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Introduction

In many instances in measuring multidimensional data, as matrices
and tensors, one confronts the following problems: noisy data, missing
entries and data reduction.
There are many statistical and mathematical methods to deal with
these problems. In this talk we survey some of the known methods
and expand on the methods that the speaker was working on.
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DNA Microarrays: I

A DNA microarray (also commonly known as gene chip, DNA chip, or
biochip) is a collection of microscopic DNA spots attached to a solid
surface. Scientists use DNA microarrays to measure the expression
levels of large numbers of genes simultaneously or to genotype
multiple regions of a genome. Each DNA spot contains picomoles
(10-12 moles) of a specific DNA sequence, known as probes (or
reporters). These can be a short section of a gene or other DNA
element that are used to hybridize a cDNA or cRNA sample (called
target) under high-stringency conditions. Probe-target hybridization is
usually detected and quantified by detection of fluorophore-, silver-, or
chemiluminescence-labeled targets to determine relative abundance of
nucleic acid sequences in the target. Since an array can contain tens
of thousands of probes, a microarray experiment can accomplish many
genetic tests in parallel. Therefore arrays have dramatically
accelerated many types of investigation.
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DNA Microarrays: II

In standard microarrays, the probes are synthesized and then attached
via surface engineering to a solid surface by a covalent bond to a
chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide
or others). The solid surface can be glass or a silicon chip, in which
case they are colloquially known as an Affy chip when an Affymetrix
chip is used. Other microarray platforms, such as Illumina, use
microscopic beads, instead of the large solid support. Alternatively,
microarrays can be constructed by the direct synthesis of
oligonucleotide probes on solid surfaces. DNA arrays are different from
other types of microarray only in that they either measure DNA or use
DNA as part of its detection system.

Shmuel Friedland Univ. Illinois at Chicago () Completion of missing entries in matrices and tensors
Department of Statistics, The University of Chicago, September 12, 2011 5

/ 34



DNA Microarrays: III

DNA microarrays can be used to measure changes in expression
levels, to detect single nucleotide polymorphisms (SNPs), or to
genotype or resequence mutant genomes (see uses and types
section). Microarrays also differ in fabrication, workings, accuracy,
efficiency, and cost (see fabrication section). Additional factors for
microarray experiments are the experimental design and the methods
of analyzing the data (see Bioinformatics section).
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DNA Microarrays: IV

Figure: Microarays raw data
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DNA Microarrays: V

Figure: Microarays processed data
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Missing entries in DNA Microarrays

During the laboratory process, some spots on the array may be
missing due to various factors (for example, machine error.) Because it
is often very costly or time consuming to repeat the experiment,
molecular biologists, statisticians, and computer scientists have made
attempts to recover the missing gene expressions by some ad-hoc and
systematic methods.
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Gene expression matrix

E =



g11 g12 . . . g1m
g21 g22 . . . g2m

...
...

...
...

gj1 gj2 . . . gjm
...

...
...

...
gn1 gn2 . . . gnm


=



g>1
g>2
...

g>j
...

g>n


= [c1 c2 . . . cm] ∈ Rn×m

g>j := (gj1,gj2, ...,gjm), j = 1, ...,n,ci =



g1i
g2i
...

gji
...

gni


, i = 1, ...,m.

g>j relative expression levels of j th gene in m experiments.
ci relative expression levels of n genes ini th experiment
n� m
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Missing entries problem in DNA Microarrays

N ⊂ [n] := {1, . . . ,n} the set of rows of E that contain at least one
missing entry.

For each j ∈ N c := [n]\N , the gene g>j has all of its entries.

n′ denote the size of N c , i.e. the size of N is n − n′.

Problem: complete the missing entries of each g>j , j ∈ N ,

under some assumptions.
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Common methods of recovery

Zero replacement method;
Row sum mean;
Baesian Principal Component Analysis; [1]
Clustering analysis methods such as K-nearest neighbor
clustering, hierarchical clustering [2], KNNimpute, - [2].
FRAA and IFRAA; [4, 3]
Least square imputation methods; [1];
Local least squares imputation method (LLS) [2];
Projection onto convex sets methods (POCS) [1]
SVDimpute - Singular Value Decomposition (which is closely
related to Principal Component Analysis) [2]
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Short descriptions of KNNimpute and LLS

KNNimpute and LLS are local methods, which use similarity structure
of the data to impute the missing values

KNNimpute uses the weighted averages of the K -nearest uncorrupted
neighbors.

LLS has two versions to find similar genes whose expressions are not
corrupted: the L2-norm and the Pearson’s correlation coefficients.
After a group of similar genes C are identified, the missing values of
the gene are obtained using least squares applied to the group C.

In these two methods, the recovery of missing data is done
independently, i.e. the estimation of each missing entry does not
influence the estimation of the other missing entries.
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Short description of BPCA

BPCA is a global method consisting of three components. First,
principal component regression, which is basically a low rank
approximation of the data set is performed. Second, Bayesian
estimation, which assumes that the residual error and the projection of
each gene on principal components behave as normal independent
random variables with unknown parameters, is carried out. Third,
Bayesian estimation follows by iterations based on the
expectation-maximization (EM) of the unknown Bayesian parameters.
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Short descriptions of SVDimpute, FRAA and IFRAA

These methods are intimately related to Singular Value Decomposition

SVD
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Singular Value Decomposition - SVD

A = UΣV> ∈ Rn×m

Σ = diag(σ1, . . . , σmin(m,n)) :=



σ1 0 ... 0
0 σ2 ... 0
...

...
...

...
0 0 ... σn
0 0 ... 0
...

...
...

...


∈ Rn×m

σ1 ≥ . . . ≥ σr > 0 = σi , i > r = rank A
U = [u1 . . .un] ∈ O(n), V = [v1 . . . vm] ∈ O(m)

a† = a−1 if a 6= 0, a† = 0 if a = 0

A† := V diag(σ†1, . . . , σ
†
min(m,n))U>
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Best rank k -approximation

For k ≤ r = rank A: Σk = diag(σ1, . . . , σk ) ∈ Rk×k ,
Uk = [u1 . . .uk ] ∈ Rm×k ,Vk = [v1 . . . vk ] ∈ Rn×k

Ak := Uk ΣkV>k is the best rank k approximation in Frobenius and
operator norm of A

min
B∈R(m,n,k)

||A− B||F = ||A− Ak ||F (‖A‖2F = tr(AA>)).

Reduced SVD A = Ur Σr V>r where (r ≥) ν numerical rank of A if∑
i≥ν+1 σ

2
i∑

i≥1 σ
2
i
≈ 0, (0.01).

Aν is a noise reduction of A. Noise reduction has many applications in
image processing, DNA-Microarrays analysis, data compression.
Full SVD: O(mn min(m,n)), k - SVD: O(kmn).
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Minimal characterization of sum of squares of singular
values

σ2
1(A) ≥ σ2(A)2 ≥ . . . are the eigenvalues of AA> and A>A.

Ky-Fan characterization

m∑
i=ν+1

σi(A)2 = min
[xν+1...xm]∈O(m,m−ν)

m∑
i=ν+1

(Axi)
>(Axi)

O(m, k) ⊂ Rm×k all matrices with k orthonormal columns
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SVDimpute [2, 2]

First, replace the missing values with 0 or with values computed from
another method. Call the estimated matrix Ep, where p = 0.

Find the lp significant singular values of Ep, and let Ep,lp be the filtered
part of Ep. Replace the missing values in E by the corresponding
values in Ep,lp to obtain the matrix Ep+1.

Continue this process until Ep converges to a fixed matrix (within a
given precision). This algorithm takes into account implicitly the
influence of the estimation of one entry on the other ones. But it is not
clear if the algorithm converges, nor what are the features of any fixed
point(s) of this algorithm.
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Fixed Rank Approximation Algorithm (FRAA): I

Ω ⊂ {1, . . . ,n} × {1, . . . ,m} missing entries set.

Set gij = 0 if (i , j) ∈ Ω to obtain E ∈ Rn×m.

X are all X = [xij ] ∈ Rn×m where xij = 0 if (i , j) 6∈ Ω.

Assume that the completed matrix of the experiment should have the
numerical rank ν. Then we complete the entries by solving the
problem:

(1) min
X∈X

m∑
i=ν+1

σ2
i (E + X ) = min

X∈X

m∑
i=ν+1

λi((E + X )>(E + X ))
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FRAA: II

Fixed Rank Approximation Algorithm: [4]

Gp ∈ X is pth approximation to a solution of optimization problem (1).

Let Bp := (E + Gp)>(E + Gp)

Find an orthonormal set of eigenvectors for Bp, vp,1, ...,vp,m.

Then Gp+1 is a solution to the following minimum
of a convex nonnegative quadratic function

min
X∈X

m∑
q=l+1

((E + X )vp,q)>((E + X )vp,q)

Shmuel Friedland Univ. Illinois at Chicago () Completion of missing entries in matrices and tensors
Department of Statistics, The University of Chicago, September 12, 2011 21

/ 34



FRAA: III

Flow chart of the algorithm:
Fixed Rank Approximation Algorithm
(FRAA)
Input: integers m,n,L, iter , the locations of
non-missing entries S, initial approximation
G0 of n ×m matrix G.
Output: an approximation Giter of G.
for p = 0 to iter − 1
- Compute Bp := (E + Gp)>(E + Gp) and
find an orthonormal set of eigenvectors for
Bp, vp,1, ...,vp,m.
- Gp+1 is a solution to the minimum problem
(1) with
ν = L− 1 = l .
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FRAA: IV

Let fl(X ) :=
∑n

i=ν+1 σ
2
i (A + X ).

Then fl(Gp) ≥ fl(Gp+1). Gp,p = 1, . . . converges to a critical point G̃.

FRAA gives a good approximation of G̃. In many simulations G̃ = G∗.

FRAA is an adaptation of an algo for IEP:

Inverse Eigenvalue Problem:
Find the values of the missing entries of G such that the nonnegative
definite matrix G>G will have m − l smallest eigenvalues equal to zero.
IEP appear often in engineering. See [5]

FRAA is a robust algorithm which performs good, but not as well as
KNNimpute, BPCA and LSSimpute.
All other algo reconstruct the missing values of each gene from similar
genes.

Shmuel Friedland Univ. Illinois at Chicago () Completion of missing entries in matrices and tensors
Department of Statistics, The University of Chicago, September 12, 2011 23

/ 34



Fixed Rank Approximation Algorithm (IFRAA)

First use FRAA to find a completion G.

Then use a cluster algorithm

(We used K-means repeating & refining cluster size),
to find a reasonable number of clusters of similar genes,

each cluster is a relatively smaller matrix having an effective low rank.

For each cluster of genes apply FRAA separately to recover the
missing entries in this cluster [3].

These results suggest that IFRAA has a potential for being an effective
algorithm to recover blurred spots in digital images.
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SIMULATIONS 1

Figure: Comparison of NRMSE against percent of missing entries for three
methods: IFRAA, BPCA and LLS. Cdc15 data set in [?] with 24 samples.
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SIMULATIONS 2

Figure: Comparison of NRMSE against percent of missing entries for three
methods: IFRAA, BPCA and LLS. Data set was a 2000× 20 randomly
generated matrix of rank 2.
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The performance of the BCPA, IFRAA and LLS

algorithms depends on the unknown distribution of missing position of
the entries.

Table: Comparison of NRMSE for three methods: IFRAA, LLS and BPCA for
actual missing values distribution for three gene expression data sets with
different percentage of missing values.

Data sets IFRAA LLS BPCA
Cdc15 data set %0.81 missing 0.0175 0.0200 0.0216

Evolution data set %9.16 0.0703 0.0969 0.1247
Calcineurin data set %3.68 0.0421 0.0445 0.0453

Shmuel Friedland Univ. Illinois at Chicago () Completion of missing entries in matrices and tensors
Department of Statistics, The University of Chicago, September 12, 2011 27

/ 34



Missing entries for 3-tensors

T = [ti,j,k ]n,m,li=j=k=1 ∈ Rn×m×l .

Ω ⊂ {1, . . . ,n} × {1, . . . ,m} × {1, . . . , l} missing entries set

Simple solution: Assume 1, . . . ,n are genes

Unfold T in direction 1 to get the matrix E = [gi(j,k)] ∈ Rn×(ml)

where gi(j,k) = ti,j,k .

Apply your favorite completion algorithm for matrices
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(p, q, r)-approximation of 3-tensors

U ⊂ Rn,V ⊂ Rm,W ⊂ Rl of dimensions p,q, r respectively

with orthonormal bases [u1, . . . ,up], [v1, . . . ,vq], [w1, . . . ,wr ]

PU⊗V⊗W(T ) =
∑p,q,r

i=j=k 〈T ,ui ⊗ vj ⊗wk 〉ui ⊗ vj ⊗wk

(〈T ,x⊗ y⊗ z〉 =
∑n,m,l

i=j=k=1 ti,j,kxiyjzk )

‖T ‖2HS := ‖PU⊗V⊗W(T )|2HS + ‖P(U⊗V⊗W)⊥(T )|2HS

(‖PU⊗V⊗W(T )|2HS :=
∑p,q,r

i=j=k=1〈T ,ui ⊗ vj ⊗wk 〉2)

(Best) (p,q, r)-approximation PU?⊗V?⊗W?(T ):

arg max ‖PU⊗V⊗W(T )‖HS = arg min ‖P(U⊗V⊗W)⊥(T )‖HS

Shmuel Friedland Univ. Illinois at Chicago () Completion of missing entries in matrices and tensors
Department of Statistics, The University of Chicago, September 12, 2011 29

/ 34



Methods to find (p, q, r)-approximation

Higher Order Singular Value Decomposition HOSVD

Unfold in direction 1 and find p-truncated SVD approximation.
U-the subspace spanned by first p-left singular vectors.
Do similarly for V,W.

Alternating Least Squares Method:

Fix V0,W0, e.g. use HOSVD.
Find U1 := arg max{U, ‖PU⊗V⊗W(T )‖HS.
(Equivalent to finding of the first p-eigenvectors of corresponding

nonnegative definite matrix.)

Fix U1,W0 and find V1, then fix U1,V1 and find W1
Continue the algorithm
In each step of the algorithm the value of ‖PU⊗V⊗W(T )‖HS increases
Convergence to a critical point, which is a semi-local maximum
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Fixed Rank Approximation Algorithm for Tensors

ΦΩ ⊂ Rn×m×l all tensors X = [xi,j,k ] ∈ Rn×m×l

with xi,j,k = 0 if (i , j , k) 6∈ Ω.

T = [ti,j,k ] ∈ Rn×m×l , ti,j,k = 0 if (i , j , k) ∈ Ω.

X0 an approximation of completed errors

Assume Xs given.

Find (p,q, r)-approximation of T + Xs with corresponding subspaces
Us,Vs,Ws.

Then Xs+1 := arg min{‖P(Us⊗Vs⊗Ws)⊥(T + X )‖HS,X ,∈ Φ}.

Xs converges to a critical semi-local maximum
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