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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.
He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".
His main contribution in studying DNA and proteins, was the
development (with Amir Dembo and Ofer Zeitouni) of the computer
programme BLAST (Basic Local Alignment Search Tool), now the most
frequently used software in computational biology.
He had 41 doctoral students. He was widely honored: he was a
member of the National Academy of Science and the American
Academy of Arts and Sciences, and a Foreign Member of the London
Mathematical Society. He was the author of 10 books and more than
450 articles.
He died Dec. 18, 2007 at Stanford Hospital after a massive heart
attack.
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Overview

Friedland-Karlin results: Old and New
Motivation from population biology
Friedland-Karlin 1975
Wielandt 1950 and Donsker-Varadhan 1975
Log-convexity: Kingman 1961
Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966
and more

Wireless communication: Friedland-Tan 2008
Statement of the problem
Relaxation problem
SIR domain
Approximation methods
Direct methods
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [aij ] ∈ Rn×n
+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct

Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [aij ] ∈ Rn×n

+

Selection of deme i given by x ′i = fi(xi), where
fi : [0,1]→ R+, fi(0) = fi(1) = 0, f ′i (0) = di > 0

Two possible system of ODE
Either y ′i =

∑n
j=1 aij fj(yj), i = 1, . . . ,n

Or y ′i = fi(
∑n

j=1 aijyj), i = 1, . . . ,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system
zj = Czj−1, j = 1, . . ., i.e. zj = C jz0, j = 1, . . . ,
C = DA Or C = AD, D = diag(d1, . . . ,dn)

No species extinct if ρ(DA) > 1.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 5

/ 23



Friedland-Karlin results 1975

A = [aij ] ∈ Rn×n
+ irreducible (I + A)n−1 > 0, ρ(A)-spectral radius of A

Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)
Ax(A) = ρ(A)x(A), x(A) = (x1(A), . . . , xn(A))> > 0,
y(A)>A = ρ(A)y(A), y(A) = (y1(A), . . . , yn(A))> > 0
x(A) ◦ y(A) := (x1(A)y1(A), . . . , xn(A)yn(A))>-positive probability vector

THM 1: For A ≥ 0 irreducible,
d = (d1, . . . ,dn) > 0,D = D(d) := diag(d1, . . . ,dn)

ρ(D(d)A) ≥ ρ(A)
∏n

i=1 dxi (A)yi (A)
i

If A has positive diagonal then equality holds iff D(d) = aIn.

THM 2: minz>0
∑n

i=1 xi(A)yi(A) log (Az)i
zi

= log ρ(A)
Equality if Az = ρ(A)z
If A has positive diagonal then equality iff Az = ρ(A)z

COR: minz>0
∑n

i=1 xi(A)yi(A) (Az)i
zi

= ρ(A)
(weighted arithmetic-geometric inequality)
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Sketch of proofs

THM 2: Assume that A has positive diagonal.

Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi

is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn

Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum

Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive

Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn:
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn
Every critical point in interior Πn is a strict local minimum
Hessian of f in Rn is M-matrix: H(x) = ρ(B)I − B, B symmetric positive
Hence unique critical point x(A) ∈ Πn is global minimum

THM 1: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 7

/ 23



Comparison to Wielandt and Donsker-Varadhan

minz>0 maxi
(Az)i

zi
= maxz>0 mini

(Az)i
zi

= ρ(A) Wielandt 1950
ρ(D(d)A) ≥ (maxi di)ρ(A)

maxµ=(µ1,...,µn)∈Πn minz>0
∑n

i=1
(Az)i

zi
µi = ρ(A) Donsker-Varadhan 1975

Proof of DV: choose µ = x(A) ◦ y(A) use Cor
ρ(A) ≤ maxµ=(µ1,...,µn)∈Πn minz>0

∑n
i=1

(Az)i
zi
µi

≤ minz>0 maxµ=(µ1,...,µn)∈Πn

∑n
i=1

(Az)i
zi
µi = minz>0 maxi

(Az)i
zi

= ρ(A)

Alternatively z = eu = (eu1 , . . . ,eun )>
(Aeu)i

eui =
∑n

j=1 aijeuj−ui -convex function

maxµ minu∈Rn
∑n

i=1
(Aeu)i

eui µi = minu∈Rn maxµ
∑n

i=1
(Aeu)i

eui µi
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Convexity of ρ(A) in diagonal entries

A0 = [aij ] ∈ Rn×n
+ ,aii = 0, i = 1, . . . ,n, d ∈ Rn×n

+

THM (J.E. Cohen 79): ρ(A0 + D(d)) is a convex function on Rn
+.

PRF (Friedland 81)
L(d,µ) := minz>0

∑n
i=1

((A0+D(d))z)i
zi

µi =∑n
i=1 diµi + minz>0

∑n
i=1

(A0z)i
zi

µi
convex in D.

ρ(D(d) + A0) = maxµ∈Πn L(d, µ) convex on Rn
+

THM (Friedland 81): ρ(D(d)A) is a convex function on Rn
+ if A−1 is

M-matrix.

A−1 = rI − B, 0 ≤ B, ρ(B) < r .
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Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u

Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Log-convexity

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C
FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

COR: For A(x) as above, A(x0) irreducible log ρ(A(x)) ≥
log ρ(A(x0)) + (ρ(A(x0))−1y(A(x0))>(∇A(x0) · (x− x0))x(A(x0)).

For A(x) := D(ex)A, A ≥ 0 irreducible log ρ(A(x)) convex on Rn and
x>(x(D(eu)A) ◦ y(D(eu)A)) is the supporting hyperplane of
log ρ(A(x)) at u
Weaker than Friedland 81 for inverse of M-matrix

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 10

/ 23



Rescaling of irreducible matrices with positive diagonal

THM 3: A ∈ Rn×n
+ irreducible 0 < u,v ∈ Rn. If A has positive diagonal

then there exists 0 < c,d ∈ Rn s.t.

D(c)AD(d)u = u, v>D(c)AD(d) = v>

c,d unique up to ac,a−1d,a > 0

PROOF: w = (w1, . . . ,wn) := u ◦ v. Then fw(z) :=
∑n

i=1 wi log (Az)i
zi

on
Πn has unique critical point in interior of Πn
Equivalently fw(eu) is strictly convex on {u ∈ Rn : 1>u = 0}.

Example 1: A =

[
∗ ∗
∗ 0

]
is not a pattern of doubly stochastic matrix

Example 2: A =

[
0 ∗
∗ 0

]
always rescalable to doubly stochastic with

many more solutions than in THM 3.
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Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]
Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.
Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 12

/ 23



Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]

Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.
Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 12

/ 23



Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]
Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.

Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 12

/ 23



Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]
Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.
Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 12

/ 23



Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]
Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.
Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 12

/ 23



Fully indecomposable matrices

A ∈ Rn×n
+ is fully indecomposable, FI, if A has no s × (n − s) zero

submatrix for some integer s ∈ [1,n − 1]
Brualdi-Parter-Schneider 1966: A FI iff PAQ irreducible and has
positive diagonal for some permutation matrices P,Q.
Use Frobenius-König THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D1AD2 d.s., D1,D2 unique up to scalar rescaling

PRF D3(PAQ)D41 = (D3(PAQ)D4)>1 = 1,
i.e. D3PAQD4 d.s.
hence (P>D3P)A(QD4Q>) d.s.

Contrary to claim in FK75 I do not know how to prove THM3 for FI
matrices
Reason: why f (z) :=

∑n
i=1 wi log (Az)i

zi
blows to∞ on ∂Πn, or attains

minimum in the interior of Πn?
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Irreducible matrices with zero diagonal entries - FT08

THM: 3 A = [aij ] ∈ Rn×n
+ has positive off-diagonal entries.

0 < u,v ∈ Rn given. w = (w1, . . . ,wn) = u ◦ v . There exists
0 < c,d ∈ Rn s.t.

D(c)AD(d)u = u, v>D(c)AD(d) = v>

(SC): if wi <
∑

j 6=i wj for each aii = 0
c,d unique up scalar scaling

THM: 4 A = [aij ] ∈ Rn×n
+ has positive off-diagonal entries, 0 < w ∈ Πn.

Assume (SC) Then
maxz>0

∑n
i=1 wi log zi

(Az)i
=
∑n

i=1 wi log(cidi),

where u = (1, . . . ,1)>,v = w and c,d are given in THM 3.

Proof:∑n
i=1 wi log di yi

(AD(d)y)i
=
∑n

i=1 wi log yi
(D(c)AD(d)y)i

+
∑n

i=1 wi log(cidi)
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Figure: Cell phones communication
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power pi ∈ [0, p̄i ],
which can be regulated

p = (p1, . . . ,pn) ≥ 0, p̄ = (p̄1, . . . , p̄n)> > 0,ν = (ν1, . . . , νn)> > 0
Signal-to-Interference Ratio (SIR): γi(p) := gii pi∑

j 6=i gij pj +νj

gii -amplification, νi -AWGN power, gijpj -interference due to transmitter j

γ(p) = (γ1(p), . . . , γn(p))>

Φw(γ) :=
∑n

i=1 wi log(1 + γi), γ ≥ 0, w ∈ Πn

Maximizing sum rates in Gaussian interference-limited channel

max
0≤p≤p̄

n∑
i=1

wi log(1 + γi(p)) = max
0≤p≤p̄

Φw(γ(p)) = Φw(p?)

Equivalent to maximazing convex function on unbounded convex
domain Use for Approximation and Direct methods
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Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. Illinois at Chicago () Eigenvalue inequalities, log-convexity and scaling: old results and new applications, a tribute to Sam Karlin
City University of Hong-Kong10 December, 2010 16

/ 23



Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
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SIR domain

CLAIM: Γ := γ(Rn
+) := {γ ∈ Rn

+, ρ(D(γ)F ) < 1}
The inverse map P : Γ→ Rn

+ given

P(γ) = (I − D(γ)F )−1(γ ◦ µ) = (
∞∑

m=0

(D(γ)F )m)(γ ◦ µ)

COR: P increases on Γ: P(γ) < P(δ) if γ � δ ∈ Γ.

COR: p? = (p?1, . . . ,p
?
n)> satisfies p?i = p̄i for some i = 1, . . . ,n

DEF: [0,pi ]× Rn−1
+ := {p = (p1, . . . ,pn)> ∈ Rn

+, pi ≤ p̄i},
ei = (δ1i , . . . , δni)

>

THM 5: γ([0,pi ]× Rn−1
+ ) = {γ ∈ Rn

+, ρ(D(γ)(F + 1
p̄i
µe>i )) ≤ 1}

COR γ([0,p]) = {γ ∈ Rn
+, ρ(D(γ)(F + 1

p̄i
µe>i )) ≤ 1, i = 1, . . . ,n}
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Restatement of the maximal problem

0 < γ = elogγ . New variable x = logγ
Hence logγ([0,p]) is the closed unbounded closed set D ⊂ Rn:

hi(x) := log ρ(diag(ex)(F +
1
p̄i
µe>i )) ≤ 0, i = 1, . . . ,n

Since hi(x) is convex, D convex
Since log(1 + et ) convex, the equivalent maximal problem

max
x∈D

Φw(ex) = max
x,hi (x)≤0,i=1,...,n

n∑
j=1

log(1 + exj )

maximization of convex function on closed unbounded convex set
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Approximation methods-I

Approximation 1:
For K � 1 DK := {x ∈ D, x ≥ −K 1 = −K (1, . . . ,1)>}
consider maxx∈DK Φw

Approximation 2:
Choose a few boundary points ξ1, . . . , ξN ∈ D s.t.
hj(ξk ) = 0 for j ∈ Ak ⊂ {1, . . . ,n} and k = 1, . . . ,N.
At each ξk one has #Ak supporting hyperplanes Hj,k , j ∈ Ak

The supporting hyperplane of hj(x) at ξk is Hj,k (x) ≤ Hj,k (ξk )

Hj,k (x) = w>j,kx, wj,k = x(D(eξk )(F + 1
p̄j
µe>j )) ◦ y(D(eξk )(F + 1

p̄j
µe>j ))

D(ξ1, . . . , ξN ,K ) = {x ∈ Rn,Hj,k (x) ≤ Hj,k (ξk ), j ∈ Ak , k ∈ 〈N〉, ξ ≥ −K 1}

DK ⊂ D(ξ1, . . . , ξN ,K )

maxx∈D(ξ1,...,ξN ,K ) Φw(ex) ≥ maxx∈DK Φw(ex)
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Approximation methods-II

Approximation 3:

max
x∈D(ξ1,...,ξN ,K )

Φw,rel(ex) = max
x∈D(ξ1,...,ξN ,K )

w>x

Use Simplex Method or Ellipsoid Algorithm

Choice of ξ1, . . . , ξN :

Pick a finite number 0 < p1, . . . ,pN ∈ [0, p̄] = [0, p̄1]× . . . [0, p̄n]
boundary points
E.g., divide [0,p] by a mesh, and choose all boundary points with
positive coordinates

ξk = γ(pk ) and Ak all j s.t. pj,k = p̄j
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Direct methods

Study max0≤p≤p̄ Φw(p) = Φw(p?)

If wi = 0 then p?i = 0.

Assumption 0 < w ∈ Πn

Local minimum conditions at 0 6= p? ∈ ∂[0, p̄]

1. ∂iΦw(p?) = 0 if 0 < p?i < p̄i

2. ∂iΦw(p?) ≥ 0 if p?i = p̄i

3. ∂iΦw(p?) ≤ 0 if p?i = 0

Apply gradient methods and their variations
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