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Abstract

We derive here the Friedland-Tverberg inequality for positive hyperbolic polyno-
mials. This inequality is applied to give lower bounds for the number of matchings in
r-regular bipartite graphs. It is shown that some of these bounds are asymptotically
sharp. We improve the known lower bound for the three dimensional monomer-dimer
entropy.
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1 Introduction

The aim of this paper is to explore the connections between the problem of counting the
number of partial matchings in bipartite graphs and positive hyperbolic polynomials. Let
G := (V1 ∪V2, E), where E ⊂ V1×V2 and n = #V1 = #V2. (We allow graphs with multiple
edges.) We want to compute or estimate the number of m-matchings in G, i.e. the number
of subsets M of edges E, where #M = m, and no two edges in M have a common vertex.

Let Z+ be the set of nonnegative integers. Assume that A(G) = [aij ]ni,j=1 ∈ Zn×n
+ is

the incidence matrix of the bipartite graph G, i.e. aij is the number of edges connecting
i ∈ V1, j ∈ V2. Then the number of m-matchings in G is equal to permm A(G), where
permm A is the sum of permanents of all m × m submatrices of A ∈ Rn×n. For m = n,
perm A(G), the permanent of A(G) is the number of perfect matchings in G.

We now describe our main results for permm A, where A is doubly stochastic, and their
applications to lower bounds on partial matchings in bipartite graphs. Recall that the
minimum of the permanent of n×n doubly stochastic matrices, denoted by Ωn, is achieved
only for the flat matrix Jn, whose all entries equal to 1

n . Thus perm B ≥ perm Jn = n!
nn for

any B ∈ Ωn and this inequality was conjectured by van der Waerden [22]. This conjecture
was independently proved by Egorichev [3] and Falikman [5]. We call the above inequality
Egorichev-Falikman-van der Waerden (EFW) inequality. The asymptotic behavior of EFW
inequality is captured by the inequality perm B ≥ e−n for any B ∈ Ωn. This inequality
was shown by the first name author [6] two years before [3, 5]. Let Γ(n, r) be the set of all
r-regular bipartite graphs G on 2n vertices, (multiple edges are allowed). For G ∈ Γ(n, r)
the matrix B := 1

r A(G) is doubly stochastic. Hence the number of perfect matchings in
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G is at least ( r
e )n. Thus for r ≥ 3, the number of perfect matchings in r-regular bipartite

graphs grows exponentially, which proves a conjecture by Erdös-Rényi [4]. Schrijver [18]
improved the EFW inequality for r-regular bipartite graphs by showing that permm A(G) ≥
( (r−1)r−1

rr−2 )n for any G ∈ Γ(n, r). Schrijver’s inequality is asymptotically sharp. Recently,
the second name author [14] improved Schrijver’s inequality. Moreover, the proof in [14] is
significantly simpler and transparent. One of the main tools in the proof in [14] is the use
of the classical theory of hyperbolic polynomials.

It was shown by the first named author that permm A ≥ permm Jn for any A ∈ Ωn,
and for m ∈ [2, n] equality holds only if and only if A = Jn [7]. (perm1 A = n for each
A ∈ Ωn.) This inequality was conjectured by Tverberg [21], and it is called here the
Friedland-Tverberg (FT) inequality. FT inequality gives a lower bound on the number of
partial matchings in any G ∈ Γ(n, r).

We derive here the Schrijver type inequalities for m matchings in r-regular bipartite
graphs on 2n vertices. This is done using the results and techniques of [14]. In particular we
give a generalized versions of FT inequality to positive homogeneous hyperbolic polynomials,
which are of independent interest.

These inequalities yield new lower bounds for the d-dimensional monomer-dimer entropy
of dimer density hd(p), p ∈ [0, 1] in the lattice Zd. In particular we obtain the best known
lower bound for the three dimensional monomer dimer entropy h3, which combined with
the known upper bound in [11] gives the tight result h3 ∈ [.7845, .7863].

We now list briefly the contents of this paper. In §2 we discuss briefly the notion
of positive hyperbolic polynomials and examples used in this paper. In §3 we bring the
generalized version of FT inequality for positive hyperbolic polynomials. In §4 we give
an analog of the Schrijver-Gurvits inequality to permm B, where B is a doubly stochastic
matrix with at most r nonzero entries in each column. In §5 we discuss the asymptotic lower
matching conjecture (ALMC) and the asymptotic lower r-permanent matching conjecture
(ALPMC), which is a generalization of ALMC. We show that the main result in §4 proves
the ALMC and ALPMC for a countable values of densities for each r ≥ 2. In the last section
we state the asymptotic upper matching conjectures (AUMC). We illustrate the relations
of ALMC and AUMC to the monomer-dimer entropy in statistical mechanics by plotting
the corresponding graphs for the dimensions d = 2, 3. We thank Uri Peled for supplying us
with the Figures 1 and 2.

2 Positive hyperbolic polynomials

Definitions and Notations

1. A vector x := (x1, . . . , xn)> ∈ Rn is called positive or nonnegative, and denoted by
x > 0 := (0, . . . , 0)> or x ≥ 0 if xi > 0 or xi ≥ 0 for i = 1, . . . , n respectively. A
nonnegative vector x 6= 0 is denoted by x � 0. y ≥ x ⇐⇒ y − x ≥ 0. The cone of
all nonnegative vectors in Rn is denoted by Rn

+.

2. A polynomial p = p(x) = p(x1, . . . , xn) : Rn → R is called positive hyperbolic if the
following conditions hold:

• p is a homogeneous polynomial of degree m ≥ 0.

• p(x) > 0 for all x > 0.

• φ(t) := p(x + tu), for t ∈ R, has m-real t-roots for each u > 0 and each x.

3. Let p : Rn → R be a positive hyperbolic polynomial of degree m. For each integer
i ∈ [0, n] the i-th degree of p is the integer ri ∈ [0,m] such that

∂rip

∂xri
i

(x1, . . . , xi−1, 0, xi+1, . . . , xn) 6≡ 0, and
∂ri+1p

∂xri+1
i

(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≡ 0.
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Let degi p := ri for i = 1, . . . , n.

4. Let ei := (δi1, . . . , δin)> ∈ Rn, i = 1, . . . , n be the standard basis in Rn.

5. Let 1 := (1, . . . , 1)> ∈ Rn and denote by Jn ∈ Rn×n the n×n matrix whose all entries
are equal to 1

n .

We refer to [8, 13, 14] for properties of positive hyperbolic polynomials used here.

Examples of positive hyperbolic polynomials

1. Let A = (aij)
m,n
i=j=1 ∈ Rm×n be a nonnegative matrix, denoted by A ≥ 0, where each

row of A is nonzero. Fix a positive integer k ∈ [1, m]. Then

pk,A(x) :=
∑

1≤i1<...ik≤m

k∏

j=1

(Ax)ij ,x ∈ Rn, (2.1)

is positive hyperbolic of degree k in n variables.

2. Let A1, . . . , An ∈ Cm×m hermitian, nonnegative definite matrices such that A1 + . . .+
An is a positive definite matrix. Let p(x) = det

∑n
i=1 xiAi. Then p(x) is positive

hyperbolic.

Proof.

1. First note that pk,A(x) > 0 for x > 0. The hyperbolicity of pm,A and p1,A is obvious.
Assume that k ∈ (1,m). Let z = (z1, . . . , zn+m−k)> ∈ Rn+m−k and define P (z) :=∏m

i=1(
∑n

j=1 aijzj +
∑n+m−k

j=n+1 zj). Then

pk,A(x) =
(

m

k

)−1
∂m−kP

∂zn+1 . . . ∂zn+m−k
((x1, . . . , xn, 0, . . . , 0)).

Hence by [8, Lemma 2.1] pk,A positive hyperbolic.

2. This is a standard example and the proof is straightforward.

2

Let p(x) : Rn → R be a positive hyperbolic polynomial of degree m ≥ 1. As in [14]
define

Cap p := inf
x>0,x1...xn=1

p(x) = inf
x>0

p(x)
(x1 . . . xn)

m
n

. (2.2)

It is possible that Cap p = 0. For example let p = xm1
1 . . . xmn

n where m1, . . . , mn are
nonnegative integer whose sum is m and (m1, . . . , mn) 6= k1.

Proposition 2.1 Let A ∈ Rn×n be a doubly stochastic matrix. Let pk,A, k ∈ [1, n] be
positive hyperbolic defined as part 1 of the above example. Then Cap pk,A =

(
n
k

)
. Let B ∈ Rn

be a matrix with positive entries. Then there exists two positive definite diagonal matrices
D1, D2, unique up to tD1, t

−1D2, t > 0, such that A := D1BD2 is a doubly stochastic matrix
[20]. Let pn,B be defined as above. Then Cap pn,B = 1

det D1D2
.

Proof. Consider first pn,A. Since A is row stochastic pn,A(1) = 1. Hence Cap pn,A ≤ 1.
Let u = (u1, . . . , un)> � 0 be a probability vector. Then for any x = (x1, . . . , xn) > 0
the generalized arithmetic-geometric inequality states u>x ≥ ∏n

i=1 xui
i . Use this inequality

for each (Ax)i. The assumption that A is doubly stochastic yields that pn,A ≥ x1 . . . xn ⇒
Cap pn,A ≥ 1. Hence Cap pn,A = 1.
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Let k ∈ [1, n). Then pk,A(1) =
(
n
k

)
. Hence Hence Cap pk,A ≤

(
n
k

)
. Apply the arithmetic-

geometric inequality to pk,A

(n
k)

to deduce that pk,A ≥
(
n
k

)
p

m
n

n,A. Hence Cap pk,A ≥
(
n
k

)
.

It is straightforward to show that pn,B(x)
x1...xn

= pn,A(y)
det(D1D2)y1...yn

, where y = D−1
2 x. Hence

Cap pn,B = 1
det D1D2

. 2

The following result is taken from [14].

Lemma 2.2 Let k ≥ 1 be an integer, u := (u1, . . . , uk)> > 0,v := (v1, . . . , vk)> > 0
and define f(t) :=

∏k
i=1(uit + vi). Let K(f) := inft>0

f(t)
t . Then f ′(0) = K for k = 1 and

f ′(0) ≥ (k−1
k )k−1K for k ≥ 2. For k ≥ 2 equality holds if and only if v1

u1
= . . . = vk

uk
.

The following proposition follows straightforward from [8, Lemma 2.1, part 3 ].

Proposition 2.3 Let p : Rn → R be a positive hyperbolic polynomial of degree m. Let
i ∈ [1, n] be an integer. Then

1. degi p = 0 ⇐⇒ p(x) = (p(x1, . . . , xi−1, 0, xi+1, . . . , xn)).

2. For each integer j ∈ [0, degi p] ∂jp

∂xj
i

(x1, . . . , xi−1, 0, xi+1, . . . , xn) is a positive hyperbolic
polynomial of degree m− j.

3. For each integer j ∈ [1, n], j 6= i,

degj

∂p

∂xi
(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ min(degj p, n− 1).

The following result is crucial for the proof of a generalized Friedland-Tverberg inequality
and is due essentially to the second author in [14].

Lemma 2.4 Let p : Rn → R be a positive hyperbolic polynomial of degree m ≥ 1.
Assume that Cap p > 0. Then degi p ≥ 1 for i = 1, . . . , n. For m = n ≥ 2

Cap
∂p

∂xi
(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≥ (

degi p− 1
degi p

)degi p−1Cap p for i = 1, . . . , n,

where 00 = 1.

Proof. It is enough to prove the result for i = n. Suppose to the contrary that p
does not depend on xn. Then let x(t) = (1, . . . , 1, t)> and t → ∞ in (2.2) to deduce that
Cap p = 0 contrary to our assumption.

Assume that m = n > 1. Let k = degn p ≥ 1. Let x0 := (x1, . . . , xn−1, 0)>,x1 :=
(x1, . . . , xn−1)>. Proposition 2.3 yields that g(x1) := ∂kp

∂xk
i

(x0) is a positive hyperbolic func-
tion in n− 1 variables of degree m− l. Hence g(x1) > 0 for x1 > 0. Thus for x1 > 0

p(x0 + ten) = k!g(x1)tl + . . . = k!g(x1)
k∏

i=1

(t + λi(x1)), λi(x) > 0, for i = 1, . . . , k. (2.3)

The second equality follows from [8, Lemma 2.1, part 2 ]. Assume in addition that x1 . . . xn−1 =
1. Then inft>0

p(x0+ten)
t ≥ Cap p. Apply Lemma 2.2 to the right-hand side of (2.3) to de-

duce that ∂p
∂xn

(x0) ≥ (k−1
k )k−1Cap p. Since we assumed that x1 . . . xn−1 = 1 it follows that

Cap ∂p
∂xn

(x0) ≥ (k−1
k )k−1Cap p. 2
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3 Friedland-Tverberg inequality

Theorem 3.1 Let p : Rn → R be positive hyperbolic of degree m ∈ [1, n]. Assume that
degi p ≤ ri ∈ [1, m] for i = 1, . . . , n. Rearrange the sequence r1, . . . , rn in an increasing
order 1 ≤ r∗1 ≤ r∗2 ≤ . . . ≤ r∗n. Let k ∈ [1, n] be the smallest integer such that r∗k > m − k.
Then

∑

1≤i1<...<im≤n

∂mp

∂xi1 . . . ∂xim

(0) ≥

nn−m

(n−m)!
(n− k + 1)!

(n− k + 1)n−k+1

k−1∏

j=1

(
r∗j + n−m− 1

r∗j + n−m
)r∗j +n−m−1Cap p. (3.1)

(Here 00 = 1, and the empty product for k = 1 is assumed to be 1.) If Cap > 0 and ri = m
for i = 1, . . . , m equality holds if and only if p = C(x1+...+xn

n )m for each C > 0.

Proof. Suppose that Cap p = 0. [8, Lemma 2.1, part 3 ] yields that the left-hand side
of (3.1) is nonnegative and the theorem holds in this case.

Clearly, it is enough to assume the case Cap p = 1. The case m = n is essentially proven
in [14] and we repeat its proof for the convenience of the reader. Permute the coordinates of
x1, . . . , xn such that degn p = mini∈[1,n] degi p ≤ r∗1 . Assume that degn p = l. Then Lemma
2.4 yields that r((x1, . . . , xn−1)) := ∂p

∂xn
((x1, . . . , xn−1, 0)) is positive hyperbolic of degree

n − 1 and Cap r ≥ ( l−1
l )l−1Cap p. Since the sequence ( i−1

i )i−1, i = 1, . . . , is decreasing to
have the lowest possible lower bound we have to assume l = r∗1 . Suppose first that r∗1 = n.
Repeating this process n times we get that

∂np

∂x1 . . . ∂xn
(0) ≥ Cap p

n∏

j=2

(
j − 1

j
)j−1 =

n!
nn

Cap p.

This inequality to corresponds to the case r∗i = n for i = 1, . . . , n. The equality case is
discussed in [14].

Let m ∈ [1, n − 1]. Put P (x) = p(x)( 1
n

∑n
i=1 xi)n−m. Clearly, P is positive hyperbolic

of degree n. Since 1
n

∑n
i=1 xi ≥ (x1 . . . xn)

1
n for each x ≥ 0, it follows that Cap P ≥ Cap p.

Apply (3.1) to P for m = n to deduce (3.1) in the general case. Since the equality case for
P holds if and only P = ( 1

n

∑n
i=1 xi)n it follows that the equality in (3.1) holds if and only

if p = ( 1
n

∑n
i=1 xi)m. 2

Let A ∈ Rn×n be a doubly stochastic matrix. Apply this theorem to pm,A defined
Proposition 2.1 to deduce the Friedland-Tverberg inequality for the sum of all m × m
permanents of A:

Corollary 3.2 Let A ∈ Rn×n
+ be a doubly stochastic matrix. Then permm A ≥ (

n
m

)2 m!
nm

for any m ∈ [2, n]. equality holds if and only A = Jn.

Theorem 3.3 (Gurvits) Let A ∈ Rn×n
+ be a doubly stochastic matrix, such that each

column contains at most r ∈ [1, n] nonzero entries. Then

perm A ≥ r!
rr

(r − 1
r

)(r−1)(n−r) =
r!
rr

( r

r − 1
)r(r−1)(r − 1

r

)(r−1)n
. (3.2)

Proof. Note that for p(x) =
∏n

i=1(Ax)i we have that degi p = r for i = 1, . . . , n. Apply
(3.1) to this case, i.e. m = n, r∗j = r, j = 1, . . . , n and k = n−r+1 to deduce the theorem. 2
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4 A lower bound for partial matchings in Γ(n, r)

The FT inequality yields the following lower bound on m matchings in Γ(n, r)

permm(A(G)) ≥ rm permm Jn =
(

n

m

)2
m!rm

nm
, for all G ∈ Γ(n, r). (4.1)

In order to improve this inequality, as done by Schrijver, one has to use the fact that
A(G) has at most r nonzero entries in each column. Unfortunately, Theorem 3.1 does not
improve the inequality (4.1) for large values of n, where m

n ≈ t ∈ (0, 1). This is due to
the fact that the proof of Theorem 3.1 for a polynomial p is obtained by considering the
polynomial q = p(x1 + . . . + xn)n−m. (Note that degi q = degi p + n−m for i = 1, . . . , n.)

In order to use efficiently the fact degi pm,A(G) ≤ r for i = 1, . . . , n, where A(G), G ∈
Γ(n, r), one needs to consider the product pm,A(G)q(x), where deg q = n−m and degi q ≤ s
for i = 1, . . . , n. This q should be a highly symmetric polynomial, similar to (x1 + . . . +
xn)n−m. We find such q by averaging pn−m,A(H),H ∈ Γ(n, s) with respect to a certain
”natural” measure on Γ(n, s), [17]. (Note that q may not be hyperbolic, but since it is a
convex combination of hyperbolic polynomials, we can use Theorem 3.1.)

Let SN be the permutation group on {1, . . . , N}. We now give a map τ : Snr → Γ(n, r).
Fix µ ∈ Snr. Let e1, ..., enr be nr edges going from vertices {1, ..., n} in the group V1 to
vertices {1, ..., n} to the group V2 as follows. Each ei connects the vertex d i

r e in group
V1 to dµ(i)

r e in group V2 for i = 1, ..., rn. Note that the vertex i in group V1 has r edges
labeled r(i − 1) + 1, ..., ri. It is straightforward to see that each vertex j in the group V2

has r different edges connected to it, i.e. the equation j = dµ(i)
r e has exactly r integers

µ−1({j(r − 1) + 1, ..., jr}). It is not difficult to show that τ is onto. Let #τ−1(G) be the
number of preimages of G ∈ Γ(n, r) in Snr. Denote by ν(n, r) the probability measure on
Γ(n, r) given by #τ−1(G)

(rn)! . The following lemma is taken from [10] and we bring its proof for
completeness.

Lemma 4.1 Let ν(n, r) be the probability measure on Γ(n, r) defined above. Then

Eν(n,r)(permm A(G)) =

(
n
m

)2
r2mm!(rn−m)!

(rn)!
. (4.2)

Proof. We adopt the arguments of [18] to our case. First choose subset α ⊂ {1, ..., n}
of m vertices in the group V1. There are

(
n
m

)
choices for α. α induces the set I =

∪i∈α{r(i − 1) + 1, ..., ir} of edges of cardinality rm. From I choose a set J = {1 ≤
j1 < . . . < jm ≤ nr} of m edges, so that ej , j ∈ J corresponds to the choice of one el-
ement in the group {r(i − 1) + 1, ..., ir}, for each i ∈ α. There are rm of the choices of
J . Now we want to choose µ so that dµ(j)

r e, j ∈ J will be a subset of m distinct ele-
ments β = {dµ(j1)

r e, . . . , dµ(jm)
r e} ⊂ {1, ..., n}. There are

(
n
m

)
such choices of β. Given

β ⊂ {1, . . . , n} we can permute the order of elements in β in m! ways. Altogether we have
m!

(
n
m

)
choices of dµ(j1)

r e, . . . , dµ(jm)
r e. Then µ(j) ∈ {dµ(j)

r e(r − 1) + 1, ..., dµ(j)
r er} for each

j ∈ J . Again there are rm such choices. Thus we chose µ by determining the image of the
elements in J in {1, ..., nr}, which is denoted by β := µ(J). The rest of the of elements
{1, ..., rn}\J is mapped to {1, ..., rn}\β. The number of choices here is (nr−m)!. Multiply
all these choices to get the numerator of the right-hand side of (4.2). Divide these number
of choices by the number of permutations of {1, ..., rn} to deduce the lemma. 2

The case m = n in (4.2) is given in [17]. The proof of the above Lemma yields:

Corollary 4.2 For β ⊂ 〈n〉, #β = m and G ∈ Γ(n, r) let ψ(G, β) be all m-matching in
G that cover the set β ⊂ V2. Then

Eν(n,r)(ψ(G, β)) =

(
n
m

)
r2mm!(rn−m)!

(rn)!
, m = 0, . . . , n. (4.3)
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Remark 4.3 The probability measure ν(n, r) on Γ(n, r) was used in [19] to get an upper
bound: minG∈Γ(n,r) perm(A(G)) ≤ Eν(n,r)(perm(A(G)). The proof of the lower bound in
[18], substantially harder result, had no connection to ν(n, r).
Quite surprisingly, we use in this paper the measure ν(n, s) to obtain a lower bound. This
combination of the ”hyperbolic polynomials approach” and the probabilistic method is the
main contribution of our paper.

Theorem 4.4 Let p : Rn → R be positive hyperbolic of degree m ∈ [1, n). Assume that
degi p ≤ ri ∈ [1, m] for i = 1, . . . , n. Rearrange the sequence r1, . . . , rn in an increasing
order 1 ≤ r∗1 ≤ r∗2 ≤ . . . ≤ r∗n. Let s ∈ N. Let k ∈ [1, n] be the smallest integer such that
r∗k + s > n− k. Then

∑

1≤i1<...<im≤n

∂mp

∂xi1 . . . ∂xim

(0) ≥

(sn)!
sn−m(n−m)!((s− 1)n + m)!

(n− k + 1)!
(n− k + 1)n−k+1

k−1∏

j=1

(
r∗j + s− 1

r∗j + s
)r∗j +s−1Cap p. (4.4)

Proof. Let q : Rn → R be positive hyperbolic of degree n −m with degi q ≤ s for
i = 1, . . . , n and Cap q = 1. Then f = pq : Rn → R is positive hyperbolic of degree n with
Cap f ≥ Cap p and degi f ≤ ri + s for i = 1, . . . , n. Apply Theorem 3.1 to f to deduce

∑

1≤i1<...<im≤n

∂mp

∂xi1 . . . ∂xim

(0)
∂n−mq

∂xi′1 . . . ∂xi′n−m

(0) ≥

(n− k + 1)!
(n− k + 1)n−k+1

k−1∏

j=1

(
r∗j + s− 1

r∗j + s
)r∗j +s−1Cap p, (4.5)

where I ′ := {1 ≤ i′1 < . . . < i′n−m ≤ n} and {i1, . . . , im, i′1, . . . , i
′
n−m} = 〈n〉.

Let A := A(G), G ∈ Γ(n, s) and choose q =
(

n
n−m

)−1
pn−m, 1

s A(x) as in (2.1). Note

∂n−mq

∂xi′1 . . . ∂xi′n−m

(0) =
1(

n
n−m

)
sn−m

ψ(G, I ′).

Now take the expected value of the left-hand side of the inequalities (4.5) corresponding to
all G ∈ Γ(n, s). Use Corollary 4.2 to deduce that the coefficient of each ∂mp

∂xi1 ...∂xim
(0) is

sn−m(n−m)!((s−1)n+m)!
(sn)! . 2

Corollary 4.5 Let p : Rn → R be positive hyperbolic of degree m ∈ [1, n). Assume that
degi p ≤ r ∈ [1, m] for i = 1, . . . , n. Let s ∈ N and k = n− r − s + 1 ≥ 1. Then

∑

1≤i1<...<im≤n

∂mp

∂xi1 . . . ∂xim

(0) ≥

(sn)!
sn−m(n−m)!((s− 1)n + m)!

(r + s)!
(r + s)r+s

(r + s− 1
r + s

)(r+s−1)(n−r−s)Cap p. (4.6)

Theorem 4.6 Let B ∈ Rn×n
+ be a doubly stochastic matrix with at most r nonzero

entries in each column. Let s ∈ N and k = n− r − s + 1 ≥ 1. Then for each m ∈ [1, n)

permm B ≥ (sn)!
(

n
m

)

sn−m(n−m)!((s− 1)n + m)!
(r + s)!

(r + s)r+s

(r + s− 1
r + s

)(r+s−1)(n−r−s). (4.7)

Proof. Let p = pm,B(x) as defined by (2.1). Then (4.7) follow from Corollary 4.5. 2
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5 ALMC and ALPMC

Let G = (V,E) be a general, (not necessary bipartite), graph with the set of vertices V and
edges E. A matching in G is a subset M ⊆ E such that no two edges in M share a common
endpoint. The endpoints of the edges in M are said to be covered by M . We can think of
each edge e = (u, v) ∈ M as occupied by a dimer, consisting of two neighboring atoms at u
and v forming a bond, and of each vertex not covered by M as a monomer, which is an atom
not forming any bond. For this reason a matching in G is also called a monomer-dimer cover
of G. If there are no monomers, M is said to be a perfect matching. Note that if a perfect
matching exists then #V is even. A matching M with #M = k is called an k-matching.
We denote by φG(k) be the number of k-matchings in G (in particular φG(0) = 1), and by
ΦG(x) :=

∑
k φG(k)xk the matching generating polynomial of G. It is known that all the

roots of matching polynomial are real negative numbers [17]. Assume that G is a bipartite
graph G = (V, E), where V = V1 ∪ V2 and #V1 = #V2 = n. Then φG(k) = permk A(G).

The following asymptotic result is shown in [10]. (It follows straightforward from Lemma
4.1.)

Theorem 5.1 Let ν(n, r) be the probability measure on Γ(n, r) defined in §4. Let jn ∈
[1, n], n = 1, 2, . . . be a sequence of integers with limn→∞

jn

n = t ∈ [0, 1]. Then

lim
n→∞

log Eν(n,r)(permjn
A(G))

2n
= ghr(t), (5.1)

where
ghr(t) := 1

2

(
t log r − t log t− 2(1− t) log(1− t) + (r − t) log

(
1− t

r

))
, (5.2)

An equivalent form of the following conjecture is stated in [9].

Conjecture 5.2 (The Asymptotic Lower Matching Conjecture)
Let r ≥ 2 be an integer, {kl}∞l=1, {nl}∞l=1 be two increasing sequences of positive integers such
that kl ≤ nl, l = 1, . . . , and liml→∞ kl

nl
= t ∈ [0, 1]. Then

lim
l→∞

log minG∈Γ(r,nl) permkl
A(G)

2nl
= ghr(t). (5.3)

For r = 1 this conjecture holds trivially. For r = 2 this conjecture is proved in [10]. The
inequality (4.1) implies that under the conditions of Conjecture 5.2 the following inequality
holds, see [11]

lim inf
l→∞

log minG∈Γ(r,nl) permkl
A(G)

2nl
≥ fhr(t), (5.4)

where
fhr(t) := 1

2 (−t log t− 2(1− t) log(1− t) + t log r − t). (5.5)

Definition 5.3 For r ∈ N let Ωn,r be the set of all n×n doubly stochastic matrices with
at most r nonzero entries in each column.

Note that for G ∈ Γ(n, r) B := 1
r A(G) ∈ Ωn,r. Hence, the ALMC conjecture follows

from the following stronger conjecture:

Conjecture 5.4 (The Asymptotic Lower r-Permanent Conjecture )

Let r ≥ 2 be an integer, {kl}∞l=1, {nl}∞l=1 be two increasing sequences of positive integers
such that kl ≤ nl, l = 1, . . . , and liml→∞ kl

nl
= t ∈ [0, 1]. Then

lim
l→∞

log minB∈Ωnl,r permkl
B

2nl
= ghr(t)− t

2
log r. (5.6)
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Theorem 5.5 Let r ≥ 2, s ≥ 1 be integers. Let {kl}∞l=1, {nl}∞l=1 be two increasing
sequences of positive integers such that kl ≤ nl, l = 1, . . . , and liml→∞ kl

nl
= t ∈ [0, 1].

Assume that Bnl
∈ Ωnl,r, l = 1, 2, . . .. Then

lim inf
l→∞

log permkl
Bnl

2nl
≥ 1

2
(−t log t− 2(1− t) log(1− t)) + (5.7)

1
2

(
(r + s− 1) log(1− 1

r + s
)− (s− 1 + t) log(1− 1− t

s
)
)

.

Hence the Asymptotic Lower r-Permanent Conjecture 5.4 and ALMC holds for ts = r
r+s , s =

0, 1, 2, . . ., and t = 0.

Proof. Apply the inequality (4.7) to Bnl
for m = kl. Take the logarithm of the both

sides of this inequality and let l →∞. A straightforward calculation for the right-hand side,
using the Stirling’s formula, yields the inequality (5.7). Assume that t = ts = r

r+s . Then
1−ts

s = 1
r+s = ts

r . Then the right-and side of (5.7) is equal to ghr(ts)− ts

2 log r.
We now show that the Asymptotic Lower r-Permanent Conjecture 5.4 holds for ts = r

r+s ,
where s is any nonnegative integer, and for t∞ := 0. Assume that conditions of Conjecture
5.4. Lemma 4.1 implies that there exists Gl ∈ Γ(r, nl) so that

permkl

1
r
A(Gl) ≤

(
nl

kl

)2
rkl(kl)!(rnl − kl)!

(rnl)!
.

Clearly, Bnl
:= 1

r A(Gl) ∈ Ωnl,r for each l. Use Theorem 5.1 to deduce that for this sequence
Bnl

, l ∈ N, lim sup of the left-hand side of (5.6) is at most ghr(t)− t
2 log r.

Let s ∈ N and ts = r
r+s . (5.7) implies that lim inf of the sequence given by the left-hand

side of (5.6) is not less than ghr(ts)− ts

2 log r. Hence (5.6) holds for t = ts.
We now discuss the case s = 0, i.e. t = t0 = 1. Let B = (bij)n

i,j=1 be any n × n
nonnegative matrix. Denote by G(B) = (V, E) the bipartite graph induced by B, i.e. the
edge (i, j) is in E, if and only if bij > 0. Then B induces the weighted graph on G, where the
weight of the edge (i, j) is bij . Let pB(x) = xn +

∑n
m=1(−1)m permm B. pB(x) is called the

matching polynomial of the weighted graph G. Heilmann and Lieb showed in [16] that pB(x)
has nonnegative roots. (See also [17].) Hence the arithmetic-geometric inequality for the
elementary symmetric polynomials of the nonnegative roots of pB(x) yields the inequality
permm B ≥ (

n
m

)
(perm B)

m
n . (See [23] for the case of m-matchings in bipartite graphs.)

Use Theorem 3.3 to deduce that perm Bn ≥ r!
rr

(
r

r−1

)r(r−1)( r−1
r

)(r−1)n for any B ∈ Ωn,r.
Apply the above two inequalities for the sequence Bnl

and m = kl for l = 1, 2, . . . to obtain
that lim inf of the sequence given by the left-hand side of (5.6) is not less than ghr(1)− 1

2 log r
for t = 1. Hence (5.6) for t = 1.

The case t = 0 follows from (5.4) for t = 0. As we noted above the Asymptotic Lower
r-Permanent Conjecture 5.4 for t = τ implies the ALMC for t = τ . 2

Let Cn a cycle on n vertices, and let Tn,d = (Vn, En) := Cn × . . .× Cn︸ ︷︷ ︸
d

, n = 3, . . . be a

sequence of d dimensional torii. Note that each Tn,d is 2d regular graph. It is a classical
result that the following limit exists for any t ∈ [0, 1]:

lim
n→∞

log φTn,d
(jn)

#Vn
= hd(t), if lim

n→∞
2jn

#Vn
= t ∈ [0, 1]. (5.8)

hd(t) is the d-dimensional monomer-dimer entropy of dimer density t ∈ [0, 1] in the lattice
Zd [15] and [11]. Let hd := maxt∈[0,1] hd(t). (The quantities hd and h̃d := hd(1) are called
the d-monomer-dimer entropy and the 2-dimer entropy, respectively, in [11]).

Let d = 6 and t3 := 6
9 = 2

3 . The validity of ALMC for t3 yields that h3( 2
3 ) ≥ .7845241927,

which implies that h3 = maxt∈[0,1] h3(t) ≥ .7845241927. This improves the lower bound im-
plied by (5.4) h3 ≥ .7652789557 [11]. The computations in [11] yield that h3 ≤ .7862023450.
Thus h3 ∈ [.7845, .7863].
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6 The AUMC and related graphs

Denote by R[x] the algebra of polynomials in x with real coefficients, by 0 ∈ R[x] the
zero polynomial, and by R+[x] ⊂ R[x] the subalgebra of polynomials with non-negative
coefficients. We partially order R[x] by writing, for f, g ∈ R[x], g º f when g − f ∈ R+[x],
and g Â f when g − f ∈ R+[x] \ {0}. Clearly, if g1 º f1 Â 0 and g2 º f2 Â 0, then
g1g2 Â f1f2 unless g1 = f1 and g2 = f2.

Let qKr,r denote the union of q complete bipartite graphs Kr,r having r vertices of each
color class. It is straightforward to show that any finite graphs G,G′ satisfy

ΦG∪G′(x) = ΦG(x)ΦG′(x), (6.1)

and that

ΦKr,r
(x) =

r∑

k=0

(
r

k

)2

k! xk. (6.2)

The following conjecture is stated in [9]

Conjecture 6.1 (The Upper Matching Conjecture) Let G be a bipartite r-regular
graph on 2qr vertices where q, r ≥ 2. Then ΦG ¹ ΦqKr,r

, equality holding only if G = qKr,r.

For k = 2 this conjecture is proved in [10]. The above conjecture implies the following
Asymptotic Upper Matching Conjecture [9]. Denote by K(r) be the countably infinite
union of Kr,r. Let PK(r)(u) and hK(r)(t), t ∈ (0, 1) be the pressure and the t-matching
entropy associated and the with K(r) [12]:

PK(r)(u) =
log

∑r
k=0

(
r
k

)2
k! e2ku

2r
, u ∈ R. (6.3)

hK(r)(t(u)) = PK(r)(u)− ut(u), u ∈ R (6.4)

where

t(u) = P ′K(r)(u) =
∑r

k=0

(
r
k

)2
k! (2k)e2ku

2r
∑r

k=0

(
r
k

)2
k! e2ku

, u ∈ R. (6.5)

Conjecture 6.2 (The Asymptotic Upper Matching Conjecture)
Let r ≥ 2 be an integer, {kl}∞l=1, {nl}∞l=1 be two increasing sequences of positive integers such
that kl ≤ nl, l = 1, . . . , and liml→∞ kl

nl
= t ∈ [0, 1]. Then Then

lim
l→∞

log maxG∈Γ(nl,r) permkl
A(G)

2nl
= hK(r)(t). (6.6)

For r = 2 the AUMC is proven in [10]. For t = 1 and any r ∈ N the AUMC follows from
the proof of Minc conjecture by Bregman [2]. Some computations performed in [9] support
the ALMC and AUMC.

The following plots illustrating the Asymptotic Matching Conjectures for r = 4, 6. Fig-
ure 1 shows various bounds and values for the monomer-dimer entropy h2(p) of dimer density
p ∈ [0, 1] in the 4-regular 2-dimensional grid. FT is the Friedland-Tverberg lower bound
fh4(p) of (5.5), h2 is the true monomer-dimer entropy equal to maxp∈[0,1] h2(p) (it is known
to a precision much greater than the picture resolution). The crosses marked B are Baxter’s
computed values [1]. (Baxter’s computations, based on heuristic arguments, where con-
firmed by theoretical rigorous computations in [12].) ALMC is the function gh4(p) of (5.2),
conjectured to be a lower bound in the Asymptotic Lower Matching Conjecture. AUMC is
the monomer-dimer entropy hK(p) of dimer density t in a countable union of K4,4, given
by (6.3)–(6.5) and conjectured to be an upper bound by the Asymptotic Upper Matching
Conjecture. Notice that AUMC goes a little over h2: a countable union of K4,4 has a higher
monomer-dimer entropy than an infinite planar grid.
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Figure 1: Monomer-dimer tiling of the 2-dimensional grid: entropy as a function of dimer
density. FT is the Friedland-Tverberg lower bound, h2 is the true monomer-dimer entropy.
B are Baxter’s computed values. ALMC is the Asymptotic Lower Matching Conjecture.
AUMC is the entropy of a countable union of K4,4, conjectured to be an upper bound by
the Asymptotic Upper Matching Conjecture.

Figure 2 shows similarly various bounds and values for the monomer-dimer entropy
h3(p) of dimer density p ∈ [0, 1] in the 6-regular 3-dimensional grid. FT is the Friedland-
Tverberg lower bound fh6(p) of (5.5). h3High is the best known upper bounds for the true
monomer-dimer entropy equal to maxp∈[0,1] h3(p), given in [11]. h3Low is a lower bound
implied by the maximal value of FT lower bound. ALMC is the function gh6(p) of (5.2),
conjectured to be a lower bound in the Asymptotic Lower Matching Conjecture. AUMC is
the monomer-dimer entropy hK(p) of dimer density p in a countable union of K6,6, given
by (6.3)–(6.5) and conjectured to be an upper bound by the Asymptotic Upper Matching
Conjecture. Notice that AUMC goes a little over h3High: a countable union of K6,6 has a
higher monomer-dimer entropy than an infinite cubic grid.
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