MULTI-DIMENSIONAL ENTROPY and the monomer-dimer problem

Shmuel Friedland University of Illinois at Chicago

2 (0-1) limited channel

(HARD CORE LATTICE or NEAR NEIGHBOR EXCLUSION)

 $n = 2, < 2 > = \{1, 2\} = \{1, 0\} \ (2 \equiv 0).$

NO TWO 1's ARE NEIGHBORS.

OF m-MESSAGES IS u_m ;

 $u_{m+1} = u_m + u_{m-1}, \ m = 1, 2, \dots$

FIBONACCI SEQUENCE $2, 3, 5, 8, \ldots$

SHANNON CAPACITY:

$$\lim_{m \to \infty} \frac{\log_2 u_m}{m} = \log_2 \frac{1 + \sqrt{5}}{2} = 0.694241914...$$

EXAMPLE: $r = 2 \Rightarrow P = \Gamma \subset < n > \times < n >$. $n = 2, P = \{ ullet ullet, ullet ullet, ullet ullet, ullet ullet \}$

ALLOWABLE WORD OF LENGTH m+1

A WALK OF LENGTH m ON Γ

$$egin{aligned} \Gamma^m &= \{(a_i)_1^{m+1} \in < n >^{m+1} \colon \ &(a_i,a_{i+1}) \in \Gamma \} \ &\Gamma^\mathbb{N} &= \{(a_i) \in < n >^\mathbb{N} \colon \ &(a_i,a_{i+1}) \in \Gamma \} \ &\Gamma^\mathbb{Z} &= \{(a_i) \in < n >^\mathbb{Z} \colon \ &(a_i,a_{i+1}) \in \Gamma \} \end{aligned}$$

any SOFT can be coded as a walk on

$$\Gamma \subset \langle N \rangle \times \langle N \rangle \equiv \pi_{r-1}(P) \times \pi_{r-1}(P)$$
$$N = \# \pi_{r-1}(P)$$
$$((a_i)_1^{r-1}, (b_i)_1^{r-1}) \in \Gamma \iff$$
$$b_1 = a_2, \dots, b_{r-2} = a_{r-1},$$

ASSUMPTION: $\mathcal S$ -SOFT

 $(a_i)_{i\in\mathbb{N}}$ is m-periodic

 $a_{i+m} = a_i, \ i \in \mathbb{N}.$

 δ_m =log# P-allow. words of length m.

$$ilde{\delta}_m = \log \# \pi_m(\mathcal{S})$$

 $\delta_{m,per}$ =log# m-periodic words in ${\cal S}$.

$$\delta_{m,per} \leq ilde{\delta}_m \leq \delta_m.$$

 $\{t_i\}_{i\in\mathbb{N}}\subset\mathbb{R}$ is subadditive (SA):

 $t_{p+q} \leq t_p + t_q \;\; ext{ for all } p,q \in \mathbb{N}.$

$$\{t_i\}_{i\in\mathbb{N}} ext{ SA} \Rightarrow \lim_{i o\infty} rac{t_i}{i} = au \leq rac{t_p}{p},$$

CLAIM: $\{\delta_m\}, \{ ilde{\delta}_m\}$ - ARE SA.

$$egin{aligned} h_{com} &\coloneqq \lim_{m o \infty} rac{\delta_m}{m} \ ext{CAPACITY} \ h &\coloneqq \lim_{m o \infty} rac{ ilde{\delta}_m}{m} \ ext{ENTROPY} \ h_{per} &\coloneqq \lim_{m o \infty} rac{\delta_{m,per}}{m} \ ext{periodic entropy} \ -\infty &\leq h_{per} \leq h \leq h_{com} \end{aligned}$$

MAIN THM

for 1- dimensional SOFT ${\cal S}$

$$h_{per} = h = h_{com} = \log
ho(\Gamma)$$

 Γ -graph induced by soft.

COR. \mathcal{S} is decidable:

EITHER $\mathcal{S} = \emptyset \iff$:

 $\exists m$ with no allow. word of length m

OR ${\cal S}$ contains an m periodic state.

4 MULTI-DIMENSIONAL CAPACITY

$2 \leq d$ dimension

$$egin{aligned} \mathrm{m} &:= (m_1,...,m_d) \in \mathbb{Z}^d \ &|\mathrm{m}| = |m_1| + ... + |m_d| \ &|\mathrm{m}|_{pr} &:= |m_1| imes \ldots imes |m_d| \ &< \mathrm{m} > &:= < m_1 > imes \ldots imes < m_d >, \ & ext{for } \mathrm{m} \in \mathbb{N}^d \end{aligned}$$

$$a:<\mathrm{m}> o < n>$$
 is $(a_\mathrm{i})_{\mathrm{i}\in <\mathrm{m}>}$

$$< n>^{< {
m m}>}$$
 set of all maps a . $< n>^{\mathbb{N}^d}$ & $< n>^{\mathbb{Z}^d}$ all maps from \mathbb{N}^d & \mathbb{Z}^d to $< n>$.

$$\pi_{\mathrm{m}}((a_{\mathrm{i}})) = (a_{\mathrm{i}})_{\mathrm{i} \in <\mathrm{m}>}$$
 proj. on $<\mathrm{m}>$.

$$\mathcal{S} \subset < n >^{\mathbb{N}^a}$$
 ($< n >^{\mathbb{Z}^a}$) SOFT if

$$\exists P \subset < n >^{<{
m r}>}$$
 such that $a \in \mathcal{S} \iff$

any consec. box of ${f r}$ letters in a in P.

ASSUMPTION: \mathcal{S} -SOFT

 $\delta_{\mathbf{m}}$ -log# P-allow. words of dim. \mathbf{m} .

$$ilde{\delta}_{\mathrm{m}} = \log \# \pi_{\mathrm{m}}(\mathcal{S})$$

 $\delta_{\mathrm{m},per}$ -log# m-periodic words in \mathcal{S} .

$$\delta_{\mathrm{m},per} \leq ilde{\delta}_m \leq \delta_m.$$

 $\{\delta_{
m m}\},\{ ilde{\delta}_{
m m}\}$ - are SA in each coordinate

(split box $<\mathrm{m}>$ to 2 boxes by $x_k=i_k$)

$$h_{com} := \lim_{\mathrm{m} o \infty} rac{\delta_{\mathrm{m}}}{|\mathrm{m}|_{pr}} \ \ \mathrm{CAPACITY}$$
 $ilde{\delta}_{\mathrm{m}}$

$$h := \lim_{m \to \infty} \frac{\sigma_{\mathrm{m}}}{|\mathrm{m}|_{pr}} \quad \mathrm{ENTROPY}$$

 $h_{per} := \limsup_{m \to \infty} \frac{\delta_{m,per}}{|m|_{per}}$ PERIODIC ENTROPY

$$-\infty \leq h_{per} \leq h \leq h_{com} \leq rac{\delta_{
m m}}{|{
m m}|_{pr}}$$

Berger: $-\infty = h_{per} < 0 \leq h \leq h_{com}$

Friedland 97: for all $\mathcal{S} \, h = h_{com}$

5 UPPER ESTIMATES OF MDC

$$d = 2 \text{ and } \mathbf{m} = (m_1, m_2).$$

$$\Gamma(2, m_1) \subset \Gamma_1^{m_1 - 1} \times \Gamma_1^{m_1 - 1}$$

$$((b_i)_1^{m_1}, (c_i)_1^{m_1}) \in \Gamma(2, m_1) \iff (b_i, c_i) \in \Gamma_2$$
for each $i = 1, ..., m_1$.
EXAMPLE: $\Gamma(2, 4)$

$$\bullet \bullet \bullet \bullet (\bullet)$$

$$\bullet \bullet \bullet (\bullet)$$

$$\Gamma_{per}(2, m_1) \subset \Gamma(2, m_1):$$

$$(b_{m_1}, b_1), (c_{m_1}, c_1) \in \Gamma_1$$

$$\rho(\Gamma(2, m_1)) \ge \rho(\Gamma_{per}(2, m_1))$$

statistical mechanics - *transfer* matrices:

$$\begin{split} A(\Gamma(2, m_1)) & \& A(\Gamma_{per}(2, m_1)) \\ & \lim_{m_2 \to \infty} \frac{\delta_{\mathbf{m}}}{m_2} = \log \rho(\Gamma(2, m_1)) \ge m_1 h \\ & \limsup_{m_2 \to \infty} \frac{\delta_{\mathbf{m}, per}}{m_2} = \log \rho(\Gamma_{per}(2, m_1)) \\ & \lim_{m_1 \to \infty} \frac{\log \rho(\Gamma(2, m_1))}{m_1} = h \\ & \limsup_{m_1 \to \infty} \frac{\log \rho(\Gamma_{per}(2, m_1))}{m_1} = h_{per} \end{split}$$

6 Upper-Lower Bounds with
Symmetricity Con.

$$\Gamma_{2} \cdot \text{SYMMETRIC} \\ \max(\frac{\log \rho(\Gamma(1, p + 2q + 1)) - \log \rho(\Gamma(1, 2q + 1))}{p}, \\ \frac{\log \rho(\Gamma_{per}(1, p + 2q) - \log \rho(\Gamma_{per}(1, 2q))}{p}) \\ h \leq \frac{\log \rho(\Gamma_{per}(1, 2m))}{2m} (\leq \frac{\log \rho(\Gamma(1, 2m))}{2m}) \\ \text{for any } m, p \geq 1 \text{ and } q \geq 0. \\ S \text{ DECIDABLE:} \\ S \neq \emptyset \iff \Gamma(1, 2) \text{ has cycle} \\ \text{AND COMPUTABLE} \\ h_{per} = h \end{cases}$$

$$d \geq 3 \ \Gamma_1, ..., \Gamma_{d-1} \text{ symmetric} \Rightarrow$$

 $h_{per} = h$ is computable

$$\begin{split} \frac{\log \rho(\Gamma_{per}((2m_1,...,2m_{d-1}))}{2^{d-1}|m_1|...|m_{d-1}|} \geq h \geq \\ \frac{\overline{h}(p+2q) - \overline{h}(2q)}{p} \end{split}$$

$$\overline{h}(q) := \lim_{\mathbf{m}^{\{1\}} \to \infty} \log \frac{\# W_{\{1\}, per}(\mathbf{m}^{\{1\}}, q)}{|m^{\{1\}}|_{pr}}$$

TRUE IF Γ ISOTROPIC & SYMMETRIC:

 $\Gamma_1 = ... = \Gamma_d = \Delta - SYMMETRIC$

7 Automorphism Subgroups and Computations

$$\begin{split} A &= (a_{ij})_1^N \text{ nonnegative matrix} \\ \mathcal{A}(A) &:= \{ \pi \in S_N : a_{\pi(i)\pi(j)} = a_{ij}, \ i, j \in < N > \} \\ G &\leq \mathcal{A}(A), \mathcal{O}(G) := < N > /G, M = \#\mathcal{O}(G) \\ \hat{A} &= (\hat{a}_{\alpha\beta})_{\alpha,\beta\in\mathcal{O}(G)}, \\ \hat{a}_{\alpha\beta} &=: \sum_{j\in\beta} a_{ij}, \ i \in \alpha, \\ \rho(A) &= \rho(\hat{A}), \\ A &= A^T \Rightarrow \hat{A} \text{ is symmetric for} \\ &< x, y > = \sum_{\alpha\in\mathcal{O}(G)} (\#\alpha)x_{\alpha}y_{\alpha}. \\ M &\geq N/\#G, \\ \text{In our computations } M \sim N/\#G. \end{split}$$

$$\begin{split} T((m_1,...,m_d)) &:= (\mathbb{Z}/m_1\mathbb{Z}) \times ... \times (\mathbb{Z}/m_d\mathbb{Z}) \\ \mathcal{A}(\mathbf{m}) &= \mathcal{A}(\text{adjacency graph of } T(\mathbf{m})) \\ \Gamma \text{ is isotropic symmetric graph } \Rightarrow \\ \mathcal{A}(\mathbf{m}^{\{d\}}) &\leq \mathcal{A}(\mathcal{A}(\Gamma_{per}(d,\mathbf{m}^{\{d\}}))) \\ \#\mathcal{A}(2) &= 2, \ \#\mathcal{A}(m) = 2m, \ m \geq 3 \Rightarrow \\ \mathcal{A}(m_1) \times ... \times \mathcal{A}(m_{d-1}) \leq \mathcal{A}(\mathbf{m}^d) \\ m_i &= m_j \ \Rightarrow i \leftrightarrow j \Rightarrow \\ \#\mathcal{A}((m,...,m)) \geq (2m)^{d-1}(d-1)! \text{ for } m \geq 3 \\ T(4) \sim < (2,2) > \Rightarrow \\ \#\mathcal{A}(4,...,4) \geq 2^{2(d-1)}(2(d-1))! \\ \text{Friedland-Peled 03} \end{split}$$

8 *d*-Dimensional Monomer-Dimers

Dimer: $(\mathbf{i}, \mathbf{j}), \ \mathbf{j} = \mathbf{i} + \mathbf{e}_k \in \mathbb{Z}^d$. any partition of \mathbb{Z}^d to dimers (1-factor). Monomer: occupies $\mathbf{i} \in \mathbb{Z}^d$. any partition of \mathbb{Z}^d to monomer-dimers is 1-factor of a subset of \mathbb{Z}^d .

Dimer and Monomer-Dimer are SOFT

$$0 = \tilde{h}_1 \leq \tilde{h}_2 \leq ... \leq \tilde{h}_d \leq ... (ext{dimension})$$

$$\log \frac{1+\sqrt{5}}{2} = h_1 \le h_2 \le \dots \le h_d \le \dots$$
(monomer - dimer)

Fisher, Kasteleyn and Tempreley 61

$$ilde{h}_2 = rac{1}{\pi} \sum_{i=0}^\infty rac{(-1)^i}{(2i+1)^2} = 0.29156090...$$

9 Upper and Lower Bounds

 $A = (a_{ST}), S, T \subset T(m^{\{d\}})$ is transfer matrix represents multigraph and is "Hankel": a_{ST} is the number of monomer-dimer (dimer) covers of $T(m^{\{d\}}) \setminus (S \cup T)$ and $a_{ST} = 0$ if $S \cap T \neq \emptyset$ S(T) the locations of dimers going down (up)

$$egin{aligned} &\widetilde{h}_d \leqslant rac{\log \widetilde{eta}(2\mathrm{m}^{\{d\}})}{2^{d-1}|\mathrm{m}^{\{d\}}|_{pr}} & ext{Ciucu 98} \ & h_d \leqslant rac{\log eta(2\mathrm{m}^{\{d\}})}{2^{d-1}|\mathrm{m}^{\{d\}}|_{pr}} & ext{FP 03} \ & h_2 \geqslant rac{\log eta(p+2q) - \log eta(2q)}{p} & ext{FP 03} \end{aligned}$$

Similar lower bounds for exist for h_3, \widetilde{h}_3 FP 03.

$$\widetilde{h}_3 \leq rac{\log \widetilde{eta}(6,4)}{6\cdot 4} = 0.4575469308$$

Lundow 2001 using matrix of order $\mathbf{184854}$

which splits to a direct sum of 3 matrices.

10 The Value of h_2

Friedland-Peled 03

(confirming Baxter's heuristic computations 1968):

$$h_2 = 0.66279897$$
 using $m = 14, 15, 16$

 $.66279897190 \leqslant h_2 \leqslant .662798972844913$

$$m = 16, \ N = 2^{16} = 65536,$$

$$M=2250,\;rac{N}{2m}=2,048.$$

M. Jerrum-87:

Two-dimensional monomer-dimer systems

are computationally intractible.

m_1	$\#\mathcal{O}(m_1)$	$\log \beta(m_1)$			
4	6	2.6532941163			
5	8	3.3135066910			
6	13	3.9769139475			
7	18	4.6395628723			
8	30	5.3023993987			
9	46	5.9651887945			
10	78	6.6279902386			
11	126	7.2907885674			
12	224	7.9535877093			
13	380	f 8.6163866375			
14	687	9.2791856222			
15	1224	9.9419845918			
16	2250	10.60478356551861			
17	4112	$\in (11.267582535, 11.267582554)$			
Table 1: Spectral radii for h_2					

 \in

11 Matchings and permanents

 $\mathrm{perm}_{s} \mathbf{A} = \mathrm{sum}$ perm. all $s \times s$ submatrices of A. Tverberg's conjecture (Friedland 1982)

 $\mathrm{perm}\ _{\mathrm{s}}\mathrm{A} \geq \mathrm{perm}\ _{\mathrm{s}}\mathrm{J}_{\mathrm{n}}$ for any n imes n d.s. matrix.

G is r-regular bipartite with n in each class.

W(G,s) set of all matchings of size s in G.

$$\#W(G,s) \geqslant {\binom{n}{s}}^2 s! \; \left(rac{r}{n}
ight)^s$$

 $\lambda_d(p)$ -monomer dimer entropy with dimer density $p\in [0,1].$

$$\begin{split} \lambda_d(p) &\ge \frac{1}{2} (-p \log p - 2(1 - p) \log(1 - p) + p \log 2d - p) \\ h_d &= \max_{p \in [0, 1]} \lambda_d(p) \geqslant \\ \frac{1}{2} (-p(d) \log p(d) - 2(1 - p(d)) \log(1 - p(d))) \\ + p(d) \log 2d - p(d)) \\ p(d) &= \frac{4d + 1 - \sqrt{8d + 1}}{4d}. \end{split}$$

Figure 1: HM is the lower bound of Hammersley-Menon, BW is the lower bound of Bondy-Welsh, FP is the lower bound of Friedland-Peled, MC is the Monte Carlo estimate of Hammersley-Menon, B are Baxter's estimates, and h2 is the true value of $h_2 = \max \lambda_2(p)$.

13 Estimates for h_3 and h_3

Schrijver 1998

$$egin{aligned} &\#W(G,n)\geqslant\left(rac{(r-1)^{r-1}}{r^{r-2}}
ight)^n\ &\widetilde{h}_d=\lambda_d(1)\geqslant\ &rac{1}{2}((2d-1)\log(2d-1)-(2d-2)\log 2d)\ &(S)\ 0.440075842\leqslant\widetilde{h}_3\leqslant 0.4575469308\ (L) \end{aligned}$$

FP gives

 $0.7652789557 \leqslant h_3 \leqslant .7862023450$

(m_1,m_2)	$\#\mathcal{O}(m_1,m_2)$	$\logeta(m_1,m_2)$	$rac{\logeta(m_1,m_2)}{m_1m_2}$
(2,2)	6	3.224405658	0.806101
(3 , 2)	13	4.768958913	0.7948264
(4,2)	34	6.367778959	0.7959723
(5,2)	78	7.958105292	0.795810
(6,2)	237	9.550024542	0.7958353
(7,2)	687	11.14163679	0.795831
(8 , 2)	2299	12.73331093	0.7958319
(3,3)	25	7.057039652	0.784115
(4,3)	158	9.421594940	0.785132
(5,3)	708	11.77517604	0.785011'
(4,4)	805	12.57923752	0.786202

Table 2: Spectral radii for h_3

Figure 2: HM is the lower bound of Hammersley-Menon, BW is the lower bound of Bondy-Welsh, FP is the lower bound Friedland-Peled, h3Low and h3High are the best lower and upper bounds for $h_3 = \max \lambda_3(p)$.

15 Low. Bds
$$h_3, h_3$$
 by spec. rad.

$$egin{aligned} h_3 &\geqslant rac{\logeta(p+2q,u+2s)-\logeta(p+2q,2s)}{up}\ &-rac{\logeta(2q,2v)}{2vp}\ &\widetilde{h}_3 &\geqslant rac{\logareta(p+2q,u+2s)-\logareta(p+2q,2s)}{up}\ &-rac{\logareta(2q,2v)}{2vp}\ &g(n,0)=eta(0,n)=areta(n,0)=areta(0,n)=areta(0,n)=2^n\ &n\in\mathbb{N} \end{aligned}$$