3-Tensors

Shmuel Friedland
Univ. Illinois at Chicago

Geometry and Representation Theory of Tensors, MSRI July 18, 2008

Overview

Overview

- 3-Tensors

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates
- Results and conjectures

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates
- Results and conjectures
- Generic rank of real 3-tensor

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates
- Results and conjectures
- Generic rank of real 3-tensor
- (R_{1}, R_{2}, R_{3})-rank approximation of 3-tensors

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates
- Results and conjectures
- Generic rank of real 3-tensor
- $\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors
- Algorithms to find best $\left(R_{1}, R_{2}, R_{3}\right)$-rank approximations

Overview

- 3-Tensors
- Unfolding and (R_{1}, R_{2}, R_{3}) ranks
- Rank 3-tensor characterization
- Generic rank of 3-tensor
- An example
- Algebraic geometry \& tensor rank
- Maximal tensor rank
- Max.\& gen. rank upper estimates
- Results and conjectures
- Generic rank of real 3-tensor
- $\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors
- Algorithms to find best $\left(R_{1}, R_{2}, R_{3}\right)$-rank approximations
- Fast low rank approximations of tensors

3-Tensors

3-Tensors

$$
\mathbb{F}=\mathbb{R}, \mathbb{C}
$$

3-Tensors

$$
\begin{aligned}
& \mathbb{F}=\mathbb{R}, \mathbb{C} . \\
& 3 \text {-Tensor Space } \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}
\end{aligned}
$$

3-Tensors

$\mathbb{F}=\mathbb{R}, \mathbb{C}$.

3-Tensor Space $\mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}$
Tensor $\mathcal{T}=\left[t_{i, j, k}\right]_{\substack{i=j=k=1}}^{m_{1}, m_{2}, m_{3}}$ or simply $\mathcal{T}=\left[t_{i, j, k}\right]$.

3-Tensors

$$
\begin{aligned}
& \mathbb{F}=\mathbb{R}, \mathbb{C} \text {. } \\
& \text { 3-Tensor Space } \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}} \\
& \text { Tensor } \mathcal{T}=\left[t_{i, j, k}\right]_{i 1}^{m_{1}, m_{2}, m_{3}}=k=1 \text { or } \operatorname{simply} \mathcal{T}=\left[t_{i, j, k}\right] \\
& \text { Abstractly } \mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3}
\end{aligned}
$$

3-Tensors

$$
\begin{aligned}
& \mathbb{F}=\mathbb{R}, \mathbb{C} \text {. } \\
& \text { 3-Tensor Space } \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}} \\
& \text { Tensor } \mathcal{T}=\left[t_{i, j, k}\right]_{i 1}^{m_{1}, m_{2}, m_{3}} \text { or } \operatorname{simply} \mathcal{T}=\left[t_{i, j, k}\right] \\
& \text { Abstractly } \mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3} \\
& \text { Tensor } \tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}
\end{aligned}
$$

3-Tensors

$\mathbb{F}=\mathbb{R}, \mathbb{C}$.

3-Tensor Space $\mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}$
Tensor $\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k=1}^{m_{1}, m_{2}, m_{3}}$ or simply $\mathcal{T}=\left[t_{i, j, k}\right]$.
Abstractly $\mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3}$
Tensor $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$
Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$ or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

3-Tensors

$$
\mathbb{F}=\mathbb{R}, \mathbb{C}
$$

3-Tensor Space $\mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}$
Tensor $\mathcal{T}=\left[t_{i, j, k}\right]_{\substack{m=j=k=1}}^{m_{1}, m_{2}, m_{3}}$ or simply $\mathcal{T}=\left[t_{i, j, k}\right]$.
Abstractly $\mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3}$
Tensor $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$
Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$
or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
[$\left.\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right]$ basis of $\mathbf{U}_{j} j=1,2,3$
$\mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$, basis of \mathbf{U}

3-Tensors

$$
\mathbb{F}=\mathbb{R}, \mathbb{C}
$$

3-Tensor Space $\mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}$
Tensor $\mathcal{T}=\left[t_{i, j, k}\right]_{\substack{m=j=k=1}}^{m_{1}, m_{2}, m_{3}}$ or simply $\mathcal{T}=\left[t_{i, j, k}\right]$.
Abstractly $\mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3}$
Tensor $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$
Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$
or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
[$\left.\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right]$ basis of $\mathbf{U}_{j} j=1,2,3$
$\mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,
basis of \mathbf{U}
$\tau=\sum_{i_{1}=i_{2}=i_{3}=1}^{m_{1}, m_{2}, m_{3}} t_{i_{1}, i_{2}, i_{2}} \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}$

3-Tensors

$$
\mathbb{F}=\mathbb{R}, \mathbb{C}
$$

3-Tensor Space $\mathbb{F}^{m_{1} \times m_{2} \times m_{3}}:=\mathbb{F}^{m_{1}} \times \mathbb{F}^{m_{2}} \times \mathbb{F}^{m_{3}}$
Tensor $\mathcal{T}=\left[t_{i, j, k}\right]_{\substack{m=j=k=1}}^{m_{1}, m_{2}, m_{3}}$ or simply $\mathcal{T}=\left[t_{i, j, k}\right]$.
Abstractly $\mathbf{U}:=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3} \operatorname{dim} \mathbf{U}_{i}=m_{i}, i=1,2,3, \operatorname{dim} \mathbf{U}=m_{1} m_{2} m_{3}$
Tensor $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$
Rank one tensor $t_{i, j, k}=x_{i} y_{j} z_{k},(i, j, k)=(1,1,1), \ldots,\left(m_{1}, m_{2}, m_{3}\right)$
or decomposable tensor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
[$\left.\mathbf{u}_{1, j}, \ldots, \mathbf{u}_{m_{j}, j}\right]$ basis of $\mathbf{U}_{j} j=1,2,3$
$\mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}, i_{j}=1, \ldots, m_{j}, j=1,2,3$,

basis of \mathbf{U}

$\tau=\sum_{i_{1}=i_{2}=i_{3}=1}^{m_{1}, m_{2}, m_{3}} t_{i_{1}, i_{2}, i_{2}} \mathbf{u}_{i_{1}, 1} \otimes \mathbf{u}_{i_{2}, 2} \otimes \mathbf{u}_{i_{3}, 3}$
Rank τ denoted $\operatorname{rank} \tau$ is the minimal k :
$\tau=\sum_{i=1}^{k} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$
(CANDEC, PARFAC)

Vector ranks of tensors

Vector ranks of tensors

Unfolding tensor: in direction 1:
 $\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

Vector ranks of tensors

Unfolding tensor: in direction 1:
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1

Vector ranks of tensors

Unfolding tensor: in direction 1:
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$

Vector ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i, j j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)

Vector ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$\rho_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.

Vector ranks of tensors

Unfolding tensor: in direction 1 :
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$\rho_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Claim 1: $\rho_{1}=R_{1}$

Vector ranks of tensors

Unfolding tensor: in direction 1:
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$\rho_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Claim 1: $\rho_{1}=R_{1}$
Prf: View each matrix as a row vector in $m_{2} m_{3}$ coordinates
Then ρ_{1} is the rank of A_{1}

Vector ranks of tensors

Unfolding tensor: in direction 1:
$\mathcal{T}=\left[t_{i, j, k}\right]$ view as a matrix $A_{1}=\left[t_{i,(j, k)}\right] \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$R_{1}:=\operatorname{rank} A_{1}$: dimension of column subspace spanned in direction 1
$T_{i, 1}:=\left[t_{i, j, k}\right]_{j, k=1}^{m_{2}, m_{3}} \in \mathbb{F}^{m_{2} \times m_{3}}, i=1, \ldots, m_{1}$
$\mathcal{T}=\sum_{i=1}^{m_{1}} T_{i, 1} \mathbf{e}_{i, 1}$ (convenient notation)
$\rho_{1}:=\operatorname{dim} \operatorname{span}\left(T_{1,1}, \ldots, T_{m_{1}, 1}\right)$.
Claim 1: $\rho_{1}=R_{1}$
Prf: View each matrix as a row vector in $m_{2} m_{3}$ coordinates
Then ρ_{1} is the rank of \boldsymbol{A}_{1}
Similarly, unfolding in directions 2, 3

Basic inequality

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$

Basic inequality

> Claim rank $\mathcal{T} \geq R_{1}$
> Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$ So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$
So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$
$\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ viewed as $\mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z}) \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$,

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$
So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$
$\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ viewed as $\mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z}) \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$,
$\operatorname{rank} \mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z})=1$ if $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \neq \mathbf{0}$

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$
So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$
$\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ viewed as $\mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z}) \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$,
$\operatorname{rank} \mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z})=1$ if $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \neq \mathbf{0}$
So any CANDEC of \mathcal{T} induces a decomposition of A
as a sum of rank one matrices

Basic inequality

Claim rank $\mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$
So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$
$\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ viewed as $\mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z}) \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$,
$\operatorname{rank} \mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z})=1$ if $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \neq \mathbf{0}$
So any CANDEC of \mathcal{T} induces a decomposition of A
as a sum of rank one matrices
Hence
$\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)($ WELL KNOWN $)$

Basic inequality

Claim $\operatorname{rank} \mathcal{T} \geq R_{1}$
Reason $\mathbf{U}_{2} \otimes \mathbf{U}_{3} \sim \mathbb{F}^{m_{2} \times m_{3}} \equiv \mathbb{F}^{m_{2} m_{3}}$
View $\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$ as $\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \sim \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$
So \mathcal{T} is viewed as $A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}, R_{1}=\operatorname{rank} A_{1}$
$\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ viewed as $\mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z}) \in \mathbb{F}^{m_{1} \times\left(m_{2} m_{3}\right)}$,
$\operatorname{rank} \mathbf{x} \otimes(\mathbf{y} \otimes \mathbf{z})=1$ if $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \neq \mathbf{0}$
So any CANDEC of \mathcal{T} induces a decomposition of A
as a sum of rank one matrices
Hence
$\operatorname{rank} \mathcal{T} \geq \max \left(R_{1}, R_{2}, R_{3}\right)($ WELL KNOWN $)$ Note:

- R_{1}, R_{2}, R_{3} are easily computable
- It is possible that $R_{1} \neq R_{2} \neq R_{3}$

Rank 3-tensor characterization

Rank 3-tensor characterization

OBSERVATION:
 $\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.

Rank 3-tensor characterization

OBSERVATION:
 $\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.

PROP: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

Rank 3-tensor characterization

OBSERVATION:

$\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.
PROP: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}(1)$

Rank 3-tensor characterization

OBSERVATION:

$\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.
PROP: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$.

Rank 3-tensor characterization

OBSERVATION:

$\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.
PROP: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$.
Vise versa suppose $T_{k, 3}=\sum_{i=1}^{p} a_{k, i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k=1, \ldots, m_{3}$.

Rank 3-tensor characterization

OBSERVATION:

$\exists \mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$ s.t. $\tau \in \mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.
PROP: For $\tau=\mathcal{T}=\left[t_{i, j, k}\right]$ let
$T_{k, 3}:=\left[t_{i, j, k}\right]_{i, j=1}^{m_{1}, m_{2}} \in \mathbb{F}^{m_{1} \times m_{2}}, k=1, \ldots, m_{3}$. Then $\operatorname{rank} \mathcal{T}=$ minimal dimension of subspace $L \subset \mathbb{F}^{m_{1} \times m_{2}}$ spanned by rank one matrices containing $T_{1,3}, \ldots, T_{m_{3}, 3}$.

PROOF: Suppose $\tau=\sum_{i=1}^{p} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$ (1)
Write $\mathbf{z}_{i}=\sum_{j=1}^{m_{3}} z_{i, j} \mathbf{e}_{j, 3}$ then each $T_{k, 3} \in \operatorname{span}\left(\mathbf{x}_{1} \otimes \mathbf{y}_{1}, \ldots, \mathbf{x}_{p} \otimes \mathbf{y}_{p}\right)$.
Vise versa suppose $T_{k, 3}=\sum_{i=1}^{p} a_{k, i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}, k=1, \ldots, m_{3}$.
Then (1) holds with $\mathbf{z}_{i}:=\sum_{k=1}^{m_{3}} a_{k, i} \mathbf{e}_{k, 3}$.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}, \operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}, \operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$. RMK: Usually there exist a subvariety $\mathbf{Y} \varsubsetneqq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ $\operatorname{rank} \mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}, \operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \varsubsetneqq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ rank $\mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}, \operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \varsubsetneqq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ rank $\mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}, \operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \varsubsetneqq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ rank $\mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties
(1) $\mathbb{R}^{m_{1} \times m_{2} \times m_{3}} \backslash\left(\cup_{l=1}^{K} \mathbf{Z}_{l}\right)$ a real algebraic variety.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}$, $\operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \nsubseteq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ $\operatorname{rank} \mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties
(1) $\mathbb{R}^{m_{1} \times m_{2} \times m_{3}} \backslash\left(\cup_{l=1}^{K} \mathbf{Z}_{I}\right)$ a real algebraic variety.
(2) The rank of each $\mathcal{T} \in \mathbf{Z}_{I}$ is r_{I} for $I=1, \ldots, K$.

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \nsubseteq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}$, $\operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \nsubseteq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ $\operatorname{rank} \mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties
(1) $\mathbb{R}^{m_{1} \times m_{2} \times m_{3}} \backslash\left(\cup_{l=1}^{K} \mathbf{Z}_{I}\right)$ a real algebraic variety.
(2) The rank of each $\mathcal{T} \in \mathbf{Z}_{I}$ is r_{I} for $I=1, \ldots, K$.
($r_{1}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \varsubsetneqq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}$, rank $\mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \varsubsetneqq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ $\operatorname{rank} \mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties
(1) $\mathbb{R}^{m_{1} \times m_{2} \times m_{3}} \backslash\left(\cup_{l=1}^{K} \mathbf{Z}_{l}\right)$ a real algebraic variety.
(2) The rank of each $\mathcal{T} \in \mathbf{Z}_{l}$ is r_{l} for $I=1, \ldots, K$.
(3) $r_{1}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$
(4) $r_{l} \geq r_{1}$ for $I=2, \ldots, K$

Generic rank of 3-tensor

Basic results of algebraic geometry imply:
THM 1: A randomly chosen tensor $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ with probability one has a fixed rank denoted by $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$, called the generic rank. That is, there exists an algebraic variety $\mathbf{X} \nsubseteq \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ such that for any $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{X}$, $\operatorname{rank} \mathcal{T}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: Usually there exist a subvariety $\mathbf{Y} \nsubseteq \mathbf{X}$ such that for any $\mathcal{T} \in \mathbf{Y}$ $\operatorname{rank} \mathcal{T}>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
RMK: $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ is easily computable (See later)
RMK: For $\mathcal{T} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ there is a finite number of open connected semi-algebraic sets $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{K}, K \geq 1$ with properties
(1) $\mathbb{R}^{m_{1} \times m_{2} \times m_{3}} \backslash\left(\cup_{l=1}^{K} \mathbf{Z}_{I}\right)$ a real algebraic variety.
(2) The rank of each $\mathcal{T} \in \mathbf{Z}_{I}$ is r_{I} for $I=1, \ldots, K$.
($r_{1}=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$
(1) $r_{l} \geq r_{1}$ for $I=2, \ldots, K$

It is possible $\max _{1} r_{1}>r_{1}$

An example-I

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.
Proof: $\tau=\mathcal{T}=\left[t_{i, j, k}\right]_{i, j, k}^{m, m, 2}$, in standard bases of
$\mathbf{U}_{1}=\mathbf{U}_{2}=\mathbb{C}^{m}, \mathbf{U}_{3}=\mathbb{C}^{2}$ is represented by
$A:=\left[t_{i, j, 1}\right], B:=\left[t_{i, j, 2}\right] \in \mathbb{C}^{m \times m}$.

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.
Proof: $\tau=\mathcal{T}=\left[t_{i, j, k}\right]_{i, j, k}^{m, m, 2}$, in standard bases of
$\mathbf{U}_{1}=\mathbf{U}_{2}=\mathbb{C}^{m}, \mathbf{U}_{3}=\mathbb{C}^{2}$ is represented by
$A:=\left[t_{i, j, 1}\right], B:=\left[t_{i, j, 2}\right] \in \mathbb{C}^{m \times m}$.
If we change the bases of $\mathbf{U}_{1}=\mathbb{C}^{m}, \mathbf{U}_{2}=\mathbb{C}^{m}$ using matrices P, Q then τ represented by $A^{\prime}=P A Q^{\top}, B^{\prime}=P B Q^{\top}$

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.
Proof: $\tau=\mathcal{T}=\left[t_{i, j, k}\right]_{i, j, k}^{m, m, 2}$, in standard bases of
$\mathbf{U}_{1}=\mathbf{U}_{2}=\mathbb{C}^{m}, \mathbf{U}_{3}=\mathbb{C}^{2}$ is represented by
$A:=\left[t_{i, j, 1}\right], B:=\left[t_{i, j, 2}\right] \in \mathbb{C}^{m \times m}$.
If we change the bases of $\mathbf{U}_{1}=\mathbb{C}^{m}, \mathbf{U}_{2}=\mathbb{C}^{m}$ using matrices P, Q then τ represented by $A^{\prime}=P A Q^{\top}, B^{\prime}=P B Q^{\top}$
For randomly chosen \mathcal{T}, A is invertible and $A^{-1} B$ is diagonable over \mathbb{C}, (that defines \mathbf{X}). So $A^{-1} B=\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}, I_{m}=\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}$.

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.
Proof: $\tau=\mathcal{T}=\left[t_{i, j, k}\right]_{i, j, k}^{m, m, 2}$, in standard bases of
$\mathbf{U}_{1}=\mathbf{U}_{2}=\mathbb{C}^{m}, \mathbf{U}_{3}=\mathbb{C}^{2}$ is represented by
$A:=\left[t_{i, j, 1}\right], B:=\left[t_{i, j, 2}\right] \in \mathbb{C}^{m \times m}$.
If we change the bases of $\mathbf{U}_{1}=\mathbb{C}^{m}, \mathbf{U}_{2}=\mathbb{C}^{m}$ using matrices P, Q then τ represented by $A^{\prime}=P A Q^{\top}, B^{\prime}=P B Q^{\top}$
For randomly chosen \mathcal{T}, A is invertible and $A^{-1} B$ is diagonable over \mathbb{C}, (that defines \mathbf{X}). So $A^{-1} B=\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}, I_{m}=\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}$. Choose a new basis in $\left[\mathbf{u}_{1,1}, \ldots, \mathbf{u}_{m, 1}\right]$ in $\mathbf{U}_{1}=\mathbb{C}^{m}$ given by A^{-1} and leave other bases as is. Then in new bases \mathcal{T} represented by $\mathcal{T}^{\prime}=I_{m} \mathbf{e}_{1,3}+A^{-1} B \mathbf{e}_{2,3}=\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2} \otimes \mathbf{e}_{1,3}+\lambda_{i} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2} \otimes \mathbf{e}_{2,3}=$ $\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 3} \otimes\left(\mathbf{e}_{1,3}+\lambda_{i} \mathbf{e}_{2,3}\right)$.

An example-I

Claim: $\operatorname{grank}(m, m, 2)=m$ for any $m \geq 2$.
Proof: $\tau=\mathcal{T}=\left[t_{i, j, k}\right]_{i, j, k}^{m, m, 2}$, in standard bases of
$\mathbf{U}_{1}=\mathbf{U}_{2}=\mathbb{C}^{m}, \mathbf{U}_{3}=\mathbb{C}^{2}$ is represented by
$A:=\left[t_{i, j, 1}\right], B:=\left[t_{i, j, 2}\right] \in \mathbb{C}^{m \times m}$.
If we change the bases of $\mathbf{U}_{1}=\mathbb{C}^{m}, \mathbf{U}_{2}=\mathbb{C}^{m}$ using matrices P, Q then τ represented by $A^{\prime}=P A Q^{\top}, B^{\prime}=P B Q^{\top}$
For randomly chosen \mathcal{T}, A is invertible and $A^{-1} B$ is diagonable over \mathbb{C}, (that defines \mathbf{X}). So $A^{-1} B=\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}, I_{m}=\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2}$. Choose a new basis in $\left[\mathbf{u}_{1,1}, \ldots, \mathbf{u}_{m, 1}\right]$ in $\mathbf{U}_{1}=\mathbb{C}^{m}$ given by A^{-1} and leave other bases as is. Then in new bases \mathcal{T} represented by $\mathcal{T}^{\prime}=I_{m} \mathbf{e}_{1,3}+A^{-1} B \mathbf{e}_{2,3}=\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2} \otimes \mathbf{e}_{1,3}+\lambda_{i} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 2} \otimes \mathbf{e}_{2,3}=$ $\sum_{i=1}^{m} \mathbf{u}_{i, 2} \otimes \mathbf{u}_{i, 3} \otimes\left(\mathbf{e}_{1,3}+\lambda_{i} \mathbf{e}_{2,3}\right)$.
So $\operatorname{rank} \mathcal{T} \leq m$. Easy $R_{1}=R_{2}=m$ for \mathcal{T}^{\prime}. Hence $\operatorname{rank} \tau=m$.

An Example-II

If B is not diagonable then $\operatorname{rank} \tau>m$ (over \mathbb{C}).

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose A invertible

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose A invertible
If $A^{-1} B$ has two distinct real eigenvalues, or $A^{-1} B=a l_{2}$ then $\operatorname{rank} \tau=2$.

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose A invertible
If $A^{-1} B$ has two distinct real eigenvalues, or $A^{-1} B=a l_{2}$ then $\operatorname{rank} \tau=2$.
If $A^{-1} B$ has two distinct complex eigenvalues or it is not diagonable $\operatorname{rank} \tau=3$.

An Example-II

If B is not diagonable then rank $\tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose A invertible
If $A^{-1} B$ has two distinct real eigenvalues, or $A^{-1} B=a l_{2}$ then $\operatorname{rank} \tau=2$.
If $A^{-1} B$ has two distinct complex eigenvalues or it is not diagonable $\operatorname{rank} \tau=3$.
If the subspace spanned by A, B does not contain an invertible matrix then $\operatorname{rank} \tau=1,2$.

An Example-II

If B is not diagonable then $\operatorname{rank} \tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose \boldsymbol{A} invertible
If $A^{-1} B$ has two distinct real eigenvalues, or $A^{-1} B=a l_{2}$ then $\operatorname{rank} \tau=2$.
If $A^{-1} B$ has two distinct complex eigenvalues or it is not diagonable $\operatorname{rank} \tau=3$.
If the subspace spanned by A, B does not contain an invertible matrix then $\operatorname{rank} \tau=1,2$.
(This can happen if either $\operatorname{dim} \operatorname{span}\left(A \mathbb{R}^{2}, B \mathbb{R}^{2}\right)=1$ or $\operatorname{dim} \operatorname{span}\left(A^{\top} \mathbb{R}^{2}, B^{\top} \mathbb{R}^{2}\right)=1$.)

An Example-II

If B is not diagonable then $\operatorname{rank} \tau>m$ (over \mathbb{C}).
The variety of all $B \in \mathbb{C}^{m \times m}$ which are not diagonable is essentially the variety of all complex matrices with one eigenvalue of multiplicity 2. Hence its codimension is 1 .
The case $\mathbb{R}^{2 \times 2 \times 2}$
$\mathbf{0} \neq \tau=\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{2 \times 2 \times 2} \mathcal{T}=A \mathbf{e}_{1}+B \mathbf{e}_{2}, A, B \in \mathbb{R}^{2 \times 2}$.
Suppose A invertible
If $A^{-1} B$ has two distinct real eigenvalues, or $A^{-1} B=a l_{2}$ then $\operatorname{rank} \tau=2$.
If $A^{-1} B$ has two distinct complex eigenvalues or it is not diagonable $\operatorname{rank} \tau=3$.
If the subspace spanned by A, B does not contain an invertible matrix then $\operatorname{rank} \tau=1,2$.
(This can happen if either $\operatorname{dim} \operatorname{span}\left(A \mathbb{R}^{2}, B \mathbb{R}^{2}\right)=1$ or
$\operatorname{dim} \operatorname{span}\left(A^{\top} \mathbb{R}^{2}, B^{\top} \mathbb{R}^{2}\right)=1$.)
For example $\tau=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{e}_{1}+\mathbf{u} \otimes \mathbf{w} \otimes \mathbf{e}_{2}, \mathbf{u} \neq \mathbf{0}$
If \mathbf{v}, \mathbf{w} linearly independent $\operatorname{rank} \tau=2$

Algebraic geometry \& tensor rank

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most
I.e. there exists an irreducible variety \mathbf{X}_{k}, strict subvariety $\mathbf{Z}_{k} \varsubsetneqq \mathbf{X}_{k}$, s.t.

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most
I.e. there exists an irreducible variety \mathbf{X}_{k}, strict subvariety $\mathbf{Z}_{k} \varsubsetneqq \mathbf{X}_{k}$, s.t.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbf{X}_{k} \backslash \mathbf{Z}_{k}$

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most
I.e. there exists an irreducible variety \mathbf{X}_{k}, strict subvariety $\mathbf{Z}_{k} \varsubsetneqq \mathbf{X}_{k}$, s.t.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbf{X}_{k} \backslash \mathbf{Z}_{k}$
$\operatorname{dim}_{\mathbb{C}} \mathbf{X}_{k}=$ the maximal rank of the Jacobian matrix of $J\left(f_{k}\right)\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$, which is equal to $\operatorname{dim}_{\mathbb{C}} X_{k}$ for any random choice of $\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$.

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most
I.e. there exists an irreducible variety \mathbf{X}_{k}, strict subvariety $\mathbf{Z}_{k} \varsubsetneqq \mathbf{X}_{k}$, s.t.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbf{X}_{k} \backslash \mathbf{Z}_{k}$
$\operatorname{dim}_{\mathbb{C}} \mathbf{X}_{k}=$ the maximal rank of the Jacobian matrix of $J\left(f_{k}\right)\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$,
which is equal to $\operatorname{dim}_{\mathbb{C}} X_{k}$ for any random choice of $\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$.
THM 2:
$\operatorname{rank} J\left(f_{k}\right)=\operatorname{dim} \operatorname{span}\left\{\mathbf{e}_{i_{1}, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{x}_{l, 3}, \mathbf{x}_{l, 1} \otimes \mathbf{e}_{i_{2}, 2} \otimes \mathbf{x}_{l, 3}, \mathbf{x}_{l, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{e}_{i_{3}, 3}\right\}$,
$i_{j}=1, \ldots, m_{j}, j=1,2,3, l=1, \ldots, k$

Algebraic geometry \& tensor rank

View tensor one rank matrices as the map
$f: \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}: f(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$
note $(a \mathbf{x}, b \mathbf{y}, c \mathbf{z}) \mapsto(a b c) \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z} \Rightarrow 2$-parameters loss
$f_{k}:\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k} \rightarrow \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$
$f_{k}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right):=\sum_{i=1}^{k} f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i}\right)$.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
the irreducible quasi-variety of all 3-tensors of rank k at most
I.e. there exists an irreducible variety \mathbf{X}_{k}, strict subvariety $\mathbf{Z}_{k} \varsubsetneqq \mathbf{X}_{k}$, s.t.
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbf{X}_{k} \backslash \mathbf{Z}_{k}$
$\operatorname{dim}_{\mathbb{C}} \mathbf{X}_{k}=$ the maximal rank of the Jacobian matrix of $J\left(f_{k}\right)\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$,
which is equal to $\operatorname{dim}_{\mathbb{C}} X_{k}$ for any random choice of $\left(\mathbf{x}_{1}, \ldots, \mathbf{z}_{k}\right)$.
THM 2:
$\operatorname{rank} J\left(f_{k}\right)=\operatorname{dim} \operatorname{span}\left\{\mathbf{e}_{i_{1}, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{x}_{l, 3}, \mathbf{x}_{l, 1} \otimes \mathbf{e}_{i_{2}, 2} \otimes \mathbf{x}_{l, 3}, \mathbf{x}_{l, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{e}_{i_{3}, 3}\right\}$,
$i_{j}=1, \ldots, m_{j}, j=1,2,3, l=1, \ldots, k$
Terracini's lemma ~ 1915

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$ COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$ COR: If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$.

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$ COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$. COR : For $k=1, \ldots, \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)-1 \operatorname{dim} \mathbf{X}_{k}<\operatorname{dim} \mathbf{X}_{k+1}$. Furthermore $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$ for $k \geq \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$ COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$. COR : For $k=1, \ldots, \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)-1 \operatorname{dim} \mathbf{X}_{k}<\operatorname{dim} \mathbf{X}_{k+1}$. Furthermore $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$ for $k \geq \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
CLAIM: $k^{\star}:=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \geq\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ and (1): $\mathbf{X}_{k^{\star}}=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{Z}_{k^{\star}}$

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$. $r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$
COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$. COR : For $k=1, \ldots, \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)-1 \operatorname{dim} \mathbf{X}_{k}<\operatorname{dim} \mathbf{X}_{k+1}$. Furthermore $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$ for $k \geq \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
CLAIM: $k^{\star}:=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \geq\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ and (1): $\mathbf{X}_{k^{\star}}=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{Z}_{k^{\star}}$

PROOF Fact: Any quasi-variety in \mathbb{C}^{m} of dimension m is of the form $\mathbb{C}^{m} \backslash \mathbf{Z}$ for some subvariety $\mathbf{Z} \varsubsetneqq \mathbb{C}^{m}$. Hence (1).

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$.
$r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$
COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$. COR : For $k=1, \ldots, \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)-1 \operatorname{dim} \mathbf{X}_{k}<\operatorname{dim} \mathbf{X}_{k+1}$. Furthermore $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$ for $k \geq \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
CLAIM: $k^{\star}:=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \geq\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ and (1): $\mathbf{X}_{k^{\star}}=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{Z}_{k^{\star}}$

PROOF Fact: Any quasi-variety in \mathbb{C}^{m} of dimension m is of the form $\mathbb{C}^{m} \backslash \mathbf{Z}$ for some subvariety $\mathbf{Z} \varsubsetneqq \mathbb{C}^{m}$. Hence (1).
Each factor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ has $m_{1}+m_{2}+m_{3}-2$ parameters. If all the parameters are independent we need at least $\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ to obtain $m_{1} m_{2} m_{3}$ parameters of $\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$.

COR : $r\left(k, m_{1}, m_{2}, m_{3}\right):=\operatorname{dim} \mathbf{X}_{k}$ dimension of the subspace given in THM 2 , for a randomly chosen $\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$.
$r\left(k, m_{1}, m_{2}, m_{3}\right)=\operatorname{rank} J\left(f_{k}\right)\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}\right)$
COR : If $r\left(k, m_{1}, m_{2}, m_{3}\right)=k\left(m_{1}+m_{2}+m_{3}-2\right)$ then a generic tensor of rank k can be represented exactly in $N\left(k, m_{1}, m_{2}, m_{3}\right)$ ways as a sum of k rank one tensors
COR : $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ minimal k s.t. $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$. COR : For $k=1, \ldots, \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)-1 \operatorname{dim} \mathbf{X}_{k}<\operatorname{dim} \mathbf{X}_{k+1}$. Furthermore $\operatorname{dim} \mathbf{X}_{k}=m_{1} m_{2} m_{3}$ for $k \geq \operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$.
CLAIM: $k^{\star}:=\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \geq\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ and (1): $\mathbf{X}_{k^{\star}}=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}} \backslash \mathbf{Z}_{k^{\star}}$

PROOF Fact: Any quasi-variety in \mathbb{C}^{m} of dimension m is of the form $\mathbb{C}^{m} \backslash \mathbf{Z}$ for some subvariety $\mathbf{Z} \varsubsetneqq \mathbb{C}^{m}$. Hence (1).
Each factor $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}$ has $m_{1}+m_{2}+m_{3}-2$ parameters. If all the parameters are independent we need at least $\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil$ to obtain $m_{1} m_{2} m_{3}$ parameters of $\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$. $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \geq \operatorname{grank}\left(l_{1}, l_{2}, l_{3}\right)$ for $m_{1} \geq l_{1}, m_{2} \geq l_{2}, m_{3} \geq l_{3}$

Maximal tensor rank

Lemma: $f_{k-1}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k-1}\right) \varsubsetneqq f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
for $k=1, \ldots, \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ and
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ for $k \geq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$.

Maximal tensor rank

Lemma: $f_{k-1}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k-1}\right) \varsubsetneqq f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
for $k=1, \ldots, \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ and
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ for $k \geq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$.
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ maximal (tensor) rank
(of $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$)

Maximal tensor rank

Lemma: $f_{k-1}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k-1}\right) \varsubsetneqq f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
for $k=1, \ldots, \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ and
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ for $k \geq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$.
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ maximal (tensor) rank
(of $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$)
$\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \leq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)($ usually $<$)

Maximal tensor rank

Lemma: $f_{k-1}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k-1}\right) \varsubsetneqq f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
for $k=1, \ldots, \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ and
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ for $k \geq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$.
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ maximal (tensor) rank
(of $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$)
$\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \leq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)($ usually $<$)
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right) \geq \operatorname{mrank}\left(l_{1}, l_{2}, l_{3}\right)$ for $m_{1} \geq l_{1}, m_{2} \geq l_{2}, m_{3} \geq l_{3}$

Maximal tensor rank

Lemma: $f_{k-1}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k-1}\right) \varsubsetneqq f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)$
for $k=1, \ldots, \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ and
$f_{k}\left(\left(\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \mathbb{C}^{m_{3}}\right)^{k}\right)=\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ for $k \geq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$.
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)$ maximal (tensor) rank
(of $\mathcal{T} \in \mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$)
$\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right) \leq \operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right)($ usually $<$)
$\operatorname{mrank}\left(m_{1}, m_{2}, m_{3}\right) \geq \operatorname{mrank}\left(l_{1}, l_{2}, l_{3}\right)$ for $m_{1} \geq l_{1}, m_{2} \geq l_{2}, m_{3} \geq l_{3}$
The computation of $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ difficult, probably NP-hard

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.
THM:For $2 \leq I \leq m \leq n$:

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.
THM:For $2 \leq I \leq m \leq n$:
(1) $\operatorname{grank}(I, m, n)=n$ if $(I-1)(m-1)+1 \leq n \leq I m$

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.
THM:For $2 \leq I \leq m \leq n$:
(1) $\operatorname{grank}(I, m, n)=n$ if $(I-1)(m-1)+1 \leq n \leq I m$
(2) $\operatorname{grank}(I, m, n)=m n$ if $I m<n$

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.
THM:For $2 \leq I \leq m \leq n$:
(1) $\operatorname{grank}(I, m, n)=n$ if $(I-1)(m-1)+1 \leq n \leq I m$
(2) $\operatorname{grank}(I, m, n)=m n$ if $I m<n$

PROOF For $n \geq(I-1)(m-1)+1 \operatorname{span}\left(T_{1,3}, \ldots, T_{n, 3}\right)=\min (n, m n)$ and is spanned by rank one matrices

Exact generic rank values

THM 3: Any subspace $L \subset \mathbb{C}^{m \times n} \operatorname{dim} L=(m-k)(n-k)+1$ has A s.t. $1 \leq \operatorname{rank} A \leq k$.
PROOF: $\mathbf{V}_{m, n, k} \subset \mathbb{C}^{m \times n}$, variety of matrices of at most rank k has dimension $k(m+n-k) \Rightarrow \mathbb{P} \mathbf{V}_{m, n, k} \cap \mathbb{P} L \neq \emptyset \square$

Generic L of $\operatorname{dim} L=(m-k)(n-k)+1$ has exactly
$\gamma_{k, m, n}:=\prod_{j=0}^{n-k-1} \frac{\binom{m+j}{m-k}}{\binom{m-k+j}{m-k}}=\prod_{j=0}^{n-k-1} \frac{(m+j)!j!}{(k+j)!(m-k+j)!}$,
matrices of rank k which span L.
THM:For $2 \leq I \leq m \leq n$:
(1) $\operatorname{grank}(I, m, n)=n$ if $(I-1)(m-1)+1 \leq n \leq I m$
(2) $\operatorname{grank}(I, m, n)=m n$ if $I m<n$

PROOF For $n \geq(I-1)(m-1)+1 \operatorname{span}\left(T_{1,3}, \ldots, T_{n, 3}\right)=\min (n, m n)$ and is spanned by rank one matrices
COR: $(I-1)(m-1)+1=\operatorname{grank}(I, m,(I-1)(m-1)+1) \geq$ $\operatorname{grank}(I, m,(I-1)(m-1)) \geq\left\lceil\frac{I m(I-1)(m-1)}{I+m+(I-1)(m-1)+2}\right\rceil=(I-1)(m-1)+1$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{I+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer
CON 2: For $3 \leq I \leq m \leq n \leq(I-1)(m-1)$
not satisfying conditions THM 4 and $k<\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
$\operatorname{dim} f_{k}\left(\left(\mathbb{C}^{\prime} \times \mathbb{C}^{m} \times \mathbb{C}^{n}\right)^{k}\right)=k(I+m+n-2)$

Generic rank conjecture

COR: $\operatorname{grank}(2, m, n)=\max (m, n)$ for $2 \leq m, n$
THM 4: Strassen For $p \geq 2$
$\operatorname{grank}(3,2 p, 2 p)=\left\lceil\frac{12 p^{2}}{4 p+1}\right\rceil$ and $\operatorname{grank}(3,2 p-1,2 p-1)=\left\lceil\frac{3(2 p-1)^{2}}{4 p-1}\right\rceil+1$
CON 1: For $3 \leq I \leq m \leq n<(I-1)(m-1)$
not satisfying conditions THM 4
$\operatorname{grank}(I, m, n)=\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
Con 1 true for
$(n, n, n+2)$ if $n \neq 2(\bmod 3)$,
$(n-1, n, n)$ if $n=0(\bmod 3)$,
$(4, m, m)$ if $m \geq 4$,
(n, n, n) if $n \geq 4$
$(I, 2 p, 2 q)$ if $I \leq 2 p \leq 2 q$ and and $\frac{2 / p}{1+2 p+2 q-2}$ is integer
CON 2: For $3 \leq I \leq m \leq n \leq(I-1)(m-1)$
not satisfying conditions THM 4 and $k<\left\lceil\frac{I m n}{1+m+n-1}\right\rceil$
$\operatorname{dim} f_{k}\left(\left(\mathbb{C}^{\prime} \times \mathbb{C}^{m} \times \mathbb{C}^{n}\right)^{k}\right)=k(I+m+n-2)$
CON 2 holds in above cases CON 1 holds

Numerical verification of Conjectures $1 \& 2$

We verified numerically ${ }^{1}$ the above two conjectures for $m_{1} \leq m_{2} \leq m_{3} \leq 10$, by finding random $k \in\left[2,\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil\right]$ vectors $\mathbf{x}_{l, i} \in(\mathbb{Z} \cap[-99,99])^{m_{i}}, i=1,2,3, I=1, \ldots, k$ such that the rank of the Jacobian matrix at the corresponding rank k tensor

$$
\begin{equation*}
\mathcal{T}=\sum_{l=1}^{k} \mathbf{x}_{l, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{x}_{l, 3} \tag{0.1}
\end{equation*}
$$

was $\min \left(k\left(m_{1}+m_{2}+m_{3}-2\right), m_{1} m_{2} m_{3}\right)$.

[^0]
Numerical verification of Conjectures 1 \&2

We verified numerically ${ }^{1}$ the above two conjectures for $m_{1} \leq m_{2} \leq m_{3} \leq 10$, by finding random $k \in\left[2,\left\lceil\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rceil\right]$ vectors $\mathbf{x}_{l, i} \in(\mathbb{Z} \cap[-99,99])^{m_{i}}, i=1,2,3, I=1, \ldots, k$ such that the rank of the Jacobian matrix at the corresponding rank k tensor

$$
\begin{equation*}
\mathcal{T}=\sum_{l=1}^{k} \mathbf{x}_{l, 1} \otimes \mathbf{x}_{l, 2} \otimes \mathbf{x}_{l, 3} \tag{0.1}
\end{equation*}
$$

was $\min \left(k\left(m_{1}+m_{2}+m_{3}-2\right), m_{1} m_{2} m_{3}\right)$.
We call $\left(m_{1}, m_{2}, m_{3}\right)$ regular if $\left(m_{1}, m_{2}, m_{3}\right)$ satisfies Conjecture 1 and $\left\lfloor\frac{m_{1} m_{2} m_{3}}{m_{1}+m_{2}+m_{3}-2}\right\rfloor$ satisfies Conjecture 2.

[^1]
COR:

for $n>m \geq 2$: $m+1 \leq \operatorname{mrank}(2, m, m) \leq 2 m-1$ and $\operatorname{mrank}(2, m, n) \leq 2 m$ Eq. if $n \geq 2 m$

COR:

for $n>m \geq 2$: $m+1 \leq \operatorname{mrank}(2, m, m) \leq 2 m-1$
and $\operatorname{mrank}(2, m, n) \leq 2 m$ Eq. if $n \geq 2 m$
for $m, n \geq 3$:
(1) $\operatorname{grank}(n, m, m) \leq\left\lfloor\frac{n}{2}\right\rfloor m+\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)(m-\lfloor\sqrt{n-1}\rfloor)$ if $m \geq 2\lfloor\sqrt{n-1}\rfloor$

COR:

for $n>m \geq 2$: $m+1 \leq \operatorname{mrank}(2, m, m) \leq 2 m-1$
and $\operatorname{mrank}(2, m, n) \leq 2 m$ Eq. if $n \geq 2 m$
for $m, n \geq 3$:
(1) $\operatorname{grank}(n, m, m) \leq\left\lfloor\frac{n}{2}\right\rfloor m+\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)(m-\lfloor\sqrt{n-1}\rfloor)$ if $m \geq 2\lfloor\sqrt{n-1}\rfloor$
(2) $\operatorname{grank}(n, m, m) \leq n(m-\lfloor\sqrt{n-1}\rfloor)$
if $m<2\lfloor\sqrt{n-1}\rfloor<2(m-1)$,

COR:

for $n>m \geq 2$: $m+1 \leq \operatorname{mrank}(2, m, m) \leq 2 m-1$
and $\operatorname{mrank}(2, m, n) \leq 2 m$ Eq. if $n \geq 2 m$
for $m, n \geq 3$:
(1) $\operatorname{grank}(n, m, m) \leq\left\lfloor\frac{n}{2}\right\rfloor m+\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)(m-\lfloor\sqrt{n-1}\rfloor)$
if $m \geq 2\lfloor\sqrt{n-1}\rfloor$
(2) $\operatorname{grank}(n, m, m) \leq n(m-\lfloor\sqrt{n-1}\rfloor)$
if $m<2\lfloor\sqrt{n-1}\rfloor<2(m-1)$,
(3) $\operatorname{mrank}(n, m, m) \leq$

$$
\sum_{i=1}^{\lfloor\sqrt{n-1}\rfloor}(2 i-1)(m-i+1)+\left(m-\lfloor\sqrt{n-1}\rfloor^{2}\right)(m-\lfloor\sqrt{n-1}\rfloor)
$$

Proofs

$(2, m, n)$ - Kronecker canonical form for $\left(T_{1,1}, T_{2,1}\right) \in\left(\mathbb{C}^{m \times n}\right)^{2}$

Proofs

$(2, m, n)$ - Kronecker canonical form for $\left(T_{1,1}, T_{2,1}\right) \in\left(\mathbb{C}^{m \times n}\right)^{2}$
For (1) and (2) assume that $T_{1,1}, \ldots, T_{n, 1} \in \mathbb{C}^{m \times m}$ generic

Proofs

$(2, m, n)$ - Kronecker canonical form for $\left(T_{1,1}, T_{2,1}\right) \in\left(\mathbb{C}^{m \times n}\right)^{2}$
For (1) and (2) assume that $T_{1,1}, \ldots, T_{n, 1} \in \mathbb{C}^{m \times m}$ generic (2): $I=\lfloor\sqrt{n-1}\rfloor$. So $n \geq I^{2}+1$. THM 3 yields $\operatorname{span}\left(T_{1,1}, \ldots, T_{n, 1}\right)$ has $\gamma_{m-l, m, m} \geq n$ linearly independent matrices of rank $m-l$.

Proofs

$(2, m, n)$ - Kronecker canonical form for $\left(T_{1,1}, T_{2,1}\right) \in\left(\mathbb{C}^{m \times n}\right)^{2}$
For (1) and (2) assume that $T_{1,1}, \ldots, T_{n, 1} \in \mathbb{C}^{m \times m}$ generic
(2): $I=\lfloor\sqrt{n-1}\rfloor$. So $n \geq I^{2}+1$. THM 3 yields $\operatorname{span}\left(T_{1,1}, \ldots, T_{n, 1}\right)$ has $\gamma_{m-l, m, m} \geq n$ linearly independent matrices of rank $m-l$.
(1): $\operatorname{span} T_{1,1}, \ldots, T_{n, 1} \subset \mathbb{C}^{m \times m}$
$\operatorname{span}\left(T_{2 i-1,1}, T_{2 i, 2}\right)$ is contained in subspace spanned by m rank one matrices

Proofs

$(2, m, n)$ - Kronecker canonical form for $\left(T_{1,1}, T_{2,1}\right) \in\left(\mathbb{C}^{m \times n}\right)^{2}$
For (1) and (2) assume that $T_{1,1}, \ldots, T_{n, 1} \in \mathbb{C}^{m \times m}$ generic
(2): $I=\lfloor\sqrt{n-1}\rfloor$. So $n \geq I^{2}+1$. THM 3 yields $\operatorname{span}\left(T_{1,1}, \ldots, T_{n, 1}\right)$ has $\gamma_{m-l, m, m} \geq n$ linearly independent matrices of rank $m-l$.
(1): $\operatorname{span} T_{1,1}, \ldots, T_{n, 1} \subset \mathbb{C}^{m \times m}$
$\operatorname{span}\left(T_{2 i-1,1}, T_{2 i, 2}\right)$ is contained in subspace spanned by m rank one matrices
(3): Assume the worst case:
$T_{1,1}, T_{2,1}, \ldots, T_{n, 1}$ lin. ind. Choose new base S_{1}, \ldots, S_{n} in
$\operatorname{span}\left(T_{1,1}, \ldots, T_{n, 1}\right)$ s.t. $\operatorname{rank} S_{1} \geq \operatorname{rank} S_{2} \geq \ldots \geq \operatorname{rank} S_{n}$ and
$\operatorname{span}\left(S_{1}, \ldots, S_{i}\right)=\operatorname{span}\left(T_{1,1}, \ldots, T_{i, 1}\right)$ for $i=1, \ldots, n$.
$\operatorname{rank} S_{1}=m, \operatorname{rank} S_{2}=\operatorname{rank} S_{3}=\operatorname{rank} S_{4}=2$,
$\operatorname{rank} S_{5}=\ldots=\operatorname{rank} S_{9}=3, \operatorname{rank} S_{10}=4 \ldots$

Theoretical bounds \& explanations

$4 \leq \operatorname{grank}(3,3,3) \leq 5=1 \cdot 3+2, \operatorname{mrank}(3,3,3) \leq 7=3+2+2$

Theoretical bounds \& explanations

$4 \leq \operatorname{grank}(3,3,3) \leq 5=1 \cdot 3+2, \operatorname{mrank}(3,3,3) \leq 7=3+2+2$
$\operatorname{grank}(3,3,4)=5\left(n=(m-1)^{2}\right), \operatorname{mrank}(3,3,4) \leq 9=3+2+2+2$

Theoretical bounds \& explanations

$4 \leq \operatorname{grank}(3,3,3) \leq 5=1 \cdot 3+2, \operatorname{mrank}(3,3,3) \leq 7=3+2+2$
$\operatorname{grank}(3,3,4)=5\left(n=(m-1)^{2}\right), \operatorname{mrank}(3,3,4) \leq 9=3+2+2+2$
$\operatorname{grank}(3,3,5)=5\left(n=(m-1)^{2}+1\right)$,
$\operatorname{mrank}(3,3,5) \leq 10=3+2+2+2+1$

Theoretical bounds \& explanations

$4 \leq \operatorname{grank}(3,3,3) \leq 5=1 \cdot 3+2, \operatorname{mrank}(3,3,3) \leq 7=3+2+2$
$\operatorname{grank}(3,3,4)=5\left(n=(m-1)^{2}\right), \operatorname{mrank}(3,3,4) \leq 9=3+2+2+2$
$\operatorname{grank}(3,3,5)=5\left(n=(m-1)^{2}+1\right)$,
$\operatorname{mrank}(3,3,5) \leq 10=3+2+2+2+1$
$6 \leq \operatorname{grank}(3,4,4) \leq 7=4+3, \operatorname{mrank}(3,4,4) \leq 10=4+3+3$
$7 \leq \operatorname{grank}(4,4,4) \leq 8=2 \cdot 4, \operatorname{mrank}(4,4,4) \leq 13=4+3+3+3$
$8 \leq \operatorname{grank}(4,4,5) \leq 10=2 \cdot 4+2, \operatorname{mrank}(4,4,5) \leq 15=13+2$

Theoretical bounds \& explanations

$$
\begin{aligned}
& 4 \leq \operatorname{grank}(3,3,3) \leq 5=1 \cdot 3+2, \operatorname{mrank}(3,3,3) \leq 7=3+2+2 \\
& \operatorname{grank}(3,3,4)=5\left(n=(m-1)^{2}\right), \operatorname{mrank}(3,3,4) \leq 9=3+2+2+2 \\
& \operatorname{grank}(3,3,5)=5\left(n=(m-1)^{2}+1\right), \\
& \operatorname{mrank}(3,3,5) \leq 10=3+2+2+2+1 \\
& 6 \leq \operatorname{grank}(3,4,4) \leq 7=4+3, \operatorname{mrank}(3,4,4) \leq 10=4+3+3 \\
& 7 \leq \operatorname{grank}(4,4,4) \leq 8=2 \cdot 4, \operatorname{mrank}(4,4,4) \leq 13=4+3+3+3 \\
& 8 \leq \operatorname{grank}(4,4,5) \leq 10=2 \cdot 4+2, \operatorname{mrank}(4,4,5) \leq 15=13+2 \\
& 7 \leq \operatorname{grank}(3,5,5) \leq 9=1 \cdot 5+4, \operatorname{mrank}(3,5,5) \leq 13=5+4+4 \\
& 9 \leq \operatorname{grank}(4,5,5) \leq 10=2 \cdot 5, \operatorname{mrank}(4,5,5) \leq 17=5+4+4+4 \\
& 10 \leq \operatorname{grank}(5,5,5) \leq 13=2 \cdot 5+3, \operatorname{mrank}(5,5,5) \leq 20=5+4+4+4+3
\end{aligned}
$$

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

THM: A polynomial map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps a semi-algebraic set to semi-algebraic set

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

THM: A polynomial map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps a semi-algebraic set to semi-algebraic set

THM: $\mathbb{R}^{1 \times m \times n}$ decomposes to finite number of open connected semi-algebraic sets C_{1}, \ldots, C_{M} :
$\mathbb{R}^{I \times m \times n} \backslash \cup_{i=1}^{M} C_{i}$ is a strict algebraic subvariety of $\mathbb{R}^{I \times m \times n}$.

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

THM: A polynomial map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps a semi-algebraic set to semi-algebraic set

THM: $\mathbb{R}^{I \times m \times n}$ decomposes to finite number of open connected semi-algebraic sets C_{1}, \ldots, C_{M} :
$\mathbb{R}^{I \times m \times n} \backslash \cup_{i=1}^{M} C_{i}$ is a strict algebraic subvariety of $\mathbb{R}^{I \times m \times n}$. Each $\mathcal{T} \in C_{i}$ has rank r_{i} for $i=1, \ldots, M$.

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

THM: A polynomial map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps a semi-algebraic set to semi-algebraic set

THM: $\mathbb{R}^{I \times m \times n}$ decomposes to finite number of open connected semi-algebraic sets C_{1}, \ldots, C_{M} :
$\mathbb{R}^{I \times m \times n} \backslash \cup_{i=1}^{M} C_{i}$ is a strict algebraic subvariety of $\mathbb{R}^{I \times m \times n}$. Each $\mathcal{T} \in C_{i}$ has rank r_{i} for $i=1, \ldots, M$. $\min \left(r_{1}, \ldots, r_{M}\right)=\operatorname{grank}(I, m, n)$.

Generic rank of real 3-tensors

DEF: Semi-algebraic set in \mathbb{R}^{n} is given by finite number of polynomial inequalities of the type $g_{i}(\mathbf{x})>0$ and/or $h_{j}(\mathbf{x}) \geq 0$.

THM: A polynomial map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps a semi-algebraic set to semi-algebraic set

THM: $\mathbb{R}^{I \times m \times n}$ decomposes to finite number of open connected semi-algebraic sets C_{1}, \ldots, C_{M} :
$\mathbb{R}^{I \times m \times n} \backslash \cup_{i=1}^{M} C_{i}$ is a strict algebraic subvariety of $\mathbb{R}^{I \times m \times n}$. Each $\mathcal{T} \in C_{i}$ has rank r_{i} for $i=1, \ldots, M$.
$\min \left(r_{1}, \ldots, r_{M}\right)=\operatorname{grank}(I, m, n)$.
$\operatorname{mgrank}(l, m, n):=\max \left(r_{1}, \ldots, r_{M}\right)$ is the minimal $k \in \mathbb{N}$ such that the closure of $f_{k}\left(\left(\mathbb{R}^{\prime} \times \mathbb{R}^{m} \times \mathbb{R}^{n}\right)^{k}\right)$ is equal to $\mathbb{R}^{1 \times m \times n}$.

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases 1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.
Proof of 1: One constructs an $(m-1)^{2}+1$ real dimensional subspace of $L \subset \mathbb{R}^{m \times m}$ that does not have a rank one matrix.

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.
Proof of 1: One constructs an $(m-1)^{2}+1$ real dimensional subspace of $L \subset \mathbb{R}^{m \times m}$ that does not have a rank one matrix. So there exists a neighborhood $\Lambda \subset \operatorname{Gr}\left((m-1)^{2}+1, \mathbb{R}^{m \times m}\right)$ such that any subspace $L_{1} \in \Lambda$ does not contain a rank one matrix

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.
Proof of 1: One constructs an $(m-1)^{2}+1$ real dimensional subspace of $L \subset \mathbb{R}^{m \times m}$ that does not have a rank one matrix.
So there exists a neighborhood $\Lambda \subset \operatorname{Gr}\left((m-1)^{2}+1, \mathbb{R}^{m \times m}\right)$ such that any subspace $L_{1} \in \Lambda$ does not contain a rank one matrix Let $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times m \times\left((m-1)^{2}+1\right)}$ such that $\operatorname{span}\left(T_{1,3}, \ldots, T_{(m-1)^{2}+1,3}\right) \in \Lambda$. Then rank $\mathcal{T} \geq(m-1)^{2}+1$

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.
Proof of 1: One constructs an $(m-1)^{2}+1$ real dimensional subspace of $L \subset \mathbb{R}^{m \times m}$ that does not have a rank one matrix.
So there exists a neighborhood $\Lambda \subset \operatorname{Gr}\left((m-1)^{2}+1, \mathbb{R}^{m \times m}\right)$ such that any subspace $L_{1} \in \Lambda$ does not contain a rank one matrix Let $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times m \times\left((m-1)^{2}+1\right)}$ such that $\operatorname{span}\left(T_{1,3}, \ldots, T_{(m-1)^{2}+1,3}\right) \in \Lambda$. Then $\operatorname{rank} \mathcal{T} \geq(m-1)^{2}+1$ Numerically, it is known $\operatorname{mrank}(3,3,5)=6$

Examples

THM: $\operatorname{mgrank}\left(m_{1}, m_{2}, m_{3}\right)>\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ in cases
1: $m_{1}=m_{2}=m \geq 2, m_{3}=(m-1)^{2}+1$,
2: $m_{1}=m_{2}=4, m_{3}=11,12$.
Proof of 1: One constructs an $(m-1)^{2}+1$ real dimensional subspace of $L \subset \mathbb{R}^{m \times m}$ that does not have a rank one matrix.
So there exists a neighborhood $\Lambda \subset \operatorname{Gr}\left((m-1)^{2}+1, \mathbb{R}^{m \times m}\right)$ such that any subspace $L_{1} \in \Lambda$ does not contain a rank one matrix
Let $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times m \times\left((m-1)^{2}+1\right)}$ such that
$\operatorname{span}\left(T_{1,3}, \ldots, T_{(m-1)^{2}+1,3}\right) \in \Lambda$. Then $\operatorname{rank} \mathcal{T} \geq(m-1)^{2}+1$
Numerically, it is known $\operatorname{mrank}(3,3,5)=6$
Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensional subspace of 4×4 skew symmetric nonsingular nonzero matrices

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

The best rank $\left(R_{1}, R_{2}, R_{3}\right)$ approximation of \mathcal{T} is a hard optimization problem.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

The best rank $\left(R_{1}, R_{2}, R_{3}\right)$ approximation of \mathcal{T} is a hard optimization problem.
$\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ has a standard inner product $\left\langle s_{i j k}, t_{i j k}\right\rangle:=\sum_{i, j, k} s_{i j k} \bar{t}_{i j k}$ induced by the standard inner products on $\mathbb{C}^{m_{p}}, p=1,2,3$.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

The best rank (R_{1}, R_{2}, R_{3}) approximation of \mathcal{T} is a hard optimization problem.
$\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ has a standard inner product $\left\langle s_{j i k}, t_{j j k}\right\rangle:=\sum_{i, j, k} s_{i j k} \bar{\tau}_{j i k}$ induced by the standard inner products on $\mathbb{C}^{m_{p}}, p=1,2,3$.

For subsp. $\mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$, let $\mathbf{V}=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$.

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

The best rank (R_{1}, R_{2}, R_{3}) approximation of \mathcal{T} is a hard optimization problem.
$\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ has a standard inner product $\left\langle s_{j j k}, t_{j j k}\right\rangle:=\sum_{i, j, k} s_{i j k} \bar{T}_{j j k}$ induced by the standard inner products on $\mathbb{C}^{m_{p}}, p=1,2,3$.

For subsp. $\mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$, let $\mathbf{V}=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$. $P_{\mathrm{v}}(\mathcal{T})$ orthogonal projection on \mathbf{V}, obtained by orthonormal bases $\mathbf{f}_{1, i}, \ldots, \mathbf{f}_{m_{i}, i} \in \mathbb{F}^{m_{i}}, \operatorname{span}\left(\mathbf{f}_{1, i}, \ldots, \mathbf{f}_{R_{i}, i}\right)=\mathbf{U}_{i}$

$\left(R_{1}, R_{2}, R_{3}\right)$-rank approximation of 3-tensors

Fundamental problem in applications:
For $\mathbb{F}=\mathbb{C}, \mathbb{R}$ approximate well and fast $\mathcal{T} \in \mathbb{F}^{m_{1} \times m_{2} \times m_{3}}$ by rank (R_{1}, R_{2}, R_{2}) 3-tensor.

The best rank (R_{1}, R_{2}, R_{3}) approximation of \mathcal{T} is a hard optimization problem.
$\mathbb{C}^{m_{1} \times m_{2} \times m_{3}}$ has a standard inner product $\left\langle s_{j k}, t_{j j k}\right\rangle:=\sum_{i, j, k} s_{i j k} \bar{\tau}_{j j k}$ induced by the standard inner products on $\mathbb{C}^{m_{p}}, p=1,2,3$.

For subsp. $\mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}, \operatorname{dim} \mathbf{U}_{i}=R_{i}, i=1,2,3$, let $\mathbf{V}=\mathbf{U}_{1} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{3}$. $P_{\mathrm{v}}(\mathcal{T})$ orthogonal projection on \mathbf{V}, obtained by orthonormal bases $\mathbf{f}_{1, i}, \ldots, \mathbf{f}_{m_{i}, i} \in \mathbb{F}^{m_{i}}, \operatorname{span}\left(\mathbf{f}_{1, i}, \ldots, \mathbf{f}_{R_{i}, i}\right)=\mathbf{U}_{i}$

Best (R_{1}, R_{2}, R_{3}) approximation problem: Find $\mathbf{U}_{i} \subset \mathbb{F}^{m_{i}}$ of dimension R_{i} for $i=1,2,3$ with maximal $\left\|P_{V}(\mathcal{T})\right\|$.

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1
$B_{1}=A_{1} Q, Q$ orthogonal matrix of change of orthogonal basis in $\mathbb{F}^{m_{2} m_{3}}$

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1
$B_{1}=A_{1} Q, Q$ orthogonal matrix of change of orthogonal basis in $\mathbb{F}^{m_{2} m_{3}}$ $C_{1} \in \mathbb{F}^{m_{1} \times\left(R_{1} R_{2}\right)}$ submatrix of B_{1}

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices: Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$ $\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1
$B_{1}=A_{1} Q, Q$ orthogonal matrix of change of orthogonal basis in $\mathbb{F}^{m_{2} m_{3}}$
$C_{1} \in \mathbb{F}^{m_{1} \times\left(R_{1} R_{2}\right)}$ submatrix of B_{1}
\mathbf{U}_{1} is subspace spanned by the first R_{1} left singular vectors of C_{1}

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathbf{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1
$B_{1}=A_{1} Q, Q$ orthogonal matrix of change of orthogonal basis in $\mathbb{F}^{m_{2} m_{3}}$
$C_{1} \in \mathbb{F}^{m_{1} \times\left(R_{1} R_{2}\right)}$ submatrix of B_{1}
\mathbf{U}_{1} is subspace spanned by the first R_{1} left singular vectors of C_{1}
Relaxation method converges to local maximal critical point

Optimization methods

Relaxation method:
Optimize on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:
Fix $\mathbf{U}_{2}, \mathbf{U}_{3}$. Then $\mathbf{V}=\mathbf{U}_{1} \otimes\left(\mathbf{U}_{2} \otimes \mathbf{U}_{3}\right) \subset \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$
$\max _{\mathbf{U}_{1}}\left\|P_{\mathrm{V}}(\mathcal{T})\right\|$ is an approximation in 2-tensors=matrices
$A_{1} \in \mathbb{F}^{m_{1} \times\left(m_{2} \cdot m_{3}\right)}$-unfolding of \mathcal{T} in direction 1
$B_{1}=A_{1} Q, Q$ orthogonal matrix of change of orthogonal basis in $\mathbb{F}^{m_{2} m_{3}}$
$C_{1} \in \mathbb{F}^{m_{1} \times\left(R_{1} R_{2}\right)}$ submatrix of B_{1}
\mathbf{U}_{1} is subspace spanned by the first R_{1} left singular vectors of C_{1}
Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method on $\operatorname{Gr}\left(R_{1}, \mathbb{F}^{m_{1}}\right) \otimes \operatorname{Gr}\left(R_{2}, \mathbb{F}^{m_{2}}\right) \otimes \operatorname{Gr}\left(R_{3}, \mathbb{F}^{m_{3}}\right)$

Fast low rank approximations

For matrix $A \in \mathbb{F}^{m \times n} C U R$ approximation:

Fast low rank approximations

For matrix $A \in \mathbb{F}^{m \times n} C U R$ approximation:
$C \in \mathbb{F}^{m \times R_{2}}, R \in \mathbb{F}^{R_{1} \times m_{2}}$ submatrices of A chosen using several random choices of columns and rows of A

Fast low rank approximations

For matrix $A \in \mathbb{F}^{m \times n} C U R$ approximation:
$C \in \mathbb{F}^{m \times R_{2}}, R \in \mathbb{F}^{R_{1} \times m_{2}}$ submatrices of A
chosen using several random choices of columns and rows of A
Similar extensions of CUR approximation to tensors

References

1. 3-tensor theory:
S.Friedland, On the generic rank of 3-tensors, arXiv:0805.3777
2. Best (R_{1}, R_{2}, R_{3}) approximation of 3-tensors
a. S. Friedland and V. Mehrmann, Best subspace tensor approximations, arXiv:0805.4220
b. S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast low rank approximations of matrices and tensors,
www.matheon.de/preprints/4903
c. Low Rank Approximations of Matrices and Tensors, lecture in 2008 SIAM Annual Meeting, http://www2.math.uic.edu/~friedlan/index.html
3. Newton algorithm on Grassmannians:

Lars Eldén, A Newton-Grassmann method for computing the best multi-linear rank-(r1, r2, r3) approximation of a tensor, http://www.mai.liu.se/~laeld/

[^0]: ${ }^{1}$ I thank M. Tamura for programming the software to compute $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ and $r\left(k, m_{1}, m_{2}, m_{3}\right)$.

[^1]: ${ }^{1}$ I thank M. Tamura for programming the software to compute $\operatorname{grank}\left(m_{1}, m_{2}, m_{3}\right)$ and $r\left(k, m_{1}, m_{2}, m_{3}\right)$.

