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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.
He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".
His main contribution in studying DNA and proteins, was the
development (with Amir Dembo and Ofer Zeitouni) of the computer
programme BLAST (Basic Local Alignment Search Tool), now the most
frequently used software in computational biology.
He had 41 doctoral students. He was widely honoured: he was a
member of the National Academy of Science and the American
Academy of Arts and Sciences, and a Foreign Member of the London
Mathematical Society. He was the author of 10 books and more than
450 articles.
He died Dec. 18, 2007 at Stanford Hospital after a massive heart
attack.
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Overview

Friedland-Karlin results: Old and New
Wireless communication: Statement of the problem
Relaxation problem
SIR domain
Approximation methods
Direct methods
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Friedland-Karlin results 1975

A = [aij ] ∈ Rn×n
+ irreducible

Ax(A) = ρ(A)x(A), x(A) = (x1(A), . . . , xn(A))> > 0,
y(A)>A = ρ(A)y(A), y(A) = (y1(A), . . . , yn(A))> > 0
x(A) ◦ y(A) := (x1(A)y1(A), . . . , xn(A)yn(A))>-positive probability vector

THM: minz>0
∑n

i=1 xi(A)yi(A) log (Az)i
zi

= log ρ(A)
Equality if Az = ρ(A)z
If A has positive diagonal then equality iff Az = ρ(A)z

Sketch of Proof: Assume that A has positive diagonal.
Restrict z to probab. vectors Πn.
f (z) =

∑n
i=1 xi(A)yi(A) log (Az)i

zi
is∞ on boundary of Πn

Every critical point in interior Πn is local minimum (M-matrices!)
Hence the critical point x(A) ∈ Πn is global minimum
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Lower bound for spectral radius

COR 1: For A ≥ 0 irreducible,
d = (d1, . . . ,dn) > 0,D = D(d) := diag(d1, . . . ,dn)

ρ(D(d)A) ≥ ρ(A)
n∏

i=1

dxi (A)yi (A)
i

PRF: ρ(DA)x(DA) = DAx(DA) yields
log ρ(DA) =

∑n
i=1 xi(A)yi(A)(log di + (Ax(DA))i

xi (DA) ) ≥
log ρ(A) +

∑n
i=1 xi(A)yi(A) log di

Original motivation: Population genetics
A - stochastic matrix describing Markov process of genes, d the
strength of genes. When is ρ(MD) > 1?
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New interpretation of lower bound

A nonnegative function f on convex set C ⊂ Rn

is log-convex if log f is convex on C

THM 1: The set of log-convex functions on C is a cone closed under
multiplication

THM (J.F.C. Kingman 1961) A(x) = [aij(x)]ni=j=1, if each aij log-convex
on C, then ρ(A(x)) log-convex

PRF ρ(A(x)) = lim supm→∞(trace A(x)m)
1
m

Def: For x = (x1, . . . , xn)> ∈ Rn ex = (ex1 , . . . ,exn )>, log ex = x

COR 2: For A ∈ Rn×n
+ irreducible

f (x) := log ρ(D(ex)A) is convex on Rn.
x>(x(D(eu)A) ◦ y(D(eu)A))
is the supporting hyperplane of f (x) at u
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Rescaling of irreducible matrices with positive diagonal

THM 2: A ∈ Rn×n
+ irreducible 0 < u,v ∈ Rn. If A has positive diagonal

then there exists 0 < c,d ∈ Rn s.t.

D(c)AD(d)u = u, v>D(c)AD(d) = v

c,d unique up to ac,a−1d,a > 0

PROOF: w = (w1, . . . ,wn) := u ◦ v. Then fw(z) :
∑n

i=1 wi
log(Az)i

zi
on Πn

has unique critical point in interior of Πn

Example 1: A =

[
∗ ∗
∗ 0

]
is not a pattern of doubly stochastic matrix

Example 2: A =

[
0 ∗
∗ 0

]
always rescalable to doubly stochastic with

many more solutions than in THM 2.
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Rescaling of irreducible matrices and applications

THM: 3 (New) A = [aij ] ∈ Rn×n
+ irreducible. 0 < u,v ∈ Rn given.

w = (w1, . . . ,wn) = u ◦ v . There exists 0 < c,d ∈ Rn s.t.

D(c)AD(d)u = u, v>D(c)AD(d) = v

if
wi <

∑
j 6=i

wj for each aii = 0 (0.1)

THM: 4 A = [aij ] ∈ Rn×n
+ irreducible, 0 < w ∈ Πn. Assume (0.1) Then

max
z>0

n∑
i=1

wi log
zi

(Az)i
=

n∑
i=1

wi log(cidi),

where u = (1, . . . ,1)>,v = w and c,d are given in THM 3.

Proof:∑n
i=1 wi log di yi

(AD(d)y)i
=
∑n

i=1 wi log yi
(D(c)AD(d)y)i

+
∑n

i=1 wi log(cidi)
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Figure: Cell phones communication
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power pi ∈ [0, p̄i ],
which can be regulated

p = (p1, . . . ,pn) ≥ 0, p̄ = (p̄1, . . . , p̄n)> > 0,ν = (ν1, . . . , νn)> > 0
Signal-to-Interference Ratio (SIR): γi(p) := gii pi∑

j 6=i gij pj +νj

gii -amplification, νi -AWGN power, gijpj -interference due to transmitter j

γ(p) = (γ1(p), . . . , γn(p))>

Φw(γ) :=
∑n

i=1 wi log(1 + γi), γ ≥ 0, w ∈ Πn

Maximizing sum rates in Gaussian interference-limited channel

max
0≤p≤p̄

n∑
i=1

wi log(1 + γi(p)) = max
0≤p≤p̄

Φw(γ(p)) = Φw(p?)
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Relaxation problem

For z = (z1, . . . , zn)> > 0 let z−1 := (z−1
1 , . . . , z−1

n )>

γ(p) = p ◦ (Fp + µ)−1, µ = ( ν1
g11
, . . . , νn

gnn
)>

F = [fij ] ∈ Rn×n
+ has zero diagonal and fij =

gij
gii

for i 6= j

γnls(p) = p ◦ (Fp)−1

Φw,rel(γ) :=
∑n

i=1 wi log γi , γ > 0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
maxp≥0 Φw,rel(γnls) = maxp>0

∑n
i=1 wi log pi

(Fp)i

If
∑

j 6=i wj > wi > 0 for i = 1, . . . ,n
relaxed maximal problem can be solved by THM 4.
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SIR domain

CLAIM: Γ := γ(Rn
+) := {γ ∈ Rn

+, ρ(D(γ)F ) < 1}
The inverse map P : Γ→ Rn

+ given

P(γ) = (I − D(γ)F )−1(γ ◦ µ) = (
∞∑

m=0

(D(γ)F )m)(γ ◦ µ)

COR: P increases on Γ: P(γ) < P(δ) if γ � δ ∈ Γ.

COR: p? = (p?1, . . . ,p
?
n)> satisfies p?i = p̄i for some i = 1, . . . ,n

DEF: [0,pi ]× Rn−1
+ := {p = (p1, . . . ,pn)> ∈ Rn

+, pi ≤ p̄i},
ei = (δ1i , . . . , δni)

>

THM 5: γ([0,pi ]× Rn−1
+ ) = {γ ∈ Rn

+, ρ(D(γ)(F + 1
p̄i

µe>i )) ≤ 1}

COR γ([0,p]) = {γ ∈ Rn
+, ρ(D(γ)(F + 1

p̄i
µe>i )) ≤ 1, i = 1, . . . ,n}
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Restatement of the maximal problem

0 < γ = elog γ . New variable x = log γ
Hence log γ([0,p]) is the closed unbounded closed set D ⊂ Rn:

hi(x) := log ρ(diag(ex)(F +
1
p̄i

µe>i )) ≤ 0, i = 1, . . . ,n

Since hi(x) is convex, D convex
Since log(1 + et ) convex, the equivalent maximal problem

max
x∈D

Φw(ex) = max
x,hi (x)≤0,i=1,...,n

n∑
j=1

log(1 + exj )

maximization of convex function on closed unbounded convex set
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Approximation methods-I

Approximation 1:
For K � 1 DK := {x ∈ D, x ≥ −K 1 = −K (1, . . . ,1)>}
consider maxx∈DK Φw

Approximation 2:
Choose a few boundary points ξ1, . . . , ξN ∈ D s.t.
hj(ξk ) = 0 for j ∈ Ak ⊂ {1, . . . ,n} and k = 1, . . . ,N.
At each ξk one has #Ak supporting hyperplanes Hj,k , j ∈ Ak

The supporting hyperplane of hj(x) at ξk is Hj,k (x) ≤ Hj,k (ξk )

Hj,k (x) = w>j,kx, wj,k = x(D(eξk )(F + 1
p̄j

µe>j )) ◦ y(D(eξk )(F + 1
p̄j

µe>j ))

D(ξ1, . . . , ξN ,K ) = {x ∈ Rn,Hj,k (x) ≤ Hj,k (ξk ), j ∈ Ak , k ∈ 〈N〉, ξ ≥ −K 1}

DK ⊂ D(ξ1, . . . , ξN ,K )

maxx∈D(ξ1,...,ξN ,K ) Φw(ex) ≥ maxx∈DK Φw(ex)
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Approximation methods-II

Approximation 3:

max
x∈D(ξ1,...,ξN ,K )

Φw,rel(ex) = max
x∈D(ξ1,...,ξN ,K )

w>x

Use Simplex Method or Ellipsoid Algorithm

Choice of ξ1, . . . , ξN :

Pick a finite number 0 < p1, . . . ,pN ∈ [0, p̄] = [0, p̄1]× . . . [0, p̄n]
boundary points
E.g., divide [0,p] by a mesh, and choose all boundary points with
positive coordinates

ξk = γ(pk ) and Ak all j s.t. pj,k = p̄j
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Approximation methods-II

Approximation 3:

max
x∈D(ξ1,...,ξN ,K )
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Direct methods

Study max0≤p≤p̄ Φw(p) = Φw(p?)

If wi = 0 then p?i = 0.

Assumption 0 < w ∈ Πn

Local minimum conditions at 0 6= p? ∈ ∂[0, p̄]

1. ∂iΦw(p?) = 0 if 0 < p?i < p̄i

2. ∂iΦw(p?) ≥ 0 if p?i = p̄i

3. ∂iΦw(p?) ≤ 0 if p?i = 0

Apply gradient methods and their variations
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