MCS 590-HW 2

Sam Cole

March 12, 2014

2.2

(1) H is time independent, so Schrödinger's equation solves to

$$
\begin{equation*}
|\psi(t)\rangle=e^{-i H t / \hbar}|\psi(0)\rangle . \tag{1}
\end{equation*}
$$

H can be diagonalized as $H=U \Lambda U^{\dagger}$, where

$$
\Lambda=-\frac{\hbar}{2} \omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right),
$$

so
$e^{-i H t / \hbar}=U e^{-i \Lambda t / \hbar} U^{\dagger}=U\left(\begin{array}{cc}e^{i t \omega / 2} & 0 \\ 0 & e^{-i t \omega / 2}\end{array}\right) U^{\dagger}=\left(\begin{array}{cc}\cos \frac{t \omega}{2} & \sin \frac{t \omega}{2} \\ -\sin \frac{t \omega}{2} & \cos \frac{\hbar \omega}{2}\end{array}\right)$.
Therefore, (??) yields

$$
|\psi(t)\rangle=\left(\begin{array}{cc}
\cos \frac{t \omega}{2} & \sin \frac{t \omega}{2} \\
-\sin \frac{t \omega}{2} & \cos \frac{t \omega}{2}
\end{array}\right)\binom{0}{1}=\binom{\sin \frac{t \omega}{2}}{\cos \frac{t \omega}{2}} .
$$

(2) The observable σ_{z} has eigenvalues $\lambda_{1}=1, \lambda_{2}=-1$ with eigenvectors $\left|\lambda_{1}\right\rangle=(1,0)^{\top},\left|\lambda_{2}\right\rangle=(0,1)^{\top}$. Thus,

$$
|\psi(t)\rangle=\sin \frac{t \omega}{2}\left|\lambda_{1}\right\rangle+\cos \frac{t \omega}{2}\left|\lambda_{2}\right\rangle,
$$

so the probability of observing +1 at time t is $\sin ^{2}(t \omega / 2)$.
(3) The observalbe σ_{x} has eigenvalues $\lambda_{1}=1, \lambda_{2}=-1$ with eigenvectors $\left|\lambda_{1}\right\rangle=\frac{1}{\sqrt{2}}(1,1)^{\top},\left|\lambda_{2}\right\rangle=\frac{1}{\sqrt{2}}(1,-1)^{\top}$. Thus, if we have

$$
\begin{equation*}
|\psi(t)\rangle=c_{1}\left|\lambda_{1}\right\rangle+c_{2}|\lambda\rangle \tag{2}
\end{equation*}
$$

then $\left|c_{1}\right|^{2}$ is the probability of observing +1 at time t. (??) is simply a system of 2 equations in c_{1}, c_{2}, which can be solved trivially to yield $c_{1}=\left(\sin \frac{t \omega}{2}+\cos \frac{t \omega}{2}\right) / \sqrt{2}$. Thus, the probability of observing +1 at time t is
$\left|c_{1}\right|^{2}=\frac{1}{2}\left(\sin \frac{t \omega}{2}+\cos \frac{t \omega}{2}\right)^{2}=\frac{1}{2}\left(1+2 \sin \frac{t \omega}{2} \cos \frac{t \omega}{2}\right)=\frac{1}{2}(1+\sin (t w))$.

2.4

First assume ρ is pure. Then by theorem 2.1, $\rho^{2}=\rho$, so

$$
\operatorname{tr} \rho^{2}=\operatorname{tr} \rho=1
$$

Now assume $\operatorname{tr} \rho^{2}=1$. Let $\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$ be the eigenvalues of ρ. Note that they are all nonnegative real numbers since ρ is Hermitian and positive semidefinite. Then $\lambda_{1}^{2} \geq \ldots \geq \lambda_{n}^{2} \geq 0$ are the eigenvalues of ρ^{2}. Thus, we have

$$
\begin{equation*}
\operatorname{tr} \rho=\lambda_{1}+\ldots+\lambda_{n}=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} \rho^{2}=\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}=1 . \tag{4}
\end{equation*}
$$

Subtracting (??) from (??), we get

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}\left(1-\lambda_{i}\right)=0 . \tag{5}
\end{equation*}
$$

Observe that since $\operatorname{tr} \rho=1$, we have $0 \leq \lambda_{i} \leq 1$ for all i. Thus, each term in (??) is nonnegative. Since they sum to 0 , we conclude $\lambda_{i} \in\{0,1\}$ for all i. But by (??), exactly one of the λ_{i} (namely, λ_{1}) must be 1 and the rest 0 ; therefore, the eigendecomposition of ρ is

$$
\rho=\sum_{i=1}^{n} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|=\lambda_{1}\left|\lambda_{1}\right\rangle\left\langle\lambda_{1}\right|,
$$

so ρ is pure.

2.5

Clearly ρ is hermitian and $\operatorname{tr} \rho=1$. Its eigenvalues are $\lambda_{1}=\lambda_{2}=\lambda_{3}=$ $(1-p) / 4, \lambda_{4}=(1+3 p) / 4$, which are all ≥ 0 for any $p \in[0,1]$, so ρ is positive semidefinite. Therefore, ρ is a density matrix.

Now assume $p>1 / 3$. Consider ρ as a 2×2 block matrix of 2×2 blocks $\rho_{i j}$. Then

$$
\rho^{\mathrm{pt}}=\left(\begin{array}{ll}
\rho_{11}^{\top} & \rho_{12}^{\top} \\
\rho_{21}^{\top} & \rho_{22}^{\top}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1+p}{4} & 0 & 0 & 0 \\
0 & \frac{1-p}{4} & \frac{p}{2} & 0 \\
0 & \frac{p}{2} & \frac{1-p}{4} & 0 \\
0 & 0 & 0 & \frac{1+p}{4}
\end{array}\right) .
$$

The eigenvalues of ρ^{pt} are $\mu_{1}=\mu_{2}=\mu_{3}=(1+p) / 4, \mu_{4}=(1-3 p) / 4$. Since $p>1 / 3, \mu_{4}<0$. Thus, we have

$$
N(\rho)=\frac{\sum_{i=1}^{4}\left|\mu_{i}\right|-1}{2}=\frac{\mu_{1}+\mu_{2}+\mu_{3}-\mu_{4}-1}{2}=\frac{3 p-1}{4}>\frac{3 \cdot \frac{1}{3}-1}{4}=0 .
$$

2.7

The density matrix is

$$
\rho=\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right|=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right) .
$$

Each $\rho_{i j}$ is a 2×2 block. The partial trace over \mathcal{H}_{1} is thus

$$
\operatorname{tr}_{1}(\rho)=\left(\begin{array}{ll}
\operatorname{tr}\left(\rho_{11}\right) & \operatorname{tr}\left(\rho_{12}\right) \\
\operatorname{tr}\left(\rho_{21}\right) & \operatorname{tr}\left(\rho_{22}\right)
\end{array}\right)=\frac{1}{2} I_{2} .
$$

2.8

We write

$$
\rho_{1}=\frac{1}{4}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{3}{4}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| .
$$

We will use $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ as the basis for the new Hilbert space as well. According to (2.53) we get

$$
|\Psi\rangle=\frac{1}{2}\left|\psi_{1}\right\rangle \otimes\left|\psi_{1}\right\rangle+\frac{\sqrt{3}}{2}\left|\psi_{2}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

2.9

Unitary transformations map orthonormal vectors to orthonormal vectors. Thus, $U\left|\phi_{k}\right\rangle$ are orthonormal, so $\left|\Psi^{\prime}\right\rangle$ is a purification of ρ_{1}.

2.10

Observation 1. Let U be unitary and A be Hermitian and positive semidefinite. Then $B=U A U^{\dagger}$ is Hermitian and positive semidefinite, and $\sqrt{B}=$ $U \sqrt{A} U^{\dagger}$.

Proof. Trivially B is Hermitian. A and B are similar, so they have the same eigenvalues. Thus, B is positive semidefinite since A is.

Now observe that

$$
\left(U \sqrt{A} U^{\dagger}\right)^{2}=U \sqrt{A} U^{\dagger} U \sqrt{A} U^{\dagger}=U \sqrt{A} \sqrt{A} U^{\dagger}=U A U^{\dagger}=B
$$

\sqrt{B} is the unique matrix whose square is B, so this proves $U \sqrt{A} U^{\dagger}=$ \sqrt{B}.

By observation ??, we have

$$
\sqrt{U \rho_{1} U^{\dagger}} U \rho_{2} U^{\dagger} \sqrt{U \rho_{1} U^{\dagger}}=U \sqrt{\rho_{1}} U^{\dagger} U \rho_{2} U^{\dagger} U \sqrt{\rho_{1}} U^{\dagger}=U \sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}} U^{\dagger} .
$$

Since $\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}$ is Hermitian and positive semidefinite, again we may apply observation ?? to get

$$
\sqrt{\sqrt{U \rho_{1} U^{\dagger}} U \rho_{2} U^{\dagger} \sqrt{U \rho_{1} U^{\dagger}}}=\sqrt{U \sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1} U^{\dagger}}}=U \sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}} U^{\dagger} .
$$

Finally, $U \sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}} U^{\dagger}$ is similar to $\sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}}$, so they have the same trace.

2.11

ρ_{1} is a diagonal matrix, so $\sqrt{\rho_{1}}=\operatorname{diag}\left(\frac{1}{\sqrt{2}}, 0,0, \frac{1}{\sqrt{2}}\right)$ and

$$
\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right):=B
$$

To find \sqrt{B}, we first diagonalize it using methods from HW 1 :

$$
B=U \Lambda U^{\dagger},
$$

where

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

and $\Lambda=\frac{1}{2} \operatorname{diag}(1,0,0,0)$. Since Λ is diagonal, we have $\sqrt{\Lambda}=\frac{1}{\sqrt{2}} \operatorname{diag}(1,0,0,0)=$ $\sqrt{2} \Lambda$ and hence

$$
\sqrt{B}=U \sqrt{\Lambda} U^{\dagger}=U(\sqrt{2} \Lambda) U^{\dagger}=\sqrt{2} U \Lambda U^{\dagger}=\sqrt{2} B
$$

Therefore,

$$
F\left(\rho_{1}, \rho_{2}\right)=\operatorname{tr}(\sqrt{B})=\frac{\sqrt{2}}{4}(1+1)=\frac{\sqrt{2}}{2} .
$$

