Positive entries of stable matrices

Shmuel Friedland
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago Chicago, Illinois 60607-7045, USA
Daniel Hershkowitz, Department of Mathematics
Techinion, Israel Institute of Technology
Kiryat Hatechnion, Haifa 32000, Israel
Siegfried M. Rump
Inst. f. Computer Science III
Technical University Hamburg-Harburg
Schwarzenbergstr. 95, 21071 Hamburg, Germany

August 11, 2004

Abstract

The question of how many elements of a real stable matrix must be positive is investigated. It is shown that any real stable matrix of order greater than 1 has at least two positive entries. Furthermore, for every stable spectrum of cardinality greater than 1 there exists a real matrix with that spectrum with exactly two positive elements, where all other elements of the matrix can be chosen to be negative.

2000 Mathematics Subject Classification:15A18, 15A29.
Keywords and phrases: Stable matrix, companion matrix, positive elementary symmetric functions.

1 Introduction

For a square complex matrix A let $\sigma(A)$ be the spectrum of A, that is, the set of eigenvalues of A listed with their multiplicities. Recall that a (multi) set of complex numbers is called (positive) stable if all the elements of the set have positive real parts, and that a square complex matrix A is called stable if $\sigma(A)$ is stable. In this paper we investigate the question of how many elements of a real stable matrix must be positive.

It is easy to show that a stable real matrix A has either positive diagonal elements or it at least one positive diagonal element and one positive off-diagonal element. We then show that for any stable set ζ of n complex numbers, $n>1$, such that ζ is symmetric with respect to the real axis, there exists a real stable $n \times n$ matrix A with exactly two positive entries such that $\sigma(A)=\zeta$.

The stable $n \times n$ matrix with exactly two positive entries, whose existence is proven in Section 2 , has $(n-1)^{2}$ zeros in it. In Section 3 we prove that for any stable set ζ of n complex numbers, $n>1$, such that ζ is symmetric with respect to the real axis, there exists a real stable $n \times n$ matrix A with two positive entries and all other entries negative such that $\sigma(A)=\zeta$.

In Section 4 we suggest some alternative approaches to obtain the results of Section 2.

2 Positive entries of stable matrices

Our aim in this Section is to show that for any stable set ζ of n complex numbers, $n>1$, consisting of real numbers and conjugate pairs, there exists a real stable $n \times n$ matrix A with exactly two positive entries such that $\sigma(A)=\zeta$. We shall first show that every real stable matrix of order greater than 1 has at least two positive elements. In fact we show more than that, that is, that for a stable real matrix A either all diagonal elements of A are positive or A must have at least one positive entry on the main diagonal and one off the main diagonal.

Notation 2.1 For a set $\zeta=\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ of complex numbers we denote by $s_{1}(\zeta), \ldots, s_{n}(\zeta)$ the elementary symmetric functions of ζ, that is,

$$
s_{k}(\zeta)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \zeta_{i_{1}} \cdot \ldots \cdot \zeta_{i_{k}}, \quad k=1, \ldots, n .
$$

Also, we let $s_{0}(\zeta)=1$ and $s_{k}(\zeta)=0$ whenever $k>n$ or $k<0$.
Lemma 2.2 Let $\zeta=\left\{\zeta_{1}, \ldots, \zeta_{n}\right\} \subset \mathbb{C}$ have positive elementary symmetric functions. Then ζ contains no nonpositive real numbers.

Proof. Note that ζ has positive elementary symmetric functions if and only if the polynomial $p(x)=\prod_{i=1}^{n}\left(x+\zeta_{i}\right)$ has positive coefficients. It follows that $p(x)$ cannot have nonnegative roots, implying that none of the ζ_{i} 's is a nonpositive real number.

Notation 2.3 For $\mathbb{F}=\mathbb{R}, \mathbb{C}$, the fields of real and complex numbers respectively, we denote by $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ the algebra of $n \times n$ matrices with entries in \mathbb{F}. For $A=\left(a_{i j}\right)_{1}^{n} \in$ $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ we denote by $\operatorname{tr} A$ the trace of A, that is, the sum $\sum_{i=1}^{n} a_{i i}$.

Proposition 2.4 Let $A=\left(a_{i j}\right)_{1}^{n} \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$, and assume that $\sigma(A)$ has positive elementary functions. Then either all the diagonal elements of A are positive or A has at least one positive diagonal element and one positive off-diagonal element.

Proof. As is well known, the trace of A is equal to $s_{1}(\sigma(A))$, and so we have $\sum_{i=1}^{n} a_{i i}>0$, and it follows that at least one diagonal element of A is positive. Assume that that all off-diagonal elements of A are nonpositive. Such a real matrix is called a Z-matrix. Since the elementary symmetric functions of $\sigma(A)$ are positive, it follows by Lemma 2.2 that A has no nonpositive real eigenvalues. Since a Z matrix has no nonpositive real eigenvalues if and only if all its principal minors are positive, e.g. [1, Theorem (6.2.3), page 134], it follows that all the diagonal elements of A are positive.

Notation 2.5 For a set $\zeta=\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ of complex numbers we denote by $\bar{\zeta}$ be the set $\left\{\bar{\zeta}_{1}, \ldots, \bar{\zeta}_{n}\right\}$.

Note that $\bar{\zeta}=\zeta$ if and only if all elementary symmetric functions of ζ are real.
The following result is well known, and we provide a proof for the sake of completeness.

Proposition 2.6 Let ζ be a stable set of complex numbers such that $\bar{\zeta}=\zeta$. Then ζ has positive elementary symmetric functions.

Proof. We prove our claim by induction on the cardinality n of ζ. For $n=1,2$ the result is trivial. Assume that the result holds for $n \leq m$ where $m \geq 2$, and let $n=m+1$. Assume first that ζ contains a positive number λ. Note that the set $\zeta^{\prime}=\zeta \backslash\{\lambda\}$ is stable and $\overline{\zeta^{\prime}}=\zeta^{\prime}$. By the inductive assumption we have $s_{k}\left(\zeta^{\prime}\right)>0, k=1, \ldots, n-1$, and it follows that

$$
s_{k}(\zeta)=s_{k}\left(\zeta^{\prime}\right)+\lambda s_{k-1}\left(\zeta^{\prime}\right)>0, \quad k=1, \ldots, n
$$

If ζ does not contain a positive number then it contains a conjugate pair $\{\lambda, \bar{\lambda}\}$, where $\operatorname{Re}(\lambda)>0$. Note that the set $\zeta^{\prime}=\zeta \backslash\{\lambda, \bar{\lambda}\}$ is stable and $\overline{\zeta^{\prime}}=\zeta^{\prime}$. By the inductive assumption we have $s_{k}\left(\zeta^{\prime}\right)>0, k=1, \ldots, n-2$, and it follows that

$$
s_{k}(\zeta)=s_{k}\left(\zeta^{\prime}\right)+2 \operatorname{Re}(\lambda) s_{k-1}\left(\zeta^{\prime}\right)>0+|\lambda|^{2} s_{k-2}\left(\zeta^{\prime}\right)>0, \quad k=1, \ldots, n .
$$

proving our claim.
It is easy to show that the converse of Proposition 2.6 holds when the cardinality of ζ is less than or equal to 2 . However, the converse does not hold for larger sets, as is demonstrated by the nonstable set $\zeta=\{3,-1+3 i,-1-3 i\}$, whose elementary symmetric functions are positive.

As a corollary of Propositions 2.4 and 2.6 we obtain
Corollary 2.7 Let A be a stable real square matrix. Then either all the diagonal elements of A are positive or A has at least one positive diagonal element and one positive off-diagonal element.

In order to prove the existence of a real stable $n \times n$ matrix A with exactly two positive entries, we introduce:

Notation 2.8 Let n be a positive integer. For a set ζ of n complex numbers we denote by $C_{1}(\zeta), C_{2}(\zeta)$ and $C_{3}(\zeta)$ the matrices

$$
C_{1}(\zeta)=\left(\begin{array}{cccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 & (-1)^{n-1} s_{n}(\zeta) \\
1 & 0 & 0 & \ldots & 0 & 0 & 0 & (-1)^{n-2} s_{n-1}(\zeta) \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 & (-1)^{n-3} s_{n-2}(\zeta) \\
\vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 & -s_{2}(\zeta) \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 & s_{1}(\zeta)
\end{array}\right),
$$

$$
\begin{aligned}
C_{2}(\zeta) & =\left(\begin{array}{cccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 & s_{n}(\zeta) \\
-1 & 0 & 0 & \ldots & 0 & 0 & 0 & s_{n-1}(\zeta) \\
0 & -1 & 0 & \ldots & 0 & 0 & 0 & s_{n-2}(\zeta) \\
\vdots & \vdots & \vdots & \vdots: & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -1 & 0 & s_{2}(\zeta) \\
0 & 0 & 0 & \ldots & 0 & 0 & -1 & s_{1}(\zeta)
\end{array}\right), \\
C_{3}(\zeta) & =\left(\begin{array}{cccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 & -s_{n}(\zeta) \\
-1 & 0 & 0 & \ldots & 0 & 0 & 0 & -s_{n-1}(\zeta) \\
0 & -1 & 0 & \ldots & 0 & 0 & 0 & -s_{n-2}(\zeta) \\
\vdots & \vdots & \vdots & \vdots: & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -1 & 0 & -s_{2}(\zeta) \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 & s_{1}(\zeta)
\end{array}\right) .
\end{aligned}
$$

Recall that $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{C})$ is called nonderogatory if for every eigenvalue λ of A the Jordan canonical form of A has exactly one Jordan block corresponding to λ. Equivalently, the minimal polynomial of A is equal to the characteristic polynomial of A.

Lemma 2.9 Let n be a positive integer, $n>1$, and let $\zeta=\left\{\zeta_{1}, \ldots, \zeta_{n}\right\} \subset \mathbb{C}$. Then the matrices $C_{1}(\zeta), C_{2}(\zeta)$ and $C_{3}(\zeta)$ are diagonally similar, are nonderogatory and share the spectrum ζ.

Proof. The matrix $C_{1}(\zeta)$ is the companion matrix of the polynomial $q(x)=$ $\prod_{i=1}^{n}\left(x-\zeta_{i}\right)$. Hence $\sigma\left(C_{1}(\zeta)\right)=\zeta$ and $C_{1}(\zeta)$ is nonderogatory. Clearly

$$
C_{2}(\zeta)=D_{1} C_{1}(\zeta) D_{1}, \quad \text { where } D_{1}=\operatorname{diag}\left((-1)^{1},(-1)^{2}, \ldots,(-1)^{\mathrm{n}}\right)
$$

and

$$
C_{2}(\zeta)=D_{2} C_{2}(\zeta) D_{2}, \quad \text { where } D_{2}=\operatorname{diag}(1,1, \ldots, 1,-1) .
$$

Our claim follows.
In view of Lemma 2.9, the claim of Proposition 2.6 on $C_{3}(\zeta)$ yields the following main result of this section.

Theorem 2.10 Let ζ be a set of n complex numbers, $n>1$, such that $\bar{\zeta}=\zeta$. If ζ has positive elementary symmetric functions then there exists a matrix $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ such that $\sigma(A)=\zeta$ and A has one positive diagonal entry and one positive offdiagonal entry, while all other entries of A are nonpositive. In particular, every nonderogatory stable matrix $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ is similar to a real $n \times n$ matrix which has exactly two positive entries.

3 Eliminating the zero entries

The proof of Theorem 2.10 uses the matrix $C_{3}(\zeta)$ which has $(n-1)^{2}$ zero entries. The aim of this section is to strengthen Theorem 2.10 by replacing $C_{3}(\zeta)$ with a real matrix A, having exactly two positive entries, all other entries being negative and $\sigma(A)=\zeta$.

We start with a weaker result, which one gets easily using perturbation techniques. Let $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ and let $\|\cdot\|: \mathrm{M}_{\mathrm{n}}(\mathbb{R}) \rightarrow[0, \infty)$ be the l_{2} operator norm. Since the eigenvalues of a A depend continuously on the entries of the A, it follows that if $\sigma(A)$ has positive elementary symmetric functions, then for $\varepsilon>0$ sufficiently small, every matrix $\tilde{A} \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ with $\|\tilde{A}-A\|<\varepsilon$ has a spectrum $\sigma(\tilde{A})$ with positive elementary symmetric functions. Also, if A is stable then for $\varepsilon>0$ sufficiently small, every matrix $\tilde{A} \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ with $\|\tilde{A}-A\|<\varepsilon$ is stable. Consequently, it follows immediately from Theorem 2.10 that

Corollary 3.1 For a positive integer $n>1$ there exists a matrix $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ such that $\sigma(A)$ has positive elementary symmetric functions and A has one positive diagonal entry and one positive off-diagonal entry, while all other entries of A are negative. Furthermore, the matrix A can be chosen to be stable.

In the rest of this sectio we prove that one can find such a matrix A with any prescribed stable spectrum.

Lemma 3.2 Let ζ be a set of n complex numbers, $n>1$, such that $\bar{\zeta}=\zeta$, and assume that ζ has positive elementary symmetric functions. Suppose that there exists $X \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ such that

$$
\left(C_{3}(\zeta)\right)_{i j}=0 \Longrightarrow\left(C_{3}(\zeta) X-X C_{3}(\zeta)\right)_{i j}<0, \quad i, j=1, \ldots, n
$$

Then there exist $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ similar to $C_{3}(\zeta)$ such that $a_{n n}, a_{n, n-1}>0$ and all other entries of A are negative.

Proof. Assume the existence of such a matrix X. Define the matrix $T(t)=$ $I-t X, \quad t \in \mathbb{R}$. Let $r=\|X\|^{-1}$. Using the Neumann series expansion, e.g. [2, page 7], for $|t|<r$ we have $T(t)^{-1}=\sum_{i=0}^{\infty} t^{i} X^{i}$. The matrix $A(t)=T(t) C_{3}(\zeta) T(t)^{-1}$ thus satisfies

$$
A(t)=C_{3}(\zeta)+t\left(C_{3}(\zeta) X-X C_{3}(\zeta)\right)+O\left(t^{2}\right) .
$$

Therefore, there exists $\varepsilon \in(0, r)$ such that for $t \in(0, \varepsilon)$ the matrix $A(t)$ has positive entries in the $(n, n-1)$ and (n, n) positions, while all other entries of $A(t)$ are negative.

The following lemma is well known, and we provide a proof for the sake of completeness.

Lemma 3.3 Let $A, B \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ where \mathbb{F} is \mathbb{R} or \mathbb{C}. The following are equivalent.
(i) The system $A X-X A=B$ is solvable over \mathbb{F}.
(ii) For every matrix $E \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ that commutes with A we have $\operatorname{tr} B E=0$.

Proof. (i) \Longrightarrow (ii). Let $E \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ commute with A. Then

$$
\operatorname{tr} B E=\operatorname{tr}(A X-X A) E=\operatorname{tr} A X E-\operatorname{tr} X E A=\operatorname{tr} X E A-\operatorname{tr} X E A=0 .
$$

$(\mathrm{i}) \Longrightarrow(\mathrm{ii})$. Consider the linear operator $L: \mathrm{M}_{\mathrm{n}}(\mathbb{F}) \rightarrow \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ defined by $L(X)=$ $A X-X A$. Its kernel consists of all matrices in $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ commuting with A. By the previous implication, the image of L is contained in the subspace V of $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ consisting of all matrices B such that $\operatorname{tr} B E=0$ whenever $E \in \operatorname{kernel}(L)$. Since clearly $\operatorname{dim}(V)=n^{2}-\operatorname{dim}(\operatorname{kernel}(L))=\operatorname{dim}(\operatorname{image}(L))$, it follows that image $(L)=$ V.

Theorem 3.4 Let ζ be a set of n complex numbers, $n>1$. Let $b_{i j}, i=1, \ldots, n$, $j=1, \ldots, n-1$ be given complex numbers, and let $C=C_{k}(\zeta)$ for some $k \in\{1,2,3\}$. Then there exists unique $b_{\text {in }} \in \mathbb{C}, i=1, \ldots, n$, such that for the matrix $B=\left(b_{i j}\right)_{1}^{n} \in$ $\mathrm{M}_{\mathrm{n}}(\mathbb{C})$ the system $C X-X C=B$ is solvable. Furthermore, if $\bar{\zeta}=\zeta$ and $b_{i j}$ is real for $i=1, \ldots, n, j=1, \ldots, n-1$, then the matrix B is real, and the solution X can be chosen to be real.

Proof. Since $C_{2}(\zeta)$ and $C_{3}(\zeta)$ are diagonally similar to $C_{1}(\zeta)$, where the corresponding diagonal matrices are real, it is enough to prove the theorem for $C=C_{1}(\zeta)$. So, let $C=C_{1}(\zeta)$ and consider the system

$$
\begin{equation*}
C X-X C=B . \tag{3.1}
\end{equation*}
$$

As is well known, e.g. [3, Corollary 1, page 222], since $C=C_{1}(\zeta)$ is nonderogatory, every matrix that commutes with C is a polynomial in C. Therefore, it follows from Lemma 3.3 that the system (3.1) is solvable if and only if

$$
\begin{equation*}
\operatorname{tr} B C^{k}=0, \quad k=0, \ldots, n-1 \tag{3.2}
\end{equation*}
$$

Denote $v_{k}=b_{n+1-k, n}, k=1, \ldots, n$. Note that (3.2) is a system of n equations in the variables v_{1}, \ldots, v_{n}. Furthermore, it is easy to verify that the first nonzero element in the nth row of C^{k} is located at the position $(n, n-k)$ and its value is 1 . It follows that if we write (3.2) as $E v=f$, where $E \in \mathrm{M}_{\mathrm{n}}(\mathbb{C})$ and $v=\left(v_{1}, \ldots, n\right)^{T}$, then E is a lower triangular matrix with 1 's along the main diagonal. It follows that the matrix B is uniquely determined by (3.2).
If $\bar{\zeta}=\zeta$ and $b_{i j}$ is real for $i=1, \ldots, n, j=1, \ldots, n-1$ then $C=C_{1}(\zeta)$ is real and hence the system (3.2) has real coefficients, and the uniquely determined B is real. It follows that the system (3.1) is real, and so it has a real solution X.

If we choose the numbers $b_{i j}, i=1, \ldots, n, j=1, \ldots, n-1$, to be negative, then Lemma 3.2 and Theorem 3.4 yield

Corollary 3.5 Let ζ be a set of n complex numbers, $n>1$, and assume that the elementary symmetric functions of ζ are positive. Then there exists a matrix $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{R})$ with $\sigma(A)=\zeta$ such that A has one positive diagonal element, one positive off-diagonal element and all other entries of A are negative. In particular, the above holds for stable sets ζ such that $\bar{\zeta}=\zeta$.

4 Other types of companion matrices

Another way to prove some of the results of Section 2 is to parameterize the companion matrices in Notation 2.8. Consider

$$
C=\left(\begin{array}{cccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \gamma_{0} \\
\beta_{0} & 0 & 0 & \cdots & 0 & 0 & 0 & \gamma_{1} \\
0 & \beta_{1} & 0 & \cdots & 0 & 0 & 0 & \gamma_{2} \\
0 & 0 & 0 & \cdots & 0 & \beta_{n-3} & 0 & \gamma_{n-2} \\
0 & 0 & 0 & \cdots & 0 & 0 & \beta_{n-2} & \gamma_{n-1}
\end{array}\right)
$$

From looking at the directed graph of C is

one can immediately see that there is exactly one simple cycle of length k for $1 \leq$ $k \leq n$, that is, $(n, \ldots, n+1-k)$. Therefore, the only nonzero principal minors of C are those whose rows and columns are indexed by $\{k, \ldots, n\}, k=1, \ldots, n$, and their respective values are $(-1)^{n-k} \gamma_{k-1} \beta_{k-1} \cdots \beta_{n-2}$ for $k<n$ and γ_{n-1} for $k=n$. It follows that the characteristic polynomial $\chi_{C}(x)$ of C is

$$
\begin{gather*}
\chi_{C}(x)=x^{n}-\gamma_{n-1} x^{n-1}-\gamma_{n-2} \beta_{n-2} x^{n-2}-\gamma_{n-3} \beta_{n-3} \beta_{n-2} x^{n-3}-\ldots \tag{4.1}\\
\cdots-\gamma_{1} \beta_{1} \beta_{2} \cdots \beta_{n-2} x-\gamma_{0} \beta_{0} \beta_{1} \cdots \beta_{n-2} .
\end{gather*}
$$

Using this explicit formula, one can prove directly the claim contained in Lemma 2.9 that the matrices $C_{1}(\zeta), C_{2}(\zeta)$ and $C_{3}(\zeta)$ share the spectrum ζ.

There are other possibilities to generate companion matrices. For example, consider the matrix

$$
L=\left(\begin{array}{cccccccc}
\gamma_{n-1} & 0 & 0 & \cdots & 0 & 0 & 0 & \beta_{n-2} \\
\beta_{n-3} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \beta_{n-4} & 0 \cdots & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & \cdots & 0 & \beta_{0} & 0 & 0 \\
\gamma_{n-2} & \gamma_{n-3} & \gamma_{n-4} & \cdots & \gamma_{2} & \gamma_{1} & \gamma_{0} & 0
\end{array}\right) .
$$

The directed graph of L is

Again it is clear that there is exactly one simple cycle of length k for any $1 \leq k \leq n$, that is, (1) for $k=1$ and $(n, k-1, \ldots, 1)$ for $1<k \leq n$. Therefore, the only nonzero 1×1 principal minor of L is $l_{11}=\gamma_{n-1}$, and for $1<k \leq n$ the only
nonzero $k \times k$ principal minor of L is the one whose rows and columns are indexed by $\{1, \ldots, k-1, n\}$, and its value is $(-1)^{n-k} \gamma_{k-1} \beta_{k-1} \cdots \beta_{n-2}$. It follows that the characteristic polynomial $\chi_{L}(x)$ of L is identical to $\chi_{C}(x)$. Note that there is no permutation matrix P with $P^{T} C P=L$ or $P^{T} C^{T} P=L$.

Now, take the following specific choice of the parameters β and γ

$$
L_{1}=\left(\begin{array}{cccccccc}
-p_{n-1} & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
& 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
-p_{n-2} & -p_{n-3} & -p_{n-4} & \cdots & -p_{2} & -p_{1} & -p_{0} & 0
\end{array}\right) .
$$

By (4.1), the characteristic polynomial computes to

$$
\chi_{L_{1}}(x)=\sum_{\nu=0}^{n} p_{\nu} x^{\nu}
$$

where $p_{n}=1$.
So L_{1} is another kind of companion matrix. Note that L_{1} is almost lower triangular, with only one nonzero element above the main diagonal and one on the main diagonal.

Another specific choice of the parameters β and γ can be used to produce another direct proof of Theorem 2.10. For a set ζ of complex numbers with $\zeta=\bar{\zeta}$ and positive elementary symmetric functions, the polynomial $q(x)=\prod_{i=1}^{n}\left(x-\zeta_{i}\right)=\sum_{i=0}^{n} q_{i} x^{i}$ has coefficients $q_{i}, 0 \leq i \leq n$ of alternating signs, where $q_{n}=1$. By (4.1), the polynomial $q(x)$ is the characteristic polynomial of the matrix

$$
\left(\begin{array}{cccccccc}
-q_{n-1} & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
& & & & \cdots \cdots \cdots & & & \\
0 & 0 & 0 & \cdots & 0 & -1 & 0 & 0 \\
-q_{n-2} & q_{n-3} & -q_{n-4} & \cdots & (-1)^{n-3} q_{2} & (-1)^{n-2} q_{1} & (-1)^{n-1} q_{0} & 0
\end{array}\right)
$$

which has exactly two positive entries, that is, $-q_{n-1}$ on the diagonal and 1 in the right upper corner.

References

[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences, Academic Press, New York, 1979.
[2] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, Springer, 1996.
[3] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.

