Theoretical and computational methods in statistical mechanics

Shmuel Friedland

Univ. Illinois at Chicago

Berkeley, October 26, 2009

Overview

- Motivation: Ising model
- Subshifts of Finite Type
- Pressure P_{Γ}
- Density points and density entropy
- Convex functions
- P_{Γ}^{*} and color density entropy
- First order phase transition
- d-Dimensional Monomer-Dimers
- Friendly colorings
- Computation of pressure

Figure: Uri Natan Peled, Photo - December 2006

Uri N. Peled

Uri was born in Haifa, Israel, in 1944.
Education:
Hebrew University, Mathematics-Physics, B.Sc., 1965.
Weizmann Institute of Science, Physics, M.Sc., 1967
University of Waterloo, Mathematics, Ph.D., 1976
University of Toronto, Postdoc in Mathematics, 1976-78
Appointments:
1978-82, Assistant Professor, Columbia University
1982-91, Associate Professor, University of Illinois at Chicago
1991-2009, Professor, University of Illinois at Chicago
Areas of research: Graphs, combinatorial optimization, boolean functions.
Uri published about 57 paper
Uri died September 6, 2009 after a long battle with brain tumor.

Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices, 101 edges, 24 dimers, 12 monomers

Motivation: Ising model - 1925

On lattice \mathbb{Z}^{d} two kinds of particles: spin up 1 and spin down 2. Each neighboring particles located on ($\mathbf{i}, \mathbf{i}+\mathbf{e}_{j}$) interact with energy $-J$ if both locations are occupied by the same particles, and with energy J if the two sites are occupied by two different particles. In addition each particle has a magnetization due to the external magnetic field. The energy of the particle of type 1 is H while the energy of the particle of type 2 is $-H$. The energy of $E(\phi)$ of a given finite configuration of particles in \mathbb{Z}^{d} is the sum of the energies of the above type.
Ferromagnetism $J>0$: all spins are up or down.
Antiferromagnetism $J<0$ half spins up and down
(Lowest free energy)
Phase transition:
from one state to another as the temperature varies
Energy: $\frac{k}{T} E(\phi)$

Motivation: Ising model - 1925

On lattice \mathbb{Z}^{d} two kinds of particles: spin up 1 and spin down 2. Each neighboring particles located on (i, $\mathbf{i}+\mathbf{e}_{j}$) interact with energy $-J$ if both locations are occupied by the same particles, and with energy J if the two sites are occupied by two different particles. In addition each particle has a magnetization due to the external magnetic field. The energy of the particle of type 1 is H while the energy of the particle of type 2 is $-H$. The energy of $E(\phi)$ of a given finite configuration of particles in \mathbb{Z}^{d} is the sum of the energies of the above type.
Ferromagnetism $J>0$: all spins are up or down.
Antiferromagnetism $J<0$ half spins up and down
(Lowest free energy)
Phase transition:
from one state to another as the temperature varies
Energy: $\frac{K}{T} E(\phi)$
Ising: No phase transition in one dimensional Ising model
Onsager 1944: One phase transition point of second order for
$d=2, H=0$.

Subshifts of Finite Type-SOFT

$$
<n>:=\{1,2,3, \ldots, n\}
$$

ALPHABET ON n LETTERS - COLORS.

Coloring of \mathbb{Z}^{d} in n coloring $=$
Full \mathbb{Z}^{d} shift on n symbols
Example of SOFT: $(0-1)$ LIMITED CHANNEL HARD CORE LATTICE or NEAR NEIGHBOR EXCLUSION $n=2,<2>=\{1,2\}=\{1,0\}(2 \equiv 0)$. NO TWO 1's ARE NEIGHBORS.

One dimensional SOFT

$\Gamma \subseteq<n>\times<n>$ directed graph on n vertices $C_{\Gamma}(<m>)$-all Γ allowable configurations of length m :
$\left\{a=a_{1} \ldots a_{m}=\left(a_{i}\right)_{1}^{m}:<m>\rightarrow<n>\left(a_{i}, a_{i+1}\right) \in \Gamma\right\}$
$C_{\Gamma}(\mathbb{Z})$-all Γ allowable configurations (tilings) on \mathbb{Z} :
$\left\{a=\left(a_{i}\right)_{i \in \mathbb{Z}}: \mathbb{Z} \rightarrow<n>,\left(a_{i}, a_{i+1}\right) \in \Gamma\right\}$
Hard core model:
$n=2, \Gamma=\{\bullet \bullet, \bullet \bullet, \bullet \bullet\}$

MD SOFT=Potts Models

Dimension $d \geq 2$. For $\mathbf{m} \in \mathbb{N}^{d},<\mathbf{m}>:=<m_{1}>\times \ldots \times<m_{d}>$ $\operatorname{vol}(\mathbf{m}):=\left|m_{1}\right| \times \ldots \times\left|m_{d}\right|, \Gamma:=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right), \Gamma_{i} \subset\langle n\rangle \times\langle n\rangle$
$C_{\Gamma}(<\mathbf{m}>)$-all Γ allowable configurations of \mathbf{m} :
$a=\left(a_{\mathbf{i}}\right)_{\mathbf{i} \in\langle\mathbf{m}\rangle}:<\mathbf{m}>\rightarrow<n>$ s.t. $\left(a_{\mathbf{i}}, a_{\mathbf{i}+\mathbf{e}_{j}}\right) \in \Gamma_{j}$ if $\mathbf{i}, \mathbf{i}+\mathbf{e}_{j} \in\langle\mathbf{m}\rangle$
$\mathbf{e}_{j}=\left(\delta_{1 j}, \ldots, \delta_{d j}\right), j=1, \ldots, d$.
Example:

$$
<(4,3)>:=
$$

Γ_{1}

MD SOFT=Potts Models II

For $\phi \in C_{\Gamma}(\langle\mathbf{m}\rangle)-\mathbf{c}(\phi):=\left(c_{1}(\phi), \ldots, c_{n}(\phi)\right)$
denotes coloring distribution of configuration ϕ $c_{i}(\phi)$-the number of times the particle i appears in ϕ
$\frac{1}{\operatorname{vol}(\mathbf{m})} \mathbf{c}(\phi) \in \Pi_{n}$ - coloring frequency of ϕ
$\Pi_{n}(\operatorname{vol}(\mathbf{m}))$ all $\mathbf{c} \in \mathbb{Z}_{+}^{n}$ s.t. $\frac{1}{\operatorname{vol}(\mathbf{m})} \mathbf{c} \in \Pi_{n}$
$C_{\Gamma}(\langle\mathbf{m}\rangle, \mathbf{c})$ denotes all $\phi \in C_{\Gamma}(\langle\mathbf{m}\rangle)$ with $\mathbf{c}(\phi)=\mathbf{c}$.
$C_{\Gamma, \text { per }}(\langle\mathbf{m}\rangle) \subseteq C_{\Gamma}(\langle\mathbf{m}\rangle)$-m-periodic configurations
$C_{\Gamma}\left(\mathbb{Z}^{d}\right)$-are- Γ allowable configurations of \mathbb{Z}^{d}
Assumption: $C_{\Gamma}\left(\mathbb{Z}^{d}\right) \neq \emptyset$
$u_{i} \in \mathbb{R}$ energy of particle $i \in\langle n\rangle$
$\mathbf{u}:=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ energy vector
$E(\phi)=\mathbf{c}(\phi) \cdot \mathbf{u}$ Energy of configuration ϕ
Near neighbor interaction model, can be fit to the above noninteraction model by considering the coloring of the cube $\langle(3, \ldots, 3)\rangle$ as one particle
Similarly short range interaction model

Pressure

Grand partition function
$Z_{\Gamma}(\mathbf{m}, \mathbf{u}):=\sum_{\phi \in C_{\Gamma}(\langle\mathbf{m}))} \mathrm{e}^{\mathbf{c}(\phi) \cdot \mathbf{u}}$
$\log Z_{\Gamma}(\mathbf{m}, \mathbf{u})$ subadditive in each component of \mathbf{m} and convex in \mathbf{u}
$\frac{1}{\operatorname{vol}(\mathbf{m})} \log Z_{\Gamma}(\mathbf{m}, \mathbf{u})$ - average energy or pressure
$P_{\Gamma}(\mathbf{u}):=\lim _{\mathbf{m} \rightarrow \infty} \frac{1}{\operatorname{vol}(\mathbf{m})} \log Z_{\Gamma}(\mathbf{m}, \mathbf{u})$
Pressure of Γ-SOFT, (Pressure of the Potts model)
$h_{\Gamma}:=P_{\Gamma}(\mathbf{0})$-ENTROPY of Γ-SOFT
$P_{\Gamma}(\mathbf{u})$ is a convex Lipschitz function on \mathbb{R}^{n}
$\left|P_{\Gamma}(\mathbf{u})-P_{\Gamma}(\mathbf{v})\right| \leq\|\mathbf{u}-\mathbf{v}\|_{\infty}:=\max \left|u_{i}-v_{i}\right|$
$P_{\Gamma}(\mathbf{u}+t \mathbf{1})=P_{\Gamma}(\mathbf{u})+t$
P_{Γ} has the following properties:
Has subdifferential $\partial P_{\Gamma}(\mathbf{u})$ for each \mathbf{u}
$\partial P_{\Gamma}(\mathbf{u}) \subseteq \Pi_{n}$ for each \mathbf{u}
Has differentiable $\nabla P_{\Gamma}(\mathbf{u})$ a.e.

Density points and density entropy

$\mathbf{p} \in \Pi_{n}$ density point of $C_{\Gamma}\left(\mathbb{Z}^{d}\right)$ when there exist sequences of boxes
$\left\langle\mathbf{m}_{q}\right\rangle \subseteq \mathbb{N}^{d}$ and color distribution vectors $\mathbf{c}_{q} \in \Pi_{n}\left(\operatorname{vol}\left(\mathbf{m}_{q}\right)\right)$ $\mathbf{m}_{q} \rightarrow \infty, \quad C_{\Gamma}\left(\left\langle\mathbf{m}_{q}\right\rangle, \mathbf{c}_{q}\right) \neq \emptyset \forall q \in \mathbb{N}, \quad$ and $\lim _{q \rightarrow \infty} \frac{\mathbf{c}_{q}}{\operatorname{vol}\left(\mathbf{m}_{q}\right)}=\mathbf{p}$
Π_{Γ} the set of all density points of $C_{\Gamma}\left(\mathbb{Z}^{d}\right)$
Π_{Γ} is a closed set
For $\mathbf{p} \in \Pi_{\Gamma}$ the color density entropy
$h_{\Gamma}(\mathbf{p}):=\sup _{\mathbf{m}_{q}, \mathbf{c}_{q}} \lim \sup _{q \rightarrow \infty} \frac{\log \# C_{\Gamma}\left(\left\langle\mathbf{m}_{q}\right\rangle, \mathbf{c}_{q}\right)}{\operatorname{vol}\left(\mathbf{m}_{q}\right)} \geq 0$
where the supremum is taken over all sequences satisfying the above conditions
h_{Γ} is upper semi-continuous on Π_{Γ}

Convex functions

$f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ convex. $\operatorname{dom} f:=\left\{\mathbf{x} \in \mathbb{R}^{m}: f(\mathbf{x})<\infty\right\}$
f proper if $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}:=(-\infty, \infty]$ and $f \not \equiv \infty f$ closed if f is lower semi-continuous.
\mathbf{q} subgradient: $f(\mathbf{x}) \geq f(\mathbf{u})+\mathbf{q}^{\top}(\mathbf{x}-\mathbf{u}) \forall \mathbf{x} \partial f(\mathbf{u}) \subset \mathbb{R}^{n}$ the subset of subgradients of f at \mathbf{u} ASSUMPTION: f is proper and closed $\partial f(\mathbf{u})$ is a closed nonempty set for each $\mathbf{u} \in \operatorname{ri} \operatorname{dom} f f$ is differentiable at $\mathbf{u} \Longleftrightarrow \partial f(\mathbf{u})=\{\nabla f(\mathbf{u})\}$ diff f - the set of differentiability points of f ∇f continuous on $\operatorname{diff} f$ and $\overline{\operatorname{diff} f} \supseteq \operatorname{dom} f$
The conjugate, (Legendre transform) f^{*} defined:
$f^{*}(\mathbf{y}):=\sup _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{x}^{\top} \mathbf{y}-f(\mathbf{x})$ for each $\mathbf{y} \in \mathbb{R}^{m}$
f^{*} is a proper closed function and $f^{* *}=f$

Thm 1: $h_{\Gamma}(\mathbf{p}) \leqslant-P_{\Gamma}^{*}(\mathbf{p}) \forall \mathbf{p} \in \Pi_{\Gamma}$.
$P_{\Gamma}(\mathbf{u})=\max _{\mathbf{p} \in \Pi_{\Gamma}}\left(\mathbf{p}^{\top} \mathbf{u}+h_{\Gamma}(\mathbf{p})\right), \mathbf{u} \in \mathbb{R}^{n}$
$\Pi_{\Gamma}(\mathbf{u}):=\arg \max _{\mathbf{p} \in \Pi_{\Gamma}}\left(\mathbf{p}^{\top} \mathbf{u}+h_{\Gamma}(\mathbf{p})\right)=\left\{\mathbf{p} \in \Pi_{\Gamma}: P_{\Gamma}(\mathbf{u})=\mathbf{p}^{\top} \mathbf{u}+h_{\Gamma}(\mathbf{p})\right\}$
For each $\mathbf{p} \in \Pi_{\Gamma}(\mathbf{u}), h_{\Gamma}(\mathbf{p})=-P_{\Gamma}^{*}(\mathbf{p}) . \Pi_{\Gamma}(\mathbf{u}) \subseteq \partial P_{\Gamma}(\mathbf{u})$.
$\mathbf{u} \in \operatorname{diff} P_{\Gamma} \Rightarrow \Pi_{\Gamma}(\mathbf{u})=\left\{\nabla P_{\Gamma}(\mathbf{u})\right\}$.
Therefore $\partial P_{\Gamma}\left(\operatorname{diff} P_{\Gamma}\right) \subseteq \Pi_{\Gamma}$.
$S(\mathbf{u}), \mathbf{u} \in \mathbb{R}^{n} \backslash \operatorname{diff} P_{\Gamma^{-}}$
are all the limits of sequences
$\nabla P_{\Gamma}\left(\mathbf{u}_{i}\right), \mathbf{u}_{i} \in \operatorname{diff} P_{\Gamma}$ and $\mathbf{u}_{i} \rightarrow \mathbf{u}$.
Then $S(\mathbf{u}) \subseteq \Pi_{\Gamma}(\mathbf{u})$.
$\operatorname{conv} \Pi_{\Gamma}(\mathbf{u})=\operatorname{conv} S(\mathbf{u})=\partial P_{\Gamma}(\mathbf{u})$.
$\partial P_{\Gamma}\left(\mathbb{R}^{n}\right) \subseteq \operatorname{conv} \Pi_{\Gamma} \subseteq \Pi_{n}$.
$\operatorname{conv} \Pi_{\Gamma}=\operatorname{dom} P_{\Gamma}^{*}$.

First order phase transition

Claim: For $\mathbf{u} \in \mathbb{R}^{n}$ each $\mathbf{p} \in \Pi_{\Gamma}(\mathbf{u})$ is the set of possible density of n colors in an allowable configurations from $C_{\Gamma}\left(\mathbb{Z}^{d}\right)$ with the potential \mathbf{u}. For $\mathbf{u} \in \operatorname{diff} P_{\Gamma} \mathbf{p}(\mathbf{u})=\nabla P_{\Gamma}(\mathbf{u})$ is a unique density.
Claim: Any point of nondifferentiabity of P_{Γ} is a point of the phase transition.
Proof Let $\mathbf{u} \in \mathbb{R}^{n} \backslash$ diff P_{Γ} Then ∂P_{Γ} consists of more than one point. Thm 1 yields that $\partial P_{\Gamma}(\mathbf{u})=$ conv $S(\mathbf{u}) \subseteq \Pi_{\Gamma}(\mathbf{u}) . S(\mathbf{u})$ consists of more than one point. Hence $\Pi_{\Gamma}(\mathbf{u})$ consists of more than one density for \mathbf{u}. $\mathbf{u} \in \mathbb{R}^{n} \backslash$ diff P_{Γ} is called a point of phase transition, or a phase transition point of the first order.

d-Dimensional Monomer-Dimers

Dimer: $(\mathbf{i}, \mathbf{j}), \mathbf{j}=\mathbf{i}+\mathbf{e}_{k} \in \mathbb{Z}^{d}$. any partition of \mathbb{Z}^{d} to dimers (1 -factor).
Monomer: occupies $\mathbf{i} \in \mathbb{Z}^{d}$.
any partition of \mathbb{Z}^{d} to monomer-dimers
is 1 -factor of a subset of \mathbb{Z}^{d}.
Dimer and Monomer-Dimer are SOFT

$$
\begin{aligned}
& 0=\tilde{h}_{1} \leq \tilde{h}_{2} \leq \ldots \leq \tilde{h}_{d} \leq \ldots(\text { dimers }) \\
& \log \frac{1+\sqrt{5}}{2}=h_{1} \leq h_{2} \leq \ldots \leq h_{d} \leq \ldots \\
& \text { (monomer }- \text { dimer) }
\end{aligned}
$$

Fisher, Kasteleyn and Tempreley 61

$$
\tilde{h}_{2}=\frac{1}{\pi} \sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)^{2}}=0.29156090 \ldots
$$

Hammersley's results

Hammersley in 60's studied extensively the monomer-dimer model. He showed $\Pi_{\Gamma}=\Pi_{d+1}$ for d-dimensional model $\mathbf{p}=\left(p_{1}, \ldots, p_{d}, p_{d+1}\right)$ p_{i}-the dimer density in \mathbf{e}_{i}-direction $i=1, \ldots, d p_{d+1}$-the monomer density Hammersley studied $p:=p_{1}+\ldots+p_{d}$-the total dimer density $h_{d}(p)$-the p-dimer density in $\mathbb{Z}^{d}, p \in[0,1]$ He showed $h_{d}(p)$-concave continuous function on $[0,1]$ Heilman and Lieb 72: $h_{d}(p)$ analytic on $(0,1)$
No phase transition in parameter $p \in[0,1)$
Au-Yang - Perk 84: Phase transition at dimers $p=1$

The Graphs for $h_{2}(p)$

Figure 1: HM is the lower bound of Hammersley-Menon, BW is the lower bound of Bondy-
Welsh, FP is the lower bound of Friedland-Peled, MC is the Monte Carlo estimate of
Hammersley-Menon, B are Baxter's estimates, and h 2 is the true value of $h_{2}=\max h_{2}(p)$.

Graph estimates for $h_{2}(p)$

Figure 1: Monomer-dimer tiling of the 2-dimensional grid: entropy as a function of dimer density. FT is the Friedland-Tverberg lower bound, h2 is the true monomer-dimer entropy. B are Baxter's computed values. ALMC is the Asymptotic Lower Matching Conjecture. AUMC is the entropy of a countable union of $K_{4,4}$, conjectured to be an upper bound by the Asymptotic Upper Matching Conjecture.

Friendly colorings

Thm 1 implies:
For any Potts model $h_{\Gamma}(\cdot): \Pi_{\Gamma} \rightarrow \mathbb{R}_{+}$is concave on every convex subset of $\Pi_{\Gamma}\left(\mathbb{R}^{n}\right)$.
To get the exact analog of Hammersley's result
$\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$ on $\langle n\rangle \mathcal{F}=\cup_{\mathbf{m} \in \mathbb{N}^{d}} \widetilde{C}_{\Gamma}(\langle\mathbf{m}\rangle)$, where $\widetilde{C}_{\Gamma}(\langle\mathbf{m}\rangle) \subseteq C_{\Gamma}(\langle\mathbf{m}\rangle)$ for each $\mathbf{m} \in \mathbb{N}^{d}$, friendly: if whenever a box $\langle\mathbf{m}\rangle$ is cut in two and each part is colored by a coloring in \mathcal{F}, the combined coloring is in \mathcal{F}. Γ friendly if there exist a friendly set $\mathcal{F}=\cup_{\mathbf{m} \in \mathbb{N}^{d}} \widetilde{C}_{\Gamma}(\langle\mathbf{m}\rangle)$ and a constant vector $\mathbf{b} \in \mathbb{N}^{d}$ such that if any box $\langle\mathbf{m}\rangle$ is padded with an envelope of width b_{i} in the direction of \mathbf{e}_{i}, then each Γ-allowed coloring of $\langle\mathbf{m}\rangle$ can be extended in the padded part to a coloring in \mathcal{F}.

Examples of friendly colorings

Γ has a friendly color $f \in\langle n\rangle$, i.e., for each $i \in\langle d\rangle(f, j),(j, f) \in \Gamma_{i}$ for all $j \in\langle n\rangle$
Then $\widetilde{C}_{\Gamma}(\mathbf{m})$ are Γ-allowed colorings of $\langle\mathbf{m}\rangle$ whose boundary points are colored with f
Hard-core model: $\Gamma_{i}=\{(1,1),(1,2),(2,1)\}$, has friendly color $f=1$.
Γ associated with the monomer-dimer covering
$\widetilde{C}_{\Gamma}(\langle\mathbf{m}\rangle)$ the set of tilings of $\langle\mathbf{m}\rangle$ by monomers and dimers, i.e., the coverings in which no dimer protrudes out of $\langle\mathbf{m}\rangle$, as in Hammersley

P_{Γ}^{*} for friendly colorings

Thm 2: Let $\Gamma=\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)$ be a friendly coloring digraph. Then
(1) Π_{Γ} is convex. Hence $\Pi_{\Gamma}=\operatorname{dom} P_{\Gamma}^{*}$.
(2) $h_{\Gamma}(\cdot): \Pi_{\Gamma} \rightarrow \mathbb{R}_{+}$is concave.
(3) For each $\mathbf{u} \in \mathbb{R}^{n}, \Pi_{\Gamma}(\mathbf{u})=\partial P_{\Gamma}(\mathbf{u})$.
(4) For each $\mathbf{u} \in \mathbb{R}^{n}, h_{\Gamma}(\cdot)$ is an affine function on $\partial P_{\Gamma}(\mathbf{u})$.
(5) $h_{\Gamma}(\mathbf{p})=-P_{\Gamma}^{*}(\mathbf{p})$ for each $\mathbf{p} \in \Pi_{\Gamma}$.

Reduction of one parameter

$P_{\Gamma}(\mathbf{u})=t+P_{\Gamma}(\mathbf{u}-t \mathbf{1}) \Rightarrow \partial P_{\Gamma}(\mathbf{u}) \in \Pi_{n}$ It is enough to compute $\hat{P}_{\Gamma}(\hat{\mathbf{u}}):=P_{\Gamma}(\hat{\mathbf{u}}), \hat{\mathbf{u}}=\left(u_{1}, \ldots, u_{n-1}, 0\right)$ Hard core model: $\hat{P}_{\Gamma}(t)$ depends on the energy $t \in \mathbb{R}$.
(It is known that for $d \geq 2$ hard core model has phase transition) For the dimer problem the pressure $P_{d}(\mathbf{v})$ depends on $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right)$, where v_{i} is the energy of the dimer in the direction $\mathbf{e}_{i}, i=1, \ldots$ (Non-isotropic model)
Dimer isotropic model in \mathbb{Z}^{d} : pressure $P_{d}(v)$, where v is the energy of the dimer in any direction.
(Standard model-No phase transition for $v \in \mathbb{R}$)

Computation of pressure

Using the scaled transfer matrices on the torus
$T\left(\mathbf{m}^{\prime}\right), \mathbf{m}^{\prime}=\left(m_{1}, \ldots, m_{d-1}\right)$ as in Friedland-Peled 2005 [3].
Assume for simplicity $d=2, \Gamma=\left(\Gamma_{1}, \Gamma_{2}\right)$, where Γ_{1} symmetric digraph.
Let Δ transfer digraph induced by Γ_{2} between the allowable Γ_{1} coloring of the circle $T(m)$. Then $V:=C_{\Gamma_{1}, \text { per }}(m)$ are the set of vertices of $\Delta(m)$. For $\alpha, \beta \in C_{\Gamma_{1}, \operatorname{per}}(m)$ the directed edge (α, β) is in $\Delta(m)$ iff the configuration $[(\alpha, \beta)]$ is an allowable configuration on $C_{\Gamma}((m, 2))$.
Adjacency matrix $D(\Delta(m))=\left(d_{\alpha \beta}\right)_{\alpha, \beta \in C_{\Gamma_{1}, \operatorname{per}}(m)}$ is $N \times N$ matrix, where $N:=\# C_{\Gamma_{1}, \text { per }}(m)$. One dimensional SOFT is $C_{\Gamma}(T(m) \times \mathbb{Z})$: all Γ allowable coloring of the infinite torus in the direction \mathbf{e}_{2} with the basis $T(m)$. The pressure corresponding to this one dimensional SOFT is denoted by $\tilde{P}_{\Delta(m)}(\mathbf{u})$. Its formula:

Computation of pressure II

Let $\tilde{D}(\Delta(m), \mathbf{u})=\left(\tilde{d}_{\alpha \beta}(\mathbf{u})\right)_{\alpha, \beta \in C_{\Gamma, p e r}(m)} \tilde{d}_{\alpha \beta}(\mathbf{u})=d_{\alpha \beta} e^{\frac{1}{2}(\mathbf{c}(\alpha)+\mathbf{c}(\beta))^{\top} \mathbf{u}}$ Then $\tilde{P}_{\Delta}(\mathbf{u}):=\frac{\theta(\mathbf{u}, m)}{m}, \theta(\mathbf{u}, m):=\log \rho(\tilde{D}(\Delta(m), \mathbf{u}))$ (We divide $\log \rho(\tilde{D}(\Delta, \mathbf{u}))$ by m, to have $\tilde{P}_{\Delta}(\mathbf{u}+t \mathbf{1})=\tilde{P}_{\Delta}(\mathbf{u})+t \quad$ for any $t \in \mathbb{R}$ Main inequalities
$\frac{1}{\rho}(\theta(\mathbf{u}, p+2 q)-\theta(\mathbf{u}, 2 q)) \leq P_{\Gamma}(\mathbf{u}) \leq \frac{1}{2 m}(\theta(\mathbf{u}, 2 m))$ for any $m, p \geq 1$ and $q \geq 0$.

Automorphism Subgroups

$A=\left(a_{i j}\right)_{1}^{N}$ nonnegative matrix
$\mathcal{A}(A):=\left\{\pi \in S_{N}: a_{\pi(i) \pi(j)}=a_{i j}, i, j \in<N>\right\}$ Let
$G \leq \mathcal{A}(A), \mathcal{O}(G):=<N>/ G, M=\# \mathcal{O}(G)$
$\hat{A}=\left(\hat{a}_{\alpha \beta}\right)_{\alpha, \beta \in \mathcal{O}(G)}, \hat{a}_{\alpha \beta}=: \sum_{j \in \beta} a_{i j}, i \in \alpha, \rho(A)=\rho(\hat{A})$, If $A=A^{T}$ then
\hat{A} symmetric for $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{\alpha \in \mathcal{O}(G)}(\# \alpha) x_{\alpha} y_{\alpha}$.
$M \geq N / \# G$,
In our computations $M \sim N / \# G$
Using these tools we confirmed Baxter's computations with nine digits of precision of $P_{2}(v)$ and of $h_{2}(p)$.
We also computed the non-isotropic $P_{2}\left(\left(v_{1}, v_{2}\right)\right)$.

Graphs of two dimensional pressure for MD

Figure 1: The graph of $\frac{\bar{P}_{1}\left(12,\left(v_{1}, v_{2}\right)\right)}{12}$ for angles $\theta=28^{\circ}, \varphi=78^{\circ}$ and $\theta=-159^{\circ}, \varphi=42^{0}$

Graphs of two dimensional density entropy for MD

Figure 1: The graph of an approximation of $\bar{h}_{2}\left(\left(p_{1}, p_{2}\right)\right.$ for angles $\theta=45^{\circ}, \varphi=45^{\circ}$ and $\theta=-153^{\circ}, \varphi=78^{\circ}$

Bibliography I

固 H. Au-Yang and J.H.H. Perk, Phys. Lett. A 104 (1984), 131-134.
R. J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968), 650-654.
(S. Friedland, On the entropy of Z-d subshifts of finite type, Linear Algebra Appl. 252 (1997), 199-220.
S. Friedland, Multi-dimensional capacity, pressure and Hausdorff dimension, in Mathematical System Theory in Biology, Communication, Computation and Finance, edited by J. Rosenthal and D. Gilliam, IMA Vol. Ser. 134, Springer, New York, 2003, 183-222.
S. Friedland, E. Krop and K. Markstrom, On the number of matchings in regular graphs, The Electronic Journal of Combinatorics, 15 (2008), \#R110, 1-28.

Bibliography II

S. Friedland, E. Krop, P.H. Lundow and K. Markström, On the validations of the asymptotic matching conjectures, Journal of Statistical Physics, 133 (2008), 513-533.
直 S. Friedland, P.H. Lundow and K. Markstrom The 1-vertex transfer matrix and accurate estimation of channel capacity, to appear in IEEE Transactions on Information Theory, arXiv:math-ph/0603001v2, arXiv:math-ph/0603001v2, http://arxiv.org/abs/math-ph/0603001v2.
S. Friedland and U. N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem, Advances of Applied Math. 34(2005), 486-522.
The pressure, densities and first order phase transitions associated with multidimensional SOFT, jointly with U.N. Peled, arXiv:0906.5176v3, http://arxiv.org/abs/0906.5176v3, submitted.

Bibliography III

直 F．R．Gantmacher，The Theory of Matrices，Vol．II，Chelsea Publ． Co．，New York 1959.
围 J．M．Hammersley，Existence theorems and Monte Carlo methods for the monomer－dimer problem，in Reseach papers in statistics： Festschrift for J．Neyman，edited by F．N．David，Wiley，London， 1966，125－146．

围 O．J．Heilman and E．H．Lieb，Theory of monomer－dimer systems， Comm．Math．Phys． 25 （1972），190－232；Errata 27 （1972）， 166.

目 E．Ising，Beitrag zur Theory des Ferromagnetismus，Z．Physik 31 （1925），253－258．

国 P．W．Kasteleyn，The statistics of dimers on a lattice，Physica 27 （1961），1209－1225．
目 J．F．C．Kingman，A convexity property of positive matrices．Quart． J．Math．Oxford Ser．（2） 12 （1961），283－284．

Bibliography IV

围 L. Onsager, Cristal statistics, I. A two-dimensional model with an order-disorder transition, Phys. Review 65 (1944), 117-?
R.B. Potts, Some generalized order-disorder transformations, Math. Proc. Cambridge Philos. Soc. 48 (1952), 106-109.
R. T. Rockafeller, Convex Analysis, Princeton Univ. Press 1970.

固 H. N. V. Temperley and M. E. Fisher, Dimer probelm in statistical mechanics—an exact result, Phil. Mag. (8) 6 (1961), 1061-1063.
C. J. Thompson, Mathematical Statisitical Mechanics, Princeton Univ. Press, 1972.

