FPRAS for computing a lower bound for weighted matching polynomial of graphs

Shmuel Friedland
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago
Chicago, Illinois 60607-7045, USA

April 12, 2007

Abstract

We give a fully polynomial randomized approximation scheme to compute a lower bound for the matching polynomial of any weighted graph at a positive argument. For the matching polynomial of complete bipartite graphs with bounded weights these lower bounds are asymptotically optimal.

2000 Mathematics Subject Classification: 05A15, 05C70, 15A52, 68Q10. Keywords and phrases: Perfect matchings, k-matchings, permanents, hafnians, weighted matching polynomial of graph, fully polynomial randomized approximation scheme.

1 Introduction

Let $G=(V, E)$ be an undirected graph, (with no self-loops), on the set of vertices V and the set of edges E. A set of edges $M \subseteq E$ is called a matching if no two distinct edges $e_{1}, e_{2} \in M$ have a common vertex. M is called a k-matching if $\# M=k$. For $k \in \mathbb{N}$ let $\mathcal{M}_{k}(G)$ be the set of k-matchings in G. $\left(\mathcal{M}_{k}(G)=\emptyset\right.$ for $k>\left\lfloor\frac{\# V}{2}\right\rfloor$.) If $\# V=2 n$ is even then an n-matching is called a perfect matching.

Let $\omega: E \rightarrow(0, \infty)$ be a weight function, which associate with edge $e \in E$ a positive weight $\omega(e)$. We call $G_{\omega}=(V, E, \omega)$ a weighted graph. Denote by ι the weight $\iota: E \rightarrow\{1\}$. Then G can be identified with G_{ω}.

Let $M \in \mathcal{M}_{k}(G)$. Then the weight of the matching is defined as $\omega(M):=$ $\prod_{e \in M} \omega(e)$. The total weighted k-matching of G_{ω} is defined:

$$
\phi\left(k, G_{\omega}\right):=\sum_{M \in \mathcal{M}_{k}(G)} \omega(M), k \in \mathbb{N}
$$

where $\phi\left(k, G_{\omega}\right)=0$ if $\mathcal{M}_{k}(G)=\emptyset$ for any $k \in \mathbb{N}$. Furthermore we let $\phi\left(0, G_{\omega}\right):=1$. Note that $\phi\left(k, G_{\iota}\right)=\# \mathcal{M}_{k}(G)$, i.e. the number of k-matchings in G for any $k \in \mathbb{N}$. The weighted matching polynomial of G_{ω} is defined by:

$$
\Phi\left(t, G_{\omega}\right):=\sum_{k=0}^{n} \phi\left(k, G_{\omega}\right) t^{n-k}, \quad n=\left\lfloor\frac{\# V}{2}\right\rfloor .
$$

This polynomial is fundamental in the monomer-dimer model in statistical physics $[3,12]$, and for $\omega=1$ in combinatorics. Note that if $\# V$ is even then $\Phi\left(0, G_{\omega}\right)$ is the total weighted perfect matching of G. (Some authors consider the polynomial $t^{\left\lfloor\frac{\# V}{2}\right\rfloor} \Phi\left(t^{-1}, G_{\omega}\right)$ instead of $\Phi\left(t, G_{\omega}\right)$.) It is known that nonzero roots of a weighted matching polynomial of G are real and negative [12]. Observe that $\Phi\left(1, G_{\iota}\right)$ the total number monomer-dimer coverings of G.

Let G be a bipartite graph, i.e., $V=V_{1} \cup V_{2}$ and $E \subset V_{1} \times V_{2}$. In the special case of a bipartite graph where $n=\# V_{1}=\# V_{2}$, it is well known that $\phi(n, G)$ is given as perm $B(G)$, the permanent of the incidence matrix $B(G)$ of the bipartite graph G. It was shown by Valiant that the computation of the permanent of a $(0,1)$ matrix is $\# \mathbf{P}$-complete [17]. Hence, it is believed that the computation of the number of perfect matching in a general bipartite graph satisfying $\# V_{1}=\# V_{2}$ cannot be polynomial.

In a recent paper Jerrum, Sinclair and Vigoda gave a fully-polynomial randomized approximation scheme (fpras) to compute the permanent of a nonnegative matrix [13]. (See also Barvinok [1] for computing the permanents within a simply exponential factor, and Friedland, Rider and Zeitouni [9] for concentration of permanent estimators for certain large positive matrices.) [13] yields the existence a fpras to compute the total weighted perfect matching in a general bipartite graph satisfying $\# V_{1}=\# V_{2}$. In a recent paper of Levy and the author it was shown that there exists fpras to compute the total weighted k-matchings for any bipartite graph G and any integer $k \in\left[1, \frac{\# V}{2}\right]$. In particular, the generating matching polynomial of any bipartite graph G has a fpras. This observation can be used to find a fast computable approximation to the pressure function, as discussed in [8], for certain families of infinite graphs appearing in many models of statistical mechanics, like the integer lattice \mathbb{Z}^{d}.

The MCMC, (Monte Carlo Markov Chain), algorithm for computing the total weighted perfect matching in a general bipartite graph satisfying $\# V_{1}=$ $\# V_{2}$, outlined in [13], can be applied to estimate the total weighted perfect matchings in a weighted non-bipartite graph with even number of vertices. However the proof in [13], that shows this algorithm is frpas for bipartite graphs, fails for non-bipartite graphs. Similarly, the proof of concentration results given in [9] do not seem to work for non-bipartite graphs. The technique introduced by Barvinok in [1] to estimate the number of weighted perfect matching in bipartite graphs, does extend to the estimate of total weighted perfect matchings in a general non-bipartite graph with even number of vertices, when one uses real or complex Gaussian distribution. (See the discussion in §5.)

In this paper we give a fpras for computing a lower bound $\tilde{\Phi}\left(t, G_{\omega}\right)$ for the weighted generated function $\Phi\left(t, G_{\omega}\right)$ for a fixed $t>0$. We show that this lower bound has a multiplicative error at $\operatorname{most} \exp \left(N \min \left(\frac{a^{2}}{2 t}, C_{1}\right)\right)$, see (1.7), where a^{2} is the maximal weight of edges of G and

$$
\begin{equation*}
C_{1}=-\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \log \left(x^{2}\right) e^{-\frac{x^{2}}{2}} d x=1.270362845 \ldots \tag{1.1}
\end{equation*}
$$

These estimates are similar in nature to heuristic computations of Baxter [2], where he showed that his computation for the dimers on \mathbb{Z}^{2} lattice are very precise away from only dimer configurations, i.e. perfect matchings. (The results of heuristic computations of Baxter were recently confirmed in [8].) We show that that for the matching polynomial of complete bipartite graphs with weights in $\left[b^{2}, a^{2}\right], 0<b \leq a$, this lower bound is asymptotically optimal.

We now describe briefly our technical results. With each weighted graph G_{ω} associate a skew symmetric matrix $A=\left[a_{i j}\right]_{i, j=1}^{N} \in \mathbb{R}^{N \times N}, A^{\top}=-A$, where $N:=\# V$, as follows. Identify E with $\langle N\rangle:=\{1, \ldots, N\}$, and each edge $e \in E$ with the corresponding unordered pair $(i, j), i \neq j \in\langle N\rangle$. Then $a_{i j} \neq 0$ if and only $(i, j) \in E$. Furthermore for $1 \leq i<j \leq N,(i, j) \in E$ $a_{i j}=\sqrt{\omega((i, j))}$. For $1 \leq i \leq j \leq \mathbb{N}$ let $x_{i j}$ be a set of $\binom{\bar{N}}{2}$ independent random variables with

$$
\begin{equation*}
\text { E } x_{i j}=0, \quad \text { E } x_{i j}^{2}=1, \quad 1 \leq i \leq j \leq N . \tag{1.2}
\end{equation*}
$$

Let $\mathbf{x}:=\left(x_{11}, \ldots, x_{1 N}, x_{22}, \ldots, x_{N N}\right)$. We view \mathbf{x} as a random vector variable with values $\boldsymbol{\xi}=\left(\xi_{11}, \ldots, \xi_{N N}\right) \in \mathbb{R}^{\binom{N+1}{2}}$. Let Y_{A} be the following skewsymmetric random matrix

$$
\begin{equation*}
Y_{A}:=\left[a_{i j} x_{\min (i, j) \max (i, j)}\right)_{i, j=1}^{N} \in \mathbb{R}^{N \times N} . \tag{1.3}
\end{equation*}
$$

A variation of the Godsil-Gutman estimator [10] states

$$
\begin{align*}
& \left.\mathrm{E} \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)\right)=\Phi\left(t, G_{\omega}\right) \text { if } N=\# V \text { is even, } \tag{1.4}\\
& \mathrm{E} \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)=\sqrt{t} \Phi\left(t, G_{\omega}\right) \text { if } N=\# V \text { is odd. } \tag{1.5}
\end{align*}
$$

for any $t \geq 0$. Here I_{N} stands for $N \times N$ identity matrix.
We show the concentration of $\log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)$ around

$$
\begin{equation*}
\log \tilde{\Phi}\left(t, G_{\omega}\right):=\mathrm{E} \log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right) \tag{1.6}
\end{equation*}
$$

using [11]. These concentration results show that $\tilde{\Phi}\left(t, G_{\omega}\right)$ has a fpras. Jensen inequalities yield that $\tilde{\Phi}\left(t, G_{\omega}\right) \leq \Phi\left(t, G_{\omega}\right)$. Together with an upper estimate we have the following bounds:

$$
\begin{equation*}
\frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\min \left(\frac{a^{2}}{2 t}, C_{1}\right) \tag{1.7}
\end{equation*}
$$

where $a=\max \left|a_{i j}\right|$. The above inequality hold also for $t=0$. (For N even and $t=0$ this result is due to Barvinok $[1, \S 7]$.) It is our hope that by refining the techniques we are using one can show that $\Phi\left(t, G_{\omega}\right)$ has fpras for any $t>0$.

2 Preliminary results

Lemma 2.1 Let $G=(V, E)$ be an undirected graph on N vertices. Let $\omega: V \rightarrow(0, \infty)$ be a given weight function. Let $A=-A^{\top} \in \mathbb{R}^{n \times n}$ be the corresponding real skew symmetric matrix defined in §1. Assume that $x_{i j}, i=$ $1, \ldots, j, j=1, \ldots, N$ are $\binom{N+1}{2}$ independent random variables, normalized by the conditions (1.2). Let $Y_{A} \in \mathbb{R}^{N \times N}$ be the skew symmetric real matrix defined by (1.3). Then (1.4-1.5) hold.

Proof. Let $\sqrt{t}=s$. Observe first that $\operatorname{det}\left(s I_{N}+Y_{A}\right)$ is a sum of N ! monomials, where each monomial is of degree at most 2 in the variables $x_{i j}$ for $i<j$ and of degree m invariable s. The total degree of each monomial is N. The expected value of such a monomial is zero if at least the degree of one of the variables $x_{i j}$ is one. So it is left to consider the expected value of all monomials, where the degree if each $x_{i j}$ is 0 or 2 , which are called nontrivial monomials.

Assume first that N is even. Observe that if a monomial contains s of odd power than it must be linear at least in one $x_{i j}$. Hence its expected value is zero. Thus $\mathrm{E} \operatorname{det}\left(s I_{N}+Y_{A}\right)$ is a polynomial in s^{2}. Consider a nontrivial monomial such that the power of s is $N-2 m$. Note that this monomial is of the form $\tau s^{N-2 m} \prod_{(i, j) \in M} \omega((i, j)) x_{i j}^{2}$, for some m matching $M \in \mathcal{M}_{m}$. Here $(-1)^{m} \tau$ is the sign of the corresponding permutation $\sigma:\langle N\rangle \rightarrow\langle N\rangle$. Since $\sigma(i)=j, \sigma(j)=i$ for any edge $(i, j) \in M$, and $\sigma(i)=i$ for all vertices i which are not covered by M we deduce that $\tau=1$. Hence the expected value of this monomial is $s^{N-2 m} \prod_{e \in M} \omega(e)$. This proves (1.4). The identity (1.5) is shown similarly.

Recall the following well known result:
Lemma 2.2 Let $A=-A^{\top} \in \mathbb{R}^{N \times N}$ be a skew symmetric matrix. Then $B:=\mathbf{i} A$, where $\mathbf{i}:=\sqrt{-1}$, is a hermitian matrix. Arrange the eigenvalues of B in a decreasing order: $\lambda_{1}(B) \geq \ldots \geq \lambda_{N}(B)$. Then

$$
\begin{equation*}
\lambda_{N-i+1}(B)=-\lambda_{i}(B) \text { for } i=1, \ldots, N \tag{2.1}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\operatorname{det}\left(\sqrt{t} I_{N}+A\right)=\prod_{i=1}^{N} \sqrt{t+\lambda_{i}(B)^{2}} \tag{2.2}
\end{equation*}
$$

Proof. Clearly, B is hermitian. Hence all the eigenvalues of B are real. Arrange these eigenvalues in a decreasing order. So $-\mathbf{i} \lambda_{j}(B), j=1, \ldots, N$ are the eigenvalues of A. Since A is real valued, the nonzero eigenvalues of A must be in conjugate pairs. Hence equality (2.1) holds. Observe next that if $\lambda_{k}(A)=-\mathbf{i} \lambda_{k}(B) \neq 0$ then

$$
\left(\sqrt{t}+\lambda_{k}(A)\right)\left(\sqrt{t}+\lambda_{N-k+1}(A)\right)=\sqrt{t+\lambda_{k}(B)^{2}} \sqrt{t+\lambda_{N-k+1}(B)^{2}} .
$$

As the eigenvalues of $\sqrt{t} I_{N}+A$ are $\sqrt{t}+\lambda_{k}(A), k=1, \ldots, N$ we deduce (2.2).

3 Concentration for Gaussian entries

In this section we assume that each $x_{i j}$ is a normalized real Gaussian variable, i.e satisfying (1.2). Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called Lipschitz function, or Lipschtzian, if there exists $L \in[0, \infty)$ such that $\frac{|f(x)-f(y)|}{|x-y|} \leq L$ for all $x \neq y \in \mathbb{R}$. The smallest possible L for a Lipschitz function is denoted by $|f|_{\mathcal{L}}$. Let $\mathrm{A}_{\mathrm{N}} \subset \mathbb{R}^{\mathrm{n} \times \mathrm{n}}, \mathbf{i} \mathrm{A}_{\mathrm{N}} \subset \mathbb{C}^{\mathrm{n} \times \mathrm{n}}$ denote the set of $N \times N$ real skew symmetric matrices, and the set of $N \times N$ hermitian matrices of the form $\mathbf{i} A, A \in \mathrm{~A}_{\mathrm{N}}$. With each $A \in \mathrm{~A}_{\mathrm{N}}$ we associate a weighted graph $G_{\omega}=(V, E, \omega)$, where $V=\langle N\rangle,(i, j) \in V \Longleftrightarrow a_{i j} \neq 0, \omega((i, j))=\left|a_{i j}\right|^{2}$. Denote by $a:=\max \left|a_{i j}\right|$. To avoid the trivialities we assume that $a>0$. Note that a^{2} is the maximal weight of the edges in G_{ω}. Let Y_{A} be the random skew symmetric matrix given by (1.3) and denote by X_{A} the random hermitian matrix $X_{A}:=\frac{1}{\sqrt{N}} \mathrm{i} Y_{A}$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz function. As in [11] consider the following $F: \mathrm{iA}_{\mathrm{N}} \rightarrow \mathbb{R}$ given by the trace formula:

$$
F(B)=\operatorname{tr}_{N} f(B):=\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}(B)\right), \quad B \in \mathbf{i}_{\mathrm{N}} .
$$

Denote by $\mathrm{E} \operatorname{tr}_{N}\left(f\left(X_{A}\right)\right)$ the expected value of the function $\operatorname{tr}_{N}\left(f\left(X_{A}\right)\right)$. The concentration result [11, Thm 1.1(b)] states:

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\operatorname{tr}_{N}\left(f\left(X_{A}\right)\right)-\mathrm{E} \operatorname{tr}_{N}\left(f\left(X_{A}\right)\right)\right| \geq r\right) \leq 2 e^{-\frac{N^{2} r^{2}}{8 a^{2} \mid f f_{\mathcal{L}}^{2}}} \tag{3.1}
\end{equation*}
$$

(Recall that the normalized Gaussian distribution satisfies the log Sobolev inequality with $c=1$.) We remark that since the entries of X_{A} are either zero or pure imaginary one can replace the factor 8 in the inequality (3.1) by the factor 2 . See for example the results in $[15,8.5]$.

Lemma 3.1 Let $0 \neq A=\left[a_{i j}\right] \in \mathrm{A}_{\mathrm{N}}, \mathrm{a}=\max \left|\mathrm{a}_{\mathrm{ij}}\right|, \mathrm{t} \in(0, \infty), x_{i j}, 1 \leq i \leq$ $j \leq N$ be independent Gaussian satisfying (1.2). Let $Y_{A} \in \mathrm{~A}_{\mathrm{N}}$ be the random skew symmetric matrix given by (1.3). Then
$\operatorname{Pr}\left(\left|\log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)-\mathrm{E} \log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)\right| \geq N r\right) \leq 2 e^{-\frac{t N r^{2}}{2 a^{2}}}$.
Proof. Let $f_{t}(x):=\frac{1}{2} \log \left(\frac{t}{N}+x^{2}\right) . f_{t}$ is differentiable and

$$
\left|\left(f_{t}\right)_{\mathcal{L}}\right|=\max _{x \in \mathbb{R}}\left|f_{t}^{\prime}(x)\right|=\frac{\sqrt{N}}{2 \sqrt{t}}
$$

Apply (3.1) to f_{t}. Observe that the right-hand side of (3.1) is equal to the right-hand side of (3.2). Use (2.2) to deduce that

$$
\begin{array}{r}
N \operatorname{tr}_{N}\left(f_{t}\left(X_{A}\right)\right)=\sum_{i=1}^{N} \log \sqrt{\frac{t}{N}+\lambda_{i}\left(X_{A}\right)^{2}}=\sum_{i=1}^{N} \log \sqrt{\frac{t}{N}+\frac{\left|\lambda_{i}\left(Y_{A}\right)\right|^{2}}{N}} \\
=-\frac{1}{2} N \log N+\log \prod_{i=1}^{N} \sqrt{t+\left|\lambda_{i}\left(Y_{A}\right)\right|^{2}}=-\frac{1}{2} N \log N+\log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right) .
\end{array}
$$

Hence the left-had sides of (3.1) and (3.2) are equivalent.
The following lemma is well known, e.g. [9, p'1566], and we bring its proof for completeness.

Lemma 3.2 Let U be a real random variable with a finite expected value $\mathrm{E} U$. Then $e^{\mathrm{E} U} \leq \mathrm{E} e^{U}$. Assume that the following condition hold

$$
\begin{equation*}
\operatorname{Pr}(U-\mathrm{E} U \geq r) \leq 2 e^{-K r^{2}} \text { for each } r \in(0, \infty) \text { and some } K>0 \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
e^{\mathrm{E} U} \leq \mathrm{E} e^{U} \leq e^{\mathrm{E} U}\left(1+\frac{2 e^{\frac{1}{4 K}}}{\sqrt{K \pi}}\right) \tag{3.4}
\end{equation*}
$$

Proof. Since e^{u} is convex, the inequality $e^{\mathrm{E} U} \leq \mathrm{E} e^{U}$ follows from Jensen inequality. Let $\mu:=\mathrm{E} U$ and $F(u):=\operatorname{Pr}(U \leq u)$ be the cumulative distribution function of U. We claim that

$$
\begin{equation*}
\mathrm{E} e^{U} \leq e^{\mu}+\int_{\mu<u} e^{u}(1-F(u)) d u \tag{3.5}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\mathrm{E} e^{U}=\int_{-\infty}^{\infty} e^{u} d F(u)=\int_{u \leq \mu} e^{u} d F(u)+\int_{\mu<u} e^{u} d F(u) \tag{3.6}
\end{equation*}
$$

Since $e^{u} \leq e^{\mu}$ for $u \leq \mu$ we deduce that

$$
\int_{u \leq \mu} e^{u} d F(u) \leq e^{\mu} F(\mu)
$$

We now estimate the second integral in the right-hand side of (3.6). Recall that $F(u)$ is an nondecreasing function continuous from the right satisfying $F(+\infty)=1$. Hence $e^{u}(F(u)-1) \leq 0$ for all $u \in \mathbb{R}$. For any $R>\mu$ use integration by parts to deduce

$$
\begin{array}{r}
\int_{\mu<u \leq R} e^{u} d F(u)=\left.e^{u}(F(u)-1)\right|_{\mu} ^{R}+\int_{\mu<u \leq R} e^{u}(1-F(u)) d u \leq \\
e^{\mu}(1-F(\mu))+\int_{\mu<u} e^{s}(1-F(u)) d u .
\end{array}
$$

So

$$
\int_{\mu<u} e^{u} d F(u) \leq e^{\mu}(1-F(\mu))+\int_{\mu<u} e^{u}(1-F(u)) d u
$$

and (3.5) holds.
Assume now that (3.3) holds. Thus

$$
1-F(u)=\operatorname{Pr}(U>u) \leq 2 e^{-K(u-\mu)^{2}} \text { for any } u>\mu
$$

Hence

$$
\begin{array}{r}
\int_{\mu<u} e^{u}(1-F(u)) d u \leq 2 \int_{\mu<u} e^{u-K(u-\mu)^{2}} d u \leq \\
2 e^{\mu} \int_{-\infty}^{\infty} e^{-K\left(u-\mu-\frac{1}{2 K}\right)^{2}+\frac{1}{4 K}} d u=\frac{2 e^{\mu} e^{\frac{1}{4 K}}}{\sqrt{K \pi}} .
\end{array}
$$

Combine the above inequality with (3.5) to deduce the right-hand side of (3.4).

Corollary 3.3 Let the assumptions of Lemma 3.1 hold. Then
$\frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\frac{1}{N} \log \left(1+\frac{\sqrt{8 N} a e^{\frac{a^{2} N}{2 t}}}{\sqrt{\pi t}}\right)$.

4 FPRAS for computing $\log \tilde{\Phi}\left(t, G_{\omega}\right)$

Let $B \in \mathbb{R}^{N \times N}$. For $k \in \mathbb{N}$ denote by $\oplus_{k} B \in \mathbb{R}^{k N \times k N}$ the block diagonal matrix $\operatorname{diag}(\underbrace{B, \ldots, B}_{k}) .\left(\oplus_{k} B\right.$ is a direct sum of k copies of B.) Note that if $B \in \mathrm{~A}_{\mathrm{N}}$ then $\oplus_{k} B \in \mathrm{~A}_{\mathrm{kN}}$. Clearly,

$$
\begin{equation*}
\operatorname{det}\left(s I_{k N}+\oplus_{k} B\right)=\left(\operatorname{det}\left(s I_{N}+B\right)\right)^{k} \text { for any } B \in \mathbb{R}^{N \times N} \text { and } s \in \mathbb{R} \tag{4.1}
\end{equation*}
$$

Let $A \in \mathrm{~A}_{\mathrm{N}}$, and Y_{A} be the random matrix defined by (1.3). By $Y_{A}(\boldsymbol{\xi})$ we mean the skew symmetric matrix $\left[a_{i j} \xi_{\min (i, j) \max (i, j)}\right]_{i, j=1}^{N}$, which is a sampling of Y_{A}. Let $x_{i j}, 1 \leq i \leq j \leq k N$ be $\binom{k N+1}{2}$ normal Gaussian independent random variables. Consider the random matrix $Y_{\oplus_{k} A}$. Then a sampling

$$
Y_{\oplus_{k} A}(\boldsymbol{\xi}), \boldsymbol{\xi} \in \mathbb{R}^{\binom{k N+1}{2}}=\operatorname{diag}\left(Y_{A}\left(\boldsymbol{\xi}_{1}\right), \ldots, Y_{A}\left(\boldsymbol{\xi}_{k}\right)\right), \boldsymbol{\xi}_{i} \in \mathbb{R}^{\binom{N+1}{2}}, i=1, \ldots, k
$$

is equivalent to k sampling of Y_{A}.
Theorem 4.1 Let $0 \neq A=\left[a_{i j}\right] \in \mathrm{A}_{\mathrm{N}}$, $\mathrm{a}=\max \left|\mathrm{a}_{\mathrm{ij}}\right|, \mathrm{t} \in(0, \infty), x_{i j}, 1 \leq$ $i \leq j \leq N$ be independent Gaussian satisfying (1.2). Let $Y_{A} \in \mathrm{~A}_{\mathrm{N}}$ be the
random skew symmetric matrix given by (1.3). Let $Y_{A}\left(\boldsymbol{\xi}_{1}\right), \ldots, Y_{A}\left(\boldsymbol{\xi}_{k}\right)$ be k samplings of Y_{A}. Then

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\frac{1}{k} \sum_{i=1}^{k} \log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)-\log \tilde{\Phi}\left(t, G_{\omega}\right)\right| \geq N r\right) \leq 2 e^{-\frac{t k N r^{2}}{2 a^{2}}} \tag{4.2}
\end{equation*}
$$

In particular the inequality

$$
\begin{equation*}
\frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right)+\frac{a^{2}}{2 t} \tag{4.3}
\end{equation*}
$$

holds.
Hence an approximation of $\tilde{\Phi}\left(t, G_{\omega}\right)$ by $\left(\prod_{i=1}^{k} \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)\right)^{\frac{1}{k}}$ is a fully-polynomial randomized approximation scheme.

Proof. Use (4.1) to obtain

$$
\log \operatorname{det}\left(\sqrt{t} I_{k N}+Y_{\oplus_{k} A}(\boldsymbol{\xi})\right)=\sum_{i=1}^{k} \log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)
$$

Hence

$$
\begin{equation*}
\mathrm{E} \log \operatorname{det}\left(\sqrt{t} I_{k N}+Y_{\oplus_{k} A}\right)=k \mathrm{E} \log \operatorname{det}\left(\left(\sqrt{t} I_{N}+Y_{A}\right)=k \log \tilde{\Phi}\left(t, G_{\omega}\right)\right. \tag{4.4}
\end{equation*}
$$

Apply (3.2) to $Y_{\oplus_{k} A}$ to deduce (4.2). Observe next that

$$
\begin{equation*}
\mathrm{E} \operatorname{det}\left(\sqrt{t} I_{k N}+Y_{\oplus_{k} A}\right)=\mathrm{E} \operatorname{det}\left(\left(\sqrt{t} I_{N}+Y_{A}\right)^{k}=\Phi\left(t, G_{\omega}\right)^{k} .\right. \tag{4.5}
\end{equation*}
$$

Use Lemma 3.2 for the random variable $\log \operatorname{det}\left(\sqrt{t} I_{k N}+Y_{\oplus_{k} A}\right)$ to deduce

$$
\begin{array}{r}
\frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \Phi\left(t, G_{\omega}\right) \leq \frac{1}{N} \log \tilde{\Phi}\left(t, G_{\omega}\right)+ \\
+\frac{1}{k N} \log \left(1+\frac{\sqrt{8 k N} a e^{\frac{a^{2} k N}{2 t}}}{\sqrt{\pi t}}\right) .
\end{array}
$$

Let $k \rightarrow \infty$ to deduce (4.3).
We now show that (4.2) gives fpras for computing $\tilde{\Phi}\left(t, G_{\omega}\right)$ in sense of [14]. Let $\epsilon, \delta \in(0,1)$. Choose

$$
r=\frac{\epsilon}{2 N}, \quad k=\left\lceil\frac{8 a^{2} N \log \frac{4}{\delta}}{t \epsilon^{2}}\right\rceil .
$$

Then

$$
\operatorname{Pr}\left(1-\epsilon<\frac{\left(\prod_{i=1}^{k} \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)\right)^{\frac{1}{k}}}{\tilde{\Phi}\left(t, G_{\omega}\right)}<1+\epsilon\right)>1-\frac{\delta}{2} .
$$

Observe next that

$$
\operatorname{Pr}\left(\left|x_{i j}\right|>\sqrt{2 \log \frac{N^{2} k}{\delta}}\right)<\frac{\delta}{N^{2} k} .
$$

Hence with probability $1-\frac{\delta}{2}$ at least, the absolute of each off-diagonal of $\left.Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right), i=1, \ldots, k$ is bounded by $a \sqrt{2 \log \frac{N^{2} k}{\delta}}$. In this case all the entries of $\left.\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)$ are polynomial in $a, \sqrt{t}, N, \frac{1}{\epsilon}, \log \frac{1}{\delta}$. The length of the storage of each entry is logarithmic in the above quantities.

Finally observe that we need $O\left(N^{3}\right)$ to compute $\operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\left(\boldsymbol{\xi}_{i}\right)\right)$. Hence the total number of computations for our estimate is of order

$$
t^{-1} a^{2} N^{4} \epsilon^{-2} \log \delta^{-1} .
$$

The quantity $\frac{1}{N} \log \Phi\left(t, G_{\omega}\right)$ can be viewed as the exponential growth of $\log \Phi\left(t, G_{\omega}\right)$ in terms of the number of vertices N of G. Note that since the total number of matching of a graph G is given by $\Phi\left(1, G_{\iota}\right)$, Theorem 4.1 combined with (1.7) yields that the exponential growth of the computable lower bound $\tilde{\Phi}\left(1, G_{\iota}\right)$ differs by $\frac{1}{2}$ at most from the exponential growth of $\Phi\left(1, G_{\iota}\right)$. Note that for complete graphs on $2 n$, the exponential growth of the number of perfect matching matchings is of order $\log 2 n-1$. For k-regular bipartite graphs on $2 n$ vertices the results of $[4,7]$ imply the inequality that for n big enough the exponential growth of the total number of matchings is at least $\log k-1$. Thus for graphs G on $2 n$ vertices containing, bipartite k-regular graphs on $2 n$ vertices, with $k \geq 5$ and n big enough, $\tilde{\Phi}\left(1, G_{\iota}\right)$ has a positive exponential growth.

5 Another estimate of $\log \Phi\left(t, G_{\omega}\right)-\log \tilde{\Phi}\left(t, G_{\omega}\right)$

Lemma 5.1 Let X be a real Gaussian random variable. Then

$$
\begin{equation*}
\log \mathrm{E} X^{2}-\mathrm{E} \log X^{2} \leq C_{1}, \tag{5.1}
\end{equation*}
$$

where C_{1} is given by (1.1). Equality holds if and only if $\mathrm{E} X=0$.
Proof. Clearly, it is enough to prove the lemma in the case $X=Y+a$, where Y is a normalized by (1.2) and $a \geq 0$. In that case the left-hand side of (5.1) is equal to

$$
g(a):=\log \left(1+a^{2}\right)-\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \log \left((x+a)^{2}\right) e^{-\frac{x^{2}}{2}} d x .
$$

We used the software Maple to show that $f(a)$ is a decreasing function on $[0, \infty)$. So $f(0)=C_{1}$ and $\lim _{a \rightarrow \infty} f(a)=0$. This proves the inequality (5.1).

Equality holds if and only if $X=b Y$ for some $b \neq 0$.
Denote by $\mathrm{S}_{\mathrm{n}} \subset \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ the space of $n \times n$ real symmetric matrices. A polynomial $P: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of degree 2 if

$$
\begin{array}{r}
P(\mathbf{x})=\mathbf{x}^{\top} Q \mathbf{x}+2 \mathbf{a}^{\top} \mathbf{x}+b, \\
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}, \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\top} \in \mathbb{R}^{n}, Q \in \mathrm{~S}_{\mathrm{n}}, \mathrm{~b} \in \mathbb{R} .
\end{array}
$$

(We allow here the case $Q=0$.) The quadratic form $P_{h}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ induced by P is given

$$
P_{h}(\mathbf{y})=\mathbf{y}^{\top} Q_{h} \mathbf{y}, Q_{h}=\left[\begin{array}{cc}
Q & \mathbf{a} \\
\mathbf{a}^{\top} & b
\end{array}\right] \in \mathrm{S}_{\mathrm{n}+1}, \mathbf{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}+1}\right)^{\top} .
$$

Clearly, $P(\mathbf{x})=P_{h}\left(\left(\mathbf{x}^{\top}, 1\right)^{\top}\right) . P$ is called a nonnegative polynomial if $P(\mathbf{x}) \geq$ 0 for all $\mathbf{x} \in \mathbb{R}^{n}$. It is well known and a straightforward fact that P is nonnegative if and only if Q_{h} is a nonnegative definite matrix.

The following lemma is a generalization of [1, Thm 4.2, (1)].
Lemma 5.2 Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a nonzero nonnegative quadratic polynomial. Let X_{1}, \ldots, X_{n} be n-Gaussian random variables, and denote $\mathbf{X}:=$ $\left(X_{1}, \ldots, X_{n}\right)^{\top}$. Then

$$
\begin{equation*}
\mathrm{E} \log P(\mathbf{X}) \leq \log \mathrm{E} P(\mathbf{X}) \leq \mathrm{E} \log P(\mathbf{X})+C_{1} \tag{5.2}
\end{equation*}
$$

where C_{1} is given by (1.1).
Proof. We may assume without a loss of generality that E $P=1$. In view of the concavity of log we need to show the right-hand side of (5.2). Since Q_{h} is nonnegative definite it follows that

$$
\begin{array}{r}
P(\mathbf{x})=\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}\right)^{2}, \mathbf{a}_{i} \in \mathbb{R}^{n}, b_{i} \in \mathbb{R}, \lambda_{i}>0, i=1, \ldots, m \\
\mathrm{E}\left(\mathbf{a}_{i}^{\top} \mathbf{X}+b_{i}\right)^{2}=1, i=1, \ldots m, \quad \sum_{i=1}^{m} \lambda_{i}=1
\end{array}
$$

Note that one can have at most one $\mathbf{a}_{i}=\mathbf{0}$, and in that case then $b_{i}^{2}=1$. The concavity of log yields

$$
\log P(\mathbf{X}) \geq \sum_{i=1}^{m} \lambda_{i} \log \left(\mathbf{a}_{i}^{\top} \mathbf{X}+b_{i}\right)^{2}
$$

(We assume that $\log 0=-\infty$.) Note that if $\mathbf{a}_{i} \neq 0$ then $\mathbf{a}_{i} \mathbf{X}+b_{i}$ is Gaussian. Lemma 5.1 yields $\mathrm{E} \log P(\mathbf{X}) \geq-C_{1}$.

Theorem 5.3 Let the assumptions of Theorem 4.1 hold. Then (1.7) holds.
Proof. In view of (4.3) it is left to show

$$
\begin{equation*}
\log \Phi\left(t, G_{\omega}\right) \leq \log \tilde{\Phi}\left(t, G_{\omega}\right)+(N-1) C_{1} \tag{5.3}
\end{equation*}
$$

Let $A=\left[a_{i j}\right]_{i, j=1}^{n} \in \mathrm{~A}_{\mathrm{N}}$. Recall that $\operatorname{det} A=(\operatorname{pfaf} A)^{2}$, where pfaf A is the pfaffian. (So pfaf $A=0$ if n is odd.) Let $\mathbf{a}_{i}=\left(a_{1 i}, \ldots, a_{(i-1) i}\right)^{\top} \in \mathbb{R}^{i-1}, i=$ $2, \ldots, n$. We view pfaf A as multilinear polynomial $\operatorname{Pf}\left(\mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right)$ of total degree $\frac{n}{2}$, which is linear in each vector variable \mathbf{a}_{i}. (Any polynomial of noninteger total degree is zero polynomial by definition.)

Denote by $Q_{k, n}$ the set of subsets of $\langle n\rangle$ of cardinality $k \in[1, n]$. Each $\alpha \in Q_{k, n}$ is viewed as $\alpha=\left\{i_{1}, \ldots, i_{k}\right\}, 1 \leq i_{1}<\ldots<i_{k} \leq m$. For any matrix $B=\left[b_{i j}\right] \in \mathbb{R}^{n \times n}$ and $\alpha \in Q_{k, n}$ we define $B[\alpha \mid \alpha] \in \mathbb{R}^{k \times k}$ as the principal submatrix $\left[b_{\alpha_{i} \alpha_{j}}\right]_{i, j=1}^{k}$. Then for $A=\left[a_{i j}\right] \in \mathrm{A}_{\mathrm{n}}$ denote

$$
\operatorname{Pf}_{\alpha}\left(\mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right):=\operatorname{pfaf} A[\alpha \mid \alpha] .
$$

Then $\operatorname{Pf}_{\alpha}\left(\mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right)$ is a multilinear polynomial of total degree $\frac{k}{2}$, which is linear in each \mathbf{a}_{i}. Hence

$$
\begin{equation*}
\operatorname{det}\left(s I_{N}+A\right)=s^{N}+\sum_{k=1}^{n} s^{N-k} \sum_{\alpha \in Q_{k, n}} \operatorname{Pf}_{\alpha}\left(\mathbf{a}_{2}, \ldots, \mathbf{a}_{N}\right)^{2}, \text { for any } A \in \mathrm{~A}_{N} \tag{5.4}
\end{equation*}
$$

View $\mathbf{a}_{i} \in \mathbb{R}^{i-1}$ as a variable while all other $\mathbf{a}_{2}, \ldots, \mathbf{a}_{N}$ are fixed. Then for $s \geq 0$ the above polynomial is quadratic and nonnegative. Group the $\binom{N}{2}$ independent normalized random Gaussian variables $X_{i j}, 1 \leq i<j \leq N$ into $N-1$ random vectors $\mathbf{X}_{i}:=\left(X_{1 i}, \ldots, X_{(i-1) i}\right)^{\top}, i=2, \ldots, N$. Consider now Y_{A}. Let

$$
P\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{N}\right):=\operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right) \quad t \geq 0 .
$$

Then $P\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{N}\right)$ is a nonnegative quadratic polynomial in each $\mathbf{X}_{j}, j=$ $2, \ldots, N$. Denote by E_{i} the expectation with respect to the variables $X_{1 i}, \ldots, X_{(i-1) i}$. (5.4) yields that

$$
P_{i}\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{i}\right):=\mathrm{E}_{i+1} \ldots \mathrm{E}_{\mathrm{N}} P\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{N}\right)
$$

is a nonnegative quadratic polynomial in each $\mathbf{X}_{j}, j=2, \ldots, i$. Lemma 5.2 yields

$$
\log \mathrm{E}_{i} P_{i}\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{i}\right) \leq \mathrm{E}_{\mathrm{i}} \log P_{i}\left(\mathbf{X}_{2}, \ldots, \mathbf{X}_{i}\right)+C_{1}, \quad i=2, \ldots, N
$$

Hence

$$
\begin{array}{r}
\log \Phi\left(t, G_{\omega}\right)=\log \mathrm{E}_{2} P_{2}\left(\mathbf{X}_{2}\right) \leq \mathrm{E}_{2} \log P_{2}\left(\mathbf{X}_{2}\right)+C_{1} \leq \\
\mathrm{E}_{2} \mathrm{E}_{3} \log P_{3}\left(\mathbf{X}_{2}, \mathbf{X}_{3}\right)+2 C_{1} \leq \ldots \leq \\
\mathrm{E}_{2} \mathrm{E}_{3} \ldots \mathrm{E}_{N} \log P\left(\mathbf{X}_{2}, \mathbf{X}_{3}, \ldots, \mathbf{X}_{N}\right)+(N-1) C_{1}= \\
\log \tilde{\Phi}\left(t, G_{\omega}\right)+(N-1) C_{1} .
\end{array}
$$

6 Bipartite graphs

Assume that $G=(V, E)$ is a bipartite graph. So $V=V_{1} \cup V_{2}, E \subset E_{1} \times E_{2}$ and $N=m+n$. Assume for convenience of notation that $m: \# V_{1} \leq n:=\# V_{2}$. Thus $E \subset\langle m\rangle \times\langle n\rangle$, so each $e \in E$ is identified uniquely with $(i, j) \in\langle m\rangle \times\langle n\rangle$. Let $C=\left[c_{i j}\right] \in \mathbb{R}^{m \times n}$ be the weight matrix associated with the weights ω : $E \rightarrow(0, \infty)$. So $c_{i j}=0$ if $(i, j) \notin E$ and $c_{i j}=\sqrt{\omega(i, j)}$ if $(i, j) \in E$. Let $x_{i j}, i=1, \ldots, m, j=1, \ldots, n$ be $m n$ independent normalized real Gaussian variables. Let $U_{C}=:\left[c_{i j} x_{i j}\right] \in \mathbb{R}^{m \times n}$ be a random matrix. Then the skew symmetric matrix A associated with G_{ω} is given by and the corresponding random matrices Y_{A}, X_{A} are given as

$$
A=\left[\begin{array}{cc}
0 & C \tag{6.1}\\
-C^{\top} & 0
\end{array}\right], Y_{A}=\left[\begin{array}{cc}
0 & U_{C} \\
-U_{C}^{\top} & 0
\end{array}\right], X_{A}=\frac{\mathbf{i}}{\sqrt{m+n}} Y_{A} .
$$

Denote by

$$
\begin{equation*}
\sigma_{1}\left(U_{C}\right) \geq \ldots \geq \sigma_{m}\left(U_{C}\right) \geq 0 \tag{6.2}
\end{equation*}
$$

be the first m singular values of U_{C}. Then the eigenvalues of Y_{A} consists of $n-m$ zero eigenvalues and the following $2 m$ eigenvalues:

$$
\begin{equation*}
\pm \mathbf{i} \sigma_{1}\left(U_{C}\right), \ldots, \pm \mathbf{i} \sigma_{m}\left(U_{C}\right) \tag{6.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\operatorname{det}\left(\sqrt{t} I_{m+n}+Y_{A}\right)=t^{\frac{n-m}{2}} \prod_{i=1}^{m}\left(t+\sigma_{i}\left(U_{C}\right)^{2}\right) \tag{6.4}
\end{equation*}
$$

In [9] the authors considered the random matrix $V_{C}:=U_{C} U_{C}^{\top} \in \mathbb{R}^{m \times m}$. Note that the eigenvalues of V_{C} are

$$
\begin{equation*}
\sigma_{1}^{2}\left(U_{C}\right) \geq \ldots \geq \sigma_{m}^{2}\left(U_{C}\right) \tag{6.5}
\end{equation*}
$$

Furthermore, one has the equality $\mathrm{E} \operatorname{det} V_{C}=\phi\left(m, G_{\omega}\right)$. Let $K_{m, n}$ be the complete bipartite graph on $V_{1}=\langle m\rangle, V_{2}=\langle n\rangle$ vertices. Assume that $1 \leq$ $m \leq n$. Let $0<b \leq a$ be fixed. Denote by $\Omega_{m, n,\left[b^{2}, a^{2}\right]}$ the sets of all weights $\omega:\langle m\rangle \times\langle n\rangle \rightarrow\left[b^{2}, a^{2}\right]$. Recall that each $\omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}$ induces the positive matrix $C(\omega)=\left[c_{i j}(\omega)\right] \in \mathbb{R}^{m \times n}$, where $c_{i j}(\omega) \in[b, a]$. It was shown in [9] that $\frac{1}{n} \log \operatorname{det} V_{C(\omega)}$ concentrates at $\frac{1}{n} \log \phi\left(m, K_{m, n, \omega}\right)$ with probability 1 as $n \rightarrow \infty$. More precisely

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{m \leq n, \omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}} \operatorname{Pr}\left(\frac{1}{n}\left|\log \operatorname{det} V_{C(\omega)}-\log \phi\left(m, K_{m, n, \omega}\right)\right|>\delta\right)=0 \tag{6.6}
\end{equation*}
$$

for any $\delta>0$.
Theorem 6.1 Let $0<b \leq a$ be given. For $\omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}$ let $C(\omega)$ be a positive $m \times n$ matrix defined above and $A(\omega) \in \mathrm{A}_{\mathrm{m}+\mathrm{n}}$ be given by (6.1), ($C=C(\omega)$). Assume that $x_{i j}, 1 \leq i \leq j \leq(m+n)$ are independent Gaussian
satisfying (1.2). Let $Y_{A} \in \mathrm{~A}_{\mathrm{N}}$ be the random skew symmetric matrix given by (1.3). Then for any $t>0$
$\limsup _{n \rightarrow \infty} \sup _{m \leq n, \omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}} \operatorname{Pr}\left(\frac{1}{m+n}\left|\log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)-\log \Phi\left(t, K_{m, n, \omega}\right)\right|>\delta\right)=0$

Equivalently

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{m \leq n, \omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}} \frac{1}{m+n}\left(\log \Phi\left(t, K_{m, n, \omega}\right)-\log \tilde{\Phi}\left(t, K_{m, n, \omega}\right)\right)=0 \tag{6.8}
\end{equation*}
$$

Proof. Our proof follows the arguments in [9], and we point out the modifications that one has to make. Let $N=m+n$. Since $1 \leq m \leq n$ we have that $\frac{1}{2 n} \leq \frac{1}{N}<\frac{1}{n}$. (4.2) with $k=1$ implies:
$\limsup _{n \rightarrow \infty} \sup _{m \leq n, \omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}} \operatorname{Pr}\left(\frac{1}{m+n}\left|\log \operatorname{det}\left(\sqrt{t} I_{N}+Y_{A}\right)-\log \tilde{\Phi}\left(t, K_{m, n, \omega}\right)\right|>\delta\right)=0$
Thus it is enough to show equality (6.8).
Denote by X_{A} the random hermitian matrix $X_{A}:=\frac{1}{\sqrt{N}} \mathbf{i} Y_{A}$. For $\epsilon>0$ define

$$
\begin{aligned}
\operatorname{det}_{\epsilon}\left(\sqrt{t} I_{N}+Y_{N}\right) & :=\prod_{i=1}^{N} \sqrt{t+\max \left(\left|\lambda_{i}\left(Y_{N}\right)\right|, \sqrt{N} \epsilon\right)^{2}} \\
\operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right) & :=\prod_{i=1}^{N} \sqrt{\frac{t}{N}+\max \left(\left|\lambda_{i}\left(X_{N}\right)\right|, \epsilon\right)^{2}}
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\operatorname{det}_{\epsilon}\left(\sqrt{t} I_{N}+Y_{N}\right)=N^{\frac{N}{2}} \operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right) \tag{6.10}
\end{equation*}
$$

Let $f_{N, t, \epsilon}(x):=\frac{1}{2} \log \left(\frac{t}{N}+\max (|x|, \epsilon)^{2}\right)$. Then

$$
\left|f_{N, t, \epsilon}\right| \mathcal{L} \leq \frac{1}{\epsilon} \text { for } N \geq \frac{t}{\epsilon^{2}} .
$$

In what follows we assume that $N \geq \frac{t}{\epsilon^{2}}$. Observe next that

$$
\frac{1}{N} \log \operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)=\operatorname{tr}_{N} f_{N, t, \epsilon}\left(X_{A}\right)
$$

Combine the concentration inequality (3.1) with (6.10) to obtain

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\frac{1}{N}\left(\log \operatorname{det}_{\epsilon}\left(\sqrt{t} I_{N}+Y_{N}\right)-\mathrm{E} \log \operatorname{det}_{\epsilon}\left(\sqrt{t} I_{N}+Y_{N}\right)\right)\right| \geq r\right) \leq 2 e^{-\frac{N^{2} r^{2} \varepsilon^{2}}{8 a^{2}}} \tag{6.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
\epsilon_{N}=\frac{1}{(\log N)^{2}} \tag{6.12}
\end{equation*}
$$

Note that for a fixed t one has $N \geq \frac{t}{\epsilon_{N}^{2}}$ for $N \gg 1$. Hence

$$
\limsup _{N \rightarrow \infty} \operatorname{Pr}\left(\frac{1}{N}\left|\log \operatorname{det}_{\epsilon_{N}}\left(\sqrt{t} I_{N}+Y_{N}\right)-\mathrm{E} \log \operatorname{det}_{\epsilon_{N}}\left(\sqrt{t} I_{N}+Y_{N}\right)\right| \geq \delta\right)=0
$$

for any $\delta>0$. As in [9, Prf. of Lemma 2.1] use (6.11) and Lemma 3.2 to deduce that

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\sqrt{t} I_{N}+Y_{N}\right)-\mathrm{E} \log \operatorname{det}_{\epsilon_{N}}\left(\sqrt{t} I_{N}+Y_{N}\right)\right)=0
$$

which is equivalent to

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\mathrm{E} \log \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right)=0 \tag{6.13}
\end{equation*}
$$

It is left to show that under the assumption of the theorem

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\sqrt{t} I_{N}+Y_{N}\right)-\log \mathrm{E} \operatorname{det}\left(\sqrt{t} I_{N}+Y_{N}\right)\right)=0 \tag{6.14}
\end{equation*}
$$

Clearly, the above claim is equivalent to

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\log \mathrm{E} \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right)=0 \tag{6.15}
\end{equation*}
$$

To prove the above equality we use the results of [9]. First observe that X_{N} has at least $n-m$ eigenvalues which are equal to zero, while the other $2 m$ eigenvalues are $\pm \lambda_{1}\left(X_{N}\right), \ldots, \pm \lambda_{m}\left(X_{N}\right)$. Furthermore $\lambda_{1}\left(X_{N}\right)^{2}, \ldots, \lambda_{m}^{2}\left(X_{N}\right)$ are the m eigenvalues of $\frac{1}{N} U_{C} U_{C}^{\top}$, denoted in [9] as $Z\left(\tilde{A}_{n, m}\right)$. Clearly

$$
\begin{array}{r}
\operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)=\left(\frac{\sqrt{t}}{\sqrt{N}}\right)^{n-m} \prod_{i=1}^{m}\left(\frac{t}{N}+\max \left(\lambda_{i}\left(X_{N}\right)^{2}, \epsilon\right)^{2}\right) \geq \\
\operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)=\left(\frac{\sqrt{t}}{\sqrt{N}}\right)^{n-m} \prod_{i=1}^{m}\left(\frac{t}{N}+\lambda_{i}\left(X_{N}\right)^{2}\right) . \tag{6.16}
\end{array}
$$

Hence for $\epsilon \leq 1$

$$
\begin{array}{r}
0 \leq \frac{1}{N}\left(\log \operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\log \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right)= \\
\frac{1}{N} \sum_{\lambda_{i}\left(X_{N}\right)^{2} \leq \epsilon^{2}} \log \frac{\frac{t}{N}+\epsilon^{2}}{\frac{t}{N}+\lambda_{i}\left(X_{N}\right)^{2}} \leq \frac{1}{N} \sum_{\lambda_{i}\left(X_{N}\right)^{2} \leq \epsilon^{2}} \log \frac{\epsilon^{2}}{\lambda_{i}\left(X_{N}\right)^{2}} \leq \\
\frac{1}{N} \sum_{\lambda_{i}\left(X_{N}\right)^{2} \leq \epsilon^{2}} \log \frac{1}{\lambda_{i}\left(X_{N}\right)^{2}} .
\end{array}
$$

[9, (3.2)] is equivalent to

$$
\limsup _{n \rightarrow \infty} \sup _{m \leq n, \omega \in \Omega_{m, n,\left[b^{2}, a^{2}\right]}} \mathrm{E} \frac{1}{m+n} \sum_{\lambda_{i}\left(X_{m+n}\right)^{2} \leq \epsilon_{m+n}^{2}} \log \frac{1}{\lambda_{i}\left(X_{m+n}\right)^{2}}=0 .
$$

Hence

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\mathrm{E} \log \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\mathrm{E} \log \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right)=0 . \tag{6.17}
\end{equation*}
$$

Combine (6.16) with Jensen's inequality to deduce
$\mathrm{E} \log \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N} \mathbf{- i} X_{N}\right) \leq \log \mathrm{E} \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N} \mathbf{i} X_{N}\right) \leq \log \mathrm{E} \operatorname{det}_{\epsilon}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)$
Hence

$$
\begin{gathered}
\limsup _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\mathrm{E} \log \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right) \geq \\
\limsup _{N \rightarrow \infty} \frac{1}{N}\left(\log \mathrm{E} \operatorname{det}_{\epsilon_{N}}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)-\log \mathrm{E} \operatorname{det}\left(\frac{\sqrt{t}}{\sqrt{N}} I_{N}-\mathbf{i} X_{N}\right)\right) \geq 0 .
\end{gathered}
$$

Use (6.13) and (6.17) to deduce (6.15).

References

[1] A. Barvinok, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, Random Structures Algorithms 14 (1999), 29-61.
[2] R. J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968), 650-654.
[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982.
[4] S. Friedland, A proof of a generalized van der Waerden conjecture on permanents, Linear Multilin. Algebra 11 (1982), 107-120.
[5] S. Friedland and L. Gurvits, Generalized Friedland-Tverberg inequality: applications and extensions, submitted.
[6] S. Friedland and D. Levy, A polynomial-time approximation algorithm for the number of k-matchings in bipartite graphs, Mathematical papers in honour of Eduardo Marques de Sá, Textos de Matemática \#39, Coimbra University, Portugal, 2006, 61-67.
[7] S. Friedland and U.N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem, (with U. Peled), Advances of Applied Math. 34(2005), 486-522.
[8] S. Friedland and U.N. Peled, The pressure associated with multidimensional SOFT, in preparation.
[9] S. Friedland, B. Rider and O. Zeitouni, Concentration of permanent estimators for certain large matrices, Annals of Applied Probability, 14(2004), 1559-1576.
[10] C.D. Godsil and I. Gutman, On the matching polynomial of a graph, Algebraic Methods in Graph Theory I-II, North Holland, 1981, 67-83.
[11] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices, Electronic J. Prob. (2000), 119-136.
[12] O.J. Heilman and E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190-232; Errata 27 (1972), 166.
[13] M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries, J. ACM 51 (2004), 671-697.
[14] R. Karp and M. Luby, Monte Carlo algorithms for the planar multiterminal network reliability problem, J. Complexity 1 (1985), 45-64.
[15] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, Providence, RI, 2001.
[16] M. Talagrand, A new look at independence, Ann. Probab. 24 (1996), 1-34.
[17] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8 (1979), 189-201.

