### Positive entries of stable matrices

Shmuel Friedland
Department of Mathematics, Statistics and Computer Science,
University of Illinois at Chicago
Chicago, Illinois 60607-7045, USA

Daniel Hershkowitz,
Department of Mathematics
Techinion, Israel Institute of Technology
Kiryat Hatechnion, Haifa 32000, Israel

Siegfried M. Rump Inst. f. Computer Science III Technical University Hamburg-Harburg Schwarzenbergstr. 95, 21071 Hamburg, Germany

August 11, 2004

#### Abstract

The question of how many elements of a real stable matrix must be positive is investigated. It is shown that any real stable matrix of order greater than 1 has at least two positive entries. Furthermore, for every stable spectrum of cardinality greater than 1 there exists a real matrix with that spectrum with exactly two positive elements, where all other elements of the matrix can be chosen to be negative.

2000 Mathematics Subject Classification:15A18, 15A29.

Keywords and phrases: Stable matrix, companion matrix, positive elementary symmetric functions.

#### 1 Introduction

For a square complex matrix A let  $\sigma(A)$  be the spectrum of A, that is, the set of eigenvalues of A listed with their multiplicities. Recall that a (multi) set of complex numbers is called *(positive)* stable if all the elements of the set have positive real parts, and that a square complex matrix A is called stable if  $\sigma(A)$  is stable. In this paper we investigate the question of how many elements of a real stable matrix must be positive.

It is easy to show that a stable real matrix A has either positive diagonal elements or it at least one positive diagonal element and one positive off-diagonal element. We then show that for any stable set  $\zeta$  of n complex numbers, n>1, such that  $\zeta$  is symmetric with respect to the real axis, there exists a real stable  $n\times n$  matrix A with exactly two positive entries such that  $\sigma(A)=\zeta$ .

The stable  $n \times n$  matrix with exactly two positive entries, whose existence is proven in Section 2, has  $(n-1)^2$  zeros in it. In Section 3 we prove that for any stable set  $\zeta$  of n complex numbers, n > 1, such that  $\zeta$  is symmetric with respect to the real axis, there exists a real stable  $n \times n$  matrix A with two positive entries and all other entries negative such that  $\sigma(A) = \zeta$ .

In Section 4 we suggest some alternative approaches to obtain the results of Section 2.

#### 2 Positive entries of stable matrices

Our aim in this Section is to show that for any stable set  $\zeta$  of n complex numbers, n > 1, consisting of real numbers and conjugate pairs, there exists a real stable  $n \times n$  matrix A with exactly two positive entries such that  $\sigma(A) = \zeta$ . We shall first show that every real stable matrix of order greater than 1 has at least two positive elements. In fact we show more than that, that is, that for a stable real matrix A either all diagonal elements of A are positive or A must have at least one positive entry on the main diagonal and one off the main diagonal.

**Notation 2.1** For a set  $\zeta = \{\zeta_1, \dots, \zeta_n\}$  of complex numbers we denote by  $s_1(\zeta), \dots, s_n(\zeta)$  the elementary symmetric functions of  $\zeta$ , that is,

$$s_k(\zeta) = \sum_{1 \le i_1 < \dots < i_k \le n} \zeta_{i_1} \cdot \dots \cdot \zeta_{i_k}, \qquad k = 1, \dots, n.$$

Also, we let  $s_0(\zeta) = 1$  and  $s_k(\zeta) = 0$  whenever k > n or k < 0.

**Lemma 2.2** Let  $\zeta = \{\zeta_1, \ldots, \zeta_n\} \subset \mathbb{C}$  have positive elementary symmetric functions. Then  $\zeta$  contains no nonpositive real numbers.

**Proof.** Note that  $\zeta$  has positive elementary symmetric functions if and only if the polynomial  $p(x) = \prod_{i=1}^{n} (x + \zeta_i)$  has positive coefficients. It follows that p(x) cannot have nonnegative roots, implying that none of the  $\zeta_i$ 's is a nonpositive real number.

**Notation 2.3** For  $\mathbb{F} = \mathbb{R}, \mathbb{C}$ , the fields of real and complex numbers respectively, we denote by  $M_n(\mathbb{F})$  the algebra of  $n \times n$  matrices with entries in  $\mathbb{F}$ . For  $A = (a_{ij})_1^n \in M_n(\mathbb{F})$  we denote by  $\operatorname{tr} A$  the trace of A, that is, the sum  $\sum_{i=1}^n a_{ii}$ .

**Proposition 2.4** Let  $A = (a_{ij})_1^n \in M_n(\mathbb{R})$ , and assume that  $\sigma(A)$  has positive elementary functions. Then either all the diagonal elements of A are positive or A has at least one positive diagonal element and one positive off-diagonal element.

**Proof.** As is well known, the trace of A is equal to  $s_1(\sigma(A))$ , and so we have  $\sum_{i=1}^n a_{ii} > 0$ , and it follows that at least one diagonal element of A is positive. Assume that that all off-diagonal elements of A are nonpositive. Such a real matrix is called a Z-matrix. Since the elementary symmetric functions of  $\sigma(A)$  are positive, it follows by Lemma 2.2 that A has no nonpositive real eigenvalues. Since a Z-matrix has no nonpositive real eigenvalues if and only if all its principal minors are positive, e.g. [1, Theorem (6.2.3), page 134], it follows that all the diagonal elements of A are positive.

**Notation 2.5** For a set  $\zeta = \{\zeta_1, \dots, \zeta_n\}$  of complex numbers we denote by  $\overline{\zeta}$  be the set  $\{\overline{\zeta}_1, \dots, \overline{\zeta}_n\}$ .

Note that  $\overline{\zeta} = \zeta$  if and only if all elementary symmetric functions of  $\zeta$  are real.

The following result is well known, and we provide a proof for the sake of completeness.

**Proposition 2.6** Let  $\zeta$  be a stable set of complex numbers such that  $\overline{\zeta} = \zeta$ . Then  $\zeta$  has positive elementary symmetric functions.

**Proof.** We prove our claim by induction on the cardinality n of  $\zeta$ . For n=1,2 the result is trivial. Assume that the result holds for  $n\leq m$  where  $m\geq 2$ , and let n=m+1. Assume first that  $\zeta$  contains a positive number  $\lambda$ . Note that the set  $\zeta'=\zeta\setminus\{\lambda\}$  is stable and  $\overline{\zeta'}=\zeta'$ . By the inductive assumption we have  $s_k(\zeta')>0, k=1,\ldots,n-1$ , and it follows that

$$s_k(\zeta) = s_k(\zeta') + \lambda s_{k-1}(\zeta') > 0, \quad k = 1, \dots, n.$$

If  $\zeta$  does not contain a positive number then it contains a conjugate pair  $\{\lambda, \overline{\lambda}\}$ , where  $\text{Re}(\lambda) > 0$ . Note that the set  $\zeta' = \zeta \setminus \{\lambda, \overline{\lambda}\}$  is stable and  $\overline{\zeta'} = \zeta'$ . By the inductive assumption we have  $s_k(\zeta') > 0$ ,  $k = 1, \ldots, n-2$ , and it follows that

$$s_k(\zeta) = s_k(\zeta') + 2\operatorname{Re}(\lambda)s_{k-1}(\zeta') > 0 + |\lambda|^2 s_{k-2}(\zeta') > 0, \quad k = 1, \dots, n.$$

proving our claim.

It is easy to show that the converse of Proposition 2.6 holds when the cardinality of  $\zeta$  is less than or equal to 2. However, the converse does not hold for larger sets, as is demonstrated by the nonstable set  $\zeta = \{3, -1+3i, -1-3i\}$ , whose elementary symmetric functions are positive.

As a corollary of Propositions 2.4 and 2.6 we obtain

Corollary 2.7 Let A be a stable real square matrix. Then either all the diagonal elements of A are positive or A has at least one positive diagonal element and one positive off-diagonal element.

In order to prove the existence of a real stable  $n \times n$  matrix A with exactly two positive entries, we introduce:

**Notation 2.8** Let n be a positive integer. For a set  $\zeta$  of n complex numbers we denote by  $C_1(\zeta)$ ,  $C_2(\zeta)$  and  $C_3(\zeta)$  the matrices

$$C_1(\zeta) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 0 & (-1)^{n-1} s_n(\zeta) \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 & (-1)^{n-2} s_{n-1}(\zeta) \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 & (-1)^{n-3} s_{n-2}(\zeta) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 & -s_2(\zeta) \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 & s_1(\zeta) \end{pmatrix},$$

$$C_2(\zeta) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & s_n(\zeta) \\ -1 & 0 & 0 & \dots & 0 & 0 & 0 & s_{n-1}(\zeta) \\ 0 & -1 & 0 & \dots & 0 & 0 & 0 & s_{n-2}(\zeta) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -1 & 0 & s_2(\zeta) \\ 0 & 0 & 0 & \dots & 0 & 0 & -1 & s_1(\zeta) \end{pmatrix},$$

$$C_3(\zeta) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 0 & -s_n(\zeta) \\ -1 & 0 & 0 & \dots & 0 & 0 & 0 & -s_{n-1}(\zeta) \\ 0 & -1 & 0 & \dots & 0 & 0 & 0 & -s_{n-2}(\zeta) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -1 & 0 & -s_2(\zeta) \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 & s_1(\zeta) \end{pmatrix}.$$

Recall that  $A \in M_n(\mathbb{C})$  is called nonderogatory if for every eigenvalue  $\lambda$  of A the Jordan canonical form of A has exactly one Jordan block corresponding to  $\lambda$ . Equivalently, the minimal polynomial of A is equal to the characteristic polynomial of A.

**Lemma 2.9** Let n be a positive integer, n > 1, and let  $\zeta = \{\zeta_1, \ldots, \zeta_n\} \subset \mathbb{C}$ . Then the matrices  $C_1(\zeta)$ ,  $C_2(\zeta)$  and  $C_3(\zeta)$  are diagonally similar, are nonderogatory and share the spectrum  $\zeta$ .

**Proof.** The matrix  $C_1(\zeta)$  is the companion matrix of the polynomial  $q(x) = \prod_{i=1}^{n} (x - \zeta_i)$ . Hence  $\sigma(C_1(\zeta)) = \zeta$  and  $C_1(\zeta)$  is nonderogatory. Clearly

$$C_2(\zeta) = D_1 C_1(\zeta) D_1$$
, where  $D_1 = \text{diag}((-1)^1, (-1)^2, \dots, (-1)^n)$ ,

and

$$C_2(\zeta) = D_2C_2(\zeta)D_2$$
, where  $D_2 = \text{diag}(1, 1, \dots, 1, -1)$ .

Our claim follows.  $\Box$ 

In view of Lemma 2.9, the claim of Proposition 2.6 on  $C_3(\zeta)$  yields the following main result of this section.

**Theorem 2.10** Let  $\zeta$  be a set of n complex numbers, n>1, such that  $\overline{\zeta}=\zeta$ . If  $\zeta$  has positive elementary symmetric functions then there exists a matrix  $A\in M_n(\mathbb{R})$  such that  $\sigma(A)=\zeta$  and A has one positive diagonal entry and one positive off-diagonal entry, while all other entries of A are nonpositive. In particular, every nonderogatory stable matrix  $A\in M_n(\mathbb{R})$  is similar to a real  $n\times n$  matrix which has exactly two positive entries.

# 3 Eliminating the zero entries

The proof of Theorem 2.10 uses the matrix  $C_3(\zeta)$  which has  $(n-1)^2$  zero entries. The aim of this section is to strengthen Theorem 2.10 by replacing  $C_3(\zeta)$  with a real matrix A, having exactly two positive entries, all other entries being negative and  $\sigma(A) = \zeta$ .

We start with a weaker result, which one gets easily using perturbation techniques. Let  $A \in \mathrm{M_n}(\mathbb{R})$  and let  $\|\cdot\| : \mathrm{M_n}(\mathbb{R}) \to [0,\infty)$  be the  $l_2$  operator norm. Since the eigenvalues of a A depend continuously on the entries of the A, it follows that if  $\sigma(A)$  has positive elementary symmetric functions, then for  $\varepsilon > 0$  sufficiently small, every matrix  $\tilde{A} \in \mathrm{M_n}(\mathbb{R})$  with  $\|\tilde{A} - A\| < \varepsilon$  has a spectrum  $\sigma(\tilde{A})$  with positive elementary symmetric functions. Also, if A is stable then for  $\varepsilon > 0$  sufficiently small, every matrix  $\tilde{A} \in \mathrm{M_n}(\mathbb{R})$  with  $\|\tilde{A} - A\| < \varepsilon$  is stable. Consequently, it follows immediately from Theorem 2.10 that

Corollary 3.1 For a positive integer n > 1 there exists a matrix  $A \in M_n(\mathbb{R})$  such that  $\sigma(A)$  has positive elementary symmetric functions and A has one positive diagonal entry and one positive off-diagonal entry, while all other entries of A are negative. Furthermore, the matrix A can be chosen to be stable.

In the rest of this sectio we prove that one can find such a matrix A with any prescribed stable spectrum.

**Lemma 3.2** Let  $\zeta$  be a set of n complex numbers, n>1, such that  $\overline{\zeta}=\zeta$ , and assume that  $\zeta$  has positive elementary symmetric functions. Suppose that there exists  $X\in M_n(\mathbb{R})$  such that

$$(C_3(\zeta))_{ij} = 0 \implies (C_3(\zeta)X - XC_3(\zeta))_{ij} < 0, \qquad i, j = 1, \dots, n.$$

Then there exist  $A \in M_n(\mathbb{R})$  similar to  $C_3(\zeta)$  such that  $a_{nn}$ ,  $a_{n,n-1} > 0$  and all other entries of A are negative.

**Proof.** Assume the existence of such a matrix X. Define the matrix T(t) = I - tX,  $t \in \mathbb{R}$ . Let  $r = ||X||^{-1}$ . Using the Neumann series expansion, e.g. [2, page 7], for |t| < r we have  $T(t)^{-1} = \sum_{i=0}^{\infty} t^i X^i$ . The matrix  $A(t) = T(t)C_3(\zeta)T(t)^{-1}$  thus satisfies

$$A(t) = C_3(\zeta) + t(C_3(\zeta)X - XC_3(\zeta)) + O(t^2).$$

Therefore, there exists  $\varepsilon \in (0, r)$  such that for  $t \in (0, \varepsilon)$  the matrix A(t) has positive entries in the (n, n - 1) and (n, n) positions, while all other entries of A(t) are negative.

The following lemma is well known, and we provide a proof for the sake of completeness.

**Lemma 3.3** Let  $A, B \in M_n(\mathbb{F})$  where  $\mathbb{F}$  is  $\mathbb{R}$  or  $\mathbb{C}$ . The following are equivalent.

- (i) The system AX XA = B is solvable over  $\mathbb{F}$ .
- (ii) For every matrix  $E \in M_n(\mathbb{F})$  that commutes with A we have  $\operatorname{tr} BE = 0$ .

**Proof.** (i)
$$\Longrightarrow$$
(ii). Let  $E \in M_n(\mathbb{F})$  commute with A. Then

$$\operatorname{tr} BE = \operatorname{tr} (AX - XA)E = \operatorname{tr} AXE - \operatorname{tr} XEA = \operatorname{tr} XEA - \operatorname{tr} XEA = 0.$$

(i) $\Longrightarrow$ (ii). Consider the linear operator  $L: \mathrm{M_n}(\mathbb{F}) \to \mathrm{M_n}(\mathbb{F})$  defined by L(X) = AX - XA. Its kernel consists of all matrices in  $\mathrm{M_n}(\mathbb{F})$  commuting with A. By the previous implication, the image of L is contained in the subspace V of  $\mathrm{M_n}(\mathbb{F})$  consisting of all matrices B such that  $\mathrm{tr} BE = 0$  whenever  $E \in \mathrm{kernel}(L)$ . Since clearly  $\dim(V) = n^2 - \dim(\mathrm{kernel}(L)) = \dim(\mathrm{image}(L))$ , it follows that  $\mathrm{image}(L) = V$ .

**Theorem 3.4** Let  $\zeta$  be a set of n complex numbers, n > 1. Let  $b_{ij}$ ,  $i = 1, \ldots, n$ ,  $j = 1, \ldots, n-1$  be given complex numbers, and let  $C = C_k(\zeta)$  for some  $k \in \{1, 2, 3\}$ . Then there exists unique  $b_{in} \in \mathbb{C}$ ,  $i = 1, \ldots, n$ , such that for the matrix  $B = (b_{ij})_1^n \in M_n(\mathbb{C})$  the system CX - XC = B is solvable. Furthermore, if  $\overline{\zeta} = \zeta$  and  $b_{ij}$  is real for  $i = 1, \ldots, n$ ,  $j = 1, \ldots, n-1$ , then the matrix B is real, and the solution X can be chosen to be real.

**Proof.** Since  $C_2(\zeta)$  and  $C_3(\zeta)$  are diagonally similar to  $C_1(\zeta)$ , where the corresponding diagonal matrices are real, it is enough to prove the theorem for  $C = C_1(\zeta)$ . So, let  $C = C_1(\zeta)$  and consider the system

$$CX - XC = B. (3.1)$$

As is well known, e.g. [3, Corollary 1, page 222], since  $C = C_1(\zeta)$  is nonderogatory, every matrix that commutes with C is a polynomial in C. Therefore, it follows from Lemma 3.3 that the system (3.1) is solvable if and only if

$$\operatorname{tr} BC^k = 0, \quad k = 0, \dots, n-1.$$
 (3.2)

Denote  $v_k = b_{n+1-k,n}$ , k = 1, ..., n. Note that (3.2) is a system of n equations in the variables  $v_1, ..., v_n$ . Furthermore, it is easy to verify that the first nonzero element in the nth row of  $C^k$  is located at the position (n, n - k) and its value is 1. It follows that if we write (3.2) as Ev = f, where  $E \in M_n(\mathbb{C})$  and  $v = (v_1, ..., n)^T$ , then E is a lower triangular matrix with 1's along the main diagonal. It follows that the matrix B is uniquely determined by (3.2).

If  $\overline{\zeta} = \zeta$  and  $b_{ij}$  is real for  $i = 1, \ldots, n, j = 1, \ldots, n-1$  then  $C = C_1(\zeta)$  is real and hence the system (3.2) has real coefficients, and the uniquely determined B is real. It follows that the system (3.1) is real, and so it has a real solution X.

If we choose the numbers  $b_{ij}$ ,  $i=1,\ldots,n,\ j=1,\ldots,n-1$ , to be negative, then Lemma 3.2 and Theorem 3.4 yield

Corollary 3.5 Let  $\zeta$  be a set of n complex numbers, n>1, and assume that the elementary symmetric functions of  $\zeta$  are positive. Then there exists a matrix  $A\in \mathrm{M}_n(\mathbb{R})$  with  $\sigma(A)=\zeta$  such that A has one positive diagonal element, one positive off-diagonal element and all other entries of A are negative. In particular, the above holds for stable sets  $\zeta$  such that  $\overline{\zeta}=\zeta$ .

## 4 Other types of companion matrices

Another way to prove some of the results of Section 2 is to parameterize the companion matrices in Notation 2.8. Consider

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \gamma_0 \\ \beta_0 & 0 & 0 & \cdots & 0 & 0 & 0 & \gamma_1 \\ 0 & \beta_1 & 0 & \cdots & 0 & 0 & 0 & \gamma_2 \\ & & & & & & \\ 0 & 0 & 0 & \cdots & 0 & \beta_{n-3} & 0 & \gamma_{n-2} \\ 0 & 0 & 0 & \cdots & 0 & 0 & \beta_{n-2} & \gamma_{n-1} \end{pmatrix}$$

From looking at the directed graph of C is



one can immediately see that there is exactly one simple cycle of length k for  $1 \le k \le n$ , that is,  $(n, \ldots, n+1-k)$ . Therefore, the only nonzero principal minors of C are those whose rows and columns are indexed by  $\{k, \ldots, n\}$ ,  $k = 1, \ldots, n$ , and their respective values are  $(-1)^{n-k}\gamma_{k-1}\beta_{k-1}\cdots\beta_{n-2}$  for k < n and  $\gamma_{n-1}$  for k = n. It follows that the characteristic polynomial  $\chi_C(x)$  of C is

$$\chi_C(x) = x^n - \gamma_{n-1}x^{n-1} - \gamma_{n-2}\beta_{n-2}x^{n-2} - \gamma_{n-3}\beta_{n-3}\beta_{n-2}x^{n-3} - \dots \dots - \gamma_1\beta_1\beta_2 \dots \beta_{n-2}x - \gamma_0\beta_0\beta_1 \dots \beta_{n-2}.$$
(4.1)

Using this explicit formula, one can prove directly the claim contained in Lemma 2.9 that the matrices  $C_1(\zeta)$ ,  $C_2(\zeta)$  and  $C_3(\zeta)$  share the spectrum  $\zeta$ .

There are other possibilities to generate companion matrices. For example, consider the matrix

The directed graph of L is



Again it is clear that there is exactly one simple cycle of length k for any  $1 \le k \le n$ , that is, (1) for k = 1 and (n, k - 1, ..., 1) for  $1 < k \le n$ . Therefore, the only nonzero  $1 \times 1$  principal minor of L is  $l_{11} = \gamma_{n-1}$ , and for  $1 < k \le n$  the only

nonzero  $k \times k$  principal minor of L is the one whose rows and columns are indexed by  $\{1, \ldots, k-1, n\}$ , and its value is  $(-1)^{n-k} \gamma_{k-1} \beta_{k-1} \cdots \beta_{n-2}$ . It follows that the characteristic polynomial  $\chi_L(x)$  of L is identical to  $\chi_C(x)$ . Note that there is no permutation matrix P with  $P^T C P = L$  or  $P^T C^T P = L$ .

Now, take the following specific choice of the parameters  $\beta$  and  $\gamma$ 

By (4.1), the characteristic polynomial computes to

$$\chi_{L_1}(x) = \sum_{\nu=0}^n p_{\nu} x^{\nu},$$

where  $p_n = 1$ .

So  $L_1$  is another kind of companion matrix. Note that  $L_1$  is almost lower triangular, with only one nonzero element above the main diagonal and one on the main diagonal.

Another specific choice of the parameters  $\beta$  and  $\gamma$  can be used to produce another direct proof of Theorem 2.10. For a set  $\zeta$  of complex numbers with  $\zeta = \overline{\zeta}$  and positive elementary symmetric functions, the polynomial  $q(x) = \prod_{i=1}^{n} (x - \zeta_i) = \sum_{i=0}^{n} q_i x^i$  has coefficients  $q_i$ ,  $0 \le i \le n$  of alternating signs, where  $q_n = 1$ . By (4.1), the polynomial q(x) is the characteristic polynomial of the matrix

which has exactly two positive entries, that is,  $-q_{n-1}$  on the diagonal and 1 in the right upper corner.

#### References

- [1] A. Berman and R.J. Plemmons, *Nonnegative Matrices in Mathematical Sciences*, Academic Press, New York, 1979.
- [2] R. Bhatia, *Matrix Analysis*, Graduate Texts in Mathematics 169, Springer, 1996.
- [3] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.