbf{Z}^{d}-SFT is a equivalent the \mathbf{Z}^{d} -SFT induced by Γ. For the case $d=2$ this can be deduced from [Moz] who proved that every \mathbf{Z}^{2}-SFT is equivariant to Wang-tiling-space. It is easy to see that Wang-tiling-space is \mathbf{Z}^{2}-SFT induced by some special $\Gamma=\left(\Gamma_{1}, \Gamma_{2}\right)$.

Let S be a SFT is given by the pair (F, P) as in $\S 0$. Let $N=\left(N_{1}, \ldots, N_{d}\right) \in \mathbf{Z}^{d}, N_{i} \geq$ $1, i=1, \ldots, d$. By $B(N)$ we denote the box $<N_{1}>\times \cdots \times<N_{d}>\subset \mathbf{Z}^{d}$. Let $f=$ $\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)_{(1, \ldots, 1)}^{N} \in<n>^{B(N)}$. Then f is called (F, P) admissible if for all $a \in \mathbf{Z}^{d}$ such that $F+a \subset B(N)$ we have the condition that $\pi_{F+a}(f)$ - the projection of f on the set $F+a$ is P-admissible, i.e. $\pi_{F+a}(f) \in P$. Let $(1, \ldots, 1) \leq M(F)=\left(M_{1}(F), \ldots, M_{d}(F)\right) \in \mathbf{Z}^{d}$ be the dimension of the smallest box containing F. That is, $B(M(F)) \supset F+a$ for some $a \in \mathbf{Z}^{d}$ and $B(M(F))$ is minimal with respect to this property. For $M(F) \leq N \in \mathbf{Z}^{d}$ let $w(N, F, P)$ be the number of (F, P) admissible words in $B(N)$. We then let

$$
h_{c o m}(F, P)=\limsup _{N_{1}, \ldots, N_{d} \rightarrow \infty} \frac{\log w(N, F, P)}{N_{1} \cdots N_{d}}
$$

to be the combinatorial entropy of induced by (F, P). We agree that $\log 0=-\infty$. That is $h_{\text {com }}(F, P) \geq 0$ iff every box $B(N)$ has at least one (P, F) admissible configuration $f \in\langle n\rangle^{B(N)}$. Observe next that if $M_{i}(F)=1$ for some some i then we effectively can consider the corresponding \mathbf{Z}^{d-1}-SFT. For

$$
N=\left(N_{1}, \ldots, N_{d}\right) \in \mathbf{Z}^{d}, N_{k}>1, k=1, \ldots, d
$$

let

$$
\left.\Gamma^{N}=\left\{f=\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)_{i_{1}=\ldots=i_{d}=1}^{N_{1}, \ldots, N_{d}}:\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)\right)_{i_{k}=1}^{N_{k}} \in \Gamma_{k}^{N_{k}}, k=1, \ldots, d\right\},
$$

for every $i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{d}$.
Set

$$
F=\{1,2\}^{d}=B(2, \ldots, 2), P=\Gamma^{(2, \ldots, 2)}, w(N, \Gamma)=w(N, F, P) .
$$

Then for any $N=\left(N_{1}, \ldots, N_{d}\right)>(1, \ldots, 1)$ the set Γ^{N} consists of all (F, P) admissible words in $\langle n\rangle^{B(N)}$. Define $h_{\text {com }}(\Gamma)=h_{\text {com }}(F, P)$.
(1.1) Theorem. Let $F \subset \mathbf{Z}^{d}$ be a finite set such that $1<M_{i}(F), i=1, \ldots, d$. Assume that $P \subset<n>^{F}$. Denote by $T \subset<n>^{B(M(F))}$ the set of all F, P admissible words in $<n>^{B(M(F))}$. For each $i=1, \ldots, d$, and $u \in T$ let $\pi_{i,-}(u), \pi_{i,+}(u)$ be the projection of u on the sets

$$
\begin{aligned}
& B\left(M_{1}(F), \ldots, M_{i-1}(F), M_{i}(F)-1, M_{i+1}(F), \ldots, M_{d}(F)\right), \\
& B\left(M_{1}(F), \ldots, M_{i-1}(F), M_{i}(F)-1, M_{i+1}(F), \ldots, M_{d}(F)\right)+\left(\delta_{i 1}, \ldots, \delta_{i d}\right) .
\end{aligned}
$$

Set

$$
\Gamma_{i}=\left\{(u, v): u, v \in T, \pi_{i,+}(u)=\pi_{i,-}(v)\right\} \subset T \times T, i=1, \ldots, d, \Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right) .
$$

Then for any $N=\left(k_{1}+M_{1}(F), \ldots, k_{d}+M_{d}(F)\right), k_{i} \geq 1, i=1, \ldots, d$, the set of all (F, P) admissible words in $B(N)$ is in one to one correspondence with $\Gamma^{\left(k_{1}+1, \ldots, k_{d}+1\right)}$ on the alphabet T. In particular the set of all admissible (F, P) words in $<n>\mathbf{Z}^{d}$ is in one to one correspondence with Γ^{∞}. Furthermore $h_{\text {com }}(F, P)=h_{\text {com }}(\Gamma)$.

Proof. Let $N=\left(k_{1}+M_{1}(F), \ldots, k_{d}+M_{d}(F)\right), k_{i} \geq 1, i=1, \ldots, d$. Assume that $f \in<$ $n>^{B(N)}$ be an (F, P) admissible word. For $\left(l_{1}, \ldots, l_{d}\right), 1 \leq l_{j} \leq k_{j}+1, j=1, \ldots, d$, let $g_{\left(l_{1}, \ldots, l_{d}\right)}$ be the word in T which has the following coordinates in f :

$$
\begin{equation*}
l_{i} \leq j_{i} \leq l_{i}+M_{i}(F)-1, i=1, \ldots, d \tag{1.2}
\end{equation*}
$$

It is straightforward to check that $g=\left(g_{\left(l_{1}, \ldots, l_{d}\right)}\right)_{(1, \ldots, 1)}^{\left(k_{1}+1, \ldots, k_{d}+1\right)} \in \Gamma^{\left(k_{1}+1, \ldots, k_{d}+1\right)}$. Assume that $g \in \Gamma^{\left(k_{1}+1, \ldots, k_{d}+1\right)}$. Use the above formula to find a unique $\left.f \in<n\right\rangle^{B(N)}$ so that g is constructed from f as above. We claim that f is a (F, P) admissible word in $<n>^{B(N)}$. Assume that $F+a \subset B(N)$. Then there exists $l_{1}, \ldots, l_{d}, 1 \leq l_{i} \leq k_{i}+1, i=1, \ldots, d$, so that the coordinates of $F+a$ satisfy the inequalities (1.2). That is, $\pi_{F+a}(f)$ lies in the word u generated by the projection of f on the coordinates specified by (1.2). By the construction, $u \in T$. In particular, $\pi_{F+a}(f)=\pi_{F+a}(u) \in P$. Hence, f is a (F, P) admissible word. Therefore, $w(N, F, P)$ is equal to $\omega\left(k_{1}+1, \ldots, k_{d}+1\right)=\operatorname{card}\left(\Gamma^{\left(k_{1}+1, \ldots, k_{d}+1\right)}\right)$. All other assertions of the Theorem follow straightforward.

Let $(1, \ldots, 1) \leq N \in \mathbf{Z}^{d}$. Partition the box $B(N)$ to p nontrivial boxes of dimensions $N^{i} \in \mathbf{Z}^{d}, i=1, \ldots, p$. It then follows that $w(N, F, P) \leq \prod_{1}^{p} w\left(N^{i}, F, P\right)$. We thus deduce

$$
h_{c o m}(F, P)=\lim _{N_{1}, \ldots, N_{d} \rightarrow \infty} \frac{\log w\left(\left(N_{1}, \ldots, N_{d}\right), F, P\right)}{N_{1} \cdots N_{d}}=\lim _{m \rightarrow \infty} \frac{\log w((m, \ldots, m), F, P)}{m^{d}} .
$$

(1.3) Theorem. Let S be a \mathbf{Z}^{d}-SFT given by (F, P). Then

$$
S \neq \emptyset \Longleftrightarrow w((m, \ldots, m), F, P) \geq 1, m=2, \ldots,
$$

That is, $S=\emptyset \Longleftrightarrow h_{\text {com }}=-\infty$.
Proof. Clearly, if $S \neq \emptyset$ then $h_{\text {com }}(F, P) \geq 0$. In particular, $w((m, \ldots, m), \Gamma) \geq 1, m=$ $2, \ldots$, . Assume now that $w((m, . ., m), \Gamma) \geq 1, m=2, \ldots$, . Consider the box $B((2 m, \ldots, 2 m))$ $-B_{2 m}$ in \mathbf{R}^{d} whose center is at the origin $(0, \ldots, 0)$. Let $\Theta_{m} \in \Gamma^{(2 m, \ldots, 2 m)}$ be an admissible filling of $B_{2 m}$ by the alphabet $\{1, \ldots, n\}$. Consider the sequence $\left\{\Theta_{m}\right\}_{1}^{\infty}$. Look at the projection of this sequence on B_{2}. Pick up an infinite subsequence $\left\{\Theta_{n_{i}^{1}}\right\}_{i=1}^{\infty}$ whose so that the projection of each $\Theta_{n_{i}^{1}}$ on B_{2} is the same element $\Psi_{1} \in \Gamma^{(2, \ldots, 2)}$. From the sequence $\Theta_{n_{i}^{1}}$ pick a subsequence $\Theta_{n_{i}^{2}}$ so that the projection of each element $\Theta_{n_{i}^{2}}$ on B_{4} is the same element $\Psi_{2} \in \Gamma^{(4, \ldots, 4)}$. Continue this construction to obtain that the sequence $\Psi_{k} \in \Gamma^{(2 m, \ldots, 2 m)}, k=1, \ldots$, which are $2 m \times \cdots \times 2 m$ sections of an element $\Psi \in \Gamma^{\infty}$. The above argument is due to Köning [Kön]. \diamond

Introduce on $<n>$ the Hamming metric $d(i, i)=0, d(i, j)=1, i \neq j \in<n>$. For $i=\left(i_{1}, \ldots, i_{d}\right) \in \mathbf{Z}^{d}$ we let $|i|=\sum_{1}^{d}\left|i_{p}\right|$. On $<n>\mathbf{Z}^{d}$ define the following metric

$$
d(f, g)=\frac{1}{2^{2 d}} \sum_{i=\left(i_{1}, \ldots, i_{d}\right) \in \mathbf{Z}^{d}} \frac{d\left(f_{i}, g_{i}\right)}{2^{|i|}}, f=\left(f_{i}\right), g=\left(g_{i}\right) \in<n>^{\mathbf{Z}^{d}}
$$

It then follows that $<n>\mathbf{Z}^{d}$ is a compact metric space. Let $e_{i}=\left(\delta_{i 1}, \ldots, \delta_{i d}\right), i=1, \ldots, d$, be the standard basis in \mathbf{Z}^{d}. Denote by $T_{i}:<n>\mathbf{Z}^{d} \rightarrow<n>\mathbf{Z}^{d}$ the following automorphism of $<n>\mathbf{Z}^{d}$:

$$
T_{i}\left(f_{j}\right)=\left(f_{j+e_{i}}\right), j \in \mathbf{Z}^{d}, f=\left(f_{j}\right) \in<n>^{\mathbf{Z}^{d}}
$$

$S \subset<n>\mathbf{Z}^{d}$ is called a subshift (SF) if S is closed and $T_{i} S=S, i=1, \ldots, d$. In that case one defines a topological entropy $h(S)$ as follows. For $(1, \ldots, 1) \leq N=\left(N_{1}, \ldots, N_{k}\right)$ introduce the following new metric on $\langle n\rangle \mathbf{Z}^{d}$:

$$
d_{N}(f, g)=\max _{0 \leq i_{p}<N_{p}, p=1, \ldots, d} d\left(T_{1}^{i_{1}} \cdots T_{d}^{i_{d}} f, T_{1}^{i_{1}} \cdots T_{d}^{i_{d}} g\right), f, g \in<n>^{\mathbf{z}^{d}}
$$

Fix a positive $\epsilon>0$ and let $K(S, N, \epsilon)$ be the maximal number of ϵ separated points in S in the metric $d_{N}(\cdot, \cdot)$. We then let

$$
\begin{equation*}
h(S)=\lim _{\epsilon \rightarrow \infty} \limsup _{N_{1}, \ldots, N_{d} \rightarrow \infty} \frac{\log K(S, N, \epsilon)}{N_{1} \cdots N_{d}} . \tag{1.4}
\end{equation*}
$$

(1.5) Theorem. Let $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$, and set $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Assume that $\Gamma^{\infty} \neq \emptyset$. Define $h(\Gamma)=h\left(\Gamma^{\infty}\right)$. For $(1, \ldots, 1) \leq N \in \mathbf{Z}^{d}$ let $w\left(N, \Gamma^{\infty}\right)$ be the number of all possible projections of $f \in \Gamma^{\infty}$ on a fixed box $B(N)$. Then

$$
h(\Gamma)=\limsup _{N_{1}, \ldots, N_{d} \rightarrow \infty} \frac{\log w\left(N, \Gamma^{\infty}\right)}{N_{1} \cdots N_{d}} .
$$

In particular, $h(\Gamma) \leq h_{\text {com }}(\Gamma)$.
Proof. It is quite straightforward to see from the definition of $K\left(\Gamma^{\infty}, N, \epsilon\right)$ that for a small enough $\epsilon>0$ there exist some constants $1 \leq a(\epsilon), 1 \leq b(\epsilon) \in \mathbf{Z}$ so that

$$
w\left(N, \Gamma^{\infty}\right) \leq K\left(\Gamma^{\infty}, N, \epsilon\right) \leq a(\epsilon) w\left(N+(b(\epsilon), \ldots, b(\epsilon)), \Gamma^{\infty}\right)
$$

Now the characterization of $h(\Gamma)$ follows straightforward from (1.4). As $w\left(N, \Gamma^{\infty}\right) \leq$ $w(N, \Gamma)$ we deduce that $h(\Gamma) \leq h_{\text {com }}(\Gamma) . \diamond$.

§2. The equality of topological and combinatorial entropy for SFT

Let $\Gamma \subset<n>\times<n>$. Denote by $A=A(\Gamma)$ the $0-1$ matrix induced by the graph Γ. Let $\rho(A)$ be the spectral radius of A. Set

$$
\operatorname{per}\left(\Gamma^{N}\right)=\left\{\left(x_{i}\right)_{1}^{N}:\left(x_{i}\right)_{1}^{N} \in \Gamma^{N}, x_{1}=x_{N}\right\} .
$$

Assume that $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$. Set

$$
\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right), \Gamma^{\overline{\{i\}}}=\left(\Gamma_{1}, \ldots, \Gamma_{i-1}, \Gamma_{i+1}, \ldots, \Gamma_{d}\right), i=1, \ldots, d
$$

For

$$
\begin{aligned}
& N=\left(N_{1}, \ldots, N_{d}\right) \in \mathbf{Z}^{d}, N_{k}>1, k=1, \ldots, d \\
& M=\left(M_{1}, \ldots, M_{d-1}\right) \in \mathbf{Z}^{d-1}, M_{j}>1, j=1, \ldots, d-1
\end{aligned}
$$

let

$$
\begin{aligned}
& \left.\operatorname{per}\left(\Gamma^{N}\right)=\left\{f=\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)_{i_{1}=\ldots=i_{d}=1}^{N_{1}, \ldots, N_{d}}:\left(f_{\left(i_{1}, \ldots, i_{d}\right)}\right)\right)_{i_{k}=1}^{N_{k}} \in \operatorname{per}\left(\Gamma_{k}^{N_{k}}\right), k=1, \ldots, d\right\}, \\
& \operatorname{wp}(N, \Gamma)=\operatorname{card}\left(\operatorname{per}\left(\Gamma^{N}\right)\right), \\
& \Gamma(k, M)=\left\{(a, b): a=\left(a_{\left(i_{1}, \ldots, i_{d-1}\right)}\right), b=\left(b_{\left(i_{1}, \ldots, i_{d-1}\right)}\right) \in\left(\Gamma^{\overline{\{k\}}}\right)^{M},\right. \\
& \left.\left(a_{\left(i_{1}, \ldots, i_{d-1}\right)}, b_{\left(i_{1}, \ldots, i_{d-1}\right)}\right) \in \Gamma_{k}, i_{j}=1, \ldots, M_{j}, j=1, \ldots, d-1,\right\}, k=1, \ldots, d, \\
& p(\Gamma(k, M))=\left\{(a, b): a=\left(a_{\left(i_{1}, \ldots, i_{d-1}\right)}\right), b=\left(b_{\left(i_{1}, \ldots, i_{d-1}\right)}\right) \in \operatorname{per}\left(\left(\Gamma^{\{k\}}\right)^{M}\right),\right. \\
& \left.\left(a_{\left(i_{1}, \ldots, i_{d-1}\right)}, b_{\left(i_{1}, \ldots, i_{d-1}\right)}\right) \in \Gamma_{k}, i_{j}=1, \ldots, M_{j}, j=1, \ldots, d-1,\right\}, k=1, \ldots, d, \\
& A(k, M)=A(\Gamma(k, M)), \rho(k, M)=\rho(A(k, M)), \\
& A p(k, M)=A(p(\Gamma(k, M))), \rho p(k, M)=\rho(A p(k, M)), k=1, \ldots, d .
\end{aligned}
$$

Note that any $f \in \operatorname{per}\left(\Gamma^{N}\right)$ has a unique minimal periodic extension to Γ^{∞}. Set

$$
h p(\Gamma)=\limsup _{N_{1}, \ldots, N_{d} \rightarrow \infty} \frac{\log w p\left(\left(N_{1}, \ldots, N_{d}\right), \Gamma\right)}{N_{1} \cdots N_{d}}
$$

to be the periodic entropy of Γ^{∞}.
(2.1) Theorem. Let $d \geq 2$ and assume that $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$. Consider \mathbf{Z}^{d}-SFT given by $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Then

$$
\begin{aligned}
& h_{\text {com }}(\Gamma)=-\infty \Longleftrightarrow \forall M=\left(M_{1}, \ldots, M_{d-1}\right) \gg(1, \ldots, 1) \rho(k, M)=0, k=1, \ldots, d, \\
& h p(\Gamma)=-\infty \Longleftrightarrow \forall M=\left(M_{1}, \ldots, M_{d-1}\right) \rho p(k, M)=0, k=1, \ldots, d .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
& \lim _{M_{1}, \ldots, M_{d-1} \rightarrow \infty} \frac{\log \rho\left(k,\left(M_{1}, \ldots, M_{d-1}\right)\right)}{M_{1} \cdots M_{d-1}}=h_{c o m}(\Gamma), k=1, \ldots, d, \\
& \frac{\log \rho\left(k,\left(M_{1}, \ldots, M_{d-1}\right)\right)}{M_{1} \cdots M_{d-1}} \geq h_{c o m}(\Gamma), M_{i}>1, i=1, \ldots, d-1, k=1, \ldots, d, \\
& \limsup _{M_{1}, \ldots, M_{d-1} \rightarrow \infty} \frac{\log \rho p\left(k,\left(M_{1}, \ldots, M_{d-1}\right)\right)}{M_{1} \cdots M_{d-1}} \leq h p(\Gamma), k=1, \ldots, d .
\end{aligned}
$$

Proof. We first prove the theorem for $d=2$. In that case $M=(m)$ and we let $\Gamma(k, M)=$ $\Gamma(k, m), \rho(k, M)=\rho(k, m)$ for $k=1,2$. Suppose first that there exists $N=\left(N_{1}, N_{2}\right)$ so that $\Gamma^{N}=\emptyset$. We then claim that $\rho(1, m)=0$ for $m \geq N_{2}$. Suppose to the contrary that $\rho(1, m) \geq 1$. That is, $A(1, m)$ is not a nilpotent matrix. That is, $\Gamma(1, m)^{l} \neq \emptyset, l=2, \ldots$, . Clearly,

$$
\begin{equation*}
\Gamma(1, m)^{l}=\Gamma^{(l, m)} \tag{2.2}
\end{equation*}
$$

Set $l=N_{1}$ to obtain a contradiction. Similarly, $\rho(2, m)=0$ for $m \geq N_{2}$. Assume now that $\rho(1, m)=0$ for some $m \geq 1$. Let $L_{2}(m)=\operatorname{card}\left(\Gamma_{2}^{m}\right)$. Then $\Gamma(1, m)^{L_{2}(m)}=\emptyset$. Use (2.2) to deduce that $\Gamma^{\left(L_{2}(m), m\right)}=\emptyset$. Similar results hold if $\rho(2, m)=0$.

Assume now $h_{\text {com }}(\Gamma) \geq 0$, i.e. $\rho(1, m) \geq 1, \rho(2, m) \geq 1, m=1, \ldots$, . We now prove the conditions related to the characterization of $h_{\text {com }}(\Gamma)$ in terms of $\rho(1, m)$. We claim that

$$
\begin{equation*}
\log \rho(1, p+q) \leq \log \rho(1, p)+\log \rho(1, q), p, q \geq 1 \tag{2.3}
\end{equation*}
$$

Indeed, let $w((l, p), \Gamma), w((l, q), \Gamma), w((l, p+q), \Gamma)$ be the total number of words of length l corresponding to the subshifts $\Gamma(1, p), \Gamma(1, q), \Gamma(1, p+q)$ respectively. Clearly, every word of length l in $\Gamma(1, p+q)$ splits (from bottom to top) as a word in $\Gamma(1, p)$ followed by a word in $\Gamma(1, q)$. That is $w((l, p+q), \Gamma) \leq w((l, p), \Gamma) w((l, q), \Gamma)$. Take the logarithm of this inequality, divide by l and take the limsup to deduce (2.3). It is a well known fact that (2.3) implies that the sequence $\left\{\frac{\log \rho(1, m)}{m}\right\}_{1}^{\infty}$ converges to a (nonnegative) limit h. Furthermore, $h \leq \frac{\log \rho(1, m)}{m}, m=1, \ldots$, . We now show that $h=h_{c o m}(\Gamma)$. Let $\left\{\epsilon_{m}\right\}_{1}^{\infty}$ be a positive sequence which converges to zero. Clearly, there exists a sequence of positive integers $\left\{l_{m}\right\}_{1}^{\infty}$ converging to ∞ so that

$$
\frac{\log w\left(\left(l_{m}, m\right), \Gamma\right)}{l_{m}}>\log \rho(1, m)-\epsilon_{m}, m=1, \ldots,
$$

Hence,

$$
h_{\text {com }}(\Gamma) \geq \lim \sup \frac{\log w\left(\left(l_{m}, m\right), \Gamma\right)}{l_{m} m} \geq h
$$

We now show the reversed inequality. Let $\left\{m_{i}\right\}_{1}^{\infty},\left\{n_{i}\right\}_{1}^{\infty}$ be two sequences of positive integers which converge to ∞. We claim that

$$
\limsup \frac{\log w\left(\left(n_{i}, m_{i}\right), \Gamma\right)}{n_{i} m_{i}} \leq h
$$

Pick a positive $\delta>0$. Pick a positive integer m so that $\frac{\log \rho(1, m)}{m}<h+\delta$. Let $K \gg 1$ so that

$$
\forall n>K \max _{1 \leq k \leq m}\left(\frac{\log w((n, k), \Gamma)}{n}-\log \rho(1, k)\right)<\delta .
$$

Assume that $m_{i}, n_{i}>K$. Set $m_{i}=p_{i} m+q_{i}, 1 \leq q_{i} \leq m$. Consider a word of length n_{i} corresponding to SFT induced by $\Gamma\left(1, m_{i}\right)$. This word splits (from bottom to top) as p_{i} words induced by $\Gamma(1, m)$ and a word induced by $\Gamma\left(1, q_{i}\right)$ of length n_{i} respectively. Hence, $w\left(\left(n_{i}, m_{i}\right), \Gamma\right) \leq w\left(\left(n_{i}, m\right), \Gamma\right)^{p_{i}} w\left(\left(n_{i}, q_{i}\right), \Gamma\right)$. That is

$$
\begin{aligned}
& \frac{\log w\left(\left(n_{i}, m_{i}\right), \Gamma\right)}{n_{i} m_{i}} \leq \frac{\log w\left(\left(n_{i}, m\right), \Gamma\right)}{n_{i} m}+\frac{\log w\left(\left(n_{i}, q_{i}\right), \Gamma\right)}{n_{i} m_{i}} \leq \\
& \frac{\log \rho(1, m)}{m}+\frac{\delta}{m}+\frac{\max _{1 \leq k \leq m} \rho(1, k)+\delta}{m_{i}}, m_{i}, n_{i}>K
\end{aligned}
$$

Thus, $\lim \sup _{m_{i}, n_{i} \rightarrow \infty} \frac{\log w\left(\left(n_{i}, m_{i}\right), \Gamma\right)}{m_{i} n_{i}}<h+2 \delta$. These arguments prove the theorem for $\rho(1, m)$. Similar arguments verify the theorem for $\rho(2, m)$.

We now consider the periodic solutions. Assume first that $\operatorname{per}\left(\Gamma^{N}\right) \neq \emptyset$ for some $N=\left(N_{1}, N_{2}\right), N_{1}>1, N_{2}>1$. It then follows that

$$
\begin{equation*}
\operatorname{per}\left(\Gamma^{M}\right) \neq \emptyset, M=\left(N_{1}+i\left(N_{1}-1\right), N_{2}+j\left(N_{2}-1\right)\right), i, j=0, \ldots, \tag{2.4}
\end{equation*}
$$

We then claim that $\rho p\left(1, N_{2}\right) \geq 1, \rho p\left(2, N_{1}\right) \geq 1$. Consider first the matrix $A p\left(1, N_{2}\right)$. If $\rho p\left(1, N_{2}\right)=0$, i.e. $A p\left(1, N_{2}\right)$ is nilpotent, we could not have arbitrary long words in the SFT induced by $p\left(\Gamma\left(1, N_{2}\right)\right)$. This contradicts (2.4) for $j=0$. Similarly, $\rho p\left(2, N_{1}\right) \geq 1$. Assume now that $\rho p\left(1, N_{2}\right) \geq 1$ for some $N_{2}>1$. Then the SFT induced by $p\left(\Gamma\left(1, N_{2}\right)\right)$ has at least one periodic word of length $N_{1}>$ 1, i.e. $\operatorname{per}\left(\left(p\left(\Gamma\left(1, N_{2}\right)\right)^{N_{1}}\right) \neq \emptyset\right.$. As every periodic word of length N_{1} in the SFT corresponding to $p\left(\Gamma\left(1, N_{2}\right)\right)$ is an element of $\operatorname{per}\left(\Gamma^{\left(N_{1}, N_{2}\right)}\right)$ we deduce in particular $\operatorname{per}\left(\Gamma^{\left(N_{1}, N_{2}\right)}\right) \neq \emptyset$. That is,

$$
h p(\Gamma)=-\infty \Longleftrightarrow \rho p(1, m)=\rho p(2, m)=0, m=2, \ldots, .
$$

Assume now that $h p(\Gamma) \geq 0$. We now prove the theorem for $\rho p(1, m)$. Consider the SFT induced by $p(\Gamma(1, m))$. Then $w p((l, m), \Gamma)$ is the number of periodic words of length l of this SFT. As $\rho p(1, m) \geq 1$ we know that for any $\delta>0$ there exists $l=l(\delta)$ so that
$\frac{\log w p((l, m), \Gamma)}{l} \geq \log \rho p(1, m)-\delta$. Assume that $\left\{m_{i}\right\}_{1}^{\infty}$ is a strictly increasing sequence of positive integers so that

$$
\limsup _{m \rightarrow \infty} \frac{\log \rho p(1, m)}{m}=\lim _{i \rightarrow \infty} \frac{\log \rho p\left(1, m_{i}\right)}{m_{i}} .
$$

Let $\left\{l_{i}\right\}_{1}^{\infty}$ be a stricly increasing sequence so that $\frac{\log w p\left(\left(l_{i}, m_{i}\right), \Gamma\right)}{l_{i}} \geq \log \rho p\left(1, m_{i}\right)-1, i=$ $2, \ldots$, We then deduce $\limsup _{m \rightarrow \infty} \frac{\log \rho p(1, m)}{m} \leq h p(\Gamma)$. The analogous result for $\rho p(2, m)$ is proved similarly.

Let $d>2$. Assume that $(1, \ldots, 1)<M \in \mathbf{Z}^{d-1}$. Partition the box $B(M)$ to p nontrivial boxes of dimensions $M^{i} \in \mathbf{Z}_{+}^{d-1}, i=1, \ldots, p$. We denote this fact by $M=\cup_{1}^{p} M^{i}$. We then have the following generalization of (2.3).

$$
\begin{equation*}
\log \rho(k, M) \leq \sum_{1}^{p} \log \rho\left(k, M^{i}\right), k=1, \ldots, d \tag{2.3}
\end{equation*}
$$

Similarly, all assertions of the theorem for $d>2$ are derived in an analogous way. \diamond
(2.5) Theorem. Let $d \geq 2$ and assume that $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$. Consider the \mathbf{Z}^{d}-SFT given by $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Then

$$
h_{\text {com }}(\Gamma)=h(\Gamma) .
$$

To prove the theorem we need the following result.
(2.6) Lemma. Let the assumptions of Theorem 2.5 hold. Assume furthermore that $\Gamma^{\infty} \neq \emptyset$. Let $M, N_{1}, N_{2} \in \mathbf{Z}^{d}$ and assume that $(1, \ldots, 1) \leq M \leq N_{1} \leq N_{2}$. Then

$$
\pi_{B(2 M)+N_{1}-M}\left(\Gamma^{2 N_{1}}\right) \supset \pi_{B(2 M)+N_{2}-M}\left(\Gamma^{2 N_{2}}\right)
$$

Assume that $f \in \Gamma^{2 M}$. Then

$$
\exists g \in \Gamma^{\infty} \pi_{B(2 M)} g=f \Longleftrightarrow \forall N f \in \pi_{B(2 M)+N-M}\left(\Gamma^{2 N}\right)
$$

Proof. The first claim of the lemma is trivial. Assume that $g \in \Gamma^{\infty}$. Let $f=\pi_{B(2 M)} g$. Clearly, $\forall N f \in \pi_{B(2 M)+N-M}\left(\Gamma^{2 N}\right)$. The reverse implication is proved by using Köning's argument as in the proof of Theorem 1.3. \diamond

Proof of Theorem 2.5 By Theorem $1.3 h_{\text {com }}(\Gamma)=-\infty \Longleftrightarrow h(\Gamma)=-\infty$. Thus, it is enough to consider the case $h_{\text {com }}(\Gamma) \geq 0$. As $w(N, \Gamma) \geq w\left(N, \Gamma^{\infty}\right)$ Theorem 1.5 implies that $h_{\text {com }}(\Gamma) \geq h(\Gamma)$. Thus $h_{\text {com }}(\Gamma)=0 \Rightarrow h(\Gamma)=0$. Hence, it is left to prove the theorem in the case $h_{\text {com }}(\Gamma)>0$. For simplicity of the exposition we consider the case $d=2$.

Fix $k \geq 1$ and let $m \geq k$. Consider the graph $\Gamma(1,2 m)$. It represents a SFT induced by an infinite horizontal strip of width $2 m$ in the vertical direction. Erase from the above infinite horizontal strip $m-k$ first and last infinite rows. We then obtain a $S(2 m)(2 k)$ a SFT induced by the graph $\Gamma(1,2 m)$. Furthermore, $S(2 m)(2 k)$ is a subshift of $S(2 k)$ induced by $\Gamma(1,2 m)$. Clearly, we have the inclusions

$$
S(2 k) \supset S(2(k+1))(2 k) \supset \cdots \supset S(2 m)(2 k) \supset \cdots
$$

Fix a box of dimension $(2 l, 2 k)$ and let $w_{2 m}(2 l, 2 k)$ be the projection of $S(2 m)(2 k)$ on this box. Clearly

$$
w((2 l, 2 k), \Gamma)>w_{2(k+1)}(2 l, 2 k)>\cdots>w_{2 m(k)}(2 l, 2 k)=w_{2(m(k)+1)}(2 l, 2 k)=\ldots
$$

Köning's argument yield that

$$
w\left((2 l, 2 k), \Gamma^{\infty}\right)=w_{2 m(k)}(2 l, 2 k)
$$

We claim that

$$
\begin{equation*}
w\left((2 l, 2 k), \Gamma^{\infty}\right)^{p-2 m(k)} \geq \frac{\rho(1, p 2 k)^{2 l}}{\rho(1,2 k)^{2 l 2 m(k)}}, p \gg 1 \tag{2.7}
\end{equation*}
$$

To prove this inequality consider the infinite horizontal strip of width $p 2 k$ where $p>2 m(k)$. In this strip pick up a box of dimension $(r l, p 2 k)$ where $r \gg 1$. It then follows that

$$
w((r l, p 2 k), \Gamma) \approx K_{1}(r l)^{s_{1}} \rho(1, p 2 k)^{r l}
$$

for some fixed integer s_{1}. We view the above strip as composed of p infinite strips of width $2 k$. For $m(k)$ the most upper strips and for $m(k)$ the most lower strips the number of words in the box $(r l, 2 k)$ does not exceed

$$
w((r l, 2 k), \Gamma) \approx K_{2}(r l)^{s_{2}} \rho(1,2 k)^{r l}
$$

We now consider all the other infinite horizontal strip of width $2 k$. Observe that they are all SFT contained in $S(2 m(k))(2 k)$. Denote by $C(l, 2 k)$ all distinct projections of Γ^{∞} on a box $B(l, 2 k)$. Denote by $\Delta(l, 2 k) \subset C(l, 2 k) \times C(l, 2 k)$ the following graph induced by all distinct projections of Γ^{∞} on the box $B((2 l, 2 k))$. That is $(x, y) \in \Delta(l, 2 k)$ iff (x, y) is obtained by the projection on $B(2 l, 2 k)$ of some possible configuration in Γ^{∞}. Let $w(t, \Delta(l, 2 k))$ be the number of words of length t in the SFT induced by $\Delta(l, 2 k)$. Set $\tilde{\rho}(l, 2 k)=\rho(A(\Delta(l, 2 k))$ It then follows that for $r \gg 1$

$$
w(r, \Delta(l, 2 k)) \approx K_{3} r^{s_{3}} \tilde{\rho}(l, 2 k)^{r} .
$$

We next claim that

$$
\begin{equation*}
w\left((2 l, 2 k), \Gamma^{\infty}\right) \geq \tilde{\rho}(l, 2 k)^{2} \tag{2.8}
\end{equation*}
$$

Indeed, we trivially have that $w(2 r, \Delta(l, 2 k)) \leq w\left((2 l, 2 k), \Gamma^{\infty}\right)^{r}$. Use the asymptotic value of $w((2 r, 2 k), \Delta(l, 2 k))$ for $r \gg 1$ to deduce (2.8). From the definitions of $m(k)$ and $\tilde{\rho}(l, 2 k)$ it follows that for $p>2 m(k)$

$$
w((2 r l, p 2 k), \Gamma) \leq w((2 r l, 2 k), \Gamma)^{2 m(k)} w(2 r, \Delta(l, 2 k))^{p-2 m(k)}
$$

Use the asymptotic equalites for the above words and the inequality (2.8) to deduce (2.7). Take the $2 l p$ - th root of (2.7) and let $p \rightarrow \infty$. Use Theorem 2.1 to deduce that

$$
\liminf _{l \rightarrow \infty} \frac{\log w\left((2 l, 2 k), \Gamma^{\infty}\right)}{2 l} \geq 2 k h_{\text {com }}(\Gamma)
$$

Hence,

$$
h(\Gamma)=\limsup _{k, l \rightarrow \infty} \frac{\log w\left((l, k), \Gamma^{\infty}\right)}{k l} \geq \liminf _{k \rightarrow \infty} \frac{1}{2 k} \liminf _{l \rightarrow \infty} \frac{\log w\left((2 l, 2 k), \Gamma^{\infty}\right)}{2 l} \geq h_{c o m}(\Gamma)
$$

Thus, $h(\Gamma)=h_{\text {com }}(\Gamma)$ and the proof of the theorem is completed. \diamond

§3. A symmetricity condition

(3.1) Theorem. Let $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$, and consider \mathbf{Z}^{d}-SFT given by $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Assume that $\Gamma_{1}, \ldots, \Gamma_{d-1}$ are symmetric. Then $h p(\Gamma)=h(\Gamma)$.

Proof. We prove the theorem by the induction on d. Assume first that $d=2$. From Theorem 1.3 we deduce that $\rho(2,2)=0 \Rightarrow h(\Gamma)=-\infty$. Assume that $\rho(2,2) \geq 1$. We now show that $h p(\Gamma) \geq 0$. Observe first that $\operatorname{per}\left(\Gamma(2,2)^{l}\right) \neq \emptyset$ for some $l>1$. In particular, $\left.\operatorname{per}\left(\Gamma_{2}^{l}\right)\right) \neq \emptyset$, i.e. $\rho\left(A\left(\Gamma_{2}\right)\right)=\rho(2,1) \geq 1$. Consider $p(\Gamma(1, l))$. The above assumption means that $p(\Gamma(1, l))$ has at least one edge. As Γ_{1} is symmetric we deduce that $p(\Gamma(1, l))$ is also a symmetric matrix. Hence, $\rho p(1, l) \geq 1$. Theorem 2.1 implies that $h p(\Gamma) \geq 0$. Thus $h p(\Gamma)=h(\Gamma)=-\infty \Longleftrightarrow \rho(2,2)=0$.

In what follows we assume that $\rho(2,2) \geq 1$. We now prove that $h p(\Gamma)=h(\Gamma)$. Clearly, $h p(\Gamma) \leq h(\Gamma)$. As we showed that $h p(\Gamma) \geq 0$ it is enough to consider the case $h(\Gamma)>0$. Note that Theorems 2.1 and Theorem 2.5 yield that $\rho(2, m)>1, m=2, \ldots$, . Fix $m \geq 1$. Let $w p(l)$ be the number of periodic words in the SFT induced by $\Gamma(2,2 m+1)$ of length l. Set

$$
L p_{2}(l)=\operatorname{card}\left(\operatorname{per}\left(\Gamma_{2}^{m}\right)\right), B=\left(b_{i j}\right)_{1}^{L p_{2}(l)}=A(p(\Gamma(1, l))), B^{2 m}=\left(b_{i j}^{(2 m)}\right)_{1}^{L p_{2}(l)}
$$

It then follows that $w p(l)=\sum_{i=j=1}^{L p_{2}(l)} b_{i j}^{(2 m)}$. Recall that B is a nonnegative symmetric matrix. Hence, its spectral norm is equal to its spectral radius $\rho p(1, l)$. As $w p(l)=$ $e B^{2 m} e^{T}, e=(1, \ldots, 1)$ we deduce that $w p(l) \leq \rho p(1, l)^{2 m} L p_{2}(l)$. Observe next that
$\operatorname{trace}\left(B^{2 m}\right)=w p(2 m+1, l)$. As $B^{2 m}$ is a symmetric matrix with nonnegative eigenvalues it follows that $\operatorname{trace}\left(B^{2 m}\right) \geq \rho p(1, l)^{2 m}$. Combine the above inequalities to deduce

$$
w p(l) \leq w p(2 m+1, l) L p_{2}(l) \leq w p(2 m+1, l) n^{l-1}
$$

Fix $\delta, 0<\delta$. Choose a strictly increasing sequence $\left\{l_{m}\right\}_{1}^{\infty}$ so that $\frac{\log w p\left(l_{m}\right)}{l_{m}}>\log \rho(2,2 m+$ $1)-\delta$. Use Theorem 2.1 and the above inequalities to deduce

$$
h(\Gamma)=\lim _{m \rightarrow \infty} \frac{\log \rho(2,2 m+1)}{2 m+1} \leq \liminf _{m \rightarrow \infty} \frac{\log w p\left(l_{m}\right)}{(2 m+1) l_{m}} \leq \liminf _{m \rightarrow \infty} \frac{\log w p\left(2 m+1, l_{m}\right)}{(2 m+1) l_{m}} \leq h p(\Gamma) .
$$

This proves the equality $h p(\Gamma)=h(\Gamma)$ for $d=2$.
Assume that the result holds for $d \geq l \geq 2$ and let $d=l+1$. Choose $\delta>0$ and $M=\left(M_{1}, \ldots, M_{l}\right) \gg(1, \ldots, 1)$ so that $\frac{\log \rho(\bar{l}+1, M)}{M_{1} \cdots M_{l}}<h(\Gamma)+\delta$. (We are assuming the nontrivial case $\rho(l+1, M) \geq 1 \Longleftrightarrow h(\Gamma) \geq 0$.) Furthermore, we assume that M_{1}, \ldots, M_{l} are odd numbers. Choose $N_{l+1} \gg 1$ so that $w\left(M_{1}, \ldots, M_{l}, N_{l+1}\right)$ - the total number of words in $(\Gamma(l+1, M))^{N_{l+1}}$ is not greater then $(1+\delta)^{N_{l+1}}$ times $w p_{l+1}\left(M_{1}, \ldots, M_{l}, N_{l+1}\right)=$ $\operatorname{card}\left(\operatorname{per}\left(\Gamma(l+1, M)^{N_{l+1}}\right)\right)$. Let $p_{l+1}\left(\Gamma\left(1,\left(M_{2}, \ldots, M_{l}, N_{l+1}\right)\right)\right) \subset \Gamma\left(1,\left(M_{2}, \ldots, M_{l}, N_{l+1}\right)\right)$ be the subgraph generated by all the words of length $\left(M_{2}, \ldots, M_{l}, N_{l+1}\right)$ in the SFT induced by $\left(\Gamma_{2}, \ldots, \Gamma_{l+1}\right)$ which are periodic with respect to the last coordinate. Note that this graph is symmetric. Moreover,

$$
\left(p_{l+1}\left(\Gamma\left(1,\left(M_{2}, \ldots, M_{l}, N_{l+1}\right)\right)\right)\right)^{M_{1}}=\operatorname{per}\left(\Gamma(l+1, M)^{N_{l+1}}\right) n e \emptyset
$$

The arguments of the proof for $d=2$ show that $h(\Gamma)$ - the density of words of length $\left(N_{1}, \ldots, N_{l+1}\right)$ is equal to the density of the words periodic in the last and the first coordinates. Let $p_{1, l+1}\left(\Gamma\left(2,\left(M_{1}, M_{3}, \ldots, M_{l}, N_{l+1}\right)\right)\right) \subset \Gamma\left(2,\left(M_{1}, M_{3}, \ldots, M_{l}, N_{l+1}\right)\right)$ be the subgraph generated by all the words of length $\left(M_{1}, M_{3}, \ldots, M_{l}, N_{l+1}\right)$ in SFT induced by $\left(\Gamma_{1}, \Gamma_{3}, \ldots, \Gamma_{l+1}\right)$ which are periodic in the first and the last coordinate. As Γ_{2} is symmetric it follows that $p_{1, l+1}\left(\Gamma\left(2,\left(M_{1}, M_{3}, \ldots, M_{l}, N_{l+1}\right)\right)\right)$ is also symmetric. Use the previous arguments to deduce that $h(\Gamma)$ is the density of words periodic in $1,2, l+1$ cordinates. Continue in this manner to deduce that $h(\Gamma)=h p(\Gamma)$. \diamond

Our results yield a new proof that the periodic entropy $h p(\Gamma)$ computed by Lieb [Lie] is equal to the standard entropy $h(\Gamma)$. See $[\mathbf{B}-\mathbf{K}-\mathbf{W}]$ for a specific proof of the above equality for the ice rule model in zero field.

Under the assumptions of Theorem 3.1 it is possible to give lower estimates for $h(\Gamma)$. To do that we need to introduce the following notation. Let $U \subset<d>$ be a set of cardinality p. We then agree that $U=\left\{i_{1}, \ldots, i_{p}\right\}, 1 \leq i_{1}<\cdots<i_{p} \leq d$. For $N=\left(N_{1}, \ldots, N_{d}\right)$ set $N^{U}=\left(N_{i_{1}}, \ldots, N_{i_{p}}\right)$. In particular, $N^{\overline{\{k\}}}=\left(N_{1}, \ldots, N_{k-1}, N_{k+1}, \ldots, N_{d}\right), k=1, \ldots, d$. Assume the assumptions of Theorem 3.1. For any nontrivial set $U \subset<d>$ we consider the SFT on $\left.\mathbf{Z}^{\operatorname{card}(U)}\right)$ induced on $\Gamma^{U}=\left(\Gamma_{i_{1}}, \ldots, \Gamma_{i_{p}}\right)$. Suppose that $k \in U, V=$ $U \backslash\{k\}, \operatorname{card}(V) \geq 1$. Then $\Gamma\left(k, N^{V}\right)$ is graph induced by the SFT corresponding to Γ^{U}. Let $\rho\left(k, N^{V}\right)$ be the spectral radius of this graph. Given three pairwise disjoint sets $V,\{k\}, W \subset<d>$ we consider the following contraction of $\rho\left(k, N^{V \cup W}\right)$ on V indices

$$
\left.\rho_{V}\left(k, N^{W}\right)\right)=\lim _{N_{i} \rightarrow \infty, i \in V} \rho\left(k, N^{V \cup W}\right) \overline{\prod_{i \in V^{N_{i}}}^{1}}
$$

Let $U=\{k\} \cup V$. Observe that $\log \rho_{V}\left(k, N^{V}\right)=h\left(\Gamma^{U}\right)$.
(3.2) Theorem. Let $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$, and consider the \mathbf{Z}^{d}-SFT given by $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Assume that Γ_{k} is symmetric. Then

$$
\begin{aligned}
& \rho\left(i, N^{\overline{\{i\}}}\right) \leq \rho_{\{i\}}\left(k, N^{\overline{\{i, k\}}}\right)^{N_{k}-1} \rho\left(i, N^{\overline{\{i, k\}}}\right) \\
& N=\left(N_{1}, \ldots, N_{d}\right) \geq(1, \ldots, 1), i=1, \ldots, k-1, k+1, \ldots, d .
\end{aligned}
$$

Proof. Fix $N_{j} \geq 1, j=1, \ldots, i-1, i+1, \ldots, d$. For a small positive $\delta>0$ choose $N_{i} \gg 1$ so that

$$
\begin{aligned}
& (1-h)^{N_{i}} \rho\left(i, N^{\overline{\{i\}}}\right)^{N_{i}} \leq w(N)=\operatorname{card}\left(\left(\Gamma\left(i, N^{\overline{\{i\}}}\right)\right)^{N_{i}}\right), \\
& \omega\left(N^{\overline{\{k\}}}\right)=\operatorname{card}\left(\left(\Gamma\left(i, N^{\overline{\{i, k\}}}\right)\right)^{N_{i}}\right) \leq(1+\delta)^{N_{i}} \rho\left(i, N^{\overline{\{i, k\}}}\right)^{N_{i}} .
\end{aligned}
$$

Let $C=A\left(\Gamma\left(k, N^{\overline{\{k\}}}\right)\right)$. Then C is $\omega\left(N^{\overline{\{k\}}}\right) \times \omega\left(N^{\overline{\{k\}}}\right)$ symmetric matrix with the spectral norm equal to $\rho\left(k, N^{\overline{\{k\}}}\right)$. Set $e=(1, \ldots, 1)$. The maximal characterization of the maximal eigenvalue of $C^{N_{k}-1}$ yields

$$
w(N, \Gamma)=e C^{N_{k}-1} e^{T} \leq \rho\left(k, N^{\overline{\{k\}}}\right)^{N_{k}-1} \omega\left(N^{\overline{\{k\}}}\right) .
$$

Taking the $N_{i}-t h$ root in the above inequality and letting $N_{i} \rightarrow \infty$ we deduce the theorem. \diamond.

Combine Theorems 3.1-3.2 for $d=2, k=1$ with Theorems 2.1 and 2.5 to obtain.
(3.3) Corollary. Let $\Gamma_{1}, \Gamma_{2} \subset<n>\times<n>$. Assume that Γ_{1} is symmetric and consider the \mathbf{Z}^{2}-SFT induced by $\Gamma=\left(\Gamma_{1}, \Gamma_{2}\right)$. Then

$$
\frac{\log \rho(2, k)}{k-1}-\frac{\log \rho(2,1)}{k-1} \leq h p(\Gamma)=h(\Gamma) \leq \frac{\log \rho(2, k)}{k}, k=2, \ldots, .
$$

The above Corollary under stronger assumptions is due to [M-P2]. Note that Corollary 3.3 enables one to calculate effectively the entropy $h(\Gamma)$ up to an arbitrary precision.

We now apply Theorem 3.2 for $d=3$ assuming that Γ_{2} is symmetric. Let $N_{1}=p \geq$ $1, N_{2}=q \geq 2, k=2, i=3$ to deduce

$$
\frac{\log \rho(3,(p, q))}{p(q-1)}-\frac{\log \rho(3, p)}{p(q-1)} \leq \frac{\log \rho_{\{3\}}(2, p)}{p} .
$$

Let $p \rightarrow \infty$. We then get the inequalites

$$
\begin{equation*}
\frac{\log \rho_{\{1\}}(3, q)}{q-1}-\frac{h\left(\Gamma^{\{1,3\}}\right)}{q-1} \leq h(\Gamma) . \tag{3.4}
\end{equation*}
$$

This yields a lower bound for $h(\Gamma)$ which converges to $h(\Gamma)$ as $q \rightarrow \infty$. To obtain computable lower bounds for $h(\Gamma)$ in terms of various $\rho(k, M)$ we assume that Γ_{3} is symmetric. First observe that Theorem 2.1 gives an upper bound on $h\left(\Gamma^{\{1,3\}}\right)$. Use Theorem 3.2 with $k=3, i=1, M_{2}=q, M_{3}=r$ to deduce

$$
\frac{\log \rho(1,(q, r))}{r-1}-\frac{\log \rho(1, q)}{r-1} \leq \log \rho_{\{1\}}(3, q) .
$$

Use the above inequalites in (3.4) to obtain a lower bound for $h(\Gamma)$ which in principle can be arbitrary close to $h(\Gamma)$. (Choose all the numbers entering in this inequality to be big enough.)

§4. Observations

Let $\Gamma \subset<n>\times<n>$ be a directed graph on n vertices. For any nontrivial set $V \subset<n>\operatorname{set} \Gamma(V)=\Gamma \cap V \times V . \Gamma$ is called a strongly connected graph if any two vertices $i, j \in<n\rangle$ are connected by a path in a graph. This is equivalent to the statement that $A(\Gamma)$ is an irreducible matrix. If Γ is not strongly connected then $\langle n\rangle$ is decomposed to a disjoint union

$$
\begin{align*}
& <n>=\cup_{0}^{p} U_{i}, U_{i} \cap U_{j}=\emptyset, 0 \leq i<j \leq p, \operatorname{card}\left(U_{i}\right) \geq 1, i=1, \ldots, p, \tag{4.1}\\
& A\left(\Gamma\left(U_{0}\right)\right)^{n}=0,\left(A\left(\Gamma\left(U_{i}\right)\right)+I\right)^{n}>0, i=1, \ldots, p .
\end{align*}
$$

Here I stands for the identity matrix and $B>0$ denote a real valued matrix whose all entries are positive. The set U_{0} is called a transient set. That is, if we consider any path with edges in our graph Γ each transient vertex will appear at most once. Equivalently, any closed path will not contain any transient vertex, while for each vertex in $\cup_{1}^{p} U_{i}$ there exists a closed path which contains this vertex. The set $\cup_{1}^{p} U_{i}$ is the set of nontransient vertices. Moreover, each graph $\Gamma\left(U_{i}\right)$ is a strongly connected for $i=1, \ldots, p$. Furthermore, U_{1}, \ldots, U_{p} are maximal sets with this property. That is, for $1 \leq i<j \leq p$ either there is no path of Γ connecting U_{i} to U_{j} or U_{j} to U_{i} (or both). The reduced graph $\operatorname{red}(\Gamma)$ is defined as follows. The states (vertices) of the reduced graph are the transient vertices U_{0} and the new states $\left[U_{1}\right], \ldots,\left[U_{p}\right]$. Let $\operatorname{red}(n)=\operatorname{card}\left(U_{0}\right)+p$. Then $\operatorname{red}(\Gamma) \subset<\operatorname{red}(n)>\times<\operatorname{red}(n)>$ does not have self loops, i.e. $(i, i) \notin \operatorname{red}(\Gamma), i \in<\operatorname{red}(n)>$. Furthermore $(i, j) \in \operatorname{red}(\Gamma)$ iff there is at least one edge in Γ which goes from one vertex represented by the state i to one vertex represented by the state j. It then follows that $A(\operatorname{red}(\Gamma))$ is a nilpotent matrix. Let $x=\left(x_{j}\right)_{1}^{m} \in \Gamma^{m}, m \gg 1$. The generic picture dictated by the reduced graph is as follows. First we may have a couple of transient vertices $x_{1}, \ldots, x_{t_{1}} \in U_{0},\left(x_{i}, x_{i+1}\right) \in \operatorname{red}(\Gamma), i=1, \ldots, t_{1}-1$. (It may happen that we do not have transient vertices, i.e. $t_{1}=0$.) Then we have a sequence of an arbitrary length $k_{1} x_{t_{1}+1}, \ldots, x_{t_{1}+k_{1}} \in U_{j_{1}},\left(x_{t_{1}},\left[U_{j_{1}}\right]\right) \in \operatorname{red}(\Gamma)$. . Then we may have another few transient states $x_{t_{1}+k_{1}+1}, \ldots, x_{t_{1}+k_{1}+t_{2}} \in U_{0},\left(\left[U_{j_{1}}\right], x_{t_{1}+k_{1}+1}\right),\left(x_{i}, x_{i+1}\right) \in \operatorname{red}(\Gamma), i=$ $t_{1}+k_{1}+1, \ldots, t_{1}+k_{1}+t_{2}-1,\left(t_{2} \geq 0\right)$. This sequence may be followed by another arbitrary
long sequence $x_{t_{1}+k_{1}+t_{2}+1}, \ldots, x_{t_{1}+k_{1}+t_{2}+k_{2}} \in U_{j_{2}},\left(x_{t_{1}+k_{1}+t_{2}},\left[U_{j_{2}}\right]\right) \in \operatorname{red}(\Gamma)$. If $t_{2}=0$ we then have the condition $\left(\left[U_{j_{1}}\right],\left[U_{j_{2}}\right]\right) \in \operatorname{red}(\Gamma)$. This process may continue until we reach the final state of the reduced graph. In particular, the arbitrary long sequences belong to pairwise distinct components $U_{j_{1}}, \ldots, U_{j_{l}}$ whose order depends on the structure of the reduced graph. In particular, $1 \leq l \leq n$.

These properties can be deduced straightforward from the Frobenius normal form of a nonnegative matrix, e.g. [Gan]. Consult for example with [F-S]. In particular, $\rho(A(\Gamma))=$ $\max _{1 \leq i \leq p} \rho\left(A\left(\Gamma^{(i)}\right)\right)$. A graph $\Gamma \subset<n>\times<n>$ is called nontransient if it does not have a transient set, i.e. $U_{0}=\emptyset$. For a general graph we let $\Gamma^{\prime}=\Gamma\left(\cup_{1}^{p} U_{i}\right)$ to be the nontransient part of Γ. As $h(\Gamma)=\log \rho(A(\Gamma))$ we deduce that $h(\Gamma)=\max _{1 \leq i \leq p} h\left(\Gamma\left(U_{i}\right)\right)=h\left(\Gamma^{\prime}\right)$. Finally observe that the periodic orbits under the shift correspond to closed paths in the graph Γ. Hence, any periodic orbit has vertices only in one $\operatorname{per}\left(\left(\Gamma\left(U_{i}\right)\right)^{N}\right)$. We now show that some these results can be generalised to SFT in higher dimension.
(4.2) Lemma. Let $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, m$. Then one of the following mutually exclusive conditions hold:
(i) For any nontrivial subset $V \subset<n>$ there exists $k \in<m>$ so that $\Gamma_{k}(V)$ has a nontrivial transient set of vertices in V.
(ii) There exist a maximal (nontrivial) subset $V \subset<n>$, so that $\Gamma_{k}(V)$ is a nontransient graph on V for $k=1, \ldots, m$.

Proof. Let $U_{0, i} \subset<n>$ be the set of transient vertices of the graph $\Gamma_{i}, i=1, \ldots, m$. If $U_{0, i}=\emptyset, i=1, \ldots, m$, then we have the condition (ii) with $V=<n>$. Let $V_{1}=<n>$ $\backslash\left(\cup_{1}^{m} U_{0, i}\right)$. If $V_{1}=\emptyset$ then the condition (i) holds. Assume that $<n>\neq V_{1} \neq \emptyset$. Repeat the above process for $\Gamma_{i}\left(V_{1}\right), 1=, \ldots, m$ to deduce either (i) or $(i i)$. \diamond
(4.3) Theorem. $\Gamma_{i} \subset<n>\times<n>, i=1, \ldots, d$, and consider \mathbf{Z}^{d}-SFT given by $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$. Assume first that condition (i) of Lemma 4.2 holds. Then $h(\Gamma)=$ $-\infty$. Assume now that V is the maximal (nontrivial) subset of $\langle d\rangle$ so that $\Gamma_{k}(V)$ is nontransient for $k=1, \ldots, d$. Set $\Gamma(V)=\left(\Gamma_{1}(V), \ldots, \Gamma_{d}(V)\right)$. Then $h(\Gamma)=h(\Gamma(V))$.

Proof. Clearly, the theorem trivially holds if $h(\Gamma)=-\infty$. Assume that $h(\Gamma) \geq 0$. That is for each $N=\left(N_{1}, \ldots, N_{d}\right), N_{i} \geq 1, i=1, \ldots, d, \rho\left(k, N^{\overline{\{k\}}}\right) \geq 1, k=1, \ldots, d$. As in the proof of Lemma 4.2 consider the transient set $U_{0, k}$ for the graph Γ_{k} for $k=1, \ldots, d$. If all $U_{0, k}=\emptyset$ then $V=<n>$ and the theorem is trivial in this case. Supppose that $U_{0, k} \neq \emptyset$. Fix $N^{\overline{\{k\}}}$. As $\rho\left(k, N^{\overline{\{k\}}}\right) \geq 1$ we know that $h\left(\Gamma\left(k, N^{\overline{\{k\}}}\right)\right.$ is given by the density of the periodic words $\operatorname{per}\left(\Gamma\left(k, N^{\{k\}}\right)^{N_{k}}\right)$. Observe next that every periodic word in $\operatorname{per}\left(\Gamma\left(k, N^{\overline{\{k\}}}\right)^{N_{k}}\right)$ is induced by a word $f=\left(f_{\left(j_{1}, \ldots j_{d}\right)}\right)_{j_{1}=\ldots=j_{d}=1}^{N_{1}, \ldots, N_{d}}$ such that

$$
\left(f_{\left(j_{1}, \ldots, j_{d}\right)}\right)_{j_{k}=1}^{N_{k}} \in \operatorname{per}\left(\left(\Gamma_{k}\right)^{N_{k}}\right), j_{l}=1, \ldots, N_{l}, l=1, \ldots, k-1, k+1, \ldots, d
$$

Hence, the coordinates of each vector $\left(f_{\left(j_{1}, \ldots, j_{d}\right)}\right)_{j_{k}=1}^{N_{k}}$ belong to some set $U_{k, i}$ appearing in the decomposition (4.1) of the nontransient set for Γ_{k}. Note that the value of i may depend on $\left(j_{1}, \ldots, j_{k-1}, j_{k+1}, \ldots, j_{d}\right)$. In particular, all the coordinates of f are in the set
$V_{1}=<n>\backslash U_{0, k}$. Let $\Gamma\left(V_{1}\right)=\left(\Gamma_{1}\left(V_{1}\right), \ldots, \Gamma_{d}\left(V_{1}\right)\right)$. Theorems 2.1 and 2.5 yield that $h(\Gamma)=h\left(\Gamma\left(V_{1}\right)\right)$. Repeat this process as in the proof of Lemma 4.2. If we obtain the condition (i) of Lemma 4.2 we deduce that $h(\Gamma)=-\infty$ which contradicts our assumption that $h(\Gamma) \geq 0$. Hence, the second condition of Lemma 4.2 holds. By the above arguments $h(\Gamma)=h(\Gamma(V))$ and the proof of the theorem is concluded. \diamond

Let $\Gamma_{1}, \Gamma_{2} \subset<n>$. Set $X=\left(\Gamma_{2}\right)^{\infty}$. Then X is a closed compact space in the Tychonoff topology. (More precisely, X is a Cantor set.) Set $\Delta=\Delta\left(\Gamma_{1}, \Gamma_{2}\right) \subset X \times X$ be the following closed graph

$$
\Delta=\left\{(x, y): x=\left(x_{i}\right)_{i \in \mathbf{Z}},\left(y_{i}\right)_{i \in \mathbf{Z}} \in X,\left(x_{i}, y_{i}\right) \in \Gamma_{1}, i \in \mathbf{Z}\right\} .
$$

Define $\Delta^{m}, \Delta^{\infty}$ as in the introduction. Note that

$$
\begin{aligned}
\Delta^{m}=\emptyset & \Longleftrightarrow \rho(2, m)=0, m=2, \ldots \\
\Delta^{\infty}=\emptyset & \Longleftrightarrow \Gamma^{\infty}=\emptyset, \Gamma=\left(\Gamma_{1}, \Gamma_{2}\right)
\end{aligned}
$$

Observe that if Γ_{1} is symmetric then Δ is also symmetric.
In [Fri1-2] we studied the entropy $h(\Delta)$ of the shift σ restricted to Δ^{∞}. Here $\sigma\left(\left(x_{i}\right)_{i \in \mathbf{Z}}\right)=\left(x_{i+1}\right)_{i \in \mathbf{Z}}$. It is not difficult to show that if $h(\Gamma)>0$ then $h(\Delta)=\infty$. Thus, $h(\Gamma)$ can be considered as the renormalization of the entropy $h(\Delta)$. More precisely if $N(k, \epsilon)$ is the number of $k-\epsilon$ separated sets then one can show that up to a multiplicative constant that the right renormalization is:

$$
h(\Gamma)=\lim _{\epsilon \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{\log N(k, \epsilon)}{k \log \frac{1}{\epsilon}} .
$$

Moreover, the dynamics of \mathbf{Z}^{2} shift restricted to Γ^{∞} is related to the dynamics of the standard shift restricted to Δ^{∞}. It would be interesting to explore in more details this relation. Similar ideas apply to higher dimensional \mathbf{Z}^{d}-SFT.

References

[Ber] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66 (1966).
[B-K-W] H.J. Brascamp, H. Kunz and F.Y. Wu, Some rigorous results for the vertex model in statistical mechanics, J. Math. Phys. 14 (1973), 1927-1932.
[Fri1] S. Friedland, Entropy of algebraic maps, preprint 1993, submitted.
[Fri2] S. Friedland, Entropy of graphs, semigroups and groups, preprint 1994, submitted.
[F-S] S.Friedland and H. Schneider, The growth of powers of a nonnegative matrix, SIAM J. Alg. Discrete Methods 1 (1980), 89-108.
[Gab] W.P. Gabriel, On dynamical systems with uncomputable topological entropy,
preprint 1994.
[Gan] F.R. Gantmacher, Theory of matrices, II, Chelsea Pub. Co., New York, 1960.
[H-K-C] L.P. Hurd, J. Kari and K. Culik, The topological entropy of cellur automata is uncomputable, Ergodic Theory and Dynamical Systems, 12 (1992), 255-265.
[K-M-W] A.S. Kahr, E.F. Moore and H. Wang, Entscheidungsproblem reduced to $\forall \exists \forall$ case, Proc. Nat. Acad. Sci. USA 48 (1962), 365-375.
[Kön] D. König, Über eine Schlußweise aus dem Endlichen ins Unendliche, Acta Litt. Sci. Szeged 3 (1927), 121-130.
[Lie] E.H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), 162-172.
[M-P1] N.G. Markley and M.E. Paul, Matrix subshifts for \mathbf{Z}^{ν} symbolic dynamics, Proc. London Math. Soc. 43 (1981), 251-272.
[M-P2] N.G. Markeley and M.E. Paul, Maximal measures and entropy for \mathbf{Z}^{ν}-subshifts of finite type, Lecture notes in pure and applied mathematics, 70 (1981), 135-156.
[Moz] S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. d'Analyse Math. 53 (1989), 139-186.
[Rob] R. Robinson, Undecidability and nonperiodicity for tiling of the plane, Invent. Math. 12 (1971), 177-209.
[Sch] K. Schmidt, Algebraic ideas in ergodic theory, Reg. Conf. Series Math. 76, 1990.

Acknowledgement. I would like to thank to T. Gowers for useful remarks.

