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§0. Introduction

Let X be a compact metric space and assume that f : X → X is a continuous map. Denote by Ω the
nonwandering set of f . An interesting and a nontrivial invariant of f is HD(Ω)-the Hausdorff dimension
of Ω. It is usually a highly nontrivial problem to find HD(Ω). The seminal work of Bowen [Bow2] gives
HD(Ω) as the solution to P (tφ) = 0 for some special expanding maps. Here P (g) denotes the topological
pressure. See also [Rue2] and the recent works [Bar] and [Fri2]. Denote by E the set of all f -invariant
ergodic probability Borel measures on M . Let HD(µ), µ ∈ E be the Hausdorff dimension of µ

HD(µ) = inf
Y,µ(Y )=1

HD(Y ).

It is known that HD(µ) is easy to compute in many general cases. See for example [Man], [You], [L-Y]
and [Fri, 1-2]. In the above references HD(µ) is given in terms of entropy of f (along a foliation) and the
Lyapunov exponents. As the support of µ lies in Ω it follows that HD(Ω) ≥ HD(µ). Hence

HD(Ω) ≥ sup
µ∈E

HD(µ), . (0.1)

In fact in the examples studied in [Bow2] and [Rue2] one has the equality in (0.1). In these cases
HD(Ω) = HD(µ∗) and µ∗ is a unique Gibbs measure given by thermodynamics formalism which is equiv-
alent (absolutely continuous) to the Hausdorff measure on Ω. See also [Fri2]. In general a strict inequality
holds in (0.1). To motivate our results consider the following example.

Let M be a compact surface equipped with a Riemannian metric. Assume that f : M → M is smooth
diffeomorphism, i.e. f ∈ Diff1+α(M), α > 0. For µ ∈ E let h(µ), λ1(µ) ≥ λ2(µ), be the measure (metric)
entropy and the corresponding Lyapunov exponents of f . Assume that h(µ) > 0. Then Young’s theorem
[You] claims

HD(µ) =
h(µ)
λ1(µ)

+
h(µ)
−λ2(µ)

. (0.2)

Assume that f is an Axiom A diffeomorphism. Then Ω is a finite union of basic hyperbolic sets.
Assume for simplicity that f |Ω is topologically transitive, i.e. Ω consists of one basic set. The result of
McCluskey-Manning [M-M] is equivalent to.

HD(Ω) = sup
µ∈E

h(µ)
λ1(µ)

+ sup
µ∈E

h(µ)
−λ2(µ)

). (0.3)

The corresponding suprema are achieved for the Gibbs measures µu, µs. Usually µu 6= µs, i.e. (0.1) is not
sharp.

Our paper is divided roughly to three parts. In the first part (§1-§2) we give sufficient conditions on an
Axiom A surface diffeomorphism for which µu = µs := µ∗. We show that these conditions are satisfied by
certain area-preserving Hénon maps.

The second part (§3-§4) introduces the notion of a Strong Axiom A diffeomorphisms of manifolds M
with n = dimM > 2. An Axiom A diffeomorphism f : M → M is strongly hyperbolic if the tangent space
T (x) splits to

T (x) =
n∑

i=1

⊕Ei(x), x ∈ Ω,
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where each Ei(x) depends continously on x. Furthermore, possible rates of growth of Df(u), u ∈ Ei(x) are
located in a closed interval Ii, i = 1, ...n, and Ii ∩ Ij = ∅ for i 6= j. In particular, for any µ ∈ E f has n
distinct Lyapunov exponents.

λ1(µ) > · · ·λn(µ).

Let ru, rs be the dimensions of the unstable manifold and stable manifold respectively. The results of
Ledrappier and Young [L-Y, I-II] and Barreira, Pesin and Schmeling [B-P-S] yield:

HD(µ) =
ru∑

i=1

h+
i (µ)

λi(µ)
−

rs∑

i=1

h−i (µ)
λru+i

.

Here h+
i (µ), h−j (µ) is the entropy of f along the unstable and stable manifolds corresponding to the i−th, j−th

expanding and contracting direction.
We show that the notion of strong hyperbolicity is structurally stable. Hence a small neighborhood

of a Strong Axiom A diffeomorphism f : M → M consists of Strong Axiom A diffeomorphisms. A simple
way to find such f is as follows. Let fi : Mi → Mi, i = 1, ..., k, be k Axiom A surface diffeomorphisms.
Assume furthermore that the rates of expansions and contractions of any pair fi, fj lie in nonintersecting
closed intervals. Then f1 × · · · fk : M1 × · · ·Mk → M1 × · · ·Mk is a Strong Axiom A diffeomorphism.

The last part of this paper (§5-§6) applies the above ideas to the study of the dynamics of some proper
polynomial maps f : C2 → C2 which extend to holomorphic self-maps of CP2 . More precisely let J(f)
be the closure of all repelling periodic points of f . In one complex variables J(f) is exactly the Julia set
of f . Using the known structural stability results for hyperbolic sets of endomorphisms (in particular for
repellers) we show that J(f) has many properties like the standard Julia set for small neighborhoods of
certain f which basically have the structure of f1× f2. We prove the Ω-orbit stability theorem for the above
classes of polynomial maps in C2.

§1. Equilibrium measures for surface diffeomorphisms

Let N be a compact smooth manifold of dimension n. Assume that g : N → N is a C1 diffeomorphism.
For µ ∈ E we denote by h(µ) the µ-entropy of g and

λ1(µ) ≥ · · · ≥ λn(µ)

denote the n Lyapunov exponents of g. A map g satisfies Axiom A if Ω(g) is a hyperbolic set, i.e. for
each x ∈ Ω(g) the tangent bundle TxN splits as a direct sum of the contracting and expanding bundles-
Es(x)⊕Eu(x) and this decomposition is continuous in x ∈ Ω(g). Furthermore, the set of periodic points of
g is dense in Ω. It is known that

Ω(g) = ∪k
i=1Λi, (1.1)

where each Λi is a closed g-invariant set. Moreover, g|Λi is topologically transitive and g : Λi → Λi is
homeomorphic to a subshift of finite type (SFT) with respect some Markov partition. Λi is called a basic
set. Let Ei be the set of all g-invariant ergodic measures supported on Λi. Then E = ∪k

i=1Ei is the set of all
g-invariant ergodic measures.

Let M be a compact real surface and f ∈ Diff1(M). Assume that µ ∈ E . Denote by h(µ) the measure
(metric) entropy of f . Let λ1(µ) ≥ λ2(µ) be the corresponding Lyapunov exponents. Assume that h(µ) > 0.
Then Margulis-Ruelle inequality gives

λ1(µ) ≥ h(µ) > 0 > −h(µ) ≥ λ2(µ).

The fundamental result of L. Young [You] claims that (0.2) holds.
Suppose furthermore that f is an Axiom A diffeomorphism. Then µ ∈ Ei, supp(µ) ⊂ Λi for some

1 ≤ i ≤ k Denote by Λ+
i (µ), Λ−i (µ) the future and the past µ- generic points. (x ∈ M is called the future

(past) generic point if for any continuous function φ : M → R the average of φ on the f -forward (backward)
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orbit of x converges to
∫

φdµ.) It was proved by Manning [Man] that h(µ)
λ1(µ) ,

h(µ)
−λ2(µ) are the Hausdorff

dimension of Wu(x) ∩ Λ+
i (µ),W s(x) ∩ Λ−i (µ) for any x ∈ Λi. (Wu(x),W s(x) denote the unstable and the

stable manifold through x ∈ Ω.) any unstable manifold and the stable manifolds with respect to µ. See
[Man]. The results of McCluskey-Manning [M-M] implies the following theorem.

Theorem 1.2. Let M be a compact surface. Assume that f : M → M is a C1 Axiom A diffeomorphism
where Ω = Ω(f) has decomposition (1.1) to the basic sets. Then

δu
i = sup

µ∈Ei

h(µ)
λ1(µ)

=
h(µu

i )
λ1(µu

i )
,

δs
i = sup

µ∈Ei

h(µ)
−λ2(µ)

) =
h(µs

i )
λ2(µs

i )
,

HD(Wu(x) ∩ Λi) = δu
i , HD(W s(x) ∩ Λi) = δs

i , x ∈ Λi,

HD(Λi) = δu
i + δs

i , i = 1, ..., k,

HD(Ω) = max
1≤i≤k

δu
i + δs

i .

(1.3)

Assume furthermore that f ∈ Diff1+α(M), α > 0. Then the measures µu
i , µs

i are unique Gibbs measure for
i = 1, ..., k.

We now discuss the conditions which yield the equalities

µu
i = µs

i , i = 1, ..., k.

A simple sufficient condition is
λ1(µ) + λ2(µ) = 0, µ ∈ E . (1.4)

In that case

HD(µ) =
2h(µ)
λ1(µ)

,

sup
µ∈E

h(µ)
λ1(µ)

+ sup
µ∈E

h(µ)
−λ2(µ)

= sup
µ∈E

HD(µ).
(1.5)

Lemma 1.6. Let f : M → M be a C1 Axiom A diffeomorphism of a compact Riemannian manifold M of
dimension n. Then the following are equivalent.
(a)

∑n
i=1 λi(µ) = 0, µ ∈ E .

(b) |det(D(fm(x)))| = 1, fm(x) = x for any periodic point x of f .

Proof.
(a) ⇒ (b) Let fm(x) = x. Then there exists a unique µ ∈ E which is uniformly distributed on
x, f(x), ..., fm−1(x). The moduli of the eigenvalues of D(fm(x)) (which are independent of a basis in T (x))
are emλ1(µ), ..., emλn(µ). Hence |det(D(fm(x))| = em

∑n

1
λi(µ) = 1.

(b) ⇒ (a) Set
φ1(x) = log |Df(x)|W u(x)|, φ2(x) = − log |Df(x)|W s(x)|, x ∈ Ω.

Observe
|det(Df(x))| = eφ1(x)−φ2(x). (1.7)

Let µ ∈ E . Assume that
λ1(µ) ≥ · · ·λr+(µ) > 0 > λr+(µ)+1 ≥ · · ·λn(µ).

It follows that
r+(µ)∑

i=1

λi(µ) =
∫

Ω

φ1dµ, −
n∑

r+(µ)+1

λi(µ) =
∫

Ω

φ2dµ. (1.8)
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Assume that fm(x) = x. Let µ be the ergodic measure equally distributed on the periodic orbit
x, f(x), ..., fm−1(x). The assumption (b) and (1.7)-(1.8) yields that

∫

Ω

φ1dµ =
∫

Ω

φ2dµ. (1.9)

Recall that Ω has the decomposition (1.1) to the basic sets and f : Λi → Λi is homeomorphic to a subshift
of finite type which is topologically transitive. Hence any µ ∈ Ei is a weak limit of convex combinations of
ergodic measures supported on periodic points. As φ1(x), φ2(x) are continuous it follows that (1.9) holds for
any µ ∈ E . Use (1.8) to deduce (a).

¦

Theorem 1.10. Let f : M → M be a C1 Axiom A diffeomorphism of a compact surface M . Suppose that f
satisfies the condition (b) of Lemma 1.6. Then any extremal measure µu

i (given by (1.3)) is also an extremal
measure µs

i for i = 1, ..., k and vice versa. In particular,

δu
i = δs

i ,

H(Λi) = sup
µ∈Ei,h(µ)>0

HD(µ),

H(Ω) = sup
µ∈E,h(µ)>0

HD(µ).

Assume furthermore that f ∈ Diff1+α. Then the unique Gibbs measure µi : µu
i = µs

i is equivalent to the
Hausdorff measure on Λi for i = 1, ..., k.

Proof. In view of Theorem 1.2, Lemma 1.6 and (1.5) we need to discuss only the case where f ∈ Diff1+α.
Young’s formula (0.2) yields that HD(µi)-the µi-Hausdorff dimension of Λi is equal to HD(Λi). Moreover
it is proved in [You] that µi a.e.

lim
ε→0+

log µi(B(x, ε))
log ε

=
h(µi)
λ1(µi)

+
h(µi)
−λ2(µi)

.

Here
B(x, ε) = {y : y ∈ M, dist(x, y) ≤ ε}.

Hence the HD(Λi)-Hausdorff measure of Λi exist and is absolutely continuous with respect to µi. See for
example [Fal].

¦

Another condition for µu
i = µs

i for the maximal i which satisfies the equality HD(Ω) = δu
i + δs

i can
be deduced from Pesin’s formula [Pes]. Assume that f ∈ Diff1+α. Suppose furthermore that f preserves
a probability measure ν which is absolutely continuous with respect to the area measure dv given by some
Riemannian metric on M . Then Pesin’s formula claims

h(ν) =
∫

λ1(x)dν =
∫
−λ2(x)dν.

Assume that h(ν) > 0. Consider the ergodic decomposition of ν, e.g. [Wal]. In view of Margulis-Ruelle
inequality for most of µ ∈ E appearing in the ergodic decomposition of ν we have the equality

0 < h(µ) = λ1(µ) = −λ2(µ) ⇒ HD(µ) = 2 ⇒ H(Ω(f)) = 2.

Assume in addition that f is an Axiom A diffeomorphism. Margulis-Ruelle inequality yields that
δu
i , δs

i ≤ 1. Hence the above µ is extremal and is equal to unique µu
i and µs

i for some i. It follows that there
exists I ⊂ {1, ..., k} such that
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µ =
∑

i∈I

µi,

dµi = ρidµ, ρi(1− ρi) = 0, i ∈ I,
∑

i∈I

ρi = 1,

h(µi) > 0,HD(µi) = 2, i ∈ I.

Each µi, i ∈ I is the unique Gibbs measure which is equal to µu
i = µs

i , i ∈ I.
We now give a sufficient condition which implies the conditions of Lemma 1.6. Let M be a compact

Riemannian manifold and f : M → M a continuous map. Let M0 ⊂ M be an open set. Then f ∈ Diffr(M0)
if f(M0) = M0 and f |M0 is Cr diffeomorphism of M0. Assume that f ∈ Diff1(M0). We say that f is Axiom
A diffeomorphism on M0 if

Ω(f) = Ω0 ∪ Ω1, Ω0 ⊂ M0, Ω1 ⊂ M\M0, Ω0 ∩ Ω1 = ∅,

f is hyperbolic on Ω0 and Ω0 is the closure of the periodic points of f (which must be in Ω0). Assume that
f ∈ Diff1(M0). Suppose furthermore that M\M0 is a finite set. Let µ ∈ E and assume that h(µ) > 0. It
then follows that µ is supported on Ω0.

Lemma 1.11. Let f : M → M be a continuous map of a compact Riemannian manifold M . Suppose that
M0 ⊂ M is an open set and f is C1 Axiom A diffeomorphism of M0. Assume furthermore that f preserves
a σ-finite measure on M0 of the form

dν = wdv, w(x) ∈ C(M0), w > 0, x ∈ M0, (1.12)

where dv is the volume measure induced by the Riemannian metric. Then any ergodic measure µ of f
supported on Ω0 satisfies the condition (a) of Lemma 1.10.

Proof. According to the proof of Lemma 1.6 it is enough to show that for any periodic point x ∈ Ω0 the
condition (b) of Lemma 1.6 holds. Clearly fm preserves µ. Use the form (1.12) of µ and the assumption
that fm(x) = x ∈ Ω0 to deduce that |D(fm)(x)| = 1.

¦

Combine the above results to obtain the following theorem.

Theorem 1.13. Let f : M → M be a continuous map of a compact surface M . Suppose that M0 ⊂ M is an
open set and f is C1+α, α > 0 Axiom A diffeomorphism of M0. Assume furthermore that M\M0 is a finite
set. Let Ω0 = ∪k

1Λi be the decomposition of Ω0 to the basic sets. Then equalities (1.3) hold. Furthermore
µu

i , µs
i are unique Gibbs measures on Λi for i = 1, ..., k. Assume furthermore that f preserves a measure on

M0 of the form (1.12). Then then µu
i = µs

i := µi and µi is equivalent to the Hausdorff measure on Λi for
i = 1, ..., k.

§2. Complex surfaces and Hénon maps

Let N be a compact complex manifold of complex dimension n and assume that g : N → N is a
holomorphic map. Suppose that µ ∈ E . As the real dimension of N is 2n, the complex structure of the
tangent bundle TN implies the following conditions:

λ1(µ) = λ2(µ) ≥ · · · ≥ λ2n−1(µ) = λ2n(µ). (2.1)

Suppose furthermore that g is an Axiom A diffeomorphism. Then the stable and unstable manifolds
W s(x),Wu(x), x ∈ Ω are complex manifolds.
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Theorem 2.2. Let M be a compact complex surface. Assume that f : M → M is a holomorphic Axiom A
diffeomorphism where Ω = Ω(f) has decomposition (1.1) into the basic sets. Then

δu
i = sup

µ∈Ei,h(µ)>0

h(µ)
λ1(µ)

=
h(µu

i )
λ1(µu

i )
,

δs
i = sup

µ∈Ei,h(µ)>0

h(µ)
−λ4(µ)

) =
h(µs

i )
−λ4(µs

i )
,

HD(Wu(x) ∩ Λi) = δu
i , HD(W s(x) ∩ Λi) = δs

i , x ∈ Λi,

HD(Λi) = δu
i + δs

i , i = 1, ..., k,

HD(Ω) = max
1≤i≤k

δu
i + δs

i .

(2.3)

The measures µu
i , µs

i are unique Gibbs measure for i = 1, ..., k.
Suppose furthermore that f satisfies the condition (b) of Lemma 1.6. Then µi := µu

i = µs
i and µi is

equivalent to the Hausdorff measure on Λi for i = 1, ..., k.

Proof. Let µ ∈ E . Then the equality (2.1) holds with n = 2. It is enough to consider the case where
h(µ) > 0. Hence Wu(x), W s(x), x ∈ Ω are real two dimensional manifolds. The arguments of [Man] yield
that h(µ)

λ1(µ) ,
h(µ)
−λ4(µ) are the Hausdorff dimension of Wu(x) ∩ Λ+

i (µ),W s(x) ∩ Λ−i (µ) for any x ∈ Λi. Use the
arguments of [M-M] to deduce (2.3). (One should replace the intervals in the arguments of [Man] and
[M-M] by corresponding disks. See Verjovsky and Wu [V-W].) As f is smooth we obtain that the measures
µu

i , µs
i are unique for i = 1, ..., k. The last claim of the Theorem follows from Lemma 1.6 applied to this

particular case.
¦

Theorem 2.2 is meaningful for special compact complex surfaces, as most of compact complex surfaces
have a small group of automorphisms-Aut(M) (complex diffeomorphisms). In most cases Aut(M) is finite.
Indeed, assume first that M is a real compact Riemann surface of genus g. Suppose furthermore that M is
endowed with a complex structure, i.e. M is one dimensional compact complex manifold. If g = 0, i.e. M
is the Riemann sphere then Aut(M) is the group of Möbius transformations. If g = 1, i.e. M is a complex
torus, then the group of translations (z → z + a for the standard representation of M as a parallelogram in
C) has a finite index in Aut(M). Finally, if g > 1 then Aut(M) is finite. (Schwarz’s theorem, e.g. [F-K].)
In all these cases the dynamics of an automorphism is trivial. Consider next the two dimensional complex
projective plane CP2. Then Aut(CP2) is the group of invertible affine maps of C2 ⊂ CP2. See for example
[G-H]. Again the dynamics of any automorphism is trivial. The most interesting case is the complex two
dimensional torus T2. Again Aut(T2) can be classified completely by the corresponding complex affine
transformations. In certain cases, e.g. when the lattice in C2 defining T2 coincides with the standard lattice
in R4 (given by the standard basis), Aut(T2) will have elements with nontrivial dynamics given by Anosov
diffeomorphisms. However the dynamics of f ∈ Aut(T2) can be determined straightforward using the simple
form of f .

We obtain interesting results when we relax the conditions of Theorem 2.2 by considering birational
automorphisms of M . We now discuss this situation for the polynomial automorphisms of C2-Aut(C2). The
systematical study of the dynamics of f ∈ Aut(C2) was initiated by Friedland and Milnor in [F-M] and
continued in particular by Bedford and Smillie, e.g. [B-S, 1-3].

Let f ∈ Aut(C2). Consider one point compactification of C2 which is homeomorphic to the four
dimensional sphere S4 = C2∪∞. Then f lifts to a homeomorphism map f̂ : S4 → S4, f̂(∞) = ∞. That is
f̂ is smooth at all points of S4 except ∞. In the notation of the previous section f̂ is a smooth (holomorphic)
diffeomorphism of M0 = C2. The simplest example of an automorphism of C2 is a (generalized) Hénon map

H(x, y) = (y, p(y)− dx), x, y ∈ C, d 6= 0,

p(y) = yn +
n∑

i=2

aiy
n−i, n ≥ 2.

(2.4)

6



Note that if d, a2, ..., an ∈ R then H : R2 → R2. Thus, the original Hénon map is the case n = 2, d, a2 ∈ R
[Hén1-2]. Note that

det(DH) = d.

Hence H is area preserving (in absolute value) iff |d| = 1. Note that the area of C2 or R2 is not finite. It
was shown in [F-M] that any f ∈ Aut(C2) is either conjugate to an elementary automorphism (with rather
trivial dynamics) or to a composition of Hénon maps g = H1 · · ·Hp. This product is essentially unique up
to a cyclic permutation of the factors. The nonwandering set of f̂ is of the form Ω(f) ∪ ∞, where Ω(f)
is a compact set in C2. It was shown that in [F-M, §5] that given n and d there are many real Hénon
maps which are n-fold horseshoes on Ω(H). For complex valued Hénon maps one has the following family
of horseshoe maps: Fix all the parameters of (2.4) except an. Then there exists r(d, a2, ..., an−1) > 0 so
that for |an| ≥ r(d, a2, ..., an−1) H is an n fold horseshoe. For these maps we deduce that Ω(H) satifies
all the conditions of Axiom A diffeomorphism. Following [B-S2] we call f ∈ Aut(C2) hyperbolic if f is
conjugate to a product of Hénon maps and Ω(f) is hyperbolic. That is TxC2 = Es(x) ⊕ Eu(x), x ∈ Ω(f)
and this decomposition is continuous. In that case the periodic points are dense in Ω(f) [B-S2, Cor. 6.13].
Assume that f ∈ Aut(C2) has real coefficients. f is called real hyperbolic if f is conjugate to a product
of Hénon maps, ∅ 6= Ω(f) ∩ R2 is equal to the closure of its real periodic points, and the decomposition
TxR2 = Es(x) ⊕ Eu(x), x ∈ Ω(f) ∪R2 is continuous. We thus can apply the results and the arguments of
Theorems 1.13 and 2.2 to the corresponding automorphisms of C2.

Theorem 2.5. Let f ∈ Aut)(C2). Assume that f is either real hyperbolic or complex hyperbolic. Let
Ω = ∪k

1Λi be the decomposition of the nonwandering set of f into the basic sets. Then (1.3) and (2.3)
respectively hold. If |det(Df)| = 1 then µi := µs

i = µu
i , i = 1, ..., k and each µi is equivalent to the Hausdorff

measure on the corresponding basic set.

§3. Strict and strong hyperbolicity

Let M be an d-dimensional compact Riemannian manifold. Assume that X ⊂ M is an invariant set of
f ∈ Diffr(M), r ≥ 1. Then X is called a hyperbolic set if there exists a continuous splitting of the tangent
bundle of M restricted to X which is Df invariant:

TXM = Es ⊕ Eu; Df(Es) = Es; Df(Eu) = Eu;

for which there are constants c > 0 and ρ+,1 > 1 > ρ−,1 > 0 such that

||Dfn|Es || < cρn
−,1, n ≥ 0,

||Dfn|Eu || < cρn
+,1, n ≤ 0.

Assume that X is a closed hyperbolic set for f . Then for each x ∈ X there exist stable and unstable
manifolds

W s(x) = {y : y ∈ M, lim sup
n→∞

1
n

log dist(fn(y), fn(x)) ≤ log ρ−,1},

Wu(x) = {y : y ∈ M, lim sup
n→∞

1
n

log dist(f−n(y), f−n(x)) ≤ − log ρ+,1}.

W s(x),Wu(x) are immersed submanifolds of M which are as smooth as f and

TxW s(x) = Es(x), TxWu(x) = Eu(x), x ∈ X.

For ε > 0 set
W s

ε (x) = W s(x) ∩B(x, ε), Wu
ε (x) = Wu(x) ∩B(x, ε).
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Then there exists ε > 0 that
B(x, ε) = W s

ε (x)×Wu
ε (x), x ∈ X.

See for example [Shu].
Assume that X ⊂ M is an invariant hyperbolic set. Then f is called strictly hyperbolic if the above

continuous splitting of TXM has a further continuous splitting with the following conditions.

Es =
r−∑

j=1

⊕Es
j , Df(Es

j ) = Es
j , j = 1, ..., r−,

c′(ρ′−,j)
n ≤ ||Dfn|Es

j
|| ≤ cρn

−,j , n ≥ 0, j = 1, ..., r−,

Eu =
r+∑

j=1

⊕Eu
j , Df(Eu

j ) = Eu
j , j = 1, ..., r+,

c′ρn
+,j ≤ ||Dfn|Eu

j
|| ≤ c(ρ′+,j)

n, n ≤ 0, j = 1, ..., r+,

ρ+,1 > ρ′+,1 > ρ+,2 > ρ′+,2 > · · · > ρ+,r+ > ρ′+,r+ > 1,

1 > ρ−,1 > ρ′−,1 > ρ−,2 > ρ′−,2 > · · · > ρ−,r− > ρ′−,r− ≥ 0,

c ≥ c′ > 0.

(3.1)

Note that hyperbolicity of X is equivalent to (3.1) with r+ = r− = 1.
The finer decomposition of X implies the finer decomposition of the stable and unstable manifold.

Theorem 3.2. Let M be a compact Riemannian manifold and assume that f ∈ Diffr(M), r ≥ 1. Let X ⊂ M
be a closed f -invariant hyperbolic set. Suppose furthermore that (3.1) holds. Then there exist the following
decompositions of stable and unstable manifolds.

V s
i ⊂ W s, TxV s

i = Es
i (x), f(V s

i (x)) = V s
i (f(x)), i = 1, ..., r−,

W s(x) = V s
1 (x)× · · · × V s

r−(x),
V u

i ⊂ Wu, TxV u
i = Eu

i (x), f(V u
i (x)) = V u

i (f(x)), i = 1, ..., r+,

Wu(x) = V u
1 (x)× · · · × V u

r+(x).

Each V s
i , V u

j are C1 at least.

Proof. We first prove the decomposition of the unstable manifold. Our proof is based on the arguments given
in [Shu, Appendix IV]. Let S(X,TXM) be the space of all continuous sections on X. That is h ∈ S(X, TXM)
if for each x ∈ X, h(x) ∈ TxM and h(x) is continuous. Then S(X, TXM) is a vector space using the pointwise
addition. We let S(X,TXM) be a Banach space by introducing the max norm

||h|| = sup
x∈X

||h(x)||.

Here we assume that on TxM we have the Hilbert norm induced by the Riemannian metric on M . Let

S+
i = {h : h ∈ S(X, TXM), h(x) ∈ Eu

i (x)}, i = 1, ..., r+,

Y +
i =

i∑

l=1

⊕S+
l , i = 1, ..., r+,

S−i = {h : h ∈ S(X, TXM), h(x) ∈ Es
i (x)}, i = 1, ..., r−,

Y −
i =

r−∑

l=i

⊕S+
l , i = 1, ..., r−.
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Clearly
Df(S+

i ) = S+
i , i = 1, ..., r+,

Df(S−i ) = S−i , i = 1, ..., r−,

S(X, TXM) = Y +
r+ ⊕ Y −

r− ,

Y +
i = Y +

i−1 ⊕ S+
i , i = 2, ..., r+.

We now recall briefly the proof of the existence of the unstable manifold as in [Shu, Ch.6]. In view of the
above assumptions Df is strictly expanding on Y +

r+ and strictly contracting on Y −
r− . Let

D(ε) = {h : h ∈ S(X,TXM), ||h|| ≤ ε}.

Then f induces the following Lipschitz map f̃ : D(ε) → S(X,TXM). Since M is compact there exists δ > 0
so that the exponential map expx : TxM ∩ C(x, δ) → M is 1− 1. Here by C(x, δ) we denote the closed ball
of radius δ in TxM centered at 0 in the given Riemannian metric on M . We thus can identify the closure of
the appropriate neighborhood of x ∈ M with TxM ∩C(x, δ). Hence there exists 0 < δ1 ≤ δ so that f carries
the closed neighborhood of x ∈ M corresponding to TxM ∩ C(x, δ1) to a subset of the closed neighborhood
of f(x) corresponding to Tf(x)M ∩ C(f(x), ε). Let h ∈ D(δ1). Hence h(x) ∈ TxM ∩ C(x, δ1). We then let
f̃(h(x)) ∈ Tf(x)M to be the unique solution of

expf(x)(f̃(h(x)) = f(expx(h(x))).

It is straightforward to show that since f ∈ Diff1(M) f̃ is C1 on D(δ1). In particular f̃ is Lipschitz. Let 0 be
the zero section in S(X, TXM). It then follows the f̃(0) = 0. Moreover, Df viewed as a linear operator on
S(X, TXM) is the Fréchet derivative of f̃ at 0. Thus we can apply Theorem 5.2 of [Shu] as in the proof of
Theorem 6.2. (We skip some of the technical details and oversimplify the ideas of the proof given in [Shu].)
Set

S+
i (ε) = S+

i ∩D(ε), Y +
i (ε) = Y +

i ∩D(ε), i = 1, ..., r+,

S−i (ε) = S−i ∩D(ε), Y −
i (ε) = Y −

i ∩D(ε), i = 1, ..., r−.

Then there exists 0 < ε < δ1 and a Lipschitzian g : Y +
r+(ε) → Y −

r−(ε) which gives the local unstable manifolds
Wu

ε (x), x ∈ X as follows. First Lip(g) ≤ 1. Second g can be viewed using the exponential map as

ĝx : Eu(x) ∩ C(x, δ′) → Es(x), x ∈ X.

Here ĝx varies continuously in x. Finally f̃ maps the graph ĝx into the graph of ĝf(x). The exponential map
of the graph of ĝx gives the local unstable manifold Wu

ε (x). The r smoothness of g and hence of Wu
ε (x) is

obtained from the appropriate smoothness of f as in [Shu]. Similar arguments applied for f−1 give the local
stable manifolds W s

ε (x), x ∈ X. Moreover

B(x, ε) = Wu
ε (x)×W s

ε (x), x ∈ X.

Assume that r+ > 1. We now show how to obtain the decomposition

Wu
ε (x) = Wu

r+−1,ε(x)× V u
r+,ε(x), x ∈ X.

Since f̃ acts on the graphs of ĝx it follows that we have the following restriction

f̃ : Y +
r+ → Y +

r+ .

Set f1 = f̃ |Y +
r+ . Again Df |Y +

r+ is the Fréchet derivative of f1. Consider the decomposition Y +
r+ = Y +

r+−1⊕S+
r+ .

Note that Df expands on Y +
r+−1 at the rate ρ′+,r+−1 at least while Df expands on S+

r+ at the rate ρ+,r+ at
most. Thus we can apply Theorem III.2 as in the proof of Theorem IV.1 (Center and Strong Stable Manifolds

9



for Invariant Sets). To be precise if we consider f−1
1 we then obtain Wu

r+−1,ε as the super stable manifold
and V +

r+,ε as the center unstable manifold. Hence Wu
r+−1,ε is Cr while V +

r+,ε is C1 at least. Furthermore

Wu
ε (x) = Wu

r+−1,ε(x)× V +
r+,ε(x), x ∈ X.

Continue this procedure to obtain the complete decomposition of Wu
ε :

Wu
i,ε(x) = Wu

i−1,ε(x)× V +
i,ε(x), i = r+, ..., 2,

Wu
ε (x) = Wu

r+,ε(x), V +
1,ε(x) = Wu

1,ε(x).
(3.3+)

Apply these arguments to f−1 to obtain the following decomposition of the stable manifold:

W s
i,ε(x) = W s

i−1,ε(x)× V −
r−−i+1,ε(x), i = r−, ..., 2,

W s
ε (x) = W s

r−,ε(x), V −
r−,ε(x) = W s

1,ε(x).
(3.3−)

Then each Wu
i,ε(x),W s

j,ε(x) is Cr while each V +
i,ε(x), V −

j,ε(x) is at least C1.
Finally to define globally V +

i (x), V −
j (x) we let

V +
i (x) = ∪n≥0f

nV +
i,ε(f

−n(x)), i = 1, ..., r+,

V −
i (x) = ∪n≥0f

−nV −
i,ε(f

n(x)), i = 1, ..., r−.

The proof of the theorem is completed.
¦

It is well known that the submanifolds W s
i (x),Wu

j (x) have the following geometric meanings:

W s
i (x) = {y : y ∈ M, lim sup

n→∞
1
n

log dist(fn(y), fn(x)) ≤ log ρ−,r−−i+1}, i = 1, ..., r−,

Wu
i (x) = {y : y ∈ M, lim sup

n→∞
1
n

log dist(f−n(y), f−n(x)) ≤ − log ρ′+,i}, i = 1, ..., r+.

See for example the arguments of [Rue1, §6]. As pointed out in [Shu, p’80], there is no special meaning
of the centered unstable manifolds; thus we do not see why V u

i (x), V s
j (x) are unique (except those which

concide with Wu
1 (x),W s

1 (x)).
We now show that a closed strict hyperbolic set X of f satisfying the conditions (3.1) is structurally

stable in the sense of [Shu, Th.8.3]:

Theorem 3.4. Let M be a compact Riemannian manifold and assume that f ∈ Diffr(M), r ≥ 1. Let X be
a closed f -invariant hyperbolic set. Assume that (3.1) holds. There is a neighborhood Uf of f in Diffr(M)
and a continuous function Φ : Uf → C0(X, M) such that:
(1) Φ(f) is the inclusion, incX , of X in M .
(2) Φ(g)(X) is a hyperbolic set for any g ∈ Uf . Moreover for each g ∈ Uf there exists a continuous
decomposition (3.1) of TΦ(g)(X)M with

ρ+,1(g) > ρ′+,1(g) > ρ+,2(g) > ρ′+,2(g) > · · · > ρ+,r+(g) > ρ′+,r+(g) > 1,

1 > ρ−,1(g) > ρ′−,1(g) > ρ−,2(g) > ρ′−,2(g) > · · · > ρ−,r−(g) > ρ′−,r−(g) > 0,

c(g) ≥ c′(g) > 0.

(3) Φ(g) is a homeomorphism of X onto Φ(g)(X) and topologically conjugates the restriction of f to X to
the restricition of g to Φ(g)(X).
(4) There is a constant K such that dC0(Φ(g), incX) < KdC0(g, f).
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Proof. The conditions (1)-(4) except the fine decomposition (3.1) of part (2) of the theorem is proven in
Theorem 8.3 of [Shu]. We now prove the fine decomposition (3.1) for any g ∈ Uf . To do that we have to
analyze carefully the proof of (2) in [Shu]. We already know that Φ(g)(X) is a hyperbolic set of g. We thus
can use the ideas of the proof of Proposition 7.6 in [Shu]. We extend the splitting (3.1) to a neighborhood
N ⊃ X. We shall assume that Uf is chosen small enough to satisfy the perturbation conditions needed.
Then

A(x) = (Aij(x))m
1 = Df |x, B(x) = (Bij(x))m

1 = Dg|x, m = r+ + r−, x ∈ Φ(g)X

are m×m block matrices. Furthermore, since x is close to X and g is a perturbation of f we assume that
the tangent bundles at f(x) and g(x) are identical. Hence we have the inequalites

ρ′+,i − δ ≤ ||Aii(x)|| ≤ ρ+,i + δ, i = 1, ..., r+,

ρ′−,i−r+ − δ ≤ ||Aii(x)|| ≤ ρ−,i−r+ + δ, i = r+ + 1, ...,m

||Aij(x)|| ≤ δ, , i 6= j, i, j = 1, ...,m,

||Aij(x)−Bij(x)|| < δ, i, j = 1, ..., m,

x ∈ Φ(g)(X).

δ is assumed to be a positive and arbitrarily small. Set

L(x) = (Lij(x))m
1 ,

Lii(x) = Bii(x), i = 1, ..., m,

Lij(x) = 0, i 6= j, i, j = 1, ...,m,

x ∈ Φ(g)X.

The matrices L(x) induce the linear operator on S(Φ(g)X, TΦ(g)XM):

L(h)(g(x)) = L(x)h(x), h ∈ S(Φ(g)X, TΦ(g)XM), x ∈ Φ(g)X.

The above inequalities mean that the spectrum of L is concentrated on r++r− distinct annuli in the complex
plane:

ρ′+,i − 2δ ≤ |z| ≤ ρ+,i + 2δ, i = 1, ..., r+,

ρ′−,i − 2δ ≤ |z| ≤ ρ−,i + 2δ, i = 1, ..., r−.

Furthermore the spectrum of L has a nonvoid intersection with each annulus given above. It now follows
that the spectrum of B is concentrated r+ + r− distinct closed annuli

ρ′+,i(g) ≤ |z| ≤ ρ+,i(g), i = 1, ..., r+,

ρ′−,i(g) ≤ |z| ≤ ρ−,i(g), i = 1, ..., r−.

Let
Π+

1 (L), ..., Π+
r+(L),Π−1 (L), ..., Π−r+(L), Π+

1 (B), ..., Π+
r+(B),Π−1 (B), ..., Π−r+(B),

be the spectral projections corresponding to L and B respectively on the above annuli. Set

S+
i (L) = Π+

i (L)S(Φ(g)X, TΦ(g)XM), S+
i (g) = Π+

i (B)S(Φ(g)X,TΦ(g)XM), i = 1, ..., r+,

S−i (L) = Π−i (L)S(Φ(g)X, TΦ(g)XM), S−i (g) = Π−i (B)S(Φ(g)X, TΦ(g)XM), i = 1, ..., r−,

S(Φ(g)X,TΦ(g)XM) =
r+∑

i=1

⊕S+
i (L)⊕

r−∑

i=1

⊕S−i (L) =
r+∑

i=1

⊕S+
i (g)⊕

r−∑

i=1

⊕S−i (g).

The projection of S+
i (g), S−j (g) on TyM, y = Φ(g)(x), x ∈ X induces the subspaces Eu

i (g)(y), Es
j (g)(y). As

the projection of S+
i (L), S−j (L) on TyM,y = Φ(g)(x), x ∈ X have the dimensions of Eu

i (f), Es
j (f) it follows

that the dimensions of Eu
i (g)(y), Es

j (g)((y) do not depend on g. In particular (3.1) holds. The continuity
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of the decompostion (3.1) follows from the fact that each S+
i (g), S−j (g) is a closed subspace of continuous

sections.
¦

The following lemma is straightforward.

Lemma 3.5. Let M1,M2 be two compact Riemannian manifolds. Assume that fi : Mi → Mi are Cr, r ≥ 1,
diffeomorphisms for i = 1, 2. Suppose that each Xi is a strict hyperbolic set satisfying the assumptions
(3.1) with the constants depending on fi as in the condition (2) of Theorem 3.4. Furthermore, the integers
r+ = r+(fi), r− = r−(fi) are functions of fi. Assume that the following conditions are satisfied:

[ρ′+,i(f1), ρ+,i(f1)] ∩ [ρ′+,j(f2), ρ+,j(f2)] = ∅, i = 1, ..., r+(f1), j = 1, ..., r+(f2),

[ρ′−,i(f1), ρ−,i(f1)] ∩ [ρ′−,j(f2), ρ−,j(f2)] = ∅, i = 1, ..., r−(f1), j = 1, ..., r−(f2).

Then the set X1 ×X2 is a strict hyperbolic set of Cr diffeomorphism f = f1 × f2 : M1 ×M2 → M1 ×M2

with

r+(f) = r+(f1) + r+(f2), r−(f) = r−(f1) + r−(f2),

{ρ+,i(f)}r+(f)
1 = {ρ+,i(f1)}r+(f1)

1 ∪ {ρ+,i(f2)}r+(f2)
1 , {ρ′+,i(f)}r+(f)

1 = {ρ′+,i(f1)}r+(f1)
1 ∪ {ρ′+,i(f2)}r+(f2)

1 ,

{ρ−,i(f)}r−(f)
1 = {ρ−,i(f1)}r−(f1)

1 ∪ {ρ−,i(f2)}r−(f2)
1 , {ρ′−,i(f)}r−(f)

1 = {ρ′−,i(f1)}r−(f1)
1 ∪ {ρ′−,i(f2)}r−(f2)

1 .

Lemma 3.5 enables us to obtain strict hyperbolic sets from smaller dimension strict hyperbolic sets or
even just hyperbolic sets.

Definition 3.6. Let f : M → M be a Cr, r ≥ 1, diffeomorphism. Assume that X ⊂ M is an f -invariant
hyperbolic set. Then X is called strongly hyperbolic if (3.1) holds where each Es

i (x), Eu
j (x), x ∈ X is a one

dimensional subspace of TxM . That is,
dimM = r+ + r−.

If M is a complex manifold and f is a complex diffemorphism then f is called strongly hyperbolic if each
Es

i (x), Eu
j (x), x ∈ X is a one dimensional complex subspace of TxM .

Theorem 3.4 implies that strongly hyperbolic sets are structurally stable. Lemma 3.5 implies that
X1 × X2 is strongly hyperbolic for f1 × f2 if each Xi is strongly hyperbolic for fi and the assumptions of
Lemma 3.5 hold.

Recall that f : M → M is a Cr, r ≥ 1, Axiom A diffeomorphism if Ω(f) is hyperbolic and is the closure
of its periodic points. Then Ω(f) decomposes to k mutually disjoint basic sets ∪k

i=1Λi. Each Λi is a closed
f -invariant hyperbolic set. f |Λi is topologically transitive and has a Markov partition. The sets Λ1, ..., Λk

have no-cycle property if there is no cycle on r > 1 elements of 1, ..., k satisfying the condition.

Wu(Λij ) ∩W s(Λij+1) 6= ∅, 1 ≤ ij 6= ij+1 ≤ k, j = 1, ..., r, ir+1 = i1. (3.7)

Assume that f is an Axiom A diffeomorphism with no cycle property. Then Ω(f) is structurally stable.
See for example [Shu, Cor. 8.24]. We say that f is a Strong Axiom A diffeomorhism if f is an Axiom
A diffeomorphism and each basic set satisfies the assumptions of Definition 3.6. Theorem 3.4 implies that
Strong Axiom A diffeomorphism with no-cycle property are structurally stable.

A standard example of a Strong Axiom A diffeomorphisms is the following one. Let M = Tn =
S1 × · · · × S1 be an n-dimensional torus. Assume that f : Tn → Tn is represented by an n× n unimodular
matrix. Then f is a Strong Axiom A diffeomorphism iff the absolute values on the n eigenvalues of A are
pairwise distinct.

We now point out the following construction of a class of Strong Axiom A diffeomorphisms. Let M be
a compact surface and f : M → M be an Axiom A diffeomorphism. Assume furthermore that
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(3.8) f does not have an isolated cycle.

Since f is an Axiom A diffeomorphism it follows that (3.8) is equivalent to the assumption that each
basic set of f is infinite and is a subshift of a finite type. In particular, for each x ∈ Ω(f) the stable and
the unstable manifolds are nonempty. Hence Es(x), Eu(x) are one dimensional and f is a Strong Axiom A
diffeomorphism. The above arguments yield the following theorem:

Theorem 3.9. Let fi be a C1 Axiom A diffeomorphism of the compact surface Mi with no-cycle property
which satisfy the condition (3.8) for i = 1, ...p. Assume that

c′(ρ′−,i)
n ≤ ||Dfn

i |Es(fi)|| ≤ cρn
−,i, n ≥ 0, 0 < ρ′−,i < ρ−,i < 1,

c′ρn
+,i ≤ ||Dfn

i |Eu(fi)|| ≤ c(ρ′+,i)
n, n ≤ 0, 1 < ρ′+,i < ρ+,i,

i = 1, ..., p.

Suppose furthermore that

[ρ′+,i, ρ+,i] ∩ [ρ′+,j , ρ+,j ] = ∅, [ρ′−,i, ρ−,i] ∩ [ρ′−,j , ρ−,j ] = ∅, 1 ≤ i < j ≤ p.

Then there exists a neighborhood Uf of f = f1 × · · · × fp in Diff1(M),M = M1 × · · · ×Mp such that
each g ∈ Uf is a Strong Axiom A diffeomorphism.

§4. The Hausdorff dimension of measures

Let M be a smooth n-dimensional compact Riemannian manifold. Assume that f ∈ Diff1(M). For
µ ∈ E let

λ1(µ) = · · · = λn1(µ) > λn1+1(µ) = · · · = λn2(µ) > · · · > λnr−1+1(µ) = · · · = λnr (µ), nr = n

be the Lyapunov exponents of λ. Set

χi(µ) = λni(µ), i = 1, ..., r = r(µ), χ(µ) = {χ1(µ), ..., χr(µ)},
χ+(µ) = {x : x ∈ χ(µ), x > 0}, |χ+(µ)| = r+(µ),
χ−(µ) = {x : x ∈ χ(µ), x < 0}, |χ−(µ)| = r−(µ),

χ0(µ) = χ(µ) ∩ {0}.

The set χ is called the spectrum of µ. We shall assume that h(µ) > 0 unless otherwise stated. Then the
Margulis-Ruelle inequality claims

h(µ) ≤ min(
r+(µ)∑

i=1

niχi(µ),
r(µ)∑

i=r(µ)−r−(µ)+1

−niχi(µ)).

Hence r+(µ), r−(µ) > 0. µ is called hyperbolic if χ0 = ∅. According to Oseledec [Ose] there exists a Borel
f -invariant set Γ ⊂ M,µ(Γ) = 1 with the following properties.

T (x) =
r∑
1

⊕Ui(x), dimUi(x) = ni, i = 1, ..., r(µ),

lim
m→∞

1
m

log ||D(fm(x))(u)|| = χi(µ), u ∈ Ui(x)\{0}, i = 1, ..., r(µ),

lim
m→∞

1
m

log ||D(f−m(x))(u)|| = −χi(µ), u ∈ Ui(x)\{0}, i = 1, ..., r(µ),

x ∈ Γ.

(4.1)
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Furthermore at each x ∈ Γ we have the following filtration of the stable and the unstable manifolds

W s
i (x, µ) = {y : y ∈ M, lim sup

m→∞
1
m

log dist(fm(y), fm(x)) ≤ χr−i+1(µ)}, i = 1, ..., r−(µ),

W s
1 (x, µ) ⊂ · · · ⊂ W s

r−(µ)(x, µ) = W s(x, µ),

Wu
i (x, µ) = {y : y ∈ M, lim sup

m→∞
1
m

log dist(f−m(y), f−m(x)) ≤ −χi(µ)}, i = 1, ..., r+(µ),

Wu
1 (x, µ) ⊂ · · · ⊂ Wu

r+(µ)(x, µ) = Wu(x, µ).

(4.2)

Each W s
i (x, µ),Wu

j (x, µ) is an immersed C1,θ submanifold of M passing through x such that

TxW s
i (x, µ) =

r(µ)∑

l=r(µ)−i+1

⊕Ul(x), i = 1, ..., r−(µ),

TxWu
i (x, µ) =

i∑

l=1

⊕Ul(x), i = 1, ..., r+(µ).

This result is basically due to [Pe1]. See also Ruelle [Rue1]. If µ is hyperbolic then the neighborhood of
each x ∈ Γ is diffeomorphic to W s(x, µ)×Wu(x, µ). In what follows we show the existence of a finer (strict)
decomposition of W s(x, µ),Wu(x, µ) as in Theorem 3.2. If 0 ∈ χ(µ) then at each x ∈ Γ there exists locally
a center manifold W c(x, µ) immersed in M such that

TxW c(x, µ) = Ur+(µ)+1(x), x ∈ Γ. (4.3)

Moreover each neighborhood of x ∈ Γ is diffeomorphic to W s(x, µ) × W c(x, µ) × Wu(x, µ). The proof of
these results are along the line of the proof of Theorem 3.2. This is possible if we follow the ideas and results
in [F-H-Y]. The case 0 ∈ χ(µ) is handled in the same way as in the proof of the center manifold [Shu, Th.
IV.1]. Since the proofs in [F-H-Y] assume that f ∈ Diff1,θ(M)θ ∈ (0, 1] we adopt this assumption.

Theorem 4.4. Let M be a compact Riemannian manifold and assume that f ∈ Diff1,θ(M), θ ∈ (0, 1].
Suppose that µ ∈ E and h(µ) > 0. Let χ(µ) = {χ1(µ), ..., χr(µ)}, χ1(µ) > ... > χr(µ) be the spectrum
of µ. Assume that Γ ⊂ M is an f -invariant Borel set with µ(Γ) = 1 which satisfies the Oseledec decom-
position (4.1). Then (4.2) holds. Furthermore for each x ∈ Γ there exist C1 stable and unstable manifolds
V −

i (x, µ), V +
j (x, µ) immersed in M satisfying the following conditions.

V −
r−(µ)−i+1(x, µ) ⊂ W s

i (x, µ), TxV −
i (x, µ) = Ur(µ)−r−(µ)+i(x), f(V −

i (x, µ)) = V −(f(x), µ),

i = 1, ..., r−(µ),

W s
i (x, µ) = V −

r−(µ)(x, µ)× · · · × V −
r−(µ)−i+1(x, µ), i = 1, ..., r−(µ),

V +
i (x, µ) ⊂ Wu

i (x, µ), TxV +
i (x) = Ui(x), f(V +(x, µ)) = V +(f(x), µ), i = 1, ..., r+(µ),

Wu
i (x, µ) = V +

1 (x, µ)× · · · × V +
i (x, µ), i = 1, ..., r+(µ).

Assume that µ is hyperbolic then for each neighborhood x ∈ Γ is diffeomorphic to W s(x, µ) ×Wu(x, µ). If
0 ∈ χ(µ) then through each x ∈ Γ passes the center manifold W c(x, µ) satisfying the condition (4.3). Each
neighborhood x ∈ Γ is diffeomorphic to W s(x, µ)×W c(x, µ)×Wu(x, µ).

We now recall the results of Ledrappier and Young [L-Y II]. Let M be a compact smooth manifold of
dimension n and assume that f ∈ Diff2(M). Let the assumptions of Theorem 4.4 hold. Then one can define
hu

i (µ)-the local entropy of f along Wu
i (x, µ) following [B-K]. Denote by µx

u,i the conditional measure induced
by µ on Wu

i (x, µ) in a small neighborhood of x. See [Rok] and the remarks in [L-Y I]. For y ∈ Wu
i (x, µ)

let du,i(x, y) be the distance between x and y induced by the Riemannian metric on Wu
i (x, µ). Set

Bu,i(x,m, ε) = {y ∈ Wu
i (x, µ) : du,i(fk(x), fk(y)) ≤ ε, 0 ≤ k < m}.
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Note that Bu,i(x, 1, ε) is the closed ball in Wu
i (x, µ) of radius ε centered in x with respect to the Riemannian

metric on Wu
i (x, µ). It is shown in [L-Y II] that µ a.e. one has the limit

lim
m→∞

− 1
m

log µx
u,iBu,i(x, m, ε) = hu

i (µ), i = 1, ..., r+(µ). (4.5)

Furthermore, the µx
u,i Hausdorff dimension of Wu

i (x, µ) is equal to

δu
i (µ) =

i∑

j=1

hu
j (µ)− hu

j−1(µ)
χj(µ)

, i = 1, ..., r+(µ). (4.6)

Here hu
0 (µ) = 0. More precisely µ a.e.

lim
ε→0+

log µx
u,iBu,i(x, 1, ε)

log ε
= δu

i (µ), i = 1, ..., r+(µ). (4.7)

Similarly one defines hs
j(µ), δs

j (µ), j = 1, ..., r−(µ).

Theorem 4.8. Let the assumptions of Theorem 4.4 hold. Assume furthermore that f ∈ Diff2(M). Set

h+
i (µ) = hu

i (µ)− hu
i−1(µ), i = 1, ..., r+(µ),

h−i (µ) = hs
i (µ)− hs

i−1(µ), i = 1, ..., r−(µ).
(4.9)

Assume in addition that µ is hyperbolic. Then

HD(µ) =
r+(µ)∑

i=1

h+
i (µ)

χi(µ)
−

r−(µ)∑

i=1

h−i (µ)
χr+(µ)+i(µ)

. (4.10)

Proof. As µ is hyperbolic Theorem F in [L-Y II] claims that µ a.e.

lim sup
ε→0+

log µB(x, ε)
log ε

≤ δu
r+(µ)(µ) + δs

r−(µ)(µ).

The recent results of Barreira, Pesin and Schmeling [B-P-S] imply µ a.e. the inequality

lim inf
ε→0+

log µB(x, ε)
log ε

≥ δu
r+(µ)(µ) + δs

r−(µ)(µ).

Hence (4.10) holds. ¦

We view h+
i (µ), h−j (µ) as f -entropies along V +

i (x, µ), V −
j (x, µ) respectively. Let f ∈ Diff1(M) be an

Axiom A diffeomorphism. Then any µ ∈ E is hyperbolic. Moreover, the µ stable and unstable manifolds
which are defined for x ∈ Ω(f) are equal to the stable and the unstable manifolds of f .

Corollary 4.11. Let M be a smooth compact manifold and assume that f ∈ Diff2(M) satisfies the Axiom
A. Suppose that µ ∈ E. Then (4.10) holds.

Suppose that f ∈ Diff1(M) is a Strict Axiom A diffeomorphism with the decomposition (3.1). It follows
that that for any µ ∈ E the partition of TxM, x ∈ Γ ⊂ Ω(f) to the Oseledec spaces (4.1) is obtained by
splitting the corresponding subspaces of (3.1). Assume finally that f is a Strong Axiom A diffeomorphism.
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Let Ω(f) = ∪k
j=1Λj be the decomposition to the basic sets. It then follows that (3.1) gives the Oseledec

spaces. In that case
W s

i (x, µ) = W s
i (x), i = 1, ..., r−j ,

Wu
i (x, µ) = Wu

i (x), i = 1, ..., r+
j ,

x ∈ Λj , j = 1, ..., k.

From the decomposition in Theorem 3.2 we obtain the equalities

V −
i (x, µ) = V −

i (x), µ∈ Ej , i = 1, ..., r−j ,

V +
i (x, µ) = V +

i (x), µ∈ Ej , i = 1, ..., r+
j ,

x ∈ Λj , j = 1, ..., k.

Note that each V −
i (x), V +

j (x) are one dimensional.
Define on Ω(f) the following functions

φu
i (x) = log |Df |Eu

i
|, i = 1, ..., r+

j ,

φs
i (x) = − log |Df |Es

i
|, i = 1, ..., r−j,

x ∈ Λj , j = 1, ..., k.

Thus for any µ ∈ Ej we have the equalities

λi(µ) = χi(µ) =
∫

φu
i dµ, i = 1, ..., r+

j ,

λr++i(µ) = χr++i(µ) = −
∫

φs
i dµ, i = 1, ..., r−j .

As in §1 we consider the supremum

δ+
i,j = sup

µ∈Ej

h+
i (µ)

λi(µ)
, i = 1, ..., r+

j ,

δ−i,j = sup
µ∈Ej

h−i (µ)
−λr+

j
+i(µ)

, i = 1, ..., r−j.

We conjecture that the following equalities hold.

HD(Λj) =
r+∑

i=1

δu
i,j +

r−∑

i=1

δu
i,j , j = 1, ..., k.

As a first step toward proving this conjecture one should consider it for the class of Strong Axiom A
diffeomorphsims given by Theorem 3.9.

§5. Strict and strong orbit hyperbolicity for endomorphisms

Let M be a compact smooth Riemannian manifold. Denote by Endr(M), r ≥ 0 the set of Cr en-
domorphisms f : M → M . An f -invariant set: X ⊃ f(X) is called hyperbolic if there is a continuous
decomposition TXM = Eu ⊕ Es satisfying the standard assumptions (3.1) with r− = r+ = 1. It is well
known that contrary to the diffeomorphism case a closed f -invariant hyperbolic set X is not structurally
stable. See for example [M-P] and [Prz]. It was pointed out in [M-P] that one can use results for the
hyperbolic sets of diffeomorphisms when f is a cover map by considering the lifting of f to the universal
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cover. It is more convenient to consider the following construction. See for example [Q-Z] and the references
therein and [Och].

Let X ⊂ M be a closed f -invariant set. Denote by Xf the full orbit space with the following metric:

Xf = {x = (xi)∞−∞ : xi ∈ X, f(xi) = xi+1, i ∈ Z};

dist(x, y) =
∑

i∈Z

d(xi, yi)
2|i|

, x, y ∈ Xf ;

π : Xf → X, π(x) = x0, x = (xi)i∈Z ∈ Xf .

Note that Xf is a compact space. Define

W s(X) = {x0 ∈ M : lim
m→∞

d(fm(x0), X) = 0},
Wu(X) = {x0 ∈ M : x0 = π(x), x = (xi)i∈Z ∈ Mf , lim

m→−∞
d(xm, X) = 0}.

Assume in addition that Y is a closed set f -invariant set. Then Xf ∪ Y f ⊂ (X ∪ Y )f . In particular for
x ∈ Xf , y ∈ Y f we can define dist(x, y) as above.

As usual let σ : Xf → Xf be the shift map. Then f : X → X is a factor of π, i.e. fπ = πσ. Let
E = π∗XM be the pull back of the tangent bundle of TXM by π : Xf → X. Denote by

Ex = π∗xTXM

π∗−→
π∗x←−Tx0M

the natural isomorphism between fibres Ex and Tx0M :

ξ = (x, v)

π∗−→
π∗x←−v, x ∈ Xf , ξ ∈ Ex, v ∈ Tx0M.

A fibre preserving map on E with respect to σ is defined as

π∗σ(x) ◦Df ◦ π∗ : Ex → Eσ(x), x ∈ Xf .

By abusing the notation we denote by Df the above cocycle on E. We call X orbit hyperbolic if there exits
a continuous decomposition the vector bundle E = Eu⊕Es over Xf invariant under D which satisfies (3.1)
with r+ = r− = 1. Note that (3.1) yields that det(Df(x)) 6= 0. Clearly, an f -invariant hyperbolic set X is
orbit hyperbolic. As in §3 we define a strict (strong) hyperbolicity and a strict (strong) orbit hyperbolicity
of f invariant set X for real or complex endomorphism f of M .

As in the case of diffeomorphisms one can show an f -invariant compact orbit hyperbolic set is structurally
stable. See for example [C-H-Y], [Liu] and [Rue3]. Using the arguments of §3 for structural stability of
strict (strong) hyperbolic sets we obtain.

Theorem 5.1 Let M be a compact smooth manifold and f ∈ End1(M). Assume that X ⊂ M is a compact
set, f(X) = X and suppose that X is strictly (strongly)orbit hyperbolic set. Then there exists a neighborhood
O of X and ε0 > 0 satisfying the following conditions. For any 0 < ε < ε0 there exists an f -neighborhood
Uf,ε ⊂ End1(M) such that for any g ∈ U there exists a unique compact set Y ⊂ O, g(Y ) = Y with the
following properties. g is strictly (strongly) hyperbolic on Y g such that the partition of E(g) is conformal
with the partition E(f), i.e. r+(X) = r+(Y ), r−(X) = r−(Y ). Moreover, there is a homeomorphism
φ : Xf → Y g which commutes with the corresponding shifts on Xf , Y g such that

dist(x, φ(x)) < ε, x ∈ Xf , φ(x) ∈ Y g.

Recall that a compact invariant hyperbolic set X with respect to a C1-endomorphism f : M → M is
called an expander if E = Eu. Generalizing the results of [M-P] and [Prz] it was shown by Zhang [Zha]
that a compact invariant expanding set is structurally stable. We thus deduce
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Theorem 5.2 Let M be a compact smooth manifold and f ∈ End1(M). Assume that X is a compact set,
f(X) = X and suppose that X is strictly (strongly) expanding set. Then there exists a neighborhood O
of X and ε0 > 0 satisfying the following conditions. For any 0 < ε < ε0 there exists an f -neighborhood
Uf,ε ⊂ End1(M) such that for any g ∈ Uf,ε there exists a unique compact set Y ⊂ O, g(Y ) = Y with the
following properties. g is strictly (strongly) expanding on Y such that the partition of E(g) is conformal with
the partition E(f), i.e. r+(X) = r+(Y ). Moreover, there is a homeomorphism φ : X → Y which commutes
with f |X , g|Y such that d(x, φ(x)) < ε, x ∈ X.

Definition 5.3. Let M be a compact smooth manifold. f ∈ End1(M) is called a Strict (Strong) Axiom A
endomorphism if the following conditions hold.
(a) Ω(f) = ∪k

i=1Λi, Λi∩Λj = ∅, 1 ≤ i < j ≤ k, each Λi is an f -invariant closed strict (strong) orbit hyperbolic
set such that f : Λi → Λi is topologically transitive;
(b) P̄ (f) = Ω(f).

Assume that f ∈ End1(M) is an Axiom A endomorphism. Then f has no cycle property if the cycle
condition (3.7) does not hold. Following [C-H-Y] and [Liu] we have the following orbit Ω-stability result.

Theorem 5.4 Let M be a smooth compact manifold. Assume that f ∈ End1(M) is a Strict (Strong) Axiom
A endomorphsim with no cycle property. Then there exists ε0 > 0 so that for any 0 < ε < ε0 there exists
an f-neighborhood Uf,ε ⊂ End1(M) such that any g ∈ Uf,ε is an Axiom A endomorphism. There is a
homeomorphism φ : Ω(f)f → Ω(g)g which commutes with the corresponding shifts on Ω(f)f ,Ω(g)g and

dist(x, φ(x)) < ε, x ∈ Ω(f)f , φ(x) ∈ Ω(g)g.

g is strictly (strongly) hyperbolic on each basic set Λi(g) such that the partition of E(g) is conformal with
the partition E(f) on Λi(f).

§6. Dynamics of certain polynomial maps in C2

The dynamics of a rational map f : CP → CP is a well studied subject. The main notions here are
the Julia set J(f) and the Fatou domains. Recall that the Julia set is the closure of all repelling periodic
points while the number of non-repelling cycles is at most 2deg(f)−2. (Here by deg(f) we denote the degree
of f .) Consult with [Bea] for a good reference on the dynamics of rational maps. Julia set J(f) is called
hyperbolic if there exists m ≥ 1 so that

|Dfm(z)| ≥ ρ > 1, z ∈ J(f).

A rational map f is called hyperbolic if deg(f) ≥ 2 and J(f) is hyperbolic. The following lemma is known
(e.g. [Bea, Ch.7-8]).

Lemma 6.1. Let f : CP → CP be a rational hyperbolic map. Then
(a) All Λ1, ..., Λl (l ≤ 2deg(f)− 2) non-repelling cycles are attracting;
(b) CP\ ∪l

i=0 Λi is the domain of attraction of the cycles Λ1, ..., Λl.

Let d ≥ 2 be an integer and denote by Ud the space of all rational maps of degree d. Note that
Ud = CP2d+1\V where V is corresponds to the variety to rational maps of degree less than d.

Theorem 6.2. Let f : CP → CP be a rational hyperbolic map. Then Ω(f) = ∪l
i=0Λi(f) and Λ0(f), ..., Λl(f)

satisfy the no cycle condition. There exists ε0 > 0 so that for any 0 < ε < ε0 there exists an f -neighborhood
Uf,ε ⊂ Ud such that any g ∈ Uf,ε is a rational hyperbolic map with Ω(g) = ∪l

i=0Λi(g). Moreover, there is a
homeomorphism φ : Ω(f) → Ω(g) which commutes with f |Ω(f), g|Ω(g) such that d(x, φ(x)) < ε, x ∈ Ω(f).
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Proof. The following equalities imply straightforward that Λ0(f), ..., Λi(f) satisfy the no cycle condition.

W s(Λ0(f)) = Λ0(f),
Wu(Λi(f)) = Λi(f), i = 1, ..., l.

We now show Ω-stability of f . Choose an f neigborhood U ⊂ Ud so that for any g ∈ U g has l attracting
cycles Λ1(g), ..., Λl(g) which are perturbation of the attracting cycles Λ1(f), ..., Λl(f). Furthermore, there
exists a neighborhood O of J(f) such that CP\O is in the domain of attraction of Λ1(g), ..., Λl(g). By
choosing U small enough O can be chosen as small as needed. Theorem 5.2 implies the existence of a
sufficiently small neighborhood O ⊃ J(f) that contains every J(g), g ∈ Uf,ε, which will repel any point
x ∈ O\J(g) outside O. Combine the above facts with Theorem 5.2 to deduce the theorem. ¦

We now consider a polynomial map f : C2 → C2. The dynamics of a general polynomial map is terra
incognita. Note that contrary to the one dimensional case there exist nonconstant polynomial maps of C2

which are not proper. Assume that f is proper. Then the study of the dynamics of f is divided into two
cathegories. The first one is when f is a polynomial automorphism of C2. We discussed some of the dynamical
properties of these maps in §2. See [F-M] and [B-S, 1-3] and the references there. We are not going to discuss
this case here. The other case which was studied is when f lifts to a holomorphic map f̃ : CP2 → CP2.
See for example [F-S], [H-P] and [Hei]. Recall that f̃ is holomorphic iff f(z1, z2) = (f1(z1, z2), f2(z1, z2))
satisfy the conditions

f1(z1, z2) = g1(z1, z2) + h1(z1, z2), g1 =
d∏

i=1

(αiz1 + βiz2), d = deg(g1) > deg(h1),

f2(z1, z2) = g2(z1, z2) + h2(z1, z2), g2 =
d∏

i=1

(γiz1 + δiz2), d = deg(g2) > deg(h2),

αiz1 + βiz2

γjz1 + δjz2
6= Constant, i, j = 1, ..., d.

(6.3)

This claim follows quite straightforward if one recalls that C2 have projective coordinates (z0, z1, z2) so that
C2 is given by the coordinates (1, z1, z2). The line at infinity CP (the Riemann sphere) is given by the
projective coordinates (0, z1, z2). Then the restricition of f̃ to the line at infinity is given by the rational
map:

q(z) =
g1(z, 1)
g2(z, 1)

, z ∈ C. (6.4)

We now discuss briefly a few possible definitions of the Julia set J(f) ⊂ C2 of a polynomial map f which
satisfies conditions (6.3). The first natural definition follows the one dimensional case [F-S]. Let J1(f̃) ⊂ CP2

be the closed set where the sequence f̃m,m = 1, ..., is not normal. According to [F-S] J1(f̃) is always
connected. Consider the map Q = (z2

1 , z2
2). It is not hard to show in the homogeneous coordinates we have

the following characterization of J1(Q̃):

J1(Q̃) = {z : z = (z0, z1, z2) ∈ CP2, zp = |zq| = 1 > |zr|, {p, q, r} = {0, 1, 2}}.

In particular J1(Q̃) ∩ C2 ⊃ J(z2
1) × J(z2

2) = S1 × S1. Since J1(f̃) is connected and as J1(f̃) must always
contain the one-dimensional Julia set of q(z1) it follows that J1(f) = J1(f̃) ∩C2 will be an unbounded set.
We expect the Julia set of f to be bounded. Moreover we want:

J(f) = J(f1)× J(f2), f(z1, z2) = (f1(z1), f2(z2), deg(f1) = deg(f2) > 1. (6.5)

Let S4 = C2 ∪ ∞ be a one point compactification of C2. Then f lifts to a continuous map f̂ : S4 → S4

where f̂(∞) = ∞. In fact ∞ is a superattracting point of f̂ . Let A(f,∞) ⊂ C2 be the domain of attraction
of ∞. It follows that ∂A(f,∞) is a compact totally invariant set of f :

f(A(f,∞)) = A(f,∞) = f−1(A(f,∞)).
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Moreover, in one dimensional case ∂A(f,∞) = J(f). It is easy to see that ∂A(Q,∞) is much bigger than
S1 × S1 = J(Q1)× J(Q2).

As in [H-P] one can construct certain invariant currents or measure, e.g. the equlibrium measure of
A(f,∞)c = C2\A(f,∞), and declare that their support (which is contained in ∂A(f,∞)) to be the Julia
set of f . (This definition was suggested by J. Hubbard). It takes some work to show that (6.5) holds in this
case.

Another approach was suggested in [Hei]. One defines the Julia set by the nonnormality of iterations
fm, m = 1, ..., restricted to any possible one dimensional foliation of a neighborhood of x ∈ C2. It is shown in
[Hei] that this definition satisfies the property (6.5). Yet Heinemann definition seems to be unconstructive.
We are looking for a simple dynamic definition of the Julia set of f . Let z ∈ C2 be a periodic point of f of
period m. Then z, f(z), ..., fm−1(z) is called a repelling cycle if the two eigenvalues of Dfm(z) are outside
the closed unit disk in C.

Definition 6.6. Let f be a polynomial map of C2 of the form (6.3). Then J(f)-the Julia set of f is defined
to be the closure of all periodic repelling points.

It can be easily shown that J(f) must be contained in the Julia set defined in [Hei]. It is nontrivial to show
that J(f) is an infinite set and J(f) ⊂ ∂A(f,∞). Using the structural stability results of §5 we will exhibit
an open set of polynomial maps g for which J(g) is a homeomorphic to J(f) given by (6.5).

Fix an integer d > 1. Consider all polynomial maps f of C2 satisfying f = (f1, f2), deg(f1), deg(f2) ≤ d.
Then the space of these polynomials is a linear space L(d) isomorphic to Cr(d). Denote by L1(d) ⊂ L(d) the
set of all polynomials f satisfying the conditions (6.3). It is straightforward to show that L(d)\L1(d) is an
algebraic variety of L(d). Hence L1(d) is an open dense set in L(d). Assume that f ∈ L1(d). Then by an f
neighborhood U ⊂ L1(d) we will mean an open neighborhood of f in the standard topology of Cr(d).

Theorem 6.7. Let f1, f2 : C → C be two polynomial maps of degree d > 1. Assume that J(f1), J(f2)
are hyperbolic. Consider f(z1, z2) = (f1(z1), f2(z2). Then there exists a neighborhood O ⊃ J(f1) × J(f2)
and ε0 > 0 so that the following conditions hold. For any 0 < ε < ε0 there exists an f -neighborhood
Uf,ε ⊂ L1(d) so that for any g ∈ Uf,ε there exists a unique closed set X(g) ⊂ O, X ⊂ J(g), such that
g(X(g)) = g−1(X(g)) = X(g). g is expanding on J(g). Moreover, there is a homeomorphism φ : J(f) →
X(g) which commutes with f |J(f), g|X(g) such that d(x, φ(x)) < ε, x ∈ J(f).

Suppose furthermore that

Ω(fi) = ∪li
j=0Λj(fi), Λ0(fi) = J(fi), Λli(fi) = ∞, i = 1, 2,

such that none of Λj(fi), j = 1, ..., li−1, i = 1, 2, are super-attractive. Then X(g) = J(g), g ∈ Uf,ε and

Ω(f̂) = {∞} ∪l1−1,l2−1
i,j=0 Λi(f1)× Λj(f2).

For any g ∈ Uf,ε, Ω(ĝ) has 1 + l1 × l2 basic sets. 1 + (l1 − 1)× (l2 − 1) attracting cycles (including ∞), one
expanding set J(g) and l1 + l2 − 2 orbit hyperbolic sets with one expanding and one contracting direction.
Finally, there is a homeomorphism φ : Ω(f̂)f̂ → Ω(ĝ)ĝ such that dist(x, φ(x)) < ε.

Proof. Observe first that J(f) = J(f1) × J(f2) is a compact forward and backward f -invariant set. Use
Theorem 5.1 to deduce that J(f)f is orbit stable. Since deg(g) = d2, g ∈ L1(d), it follows that for g ∈
Uf,ε the set X(g) is backward and forward g-invariant. Use Theorem 5.2 to deduce the existence of the
homeomorphism φ : J(f) → X(g) so that d(x, φ(x)) < ε, x ∈ J(f). As J(f) is the closure of f -periodic
points it follows that X(g) is the closure of g-periodic points in X(g). Clearly, every periodic point in X(g)
is repelling. Hence X(g) ⊂ J(g).

Assume now that f1, f2 are hyperbolic polynomial maps. Then f̂ has an atractive point at ∞ and
(l1 − 1) × (l2 − 1) attracting cyles Λi(f1) × Λj(f2), i = 1, ..., l1 − 1, j = 1, ..., l2 − 1. Moreover any x ∈
C2\ ∪l1−1

i,j=0 Λi(f1) × Λj(f2) is in the domain of the attraction of the attracting cycles. Hence there exists a
neighborhood U ⊂ L1(d) so that any g ∈ U the map ĝ has an attracting fixed point ∞ and (l1− 1)× (l2− 1)
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attracting cycles which are the corresponding perturbations of the attracting cycles of f̂ in C2. Thus, there
exists open neighborhoods

O0 ⊃ J(f1)× J(f2),
O1,j ⊃ J(f1)× Λj(f2), j = 1, ..., l2 − 1,

O2,j ⊃ Λj(f1)× J(f2), j = 1, ..., l1 − 1,

(6.8)

so that any x ∈ C2\O0∪l2−1
j=1 O1,j∪l1−1

j=1 O2,j is in the domain of the attraction of the above 1+(l1−1)×(l2−1)
attracting cylces of ĝ. Choosing U small enough we can make the neighborhoods (6.8) as small as needed.
Suppose that all the finite attracting cycles of f1, f2 are not super attracting. Then all the closed sets
J(f1) × Λi(f2),Λj(f1) × J(f2) ⊂ C2 are hyperbolic according to (3.1). (Df is invertible on these sets.)
We then can apply the structural stability results of Theorem 5.1 for all 1 + (l1 − 1) × (l2 − 1) hyperbolic
sets for some neighborhoods given by (6.8). Hence Ω(f̂) is orbit structurally stable. As X(g) is the unique
expanding set of Ω(ĝ) it follows that J(g) = X(g). ¦

Assume the conditions of Theorem 6.7. Then the set J(f) is strongly hyperbolic if there exists m ≥ 1
that if the following condition hold

max
z∈J(fp)

|(fm
p )′(z)| < min

z∈J(fq)
|(fm

q )(z)|, {p, q} = {1, 2}. (6.9)

In this case X(g), g ∈ Uf,ε is strongly hyperbolic.
We close our paper with another perturbation result. Consider a map f given by (6.3) where h1 = h2 = 0.

That is f is a homogeneous map of degree d:

f(t(z1, z2)) = tdf(z1, z2), t, z1, z2 ∈ C.

Observe first that 0 is a super attracting point of f . Let L be a line in C2 through the origin. This line
is given by homogenuous coordinates (z1, z2) ∈ CP. Note that f(L) is another line L′ whose homogeneous
coordinates are (g1(z1, z2), g(z1, z2). That is, on the space of all lines through the origin in C2, which is
identical to the Riemann sphere CP, f acts a rational function q given by (6.4). On each line L the map
f : L → L′ is of the form z → K(L)zd. That is f is a twisted product of the q and zd. In particular J(f)
is homeomorphic to J(g)× S1. Moreover ∂A(f,∞) is homeomorphic to CP× S1 and is a backward and a
forward f -invariant set separating the domain of attraction of 0 and ∞.

Theorem 6.10 Let f : C2 → C2 be a homogeneous map of degree d satifying the assumptions (6.3). Let
q be the rational map given by (6.4). Assume that J(q) is hyperbolic. Then there exists a neighborhood
O ⊃ J(f) and ε0 > 0 so that the following conditions hold. For any 0 < ε < ε0 there exists an f -
neighborhood Uf,ε ⊂ L1(d) so that for any g ∈ Uf,ε there exists a unique closed set X(g) ⊂ O, X ⊂ J(g),
such that g(X(g)) = g−1(X(g)) = X(g). g is expanding on J(g). Moreover, there is a homeomorphism
φ : J(f) → X(g) which commutes with f |J(f), g|X(g) such that d(x, φ(x)) < ε, x ∈ J(f).

Assume furthermore that none of the attracting cycles Λ1(q), ..., Λl(q) of q are super-attracting. Then
X(g) = J(g), g ∈ Uf,ε and

Ω(f̂) = {0} ∪ {∞} ∪ J(f) ∪l
i=1 Λi(f),

Λi(f) ≈ Λi(q)× S1, i = 1, ..., l.
(6.11)

For any g ∈ Uf,ε Ω(ĝ) has 3 + l basic sets. Two attracting points z(g),∞, one expanding set J(g) and l
orbit hyperbolic sets with one expanding and one contracting direction. Finally, there is a homeomorphism
φ : Ω(f̂)f̂ → Ω(ĝ)ĝ such that dist(x, φ(x)) < ε.

Proof. As J(q) is hyperbolic and the map t 7→ td is Axiom A rational map it follows that J(f) ≈ J(q)×S1

is hyperbolic. Then the arguments of the proof of Theorem 6.7 imply the existence of O ⊃ J(f) with the
stated properties.

Let z ∈ ∂A(f,∞)\J(f). That is, z is not on the line L corresponding to J(q). Then fm(z),m = 1, ...,
will converge to some Λj(f) ≈ Λj(q) × S1. We then deduce (6.11). It is quite straightforward to show
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that the basic sets of Ω(f̂) satisfy the no periodicity condition. Assume that none of the attracting cycles
of q are super-attracting. It follows that each Λi(f), i = 1, ..., l is hyperbolic with one contracting and one
expanding direction. Fix a neighborhood N ⊃ ∂A(f,∞). Then there exists ε0 > 0 so that for any g ∈ Uf,ε

and any z ∈ C2\N , fm(z),m = 1, ..., will converge either to ∞ or to the unique fixed point z(g) which is a
perturbation of 0. That is,

Ω(ĝ) = {0} ∪ {∞} ∪ Ω1(ĝ), Ω1(ĝ) ⊂ N.

By choosing N as small as we need we can use the arguments of Theorem 5.4 to deduce the orbit stability of
Ω(f̂)f̂ . As the only expanding component of Ω(ĝ) is in the neighborhood of J(f) we deduce that X(g) = J(g).
¦

References

[Bar] L. Barreira, A non-additive thermodynamics formalism and applications to dimension theory of hy-
perbolic dynamical systems, Ergod. Th. & Dynam. Sys., to appear.
[B-P-S] L. Barreira, Y. Pesin and J. Schmeling, Dimension of hyperbolic measures - a proof of the Eckmann-
Ruelle conjecture, preprint 1996.
[Bea] A. F. Beardon, Iteration of rational functions, Springer 1991.
[B-S1] E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2: Currents, equilibrium measure and
hyperbolicity, Invent. Math. 103 (1991), 69-99.
[B-S2] E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2. II: Stable manifolds and recurrence,
J. Am. Math. Soc. 4 (1991), 657-679.
[B-S3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2. III: Ergodicity, exponents of entropy
of the equilibrium measure, Math. Ann. 294 (1992), 395-420.
[B-M] S. Besicovitch and P. A. Moran, The measure of product and cylindrical sets, J. London Math. Soc.
20 (1945), 110-120.
[Bow1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes
Math. 470, Springer-Verlag, 1975.
[Bow2] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1979), 11-25.
[B-K] M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Springer Lect. Notes 1007 (1983).
[C-H-Y] Z.-P. Chen, L.-F. He and S.-L. Yang, Orbit shift Ω-stability, Scientia Sinica (Ser. A) 31 (1988),
512-520.
[Fal] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, 1990.
[F-H-Y] A. Fathi, M. R. Herman and J. C. Yoccoz, A proof of the Pesin stable manifold theorem, in
Geometric Dynamics, Springer Lecture Notes in Math. 1007 (1983), 177-215.
[F-K] H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag 1980.
[F-S] J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension, in Complex Potential Theory,
131-186, P.M. Gauthier (ed.), Kluwer 1994.
[Fri1] S. Friedland, Computing Hausdorff dimension of subshifts using matrices, Linear Algebra Appl., to
appear.
[Fri2] S. Friedland, Discrete Lyapunov exponents and Hausdorff dimension, preprint 1997.
[F-M] S. Friedland and J. Milnor, Dynamical properties of plane polynomial diffeomorphisms, Ergod. Th.
& Dynam. Sys. 9 (1989), 67-99.
[G-H] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley 1978.
[Hei] S. M. Heinemann, Julia sets for holomorphic endomorphisms of Cn, Ergod. Th. & Dynam. Sys., to
appear.
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