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CONCENTRATION OF PERMANENT ESTIMATORS FOR
CERTAIN LARGE MATRICES
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University of Illinois, Duke University and University of Minnesota

Let An = (aij )ni,j=1 be an n × n positive matrix with entries in

[a, b], 0 < a ≤ b. Let Xn = (
√

aij xij )ni,j=1 be a random matrix, where
{xij } are i.i.d. N(0,1) random variables. We show that for largen,

det(XT
n Xn) concentrates sharply at the permanent ofAn, in the sense that

n−1 log(det(XT
n Xn)/perAn) →n→∞ 0 in probability.

1. Introduction. For a setF ⊂ R and integersn ≥ m, denote byM(n,m,F )

the set ofn × m matrices with entries inF . PutM(n,F ) = M(n,n,F ). Let Sn be
the symmetric group of permutations acting on{1, . . . , n}. For A ∈ M(n,C), the
permanent ofA is defined as

perA = ∑
σ∈Sn

a1σ(1)a2σ(2) · · ·anσ(n).

The permanent of a 0–1 matrix is of fundamental importance in combinatorial
counting problems. The computation of the permanent of a 0–1 matrix was shown
to be a #P -complete problem [15], and, hence, (under standard complexity-
theoretical assumptions) not possible in polynomial time. Since then the focus
has shifted to randomized approximation methods. The most fruitful method
available at present is that of the Markov chain Monte Carlo. In a recent paper
Jerrum, Sinclair and Vigoda [10] refined the Markov chain Monte Carlo method
to obtain a fully-polynomial randomized approximation scheme for computing the
permanents of arbitrary nonnegative matrix.

A second probabilistic method was derived from the following basic observa-
tion. Assume

{xij } are independent random variables satisfying
(1.1)

E(xij ) = 0, E(x2
ij ) = 1.

ForA ∈ M(n,R+), let

X(A) = (√
aij xij

)n
i,j=1, Z(A) = X(A)T X(A).(1.2)
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Then (see [2]),

E
(
detZ(A)

) = perA.(1.3)

In other words, detZ(A) is an unbiased estimator of the permanent. The
computational advantage of this estimator lies in the well-known fact that
the determinant of a large matrix is fast (polynomial) to compute. Ifxij are
Bernoulli withxij ∈ {1,−1}, then the above estimator is called the Godsil–Gutman
estimator [7]. In [2], Barvinok considers the concentration of the estimator (1.3)
in the casexij are Gaussian, complex Gaussian and quaternionic Gaussian. (Of
course, moving from real to complex, quaternion or higher-dimensional Gaussians
entails some adjustments in the algorithm’s description. Namely, thex2

ij appearing
in (1.1) should be replaced with|xij |2 for an appropriate norm-square, and the
determinant which makes up the basic estimator should be redefined accordingly.
We refer to [3] for a complete discussion of this point.) More precisely, for any
δ > 0, Barvinok shows that

sup
An∈M(n,[0,b])

P
(

1

n
log

detZ(An)

perAn

/∈ [logγ, δ]
)

−→
n→∞ 0,

whereγ ≈ 0.28 if xij are Gaussian,γ ≈ 0.56 if xij are complex Gaussian and
γ ≈ 0.76 if xij are quaternionic Gaussian. In a more recent preprint [3], Barvinok
suggests the possibility of taking logγ any small negative number if eachxij is
replaced by ak × k random matrix with Gaussian entries provided thatk is a
large enough integer. Along these lines, the work of [4] choosesxij to be random
signed basis elements of a Clifford algebra (of dimension on the order ofn2) and
proves that in this case E[detZ(An)

2]/E[detZ(An)]2 is bounded independently
of n. Such control of the second moment of the estimator provides concentration
via Chebyshev’s inequality. Further, since Clifford algebras have representations
in terms of real, complex or quaternion matrices of appropriate size, the results
of [4] imply that there is very good concentration for real matrices of dimension
polynomial in n when the matrices are selected from a set of basis matrices.
However, it remains an open question whether this Clifford algebra estimator can
be efficiently computed at large dimension. In a sense, both [3] and [4] are guided
by the same principle: introducing more randomness at the level of the entries
should produce additional averaging and so sharpen the concentration.

In the present note we take a different approach. Our goal is to show that, in
fact, good concentration is already present withk = 1, if one is willing to look at
a restricted class of matrices. In particular, we consider the case where the entries
of An are uniformly bounded both from above and away from zero. We do this
in a slightly more general framework, considering rectangular as well as square
matrices. A consequence of our main result, Theorem 2.1, is the following:
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COROLLARY 1.1. Let 0 < a ≤ b be given. Assume {xij } are independent
identically distributed N(0,1) random variables. Then, for any δ > 0,

lim
n→∞ sup

An∈M(n,[a,b])
P
(

1

n

∣∣∣∣ log
detZ(An)

perAn

∣∣∣∣ > δ

)
= 0,

where Z(An) is defined by (1.2).

Note that while the restrictiona > 0 is stronger than one would like (it precludes
the important 0–1 matrices), some sort of condition on the entries of the matrices
is needed as the the example ofAn = In shows. We will have more to say on this
point later on.

It has recently been pointed out to us that for the case considered here, namely,
with entries bounded above and below, the algorithm of [11] can be adapted
to yield a polynomial time (O(n4)) algorithm with polynomially bounded error
for computing the permanent. Still, we believe there is an intrinsic interest in
the present analysis of Barvinok’s algorithm. On one hand, there is the inherent
simplicity of the algorithm, with worst case performance bounds, and our results
give improved performance for a restricted class of matrices. On the other hand,
a study of the algorithm’s performance leads directly to rather delicate questions
regarding the spectrum of a certain class of random matrices. Indeed, our proof of
the above corollary is based on recent concentration results fornice functionals
of the spectral measure of random matrices [8]. However, since the function
log(·) is not nice enough (it is not globally Lipschitz), a more detailed analysis
has to be performed to evaluate the behavior of the bottom or so-called hard
edge of the spectrum ofZ(An). This analysis, which is inspired by ideas of
Bai [1], introduces some refinements of current concentration techniques which,
we believe, are interesting in their own right and may be applied in other contexts.
Indeed, followers of the random matrix theory literature will recognize theZ(An)

matrices considered here as a natural class of perturbations of the well-known
Wishart or Laguerre ensembles.

The structure of the paper is as follows. In Section 2 we introduce our
general model of rectangular matrices, state our main theorem, present the basic
concentration result we need, and show how the main theorem follows as soon as
an integrability condition of the lower tail of the spectrum ofZ(An) is verified,
see Condition 2.1. Section 3 is devoted to the verification of Condition 2.1 under
appropriate assumptions on the entries ofAn. In Section 4 we study theflat
case Jnm := M(n,m, [1,1]), n ≥ m. Of course, in this case perJnm = n!

(n−m)! .
Our purpose is to point out that for rectangularJnm, wherem ≤ θn, θ < 1, one
immediately gets better concentration than Corollary 1.1. For general,n ≥ m, we
show that a simple polynomial sampling approximates perJnm to within an error
of order one, also tighter than the result in Corollary 1.1. Finally, in the Appendix,
we present a more complete study of the lower tail of the spectrum ofZ(Jn)
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by taking advantage of its integrable structure. This analysis, which possesses
independent interest, reveals that our Condition 2.1 needed in the course of the
proof of Theorem 2.1 is arguably a mild condition.

2. Preliminaries and main result. Let A ∈ M(n,m,R+) (recall that then
m ≤ n). Let alsoQm,n denote the set of all strictly increasing sequencesα =
{α1, . . . , αm} ⊂ 〈n〉, where 〈n〉 = {1,2, . . . , n} and setA[α, 〈m〉] = (aαij ) ∈
M(m,R+). Then, we define thepermanent of A as

perA = ∑
α∈Qm,n

perA[α, 〈m〉].

If A is a 0–1 matrix, then perA counts the matchings of the corresponding bipartite
graph.

ForA ∈ M(n,R+), and random variables{xij } satisfying (1.1), the identity (1.3)
is immediate, see, for example, [2]. In fact, (1.3) extends to the rectangular case.
Indeed, forA ∈ M(n,m,R+), defineX(A) = (

√
aijxij ) andZ(A) = X(A)T X(A)

as before. Then, using the Cauchy–Binet formula, one finds

E
(
detZ(A)

) = E

( ∑
α∈Qm,n

detX[α, 〈m〉]T X[α, 〈m〉]
)

= ∑
α∈Qm,n

E
(
detX[α, 〈m〉]T detX[α, 〈m〉])

= ∑
α∈Qm,n

perA[α, 〈m〉] = perA,

proving that (1.3) holds true in this case as well.
Our main theorem can now be stated:

THEOREM 2.1. Let 0 < a ≤ b be given. Assume xij , i, j = 1, . . . , are
independent identically distributed N(0,1) random variables. Then

lim
n→∞ sup

An,m∈M(n,m,[a,b])
P
(

1

n
| logdetZ(An,m) − logperAn,m| > δ

)
= 0,(2.1)

for any δ > 0.

Part of the proof of Theorem 2.1 hinges on tailoring certain concentration of
measure results to the present setting. To describe these results we must introduce
a variety of notations. First, forS(m,R) ⊂ M(m,R), the set of (real) symmetric
matrices, let, for anyB ∈ S(m,R), denote byλ1(B) ≤ λ2(B) ≤ · · · ≤ λm(B) the
eigenvalues ofB counted with their multiplicities. Recall the spectral factorization
B = QDQT with orthogonalQ, its adjoint QT and D the diagonal matrix
of eigenvalues. This allows one to view a real valued functionf on R as a
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function from S(m,R) into S(m,R) via f (B) = Qf (D)QT , where f (�) is
again diagonal with entriesf (λ1(B)), f (λ2(B)), and so on. And so, along with
traceB = ∑m

i=1 λi(B), we may define

tracef (B) =
m∑

i=1

f
(
λi(B)

)
, detf (B) =

m∏
i=1

f
(
λi(B)

)
.

Next, forf :R �→ R, bring in the Lipschitz norm

fL = sup
x<y

|f (x) − f (y)|
|x − y| ;

a functionf being referred to as Lipschitz whenfL < ∞. Lastly, recall that a
measureν onR is said to satisfy the logarithmic Sobolev inequality with constantc

if, for any differentiable functionf ,∫ ∞
−∞

f 2 log
f 2∫
f 2 dν

dν ≤ 2c

∫ ∞
−∞

|f ′|2dν.(2.2)

The general concentration result of [8], which makes up the backbone of our proof
may now be introduced.

Assume thatX ∈ M(n,m,R) with all xij mutually independent with laws
satisfying the logarithmic Sobolev inequality with uniformly bounded constantc.
ForZ = ( 1√

n
X)T ( 1√

n
X) andf Lipschitz, Corollary 1.8(b) of [8] states that

P
(∣∣∣∣1

n
tracef (Z) − E

[
1

n
tracef (Z)

]∣∣∣∣ > δ
n + m

n

)
≤ 2 exp

[
−δ2(n + m)2

2cf 2
L

]
(2.3)

for anyδ > 0. For us the individual entries ofX = X(A) are Gaussian, which are
well known to satisfy (2.2). On the other hand, we would like to apply (2.3) with
f = the logarithm which is not Lipschitz. This is circumvented by introducing a
cutoff: for fixedε > 0, define

logε x = log(x ∨ ε),

which you will note is Lipschitz. Along with this we set detε(B) = ∏m
i=1(λi(B)∨ε).

Finally, for A = (aij ) ∈ M(n,m,R+), we defineÃ = A/
√

n + m and remark that
since

detZ(A)

perA
= detZ(Ã)

perÃ
,

it is enough, when proving Theorem 2.1, to consider matricesÃn,m ∈ M(n,m,

[a/
√

n + m,b/
√

n + m ]).
With that said, the form of the general concentration result (2.3) that we will

need is stated next as a lemma, the proof of which is deferred to the end of the
section.
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LEMMA 2.1. Under the assumptions of Theorem 2.1, let ε ∈ (0,8b2) and
0 < sn, n = 1, . . . , be a sequence diverging to ∞. Then, for any δ > 0,

lim
n→∞ sup

An,m∈M(n,m,[0,b])
P
(

1

sn

∣∣ log detεZ(Ãn,m)

− logE[detεZ(Ãn,m)]∣∣ > δ

)
= 0.

(2.4)

The statement remains true if ε = εn → 0 as n → ∞, so long as snε
2
n → ∞.

That is, concentration holds at any rate if the small eigenvalues are ignored by
way of the cutoff logarithm. Extending beyond the cutoff requires the following
integrability condition alluded to above.

Let An,m ⊂ M(n,m, [0, b]).
CONDITION 2.1. There exist sequencesεn → 0, sn → ∞, such that

snε
2
n → ∞ and

lim sup
n→∞

sup
An,m∈An,m

P

(
1

sn

∑
λi (Z(Ãn,m))<εn

log
1

λi(Z(Ãn,m))
> δ

)
= 0.(2.5)

Theorem 2.1 is a direct consequence of the following two propositions.

PROPOSITION2.1. Fix b < ∞ and assume that An,m satisfies Condition 2.1.
Then, for any δ > 0,

lim
n→∞ sup

An,m∈An,m

P
(

1

sn

∣∣ logdetZ(Ãn,m) − log E[detZ(Ãn,m)]∣∣ > δ

)
= 0.(2.6)

PROPOSITION2.2. For 0< a ≤ b < ∞, the class of matrices M(n,m, [a, b])
satisfies Condition 2.1with sn = n and εn = (logn)−4.

Certainly it is of theoretical interest to extend the result of Proposition 2.2 and,
thus, Theorem 2.1 to classes of matrices allowing some number of zero entries. As
indicated above, there also exist important applied problems for which such a result
would be of great use. In this direction we have only the following observation in
the case of what we refer to as strictly rectangular matrices. It was pointed out to
us, together with its proof, by Silverstein.

PROPOSITION 2.3. Consider the class of matrices contained in M(n,m,

[0, b]) such that m = mn satisfies limn→∞(m/n) = θ < 1. Restrict further to the
subset of those matrices such that the maximum number of zero entries in any
column is bounded by �γ n� for all large n with all other entries contained an
interval [a, b] bounded away from zero. If, moreover,γ < 1−θ , then Condition 2.1
is satisfied with sn = n and any εn → 0.
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We conclude this section with the proofs of Proposition 2.1 and its supporting
Lemma 2.1. The proofs of Propositions 2.2 and 2.3 are deferred to Section 3.

PROOF OF PROPOSITION 2.1. Take an elementAn,m ∈ An,m and for fixed
δ > 0 define the numbers

gn(εn, δ) := P
(

1

sn

∣∣ logdetεnZ(Ãn,m) − log E
[
detεnZ(Ãn,m)

]∣∣ > δ

)

and

hn(εn, δ) := P
(

1

sn

(
log detεnZ(Ãn,m) − logdetZ(Ãn,m)

)
> δ

)

= P

(
1

sn

∑
λi(Z(Ãn,m))<εn

log
εn

λi(Z(Ãn,m))
> δ

)

appearing in the simple bound

P
(

1

sn

∣∣ logdetZ(Ãn,m) − log E
[
detεnZ(Ãn,m)

]∣∣ > 2δ

)

≤ gn(εn, δ) + hn(εn, δ).

(2.7)

Next note that, as long as perÃn,m > 0, one may apply Chebyshev’s inequality to

the ratiodetZ(Ãn,m)

perÃn,m
to produce

P
(

1

sn

(
logdetZ(Ãn,m) − log perÃn,m

)
> 2δ

)
< e−2δsn(2.8)

for n = 1,2, . . . . Both here and above we are interested insn ↑ ∞ while εn ↓ 0.
Now take a small positiveε′ < 1/4 and notice that by Condition 2.1 and

Lemma 2.1, there exists a large enough integerN(δ, ε′) so that

sup
An,m∈An,m

{gn(εn, δ) + hn(εn, δ)} < ε′ and e−2δsn < ε′ for all n > N(δ, ε′).

Hence, for eachAn,m ∈ An,m, and eachn > N(δ, ε′), the set ofZ(Ãn,m) satisfying
both inequalities

1

sn

∣∣ logdetZ(Ãn,m) − logE
[
detεnZ(Ãn,m)

]∣∣ ≤ 2δ,

1

sn

(
logdetZ(Ãn,m) − log perÃn,m

) ≤ 2δ

has probability at least 1− 2ε′. Further, since per̃An,m = E[detZ(Ãn,m] ≤
E[detεnZ(Ãn,m)], it follows that

1

sn

∣∣ logperÃn,m − logE
[
detεnZ(Ãn,m)

]∣∣ ≤ 4δ for n > N(δ, ε′).
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(Note that we deal here with a deterministic difference, hence, if it is bounded
above with a positive probability then it is actually bounded above.) Combining
the above inequalities with (2.7) we deduce that

sup
An,m∈An,m

P
(

1

sn

∣∣ log detZ(Ãn,m) − logper(Ãn,m)
∣∣ > 6δ

)
≤ ε′

for n > N(δ, ε′),
completing the proof of Proposition 2.1.�

PROOF OFLEMMA 2.1. Applying (2.3) with the choicef = logε , we obtain

P

(∣∣∣∣∣ 1

m + n

m∑
i=1

logε λi

(
Z(Ãn,m)

) − 1

m + n
E

[
m∑

i=1

logε λi

(
Z(Ãn,m)

)]∣∣∣∣∣ ≥ δ

)

(2.9)
≤ 2e−(m+n)2ε2δ2/(8b2).

The particular form of the right-hand side rests on the readily checked(logε)L =
1/ε and the well-known fact that a centered Gaussian distribution has logarithmic
Sobolev constant equal to its variance. Next set

U = logdetεZ(Ãn,m) − E[trace logε Z(Ãn,m)],
and note that (2.9) yields for anyt > 0,

P(|U | ≥ t) ≤ 2e−ε2t2/(8b2).

Thus,

E[eU ] ≤ E
[
e|U |] ≤ 1+

∫ ∞
0

etP(|U | ≥ t) dt

≤ 1+ 2
∫ ∞

0
et−ε2t2/(8b2) dt ≤ 1+ 2e2b2/ε2

.

We conclude, together with Jensen’s inequality, that

E[log detεZ(Ãn,m)] ≤ logE[detεZ(Ãn,m)]
≤ E[log detεZ(Ãn,m)] + log

(
1+ 2e2b2/ε2)

.

This, together with (2.9), yields immediately Lemma 2.1 in the case of fixedε.
But by inspecting the above bound, one sees that even ifε = εn ↓ 0, the statement
holds so long as the conditionε2

nsn → ∞ is respected. �

REMARK 2.1. It is natural to ask what can be said about the performance of
the Godsil–Gutman algorithm under the same conditions on the matrixA. That is,
whether the Gaussians in our statement can be replaced by±1 Bernoullis. Toward
that, it is true that other concentration results of [8] provide a statement similar
to (2.3) as long as the individual laws of the entries ofX are compactly supported.
However, as we will see in the next section, the isotropic property of the Gaussian
is essential in our proof of Proposition 2.2.
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3. Controlling the small eigenvalues. We now remove the cutoff introduced
in the logarithm necessary to go from the concentration inequality of Lemma 2.1
to our main result. That is, the proof of Proposition 2.2 is carried out. In fact, we
prove the following slightly stronger statement.

PROPOSITION3.1. For all ε small enough and all n > m + 3, it holds that

sup
An∈M(n,m,[a,b])

E

[
1

n

∑
λi (Z(Ãn))<ε

log
1

λi(Z(Ãn))

]
≤ ε| logε|

a

(n + m)m

n(n − m + 1)
.(3.1)

Further, for any n ≥ m,

lim sup
n↑∞

sup
An,m∈M(n,m,[a,b])

E

[
1

n

∑
λi(Z(Ãn))<εn

log
1

λi(Z(Ãn))

]
= 0(3.2)

as soon as εn = (logn)−4.

Indeed, Proposition 2.2 follows from (3.2) by Chebyshev’s inequality. Note
also that in the strictly rectangular case, lim supn→∞(m/n) < 1, (3.1) shows that
εn may be taken to go to zero arbitrarily slowly. The proof of Proposition 2.3 uses
a variant of (3.1); the details are reported at the end of this section.

The proof of Proposition 3.1 makes essential use of the following simple
observations.

LEMMA 3.1. Let V be an element of M(n,m,R) with statistically indepen-
dent entries drawn from continuous distributions. Denote by vk the kth column
of V and by Vk the matrix formed by deleting vk from V . Then, det(V T V ) �= 0 and
det(V T

k Vk) �= 0, a.s. Further,

det(V T V ) = det(V T
k Vk)

[
vT
k

(
I − Vk(V

T
k Vk)

−1V T
k

)
vk

]
(3.3) =: det(V T

k Vk)[vT
k Pkvk],

from which it follows that [(V T V )−1]kk = (vT
k Pkvk)

−1. Pk is a projection, almost
surely onto a subspace of dimension n − m + 1, and Pk and vk are independent.

When V = X(A) for A ∈ M(n,m, [a, b]), one has that vk = Dkxk with Dk =
diag(

√
ak1, . . . ,

√
akn ), and

vT
k Pkvk = xT

k DkPkDkxk =
n−m+1∑

i=1

λi+m−1(DkPkDk)x̂
2
ik,(3.4)

where the {x̂ik}n,m
i,k=1 are independent standard Gaussians and, for each k, {x̂ik}ni=1

and {λi(DkPkDk)}ni=1 are also independent. Furthermore, we have the bound

a

n−m+1∑
i=1

x̂2
ik ≤

n−m+1∑
i=1

λi+m−1(DkPkDk)x̂
2
ik ≤ b

n−m+1∑
i=1

x̂2
ik.(3.5)



1568 S. FRIEDLAND, B. RIDER AND O. ZEITOUNI

PROOF. The representation (3.3) is commonly exploited in the type of random
matrix estimates required below. See, for example, [1] where it is used repeatedly.
To understand it, recall the interpretation of detV T V as the square of the volume
of the parallelepiped spanned by the column vectorsv1, . . . , vm. Clearly, this is the
same as detV T

k Vk times the square of the length of the projection ofvk onto the
space orthogonal to the span of the columns ofVk , but this is just what (3.3) says.
ThatPk andvk are independent is clear from the definitions.

Now in the case ofV = X(A), one simply notes that the quadratic form
xT
k DkPkDkxk may be diagonalized by settingxk = Qx̂k with an appropriate

orthogonal matrixQ. By isotropy, the entries of the vectorx̂k remain independent
standard Gaussians. The bound on the eigenvalues follows from considering the
Rayleigh quotient: withy = D−1

k z,

a
zT Pkz

zT z
≤ yT DkPkDky

yT y
= zT Pkz

zT D−2
k z

≤ b
zT Pkz

zT z
.

From the min–max theorem, one sees that for alli,

aλi(Pk) ≤ λi(DkPkDk) ≤ bλi(Pk).

As Pk is a projection onto ann − m + 1 dimensional subspace,λi(Pk) = 0 for
i ≤ m − 1 andλi(Pk) = 1 for i > m − 1, completing the statement.�

PROOF OF PROPOSITION 3.1. We begin with the rectangular case:An ∈
M(n,m, [a, b]), n > m + 3 (for economy of space, we will omit the subscriptm

from An,m). By the monotonicity ofx log(1/x) for x ∈ [0, 1
e
], it follows that for

any positiveε ≤ 1
e
,

1

n

∑
λi(Z(Ãn))<ε

log
1

λi(Z(Ãn))

(3.6)

≤ ε| logε|
n

m∑
i=1

1

λi(Z(Ãn))
= ε| logε|

n

m∑
i=1

[Z(Ãn)
−1]ii ≡ Mn.

By Lemma 3.1 each[Z(Ãn)
−1]ii is stochastically bounded as in

[Z(Ãn)
−1]ii ≤ a−1(n + m)Ui,n,

whereUi,n is distributed as one over aχ2 random variable withn−m+1 degrees
of freedom, the mean of which one can compute exactly:

E[Ui,n] =
∫ ∞
0 r(n−m−3)/2e−r/2dr∫ ∞
0 r(n−m−1)/2e−r/2dr

= 1

n − m + 1
.

Thus, one finds that forε ≤ 1
e
,

E[Mn] ≤ ε| logε|
a

(n + m)m

(n − m + 1)n
,
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which explains the bound (3.1).
To complete the proof of the proposition, it is enough to considern ≤ 2m.

Take An ∈ M(n,m, [a, b]), and denote the columns ofX(Ãn) by x̄1, . . . , x̄m

[x̄l = (n + m)−1/2Dlxl in previously used notation]. Recall the following identity
for the determinant from Lemma 3.1:

det
(
Z(Ãn)

) = det
(
Z

(
(Ãn)1

))[x̄T
1 P1x̄1].

By (An)1 we mean the matrix formed by the lastm − 1 columns ofAn. The
matrixP1 projects onto the(n − m + 1)-dimensional space orthogonal to the span
of the columns ofX((An)1); it is independent of the vectorx̄1.

The above may be iterated: first applying the identity to det(Z((Ãn)1)) and so
on. We take a positiveθ = θn � 1, and after carrying out this procedure�nθn�
times, we write the outcome as follows:

det
(
Z(Ãn)

) = det
(
Z(B̃n)

) �nθn�∏
k=1

[x̄T
k Pkx̄k].

Here Bn ∈ M(n, m̄n, [a, b]) is the matrix formed by the last̄mn = m − �nθn�
columns ofAn, and eachPk is an(n−m+ k)-dimensional projection independent
of xk. The above equality is re-expressed as

1

n

∑
λi(Z(Ãn))<εn

log
1

λi(Z(Ãn))

= 1

n

∑
λi(Z(B̃n))<εn

log
1

λi(Z(B̃n))
− 1

n

m−m̄n∑
i=1

log(x̄T
i Pi x̄i)

(3.7)

+ 1

n

[ ∑
λi(Z(Ãn))≥εn

logλi

(
Z(Ãn)

) − ∑
λi (Z(B̃n))≥εn

logλi

(
Z(B̃n)

)]

≡ In + IIn + IIIn.

The point is that the estimates obtained for the strictly rectangular case may be
directly applied toBn and so toIn. That is, we know from (3.1) that there exists a
numerical constantC1 such that

E[In] ≤ C1
εn| logεn|

aθn

(3.8)

for all sufficiently largen. The term IIn may also be handled by previous
considerations. From Lemma 3.1 it follows that: witha ≤ γi ≤ b for all i and{x̂i}
independent standard Gaussians,

−E[log(x̄T
k Pkx̄k)] = −E

[
log

(
γ1x̂

2
1 + · · · + γkx̂

2
k

n + m

)]

≤ log(n + m) − loga − E[log x̂2
1].
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The last expectation is certainly finite and so there is a constantC2 (depending
ona only) such that

E[IIn] ≤ −
(�nθn�

n

)
E

[
log

ax̂2
1

n + m

]
≤ C2θn logn.(3.9)

As for the last term to be bounded,IIIn, first note that by the interlacing
inequalities for anyl ≤ m̄n,

λl

(
Z(Ãn)

) ≤ λl

(
Z(B̃n)

) ≤ λl+�nθn�
(
Z(Ãn)

)
.

Thus, if l∗ is the smallestl such thatλl(Z(B̃n)) ≥ εn, thenλl∗−1(Z(Ãn)) < εn and
λl∗+�nθn�(Z(Ãn)) ≥ εn.

Now for eachl such thatλl(Z(Ãn)) ≥ εn, the term containing logλl(Z(Ãn)) is
paired with the corresponding object in theBn sum. The contribution toIIIn is

1

n
log

λl(Z(Ãn))

λl(Z(B̃n))
≤ 0.

In this manner it is possible that the largest�nθn� of the λi(Z(Ãn))’s and the
smallest�nθn� of theλl(Z(B̃n))’s in IIIn remain unpaired. That is,

IIIn ≤ 1

n

m∑
i=m−�nθn�

∣∣ logλi

(
Z(Ãn)

)∣∣ + 1

n

l∗+�nθn�∑
i=l∗

∣∣ logλi

(
Z(B̃n)

)∣∣
(3.10) ≤ 4θn max

(| logεn|, logλn

(
Z(Ãn)

))
for all n large enough. The random variable remaining on the right-hand side is, in
turn, controlled by

E
[
λn

(
Z(Ãn)

)] ≤ E[traceZ(Ãn)] = 1

n + m
E

[∑
i,j

aij x
2
ij

]
≤ bn,

an admittedly crude but sufficient bound.
Lastly, (3.8)–(3.10) are combined to produce

E

[
1

n

∑
λi(Z(Ãn))<εn

log
1

λi(Z(Ãn))

]

≤ C1
εn| logεn|

θn

+ C2θn logn + C3θn(| logεn| + logn)

for all large enoughn. The proof is then finished by choosingθn = (logn)−2 and
εn = (logn)−4. �
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PROOF OFPROPOSITION 2.3. For simplicity takem = mn = �nθ�. Tracing
the proof of the bound (3.1), one comes to the inequality: with againAn = Anmn ,

1

n
E

[ ∑
λk(Z(Ãn))<ε

log
1

λk(Z(Ãn))

]

≤ ε| logε|
n

�nθ�∑
k=1

E[Z(Ãn)
−1]kk(3.11)

= ε| logε|(n + �nθ�)
n

�nθ�∑
k=1

E
[

1

xT
k (DkPkDk)xk

]
.

Further bounding above requires controlling the eigenvalues ofDkPkDk from be-
low. This was previously accomplished by a Raleigh–Ritz argument (Lemma 3.1).
In the case that there are some number of zero entries this needs to be replaced by
the more sophisticated inequalities of Fan [6].

Note that with the number of zeros in any column bounded by�nγ �, Pk still
projects onto an(n − �nθ� + 1)-dimensional subspace (a.s.). The problem lies in
the zeros on the diagonal ofDk .

Now for any invertible nonnegative Hermitian matrixM1 and nonnegative
HermitianM2, Fan [6] gives us that

λ
M2
i+j+1 ≤ λ

M1M2
i+1 λ

M−1
1

j+1 ,(3.12)

in which λM
i is theith largest eigenvalue of the matrixM (twice). By continuity

this inequality still holds whenM1 has some zero eigenvalues. It is to be applied
in this setting withM1 = Pk andM2 = D2

k (the eigenvalues ofDkPkDk andPkD
2
k

being the same). With that, (3.12) reduces to

λ
D2

k�nθ�+i ≤ λ
DkPkDk

i+1 .

Therefore, ifDk hasn − �γ n� eigenvalues larger thana (or thekth column ofAn

has at least that many entries similarly bounded below), thenDkPkDk has at least
(n − �nγ � − �nθ�) eigenvalues larger thana.

By assumption the above holds for eachk and 1−γ −θ > 0. Thus, the Gaussian
quadratic form in the denominator of (3.11) is stochastically larger thana times a
χ2 random variable of degree at least(1/2)(1 − θ − γ )n for all large enoughn.
The right-hand side of (3.11) is then bounded by a constant (depending ona, γ

andθ ) timesε| logε| and the statement follows.�

4. The flat case. This section is devoted to a study of the flat caseA =
Jnm, n ≥ m. This special case is typically referred to as the Laguerre or Wishart
Ensemble in the random matrix theory literature. Of course, perJnm is easily
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computed, and there is no need for an approximate algorithm. However, we
wish to emphasize two points in this simpler setting which suggest our general
concentration result for the permanent may not be optimal.

The first point focusses on the strictly rectangular case. We have the following:

PROPOSITION 4.1. Let n ≥ mn, n,mn ∈ N and assume that {xij }n,mn

i,j=1 are
independent identically distributed N(0,1) random variables. Suppose that

lim sup
n→∞

mn

n
≤ θ < 1.(4.1)

Then for any sequence sn diverging to ∞,

lim
n→∞ P

(
1

sn

∣∣ logdetZ
(
Jnmn

) − log perJnmn

∣∣ > δ

)
= 0.

On the other hand, for flat matrices of more general shape we introduce a new
polynomial-time estimator that approximates the permanent to within order one
error. The statement follows.

PROPOSITION 4.2. Define Yn = n−(2+ρ) ∑n2+ρ

k=0 Xn
k , in which each Xn

k is an
independent copy of det(Z(Jnm)) with n ≥ m and ρ > 0. It holds that

P
(
(1− δ)perJnm ≤ Yn ≤ (1+ δ)perJnm

) ≥ 1− 1

δ2nρ
(4.2)

for all n ≥ 2.

Both propositions are easily explained. The first is a consequence of the
nice result of Silverstein [13] which says that if (4.1) holds, thenλ1(Z(J̃nmn))

converges in probability to a positive constant asn → ∞. In other words, in this
setting Condition 2.1 trivially holds for allε small enough.

Proposition 4.2 makes use of the well-known result (see again [13]) that
the determinant ofZ(Jnm) has the distributionχ2

nχ2
n−1 · · ·χ2

n−m+1. Here the
notation refers to the distribution of the product of independent random variables
with the indicatedχ2 distributions. A proof of this fact may be drawn from
revisiting Lemma 3.1, as follows: LetA denote an element ofM(n,m,R+) and
Ak the matrix formed by removing thekth column. Again bring in the random
matrix X(A) with columns byx̄1, . . . , x̄m with x̄k = Dkxk . Lemma (3.3) provides
that

det
(
Z(A)

) = det
(
Z(Am)

)[xT
mDmPmDmxm]

(4.3)

=
m∏

k=1

[xT
k DkPkDkxk] =

m∏
k=1

[
n−k+1∑

i=1

λi+k−1(DkPkDk)x̂
2
ik

]
,
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in which the last equality is in law with the{x̂ik} independent standard Gaussians.
In the flat caseA = Jnm is affected byDk = I for all k, which is to say that
λi(Pk) = 1 wheni ≥ k. The advertised distributional identity follows.

The use of this is in computing moments of det(Jnm). That is,

perJnm = E[detZ(Jnm)] = E

[
n∏

k=n−m+1

χ2
k

]
= n!

(n − m)! ,

which we knew before, but now also

E[detZ(Jnm)]2 = E

[
n∏

k=n−m+1

(χ2
k )2

]

=
n∏

k=n−m+1

(k2 + 2k) =
[

n!
(n − m)!

]2 n∏
k=n−m+1

(
1+ 2

k

)

≤
[

n!
(n − m)!

]2

exp

(
n∑

i=k

2

k

)
≤ (n + 1)2

4

[
n!

(n − m)!
]2

.

With this estimate, the proof of Proposition 4.2 follows easily from Chebychev’s
inequality.

The question posed here is whether either approach [taking advantage of either
the restrictive geometry as in (4.1) or the determinantal formula (4.3)] might lead to
similarly sharp concentration in the more generalM(n,m, [a, b]) case. Believing
that this should be so really comes down to believing that the bottom of the
spectrum ofZ(A) for A ∈ M(n,m, [a, b]) is not much worse than that ofZ(Jnm).
Of course, providing support for the latter statement has been the main technical
goal of the present work.

APPENDIX

A large part of the above argument entailed proving a certain integrability of
the logarithm of the small eigenvalues of a Wishart-type matrix. It is interesting
that the issue of controlling the bottom of the spectrum comes up in a great many
problems (see, once more, [1] for an example). While not directly relevant for
the study of the permanent, we wish to point out in this appendix that an exact
analysis of the flat case (Jn) reveals a much stronger integrability than that proved
in Proposition 3.1. It is natural (and an underlying theme of this paper) to suppose
the actuality of the more general caseM(n, [a, b]) is similar. For brevity we present
the computation in the complex setting (the computation in the real case employs

Pfaffians and requires nontrivial modifications), whereY (J̃n)ij = (
xR
ij +√−1xI

ij√
2n

)

with x
R,I
ij independent standard Gaussians. In fact, we note that in this case [12]

have computed the law of the determinant ofY (J̃n)
∗Y (J̃n).

Our result is the following.
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PROPOSITION A.1. For Y (J̃n), an n × n matrix with entries independent
complex Gaussians of mean 0 and variance 1/

√
n, the eigenvalues λi of

Y (J̃n)
∗Y (J̃n) satisfy

lim
ε→0

lim
n→∞ E

[
1

n

∑
λi<ε

λ−α
i

]
= 0

for any α < 1/2.

PROOF. The present ensemble is integrable in the sense that the joint density
of the eigenvaluesλ1, . . . , λn is known explicitly [9]:

P (λ1, λ2, . . . , λn)

= Cn exp

[
−n

n∑
i=1

λi

] ∏
i<j

(λi − λj )
2

= 1

n! det

[
e−nλi/2−nλj/2

n−1∑
k=0

√
nL0

k(nλi)
√

nL0
k(nλj )

]
0≤i,j≤n−1

,

(A.1)

where L0
k denote the Laguerre polynomials: the family{Lβ

k } orthogonalized
xk+βe−x on [0,∞). From the determinantal formula (A.1), you may derive the
eigenvalue density

pn(x) ≡ E

[
1

n

n∑
k=1

δλk
(x)

]
= e−nx

n−1∑
k=0

(
L0

k(nx)
)2

.

By Christoffel–Darboux and the rules

d

dx
L

β
k (x) = −L

β+1
k−1 and L

β
k−1(x) = L

β+1
k−1(x) + L

β+1
k−2(x),

there is also the form

pn(x) = ne−nx

[
d

dx
L0

n(nx)L0
n−1(nx) − L0

n(nx)
d

dx
L0

n−1(nx)

]

= ne−nx
[
L1

n(nx)L1
n−2(nx) − (

L1
n−1(nx)

)2]
.

Thus, the integral to be examined is

n

∫ ε

0
x−α[

L1
n(nx)L1

n−2(nx) − (
L1

n−1(nx)
)2]

e−nx dx.(A.2)

Near zero, it is known [14] thate−x/2L1
n(x) ≤ Cnx2 for 0 < x < K/n with a large

constantK , which allows you to dispel of the integral (A.2) forx < K/n2: either
term is of order

n

∫ K/n2

0
x−α(

e−nx/2L1
n(nx)

)2
dx ≤ Cn2+α

∫ K/n

0
x4−α dx = O(n−3+2α).
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For what remains, one needs the following (see [5]): uniformly on 0< z < cν

(c < 1, ν = 4n + 4),

e−z/2L1
n(z)

= (n − 1)
1

z

(
ψ

ψ ′ (z/n)

)1/2[
J1

(
νψ(z/n)

) + O

( √
z

n3/2f
(
νψ(z/n)

))]
,

(A.3)

whereψ(t) = (1/2)
√

t − t2 + (1/2)sin−1 √
t , f (t) = t for t < 1, t−1/2 otherwise

and J1 is the Bessel function. We considerz = nx, x < ε � 1, on which
ψ ′/ψ(z/n) ∼ √

x. Note also that√
π/2J1(z) � 1√

z
cos(z − 3π/4) for z ↑ ∞.

Substituting (A.3) into the restricted integral (A.2), we first consider terms
involving the second factor in (A.3). On the rangeK/n2 ≤ x ≤ ε we have√

z

n3/2f (νψ(z/n)) ≤ cn−3/2x1/4 and J1(νψ(z/n)) ≤ c/
√

nx, yielding the contri-
butions of order

n

∫ ε

K/n2
x−α

(
1/

√
x

)2
(x1/4/n3/2)2 dx = O(n−2+2α)

and

n

∫ ε

K/n2
x−α

(
1/

√
x

)2
(1/n1/2x1/4)(x1/4/n3/2) dx = O(n−1+2α),

both vanishing forn → ∞ as soon asα < 1/2. That leaves us with∫ ε

0
x−αpn(x) dx

= n

∫ ε

K/n2
x−α 1

x

[
J1

(
(n + 1)

√
x

)
J1

(
(n − 1)

√
x

) − J 2
1
(
n
√

x
)]

dx

− 1

n

∫ ε

K/n2
x−α 1

x
J1

(
(n + 1)

√
x

)
J1

(
(n − 1)

√
x

)
dx + O(n−1+2α).

For the first term on the right-hand side, the integrand is overestimated as in
|cos((n+1)

√
x )cos((n−1)

√
x )−cos2(n

√
x )| ≤ x for 0 ≤ x ≤ ε. The remaining

integral is then controlled by a constant multiple of
∫ ε
K/n2 x−1/2−α dx = ε1/2−α −

O(n2α−1). The second term is even easier: the boundJ1(nz) ≤ C/
√

nz shows it
to be of order(1/n2)

∫ ε
K/n2 x−3/2−α dx ∼ n2α−1. �
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