Generalized interval exchanges and the 2-3 conjecture

SHMUEL FRIEDLAND

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago Chicago, Illinois 60607-7045, USA email: friedlan@uic.edu

BENJAMIN WEISS

Institute of Mathematics Hebrew University Jerusalem 91904, Israel email: weiss@math.huji.ac.il

January 20, 2005

Abstract

We introduce the notion of a generalized interval exchange $\phi_{\mathcal{A}}$ induced by a measurable k-partition $\mathcal{A} = \{A_1, ..., A_k\}$ of [0, 1). $\phi_{\mathcal{A}}$ can be viewed as the corresponding restriction of a nondecreasing function $f_{\mathcal{A}}$ on \mathbb{R} with $f_{\mathcal{A}}(0) =$ $0, f_{\mathcal{A}}(k) = 1$. \mathcal{A} is called λ -dense if $\lambda(A_i \cap (a, b)) > 0$ for each i and any $0 \leq a < b \leq 1$. We show that the 2-3 Furstenberg conjecture is invalid if and only if there are 2 and 3 λ -dense partitions \mathcal{A} and \mathcal{B} of [0, 1), such that $f_{\mathcal{A}} \circ f_{\mathcal{B}} = f_{\mathcal{B}} \circ f_{\mathcal{A}}$. We give necessary and sufficient conditions for this equality to hold. We show that for each integer $m \geq 2$, such that $3 \nmid 2m + 1$, there exist 2 and 3 non λ -dense partitions \mathcal{A} and \mathcal{B} of [0, 1), corresponding to the interval exchanges on 2m intervals, for which $f_{\mathcal{A}}$ and $f_{\mathcal{B}}$ commute.

2000 Mathematical Subject Classification: 37A05, 37A35 **Keywords:** Generalized interval exchange, entropy, 2-3 conjecture.

1 Introduction

Let Σ the σ -algebra of measurable sets in \mathbb{R} with respect to the Lebesgue measure λ . Let $k \in \mathbb{N}$ and $J \in \Sigma$. $\mathcal{A} := \{A_1, ..., A_k\}$ is called a partition (or k-partition)

of J if $A_1, ..., A_k$ are pairwise disjoint measurable sets whose union is J. Let I = [0, 1). Then a k-partition \mathcal{A} of I induces the following partition $\{I_1, ..., I_k\}$ of I to k intervals:

$$I_j = [\beta_{j-1}, \beta_j), \quad j = 1, ..., k, \quad \beta_0 = 0, \ \beta_j = \sum_{i=1}^j \lambda(A_j), \ j = 1, ..., k.$$
(1.1)

 \mathcal{A} is called regular if $\lambda(A_j) > 0$ for j = 1, ..., k. For $A \subset \mathbb{R}$ let $\chi_A(x)$ be the characteristic function of A. Then the partition \mathcal{A} induces the following generalized k-interval exchange $\phi_{\mathcal{A}} : I \to I$:

$$\phi_{\mathcal{A}}: A_j \to \overline{I}_j, \quad \phi_{\mathcal{A}}(x) = \beta_{j-1} + \int_0^x \chi_{A_j} d\lambda, \quad x \in A_j, \quad j = 1, \dots, k.$$
(1.2)

 $\phi_{\mathcal{A}} : I \to I$ is a measure preserving transformation of $(I, \Sigma(I), \lambda)$. If each A_j is a finite union of intervals then $\phi_{\mathcal{A}}$ is an orientation preserving interval exchange. See [1] for other generalizations of interval exchange maps.

Let $A \subset \mathbb{R}$ be the following measurable set induced by \mathcal{A} :

$$A \cap [m-1,m] = A_i + m - 1 \quad \text{for } m \in \mathbb{Z} \text{ with } m \equiv i \mod k.$$
(1.3)

Define

$$f_{\mathcal{A}}(x) := \int_0^x \chi_A d\lambda, \quad x \in \mathbb{R}.$$
 (1.4)

Clearly $f_{\mathcal{A}}$ is a continuous nondecreasing function on \mathbb{R} with the properties

$$f_{\mathcal{A}}(0) = 0, \quad f_{\mathcal{A}}(x+k) = f_{\mathcal{A}}(x) + 1, \ x \in \mathbb{R}.$$
 (1.5)

A measurable set $T \subset [s, t]$ is called λ -dense if

$$\lambda(T \cap (a, b)) > 0$$
 for all $s \le a < b \le t$.

 \mathcal{A} is called λ -dense if each A_j is λ -dense in I. Then $f_{\mathcal{A}}$ is increasing on \mathbb{R} if and only if \mathcal{A} is λ -dense. Assume that $f_{\mathcal{A}}$ is increasing on \mathbb{R} . Let $F_{\mathcal{A}}$ be the inverse function of $f_{\mathcal{A}}$. Then $F_{\mathcal{A}}(0) = 0$ and $F_{\mathcal{A}}(1) = k$. Furthermore $F_{\mathcal{A}} = F$ is expansive:

$$y - x < F(y) - F(x)$$
, for all $x < y$. (1.6)

Let $S^1 = \mathbb{R}/\mathbb{Z}$. Then $F_{\mathcal{A}}$ induces an expansive orientation preserving k-covering map $\tilde{F}_{\mathcal{A}}: S^1 \to S^1$, which fixes 0 and preserves λ . Furthermore $\tilde{F}_{\mathcal{A}}$ is λ -invertible. The λ -inverse of $F_{\mathcal{A}}$ is $\phi_{\mathcal{A}}$. Hence the entropy $h_{\lambda}(\phi_{\mathcal{A}})$ is 0 if \mathcal{A} is λ -dense. (We prove that $h_{\lambda}(\phi_{\mathcal{A}}) = 0$ for any partition \mathcal{A} of I.) We show that $\tilde{F}_{\mathcal{A}}$ is conjugate to the standard k-covering map \tilde{G}_k , where $G_k(x) = kx, x \in \mathbb{R}$. λ is conjugate to a nonatomic probability measure ω on I whose support is S^1 . \tilde{G}_k preserves ω and \tilde{G}_k is ω invertible. Vice versa, a nonatomic \tilde{G}_k -invariant probability measure, ω whose support is S^1 and which is invertible with respect to ω , is conjugate to $\tilde{F}_{\mathcal{A}}$ for some λ -dense k-partition \mathcal{A} .

Recall the 2-3 conjecture of Furstenberg [2]. Let ω be a nonatomic probability measure on S^1 which is invariant for \tilde{G}_2, \tilde{G}_3 . Then $\omega = \lambda$. Furstenberg showed that the support of ω is S^1 . Rudolph [4] proved the 2-3 conjecture if either $h_{\omega}(\tilde{G}_2)$ or $h_{\omega}(\tilde{G}_3)$ are positive. Thus it is left to consider the 2-3 conjecture in the case $h_{\omega}(\tilde{G}_2) = h_{\omega}(\tilde{G}_3) = 0$. This is equivalent to the ω invertibility of \tilde{G}_2 and \tilde{G}_3 . We show

Theorem 1.1 The 2 – 3 conjecture is false if and only there exist 2 and 3 λ -dense partitions \mathcal{A} and \mathcal{B} of I respectively such that

$$F_{\mathcal{A}} \circ F_{\mathcal{B}} = F_{\mathcal{B}} \circ F_{\mathcal{A}}.$$
(1.7)

Clearly the condition (1.7) yields that condition

$$f_{\mathcal{A}} \circ f_{\mathcal{B}} = f_{\mathcal{B}} \circ f_{\mathcal{A}},\tag{1.8}$$

which in turn implies

$$\phi_{\mathcal{A}} \circ \phi_{\mathcal{B}} = \phi_{\mathcal{B}} \circ \phi_{\mathcal{A}}. \tag{1.9}$$

We give necessary and sufficient conditions for the equality (1.8) for any 2 and 3-partitions \mathcal{A} and \mathcal{B} respectively. A k-partition \mathcal{C} is called a k-n-partition if it is induced by the partition of I to n equal length intervals. (\mathcal{C} is not λ -dense.) Assume that \mathcal{A} and \mathcal{B} are 2-n and 3-n-partitions of I respectively. Then $\phi_{\mathcal{A}}, \phi_{\mathcal{B}}$ induce permutation σ, η respectively on the set $\langle n \rangle := \{1, ..., n\}$. Assume that (1.8) holds. Then σ and η are two commuting permutations. The equality (1.8) gives the precise structure of σ and η . We show that for $n \leq 3$ there are no regular 2-n and 3-n-partitions for which (1.8) holds. For n = 4 there are unique regular 2-4and 3-4-partitions which satisfy (1.8)

$$\mathcal{A} = \{\{[\frac{1}{4}, \frac{1}{2}), [\frac{3}{4}, 1)\}, \{[0, \frac{1}{4}), [\frac{1}{2}, \frac{3}{4})\}\}, \ \mathcal{B} = \{\{[\frac{1}{2}, \frac{3}{4})\}, \{[0, \frac{1}{4}), [\frac{3}{4}, 1)\}, \{[\frac{1}{4}, \frac{1}{2})\}\}.$$
(1.10)

It is possible to extend this example in a trivial way to any $n \ge 5$, by letting σ and η to fix a few first and last integers in the interval [1, n]. For each integer $m \ge 2$, where $3 \nmid 2m + 1$, the maps G_2, G_3 induce regular 2 - 2m and 3 - 2m partitions which satisfy (1.8). It seems that the non-validity of the 2 - 3 conjecture is closely related to the existence of other type 2-*n* and 3-n-partitions which satisfy (1.8).

We now summarize briefly the contents of the paper. Section 2 is devoted to the discussion of the connection between k- λ dense partitions and a nonatomic invariant measure of \tilde{G}_k whose support is S^1 . In Section 3 we discuss the map $\phi_{\mathcal{A}}$ for any k-partition of I. In particular we show that the λ entropy of $\phi_{\mathcal{A}}$ is zero. In Section 4 we discuss the conditions on 2 and 3 partitions \mathcal{A} and \mathcal{B} of I which satisfy the condition (1.8). In the last section we discuss the combinatorial conditions on 2-n and 3-n-partitions of I which satisfy (1.8). In particular we show that the example (1.10) is the first nontrivial example of 2-4 and 3-4-partitions of I satisfying (1.8). This example is a particular case of the examples of 2 - 2m and 3 - 2m partitions ($3 \nmid 2m + 1$) satisfying (1.8), induced by the maps G_2, G_3 .

2 Covering maps of S^1

Let $F : \overline{I} \to \mathbb{R}$ be a continuous function such that F(0) = 0, F(1) = k for some $1 \le k \in \mathbb{Z}$. We then extend F to \mathbb{R}

$$F(0) = 0, \quad F(x+1) = F(x) + k \text{ for all } x \in \mathbb{R}.$$
 (2.1)

Then F induces the map $\tilde{F}: S^1 \to S^1$ where the degree of \tilde{F} is k. \tilde{F} is a k-covering map if and only if F is increasing on \mathbb{R} . We call F expansive if (1.6) holds.

Theorem 2.1 Let $\mathbb{F} : \mathbb{R} \to \mathbb{R}$ be a continuous increasing function on \mathbb{R} satisfying (2.1) for an integer $k \geq 2$. Assume that F is expansive. Then there exist a unique continuous increasing function $H : \mathbb{R} \to \mathbb{R}$ satisfying (2.1) with k = 1 such that

$$F \circ H = H \circ G_k, \tag{2.2}$$

where $G_k(x) = kx$. In particular \tilde{F} is conjugate to \tilde{G}_k on S^1 .

Proof. Observe that (2.1) implies that F(j) = jk for $j \in \mathbb{Z}$. Let $1 \le m \in \mathbb{Z}$ and define $F^{\circ m} = \underbrace{F \circ \ldots \circ F}_{m}$. Then $F^{\circ m}(1) = k^{m}$. Observe that $F^{\circ m}$ is also expansive. For $i \in [0, k^{m}] \cap \mathbb{Z}$ let $x(i, m) \in [0, 1]$ be the unique solution of $F^{\circ m}(x(i, m)) = i$. Clearly, if i = i'k then x(i', m - 1) = x(i, m). Moreover

$$0 = x(0,m) < x(1,m) < \dots < x(k^m,m) = 1.$$

We claim that the set $T := \bigcup_{m=1}^{\infty} \bigcup_{i=0}^{k^m} \{x(i,m)\}$ is dense in I. This is equivalent to the statement that for any $0 \le x < y \le 1$ there exists x(i,m) such that x < x(i,m) < y. Assume to the contrary that there exist $0 \le x < y \le 1$ such that for any $m \ge 1$ and $i \in [0, k^m] \cap \mathbb{Z}$ the condition $x(i,m) \notin (x,y)$ holds. Hence $0 < F^{\circ m}(y) - F^{\circ m}(x) < 1, \ m = 1, \dots$ Choose x', y' such that x < x' < y' < y. As $F^{\circ m}$ is expansive

$$F^{\circ m}(y') - F^{\circ m}(x') = F^{\circ m}(y) - F^{\circ m}(x) - (F^{\circ m}(y) - F^{\circ m}(y')) - (F^{\circ m}(x') - F^{\circ m}(x)) < 1 - \epsilon, \quad \epsilon = (y - y' + x' - x) > 0.$$

Since F is expansive it follows that

$$0 < F^{\circ m}(y') - F^{\circ m}(x') < F^{\circ (m+1)}(y') - F^{\circ (m+1)}(x') < 1 - \epsilon, \quad m = 0, 1, \dots$$

Hence

$$\lim_{m \to \infty} F^{\circ m}(y') - F^{\circ m}(x') = a, \quad 0 < a \le 1 - \epsilon.$$

Let

$$p_m := \lfloor F^{\circ m}(x') \rfloor, \ u_m := F^{\circ m}(x') - p_m \in [0,1), \ v_m := F^{\circ m}(y') - p_m, \quad m = 0, 1, \dots$$

Choose a subsequence u_{m_j} , j = 1, ... which converges to $u \in I$. Then v_{m_j} , j = 1, ... converges to u + a. Observe that

$$F(v) - F(u) = \lim_{j \to \infty} F(v_{m_j}) - F(u_{m_j}) = \lim_{j \to \infty} F(F^{\circ m_j}(y') - p_{m_j}) - F(F^{\circ m_j}(x') - p_{m_j}) = \lim_{j \to \infty} F(F^{\circ m_j}(y')) - p_{m_j}k - (F(F^{\circ m_j}(x')) - p_{m_j}k) = \lim_{j \to \infty} F^{\circ (m_j+1)}(y') - F^{\circ (m_j+1)}(x') = a = v - u.$$

This contradicts the expansiveness of F. Define H on the following dense countable set $S := \bigcup_{m=1}^{\infty} \bigcup_{i=0}^{k^m} \{\frac{i}{k^m}\}$:

$$H(\frac{i}{k^m}) = x(i,m), \quad i = 0, ..., k^m, \ m = 1, ...$$
(2.3)

Note that if i = i'k then $H(\frac{i}{k^m}) = H(\frac{i'}{k^{m-1}}) = x(i', m-1) = x(i, m)$. So H is well defined on S. Furthermore H is an increasing function on S. As S and T are dense in I H has a unique continuous extension to I. Clearly the function H is increasing on I with H(0) = 0, H(1) = 1. Extend H to \mathbb{R} by (2.1). For $i \in [0, k^m] \cap \mathbb{Z}$ such that $i = j + i_j k^{m-1}$ with $j \in [0, m^{k-1}] \cap \mathbb{Z}$, $i_j \in [0, k] \cap \mathbb{Z}$ we have

$$H(G_k(\frac{i}{k^m})) = H(\frac{i}{k^{m-1}}) = H(\frac{j}{k^{m-1}} + i_j) = H(\frac{j}{k^{m-1}}) + i_j = x(j, m-1) + i_j.$$

Observe next that $F(H(\frac{i}{k^m})) = F(x(i,m))$. We claim that $F(x(i,m)) = x(j,m-1) + i_j$. Indeed

$$F^{\circ(m-1)}(x(j,m-1)+i_j) = F^{\circ(m-1)}(x(j,m-1)) + i_j k^{m-1} = j + i_j k^{m-1} = i = F^{\circ(m-1)}(F(x(i,m)).$$

Hence (2.2) holds on S. Since S is dense in I (2.2) holds on I. Use the "periodic" properties of F, G_k, H to deduce (2.2) on \mathbb{R} .

It is left to show that H is unique. Recall that H is the identity map on \mathbb{Z} . Assume that (2.2) holds. Then $H \circ G_k^{\circ m} = F^{\circ m} \circ H$. Clearly

$$H(G_{k}^{\circ m}(\frac{i}{k^{m}})) = H(i) = i = F^{\circ m}(x(i,m)) = F^{\circ m}(H(\frac{i}{k^{m}})), \quad i \in [0,k^{m}] \cap \mathbb{Z}.$$

Hence $H(\frac{i}{k^m}) = x(i,m)$.

Theorem 2.2 Let F be a continuous increasing function on \mathbb{R} satisfying (2.1) for an integer $k \geq 2$. Let f be the inverse function of F. Then the orientation preserving k-covering map $\tilde{F} : S^1 \to S^1$ preserves the Lebesgue measure λ if and only if there exists k nonnegative measurable functions $p_1, ..., p_k$ such that

$$0 < \int_{a}^{b} p_{i} d\lambda \quad \text{for all } 0 \le a < b \le 1, \quad i = 1, ...k,$$

$$\sum_{i=1}^{k} p_{i}(x) = 1, \quad \text{a.e. in } I,$$

$$f(x+i-1) = \int_{0}^{x} p_{i} d\lambda + \sum_{j=0}^{i-1} \int_{0}^{1} p_{j} d\lambda, \quad p_{0}(x) = 0, \ x \in I, \ i = 1, ..., k.$$
(2.4)

In particular, \tilde{F} is λ -preserving and is invertible with respect to λ if and only if there exists a k- λ -dense partition $\mathcal{A} = \{A_1, ..., A_k\}$ of I such that $p_i = \chi_{A_i}$ a.e. for i = 1, ..., k. In this case $\phi_{\mathcal{A}}$ is the λ inverse of \tilde{F} .

Proof. Clearly, for $0 \le x < y \le 1$

$$\tilde{F}^{-1}(x,y) = \bigcup_{i=1}^{k} (f(x+i-1), f(y+i-1)).$$
(2.5)

Then \tilde{F} is λ -preserving if and only if $\lambda(\tilde{F}^{-1}(x,y)) = y - x$. Hence for each $i \in \langle k \rangle$ 0 < f(y+i-1) - f(x+i-1) < y - x. Therefore $0 \leq \frac{df(x+i-1)}{dx} = p_i \leq 1$ for some measurable function on I for i = 1, ..., k. In particular the last equality of (2.4) holds. Since f(x) is increasing in the interval [0, k] we deduce the first equality of (2.4). The second equality of (2.4) is equivalent to the assumption that \mathbb{F} is λ -preserving.

Vice versa, suppose that we are given k nonnegative measurable function $p_1, ..., p_k$ which satisfy the first two conditions of (2.4). Define $f : [0, k] \to \mathbb{R}$ by the last condition of (2.4). Then f is an increasing function which maps [0, k] on I. Let $F : I \to [0, k]$ be the inverse of of f. Then \tilde{F} is an orientation preserving k-covering of S^1 which preserves λ . Note that for any set $B \subset I$, which is a finite union of intervals, the last equality of (2.4) and (2.5) yield

$$\lambda(f(B+i-1)) = \int_{B} p_{i} d\lambda, \ i = 1, ..., k, \quad \lambda(B) = \lambda(\tilde{F}^{-1}(B)) = \sum_{i=1}^{k} \lambda(f(B+i-1)).$$
(2.6)

Hence the above equalities hold for any measurable set $B \subset I$. Suppose furthermore that $p_i(x) = \chi_{A_i}$ a.e. for some measurable set $A_i \subset I$ for i = 1, ..., k. The first two conditions of (2.4) are equivalent to the assumption that $\mathcal{A} = \{A_1, ..., A_k\}$ can be chosen to be k- λ -dense partition. (2.6) yields

$$\tilde{F}^{-1}(B) = \int_{B} \chi_{A_i} d\lambda, \quad \text{for any measurable set } B \subset A_i, \ i \in .$$
(2.7)

Hence \tilde{F} has the λ inverse $\phi_{\mathcal{A}}$ given by

$$\phi_{\mathcal{A}}(x) = f(x+i-1) \quad \text{for } x \in A_i, \quad i \in \langle k \rangle.$$

$$(2.8)$$

Assume finally that \tilde{F} preserves λ and \tilde{F} has λ inverse ψ . In particular (2.4) holds. As $\tilde{F}^{-1}(x) = \bigcup_{i=1}^{k} f(x+i-1)$, the existence of ψ implies the partition of I to k measurable pairwise distinct sets A_1, \ldots, A_k , such that for $\psi(x) = f(x+i-1)$ $x \in A_i$. Let B be a measurable subset of A_i . Since \tilde{F} preserves λ the first equality of (2.6) implies

$$\lambda(B) = \lambda(\tilde{F}^{-1}(B)) = \lambda(\psi(B)) = \lambda(f(B+i-1)) = \int_B p_i d\lambda \le \int_B d\lambda = \lambda(B).$$

Hence $p_i|B = 1$ a.e.. The second condition of (2.4) yields $p_i = \chi_{A_i}$ a.e. for i = 1, ..., k. The first condition of (2.4) implies that $\mathcal{A} = \{A_1, ..., A_k\}$ is k- λ -dense partition of I.

Theorem 2.2 was inspired by Parry's paper [3].

Theorem 2.3 Let $\mathcal{A} = \{A_1, ..., A_k\}$ be $k \cdot \lambda$ -dense partition with $k \geq 2$. Let $f_{\mathcal{A}}$ be given by (1.4) and $F_{\mathcal{A}}$ be the inverse of $f_{\mathcal{A}}$. Then $F_{\mathcal{A}}$ is expansive, $\tilde{F}_{\mathcal{A}}$ is an

orientation preserving k covering of S^1 which preserves λ . The generalized interval exchange ϕ_A given by (1.2) is the λ inverse of \tilde{F}_A . Furthermore

$$h_{\lambda}(\dot{F}_{\mathcal{A}}) = h_{\lambda}(\phi_{\mathcal{A}}) = 0.$$
(2.9)

Proof. Assume that $x, y \in [j-1, j], j \in \mathbb{Z}$ and x < y. Let $j \equiv i \mod k$ for some $i \in \langle k \rangle$. Since \mathcal{A} is λ -dense

$$y - x = \int_x^y d\lambda = \sum_{p=1}^k \int_x^y \chi_p d\lambda > \int_x^y \chi_i d\lambda = f(y) - f(x).$$

Hence F(v) - F(u) > v - u for any v > u. The proof of Theorem 2.2 and the definitions of $f_{\mathcal{A}}$ and $\phi_{\mathcal{A}}$ yield that $\tilde{F}_{\mathcal{A}}$ is λ preserving and $\phi_{\mathcal{A}}$ is the λ inverse of $\tilde{F}_{\mathcal{A}}$. As $F_{\mathcal{A}}$ is expansive by Theorem 2.1 $F_{\mathcal{A}}$ is conjugate to G_k . In particular $\tilde{F}_{\mathcal{A}}$ is conjugate to \tilde{G}_k . λ is conjugate to nonatomic probability measure ω , whose support is \overline{I} and which is \tilde{G}_k -invariant. As \tilde{G}_k has the standard Markov partition $M_i = [\frac{i-1}{k}, \frac{i}{k}), \ i = 1, ..., k$, we deduce that $\tilde{F}_{\mathcal{A}}$ is equivalent to complete \mathbb{Z}_+ shift on k symbols. Let $\mathcal{M} = \{H(M_1), ..., H(M_k)\}$ the Markov partition for $\tilde{F}_{\mathcal{A}}$. Then $\mathcal{F} = \bigvee_{i=0}^{\infty} \tilde{F}^{-i} \mathcal{M}$ is the σ -subalgebra generated by the cylinders, which is equivalent to the Borel algebra for any nonatomic probability measure ν . Since \tilde{F} is λ invertible it follows that $h_{\lambda}(\tilde{F}) = 0$ (cf.[6, Cor. 4.18.1]).

In the next section we show that for any k-partition \mathcal{A} of $I h_{\lambda}(\phi_{\mathcal{A}}) = 0$.

Problem 2.4 Let $\mathcal{A} = \{A_1, ..., A_k\}$ be k-partition of I. When $\phi_{\mathcal{A}}$ is ergodic?

Corollary 2.5 Let $\mathcal{A} = \{A_1, ..., A_p\}, \mathcal{B} = \{B_1, ..., B_q\}$ be two p, q- λ -dense partitions of I with $p, q \geq 2$. Then

$$h_{\lambda}(\phi_{\mathcal{A}} \circ \phi_{\mathcal{B}}) = h_{\lambda}(\tilde{F}_{\mathcal{B}} \circ \tilde{F}_{\mathcal{A}}) = 0.$$
(2.10)

Proof. $F := F_{\mathcal{B}} \circ F_{\mathcal{A}}$ is a continuous increasing expansive function on \mathbb{R} satisfying (2.1) for k = pq. Furthermore \tilde{F} preserves λ . Theorem 2.2 implies that $F = F_{\mathcal{C}}$ for some $k \cdot \lambda$ -dense partition of I. Hence (2.10) holds.

Problem 2.6 Let $\mathcal{A} = \{A_1, ..., A_p\}, \mathcal{B} = \{B_1, ..., B_q\}$ be two p and q- λ dense partitions of I with $p, q \geq 2$. Estimate from above

$$h_{\lambda}(\phi_{\mathcal{A}}^{-1} \circ \phi_{\mathcal{B}}) = h_{\lambda}(\phi_{\mathcal{B}}^{-1} \circ \phi_{\mathcal{A}}).$$
(2.11)

Theorem 2.7 Let $F : \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying (2.1) a.e. for some $k \in \mathbb{Z}$. Assume that

$$F \circ G_m = G_m \circ F, \quad |m| \in [2, \infty) \cap \mathbb{Z}.$$
 (2.12)

Then $F = G_k = kx$ a.e..

Proof. Let E(x) = F(x) - kx. Then E(x + 1) = E(x) a.e. in \mathbb{R} . Let j be a positive integer. Since F and G_k commute with G_m it follows that $E \circ G_{m^j} = G_{m^j} \circ E$. Hence

$$\begin{split} m^{j}E(x) &= E(m^{j}x) = E(m^{j}x+1) = E(m^{j}(x+\frac{1}{m^{j}})) = m^{j}E(x+\frac{1}{m^{j}}) \Rightarrow \\ E(x+\frac{1}{m^{j}}) &= E(x). \end{split}$$

Since j is an arbitrary positive integer it follows that E is constant a.e.. The condition E(mx) = mE(x) yields that E = 0 a.e..

The above theorem is related to a theorem (unpublished) of Jean-Paul Thouvenot:

Theorem 2.8 Let $p, q \in \mathbb{Z} \setminus \{-1, 0, 1\}$ and assume that p and q are multiplicatively independent, i.e. p and q are not integer powers of some integer r. Let $T: S^1 \to S^1$ be measurable λ -preserving. Assume that T commutes with \tilde{G}_p and \tilde{G}_q . Then $T = \tilde{G}_k$ for some $k \in \mathbb{Z}^*$.

Proof of Theorem 1.1. Suppose first that there exist 2 and 3- λ -dense partitions \mathcal{A} and \mathcal{B} of I such that (1.7) holds. Theorem 2.3 yields that $F_{\mathcal{A}}$ is expansive. Theorem 2.1 yields that $H^{-1} \circ F_{\mathcal{A}} \circ H = G_2$. Let $F := H^{-1} \circ F_{\mathcal{B}} \circ H$. Then F is a continuous function on \mathbb{R} satisfying (2.1) with k = 3 which commutes with G_2 . Theorem 2.7 yields that $F = G_3$. As $\tilde{F}_{\mathcal{A}}, \tilde{F}_{\mathcal{B}}$ preserve the Lebesgue measure λ it follows that \tilde{G}_2, \tilde{G}_3 preserve the probability measure $\omega = (H^{-1})^* \lambda$, which is nonnatomic and whose support is \overline{I} . As $\tilde{F}_{\mathcal{A}}, \tilde{F}_{\mathcal{B}}$ are λ -invertible (Theorem 2.3), \tilde{G}_2, \tilde{G}_3 are ω -invertible. Hence $\omega \neq \lambda$, which contradicts the 2 - 3 conjecture.

Assume now that 2-3 conjecture is false. Then there exists a nonatomic probability measure ω which is \tilde{G}_2, \tilde{G}_3 invariant. According to [2] the support of ω is \overline{I} . Rudolph's theorem [4] claims that $h_{\omega}(\tilde{G}_2) = h_{\omega}(\tilde{G}_3) = 0$. Hence \tilde{G}_2, \tilde{G}_3 are ω -invertible (cf.[6, Cor. 4.14.3]). Let

$$H(x) = \int_0^x d\omega, \quad x \in I.$$

Then H(x) is strictly increasing function on I with H(0) = 0, H(1) = 1. Extend H to \mathbb{R} using (2.1) with k = 1. Let $F_k = H \circ G_k \circ H^{-1}$, k = 2, 3. Then $F_2 \circ F_3 = F_3 \circ F_2$. Furthermore \tilde{F}_2, \tilde{F}_3 preserve λ and are λ invertible. Theorem 2.2 implies that $F_2 = F_A$ and $F_3 = F_B$ for some 2 and 3- λ -dense partitions \mathcal{A} and \mathcal{B} of I. \Box

3 $h_{\lambda}(\phi_{\mathcal{A}}) = 0$

Let $F : \mathbb{R} \to \mathbb{R}$ is be a nondecreasing function, which may be discontinuous. Then F has a countable number of point of discontinuities. We will assume the normalization that F is right continuous. Assume now that F is an increasing function on \mathbb{R} which is not bounded from below and above. Then there exists a unique continuous nondecreasing function $f : \mathbb{R} \to \mathbb{R}$, which unbounded from below and above, such that $f \circ F = \text{Id}$. We call f the inverse of F. Vice versa, if $f : \mathbb{R} \to \mathbb{R}$ is a continuous nondecreasing function, which is not bounded from below and above, then there exists a unique increasing function $F : \mathbb{R} \to \mathbb{R}$ such that $f \circ F = \text{Id}$. We call F the inverse of f.

Let $k \in \mathbb{N}$ and assume that F is an increasing function on \mathbb{R} which is continuous at the integer points \mathbb{Z} and satisfies (2.1). Then we can define a measurable map $\tilde{F}: S^1 \to S^1$. We call \tilde{F} an almost k-covering map.

Theorem 3.1 Let F be an increasing function on \mathbb{R} continuous on \mathbb{Z} and satisfying (2.1) for an integer $k \geq 2$. Let f be the inverse function of F. Then almost k-covering map $\tilde{F} : S^1 \to S^1$ preserves the Lebesgue measure λ if and only if there exists k nonnegative measurable functions $p_1, ..., p_k$ such that

$$\sum_{i=1}^{k} p_i(x) = 1, \quad \text{a.e. in } I,$$
$$f(x+i-1) = \int_0^x p_i d\lambda + \sum_{j=0}^{i-1} \int_0^1 p_j d\lambda, \quad p_0(x) = 0, \ x \in I, \ i = 1, ..., k.$$

In particular, \tilde{F} is λ -preserving and is invertible with respect to λ if and only if there exists a k-partition $\mathcal{A} = \{A_1, ..., A_k\}$ of I such that $p_i = \chi_{A_i}$ a.e. for i = 1, ..., k. In this case $\phi_{\mathcal{A}}$ is the λ inverse of \tilde{F} .

The proof of this theorem follows from simple modifications of the proof of Theorem 2.2 and is left to the reader.

Let $U, V \in \Sigma$. In what follows we use the notation:

$$U \sim V \iff \lambda(U\Delta V) = 0, \quad U \not\sim V \iff \lambda(U\Delta V) > 0.$$

Let $J \subset \mathbb{R}$ be an interval of positive Lebesgue measure (open, closed or half open). Let $\mathcal{A} = \{A_1, ..., A_k\}$ and $\mathcal{B} = \{B_1, ..., B_m\}$ be two partitions of J. Recall that \mathcal{A} and \mathcal{B} are equivalent if there exist permutationa $\mu :< k > \rightarrow < k >, \nu :< m > \rightarrow < m >$ and positive integer p such that

$$A_{\mu(i)} \sim B_{\nu(i)}, \ i = 1, ..., p, \ A_{\mu(i)} \sim B_{\nu(j)}) \sim \emptyset \text{ for } i > p \text{ and } j > p.$$

Theorem 3.2 Let $k \geq 1$ and assume that $\mathcal{A} = \{A_1, ..., A_k\}$ is a partition of I = [0, 1). Let $f_{\mathcal{A}}$ be the continuous nondecreasing function defined by (1.3-1.4). Let $F_{\mathcal{A}} : \mathbb{R} \to \mathbb{R}$ be the increasing function which is the inverse of $f_{\mathcal{A}}$. Let $\tilde{F}_{\mathcal{A}}$ be almost k-covering of S^1 preserving λ and whose λ inverse is $\phi_{\mathcal{A}}$. Let $0 = \beta_0 \leq \beta_1 \leq ... \leq \beta_k = 1$ be defined in (1.1). Let $\mathcal{B} = \{[\beta_0, \beta_1), [\beta_1, \beta_2), ..., [\beta_{k-1}, \beta_k)\}$ be a partition of S^1 to k intervals. Then the partition $\mathcal{B}_n := \mathcal{B} \lor \phi_{\tilde{\mathcal{A}}} \mathcal{B} \lor ... \lor \phi_{\tilde{\mathcal{A}}}^n \mathcal{B}$ is equivalent to a partition of [0, 1) to intervals $\mathcal{C}_n := \{J_{n,1}, ..., J_{n,\ell(n)}\}$ with the following properties:

(a) $\ell(0) = k$, $J_{0,j} = [\beta_{j-1}, \beta_j), j = 1, ..., k$.

(b) C_n is obtained from C_{n-1} by subdividing each interval $J_{n-1,j}$ to a finite number of subintervals for each $n \in \mathbb{N}$.

Then one of the following conditions holds:

(c) The partitions C_n , n = 0, 1, ..., separate points on S^1 .

(d) The partitions C_n , n = 0, 1, ..., do not separate points on S^1 . Then there exists a nonempty countable \mathcal{J} with the following properties. For each $j \in \mathcal{J}$ there exist $m_j \in \mathbb{N}$ pairwise disjoint open intervals $I_{j,1}, ..., I_{j,m_j} \subset S^1$ of equal length such that $\phi_{\mathcal{A}}$ acts on $\{I_{j,1}, ..., I_{j,m_j}\}$ as an orientation preserving cyclic interval exchange up to a set of zero measure:

$$\phi_{\mathcal{A}}(I_{j,p}) \subset I_{j,p+1},$$

$$I_{j,p+1} \sim \phi_{\mathcal{A}}(I_{i,p}), \ p = 1, \dots, m_j, \ (I_{j,m_j+1} = I_{i,1}), \text{ for any } j \in \mathcal{J},$$

$$I_{j,p} \cap I_{j',p'} = \emptyset \text{ for any } j \neq j' \text{ and } p \in \langle m_j \rangle, \ p' \in \langle m_{j'} \rangle.$$

$$(3.1)$$

Let $X = \bigcup_{j \in \mathcal{J}} \bigcup_{p=1}^{m_j} \overline{I}_{j,q}$. Then the restriction of the partitions \mathcal{C}_n , n = 0, 1, ... to $S \setminus X$ separate the points in $S \setminus X$.

Hence in both of the cases the measure entropy $h_{\lambda}(\phi_{\mathcal{A}})$ equals to zero.

Proof. For k = 1 $F_{\mathcal{A}} = \text{Id}$ and the theorem is trivial. Without a loss of generality we may assume that $k \ge 2$ and $\lambda(A_i) > 0$ for i = 1, ..., k.

Let $J \subset \mathbb{R}$ be an interval. From the definition of $f_{\mathcal{A}}$ it follows that $f_{\mathcal{A}}(J)$ is an interval. Let $J \subset [0, 1)$. Define $I_i = f_{\mathcal{A}}(J + i - 1) \cap [\beta_{j-1}, \beta_j)$ for i = 1, ..., k. Then $I_1, ..., I_k$ are pairwise distinct intervals, which may be empty or consisting of one point. From the definition of $\phi_{\mathcal{A}}$ it follows that $\phi_{\mathcal{A}}(J) \sim \bigcup_{i=1}^k I_i$. Hence \mathcal{B}_n is equivalent to a partition \mathcal{C}_n of [0, 1) to disjoint intervals. Furthermore \mathcal{C}_n is the refinement of \mathcal{C}_{n-1} . Hence (a) and (b) hold.

Assume first that the partitions C_n , n = 0, 1, ..., separate points. Hence $\bigvee_{n=0}^{\infty} C_n$ is equivalent to the Borel σ -algebra on S^1 up to sets of zero measure. Therefore $\bigvee_{n=0}^{\infty} \phi_{\mathcal{A}}^n \mathcal{B}$ is equivalent to the Borel σ -algebra on S^1 up to sets of zero measure. As $\tilde{F}_{\mathcal{A}}^{-1} = \phi_{\mathcal{A}}$ we deduce that $h_{\lambda}(\tilde{F}_{\mathcal{A}}) = 0$, e.g. [6, Cor.4.18.1], which implies that $h_{\lambda}(\phi_{\mathcal{A}}) = 0$. Assume now that C_n , 0, 1, ..., do not separate points. That is there is at least one nested set of intervals $J_{1,q_1} \supset J_{2,q_2} \supset ...$ such that $\bigcap_{i=1}^{\infty} \overline{J}_{i,q_i} = K = \overline{K}_o$, $K_o = (a, b)$, $0 \le a < b \le 1$. Note that for each $i \ge 2$ there exists $J_{i-1,q_{i-1}}^1$ such that $J_{i,q_i} \setminus \phi_{\mathcal{A}}(J_{i-1,q_{i-1}}^1) \sim \emptyset$. Then $J_{1,q_1}^1 \supset J_{2,q_2}^1 \supset ...$ is nested set of intervals such that $\bigcap_{i=1}^{\infty} \overline{J}_{i,q_i^1}^1 = K^1$ is a closed interval in S. Clearly $\lambda(K \setminus \phi_{\mathcal{A}}(K^1)) = 0$. Hence $\lambda(K^1) \ge \lambda(K)$, i.e. $K^1 = \overline{K}_o^1$, $K_o^1 = (a_1, b_1)$, $0 \le a_1 < b_1 \le 1$, $b_1 - a_1 \ge b - a$. Since K and K^1 are intersection of nested sequences of the intervals in the partitions C_n , n = 1, ...,it follows that either $K_o = K_o^1$ or $K_o \cap K_o^1 = \emptyset$. Repeating this argument we obtain for each integer $p \ge 2$ a sequence of nested intervals $J_{1,q_1}^p \supset J_{2,q_2}^p \supset ...$ such that $\bigcap_{i=1}^{\infty} \overline{J}_{i,q_i^p}^p = K^p$ is a closed interval in S. Furthermore $\lambda(K^{p-1} \setminus \phi_{\mathcal{A}}(K^p)) = 0$. Hence $K^p = \overline{K}_o^p$, $K_o^p = (a_p, b_p)$, $0 \le a_p < b_p \le 1$, $b_p - a_p \ge b_{p-1} - a_{p-1}$ for p = 2, 3, ...,Let $K = K^0$. Then for any $0 \le r < p$ either $K_o^r = K_0^p$ or $K_o^r \cap K_o^p = \emptyset$. Consider the sequence. Then it is impossible that all these open intervals are pairwise disjoint. So assume that $K_o^r \cap K_o^p \ne \emptyset$ for some $0 \le r < p$. Hence $K_o^r = K_o^p$. If $K_o^{r+1} = K_o^r$ we choose p = r + 1. Otherwise we can assume without loss of generality that $K_o^j \ne K_o^r$ for j = p - 1, ..., r + 1. Clearly $\lambda(K^j) = \lambda(K^r)$, j = p - 1, ..., r + 1. Therefore up a zero measure ϕ_A acts the orientation preserving interval exchange $K_o^r = K_o^p \rightarrow K_o^{p-1} \rightarrow ... \rightarrow K_o^r$ of p - r distinct open intervals in (0, 1). Obviously K_o^0 appears among this p - r intervals.

Clearly all maximal open intervals K_o whose points are not separated by \mathcal{C}_n , n = 0, ..., is a countable set of pairwise disjoint intervals of (0, 1). If we group each K_o with the other p - r - 1 intervals as above, we obtain a countable set \mathcal{J} of such groups as described in the theorem. Let $X = \bigcup_{j \in \mathcal{J}} \bigcup_{p=1}^{m_j} \overline{I}_{j,q}$. Then $\phi_{\mathcal{A}}(X) = X$ (up to zero measure sets). Clearly $h_{\lambda}(\phi_{\mathcal{A}}|_X) = 0$. Then $Y = S^1 \setminus X$ is $\phi_{\mathcal{A}}$ invariant set (up to a set of zero measure). $\mathcal{C}_n \cap Y$, n = 0, ..., separates the points on Y. The arguments in the beginning of the proof of the theorem yield that $h_{\lambda}(\phi_{\mathcal{A}}|_Y) = 0$. Hence $h_{\lambda}(\phi_{\mathcal{A}}) = 0$.

4 The condition $f_A \circ f_B = f_A \circ f_B$

Lemma 4.1 Let \mathcal{A} , \mathcal{B} be 2 and 3 partitions of I = [0, 1) respectively. Then

$$f_{\mathcal{A}} \circ f_{\mathcal{B}} = f_{\mathcal{C}}, \quad f_{\mathcal{B}} \circ f_{\mathcal{A}} = f_{\mathcal{D}} \tag{4.1}$$

for some 6-partitions C, D of I. Suppose furthermore that A and B are λ -dense partitions. Then C and D are λ -dense partitions.

Proof. Clearly

$$\begin{aligned} f'_{\mathcal{A}} &= \chi_{A}, \quad f'_{\mathcal{B}} = \chi_{B}, \\ (f_{\mathcal{A}} \circ f_{\mathcal{B}})' &= \chi_{f_{\mathcal{B}}^{-1}(A)} \chi_{B}, \quad (f_{\mathcal{B}} \circ f_{\mathcal{A}})' = \chi_{f_{\mathcal{A}}^{-1}(B)} \chi_{A}, \\ f_{\mathcal{A}} \circ f_{\mathcal{B}}(x+6) &= f_{\mathcal{A}} \circ f_{\mathcal{B}}(x) + 1, \quad f_{\mathcal{B}} \circ f_{\mathcal{A}}(x+6) = f_{\mathcal{B}} \circ f_{\mathcal{A}}(x) + 1 \end{aligned}$$

Let

$$B_{i,j} := \{ x \in B_i : f_{\mathcal{B}}(i-1+x) \in A_j \}, \text{ for } i = 1, 2, 3, \ j = 1, 2, A_{j,i} := \{ x \in A_j : f_{\mathcal{A}}(j-1+x) \in B_i \}, \text{ for } i = 1, 2, 3, \ j = 1, 2,$$

$$(4.2)$$

We claim that

$$\mathcal{C} := \{B_{1,1}, B_{2,1}, B_{3,1}, B_{1,2}, B_{2,2}, B_{3,2}\}, \quad \mathcal{D} := \{A_{1,1}, A_{2,1}, A_{1,2}, A_{2,2}, A_{1,3}, A_{2,3}\}$$
(4.3)

are 6-partitions of I and (4.1) holds. Since \mathcal{B} is a partition of $I \ B_{i,j} \cap B_{p,q} = \emptyset$ for $i \neq p$. As \mathcal{A} is a partition of $I \ B_{i,j} \cap B_{i,p} = \emptyset$ for $j \neq p$. As $f_{\mathcal{B}}([0,3]) = [0,1]$ and $f_{\mathcal{B}}(B \cap [0,3])$ has measure 1 it follows that \mathcal{C} is a 6-partition of I. Similar arguments show that \mathcal{D} is a 6 partition of I. Let $C, D \subset \mathbb{R}$ be the induced sets by \mathcal{C}, \mathcal{D} respectively. The definition of \mathcal{C} and a straightforward calculation shows that $(f_{\mathcal{A}} \circ f_{\mathcal{B}})' = \chi_{C}$. As $f_{\mathcal{A}} \circ f_{\mathcal{B}}(0) = 0$ we deduce the first equality of (4.1). The second equality of (4.1) follows similarly.

Suppose now that \mathcal{A} and \mathcal{B} are λ -dense partitions. Then $f_{\mathcal{A}}$ and $f_{\mathcal{B}}$ are increasing. Hence $f_{\mathcal{A}} \circ f_{\mathcal{B}}$ and $f_{\mathcal{B}} \circ f_{\mathcal{A}}$ are also increasing. The equalites (4.1) yield that \mathcal{C} and \mathcal{D} are λ -dense partitions.

For a set $A \subset \mathbb{R}$ we denote

$$\begin{split} A(s,t) &:= A \cap [s,t], \quad s \leq t, \\ A(t) &:= A \cap [0,t], \quad 0 \leq t. \end{split}$$

Let $\mathcal{A} = \{A_1, ..., A_k\}$ and $\mathcal{A}' = \{A'_1, ..., A'_k\}$ be two k-partitions of [0, 1). We say that \mathcal{A} and \mathcal{A}' are strongly equivalent, and denote it by $\mathcal{A} \sim \mathcal{B}$ if $A_i \sim A'_i$ for i = 1, ..., k.

Lemma 4.2 Let \mathcal{A} and \mathcal{B} be 2 and 3 partitions of [0,1] respectively. Let $\mathcal{A}, \mathcal{B} \in \Sigma$ be defined by \mathcal{A}, \mathcal{B} using (1.3) respectively. Then the following are equivalent (a) (1.8) holds.

(b) The partitions C and D given in (4.3) are both strongly equivalent to the partition

$$\mathcal{A} \cdot \mathcal{B} := \{ A_1 \cap B_1, A_2 \cap B_2, A_1 \cap B_3, A_2 \cap B_1, A_1 \cap B_2, A_2 \cap B_3 \}.$$
(4.4)

(c)

$$A(f_{\mathcal{B}}(s), f_{\mathcal{B}}(t)) \sim f_{\mathcal{B}}(A(s, t) \cap B(s, t)), \quad \text{for all } s \leq t,$$

$$B(f_{\mathcal{A}}(s), f_{\mathcal{A}}(t)) \sim f_{\mathcal{A}}(A(s, t) \cap B(s, t)), \quad \text{for all } s \leq t.$$

$$(4.5)$$

Proof. Assume (a). Then (4.1) implies that $\mathcal{C} \sim \mathcal{D}$. Furthermore $C \sim D \subset A \cap B$. A straightforward argument yields that $A \cap B$ is induced by a partition $\mathcal{A} \cdot \mathcal{B}$. As $1 = \lambda(C(6)) = \lambda(A \cap B \cap [0, 6])$ we deduce that $C \sim A \cap B$ and $\mathcal{C} \sim \mathcal{D} \sim \mathcal{A} \cdot \mathcal{B}$.

Assume (b). Then (4.1) implies (a).

Assume (a) and (b). Use the definition of C and the condition $C \sim A \cap B$ and to deduce the first condition in (4.5) with s = 0 and $t \ge 0$. Hence the first condition of (4.5) holds for any $0 \le s \le t$. Use the the condition (1.5) for $f_{\mathcal{B}}$ with k = 3 to deduce the condition of (4.5) for any $s \le t$. The second condition in (4.5) is derived similarly.

Assume (c). Recall that $f_{\mathcal{B}}$ maps any measurable set $E \subset B$ to a set E' of the same measure. Furthermore the complement of $B(B^c)$ is mapped to a set of zero measure. Hence

$$f_{\mathcal{B}}(B(t)) \sim f_{\mathcal{B}}([0,t]) = [0, f_{\mathcal{B}}(t)] \Rightarrow \lambda(A(t) \cap B(t)) = \lambda(f_{\mathcal{B}}(A(t) \cap B(t)).$$

Similar conditions hold for $f_{\mathcal{A}}([0,t])$. Assume first that (4.5) holds for s = 0 and any $t \ge 0$. Then

$$f_{\mathcal{A}}(f_{\mathcal{B}}(t)) = \lambda(A(f_{\mathcal{B}}(t)) = \lambda(f_{\mathcal{B}}(A(t) \cap B(t)) = \lambda(A(t) \cap B(t)) = \lambda(f_{\mathcal{A}}(A(t) \cap B(t)) = \lambda(B(f_{\mathcal{A}}(t)) = f_{\mathcal{B}}(f_{\mathcal{A}}(t)).$$

Hence (1.8) holds for any $t \ge 0$. Since the two functions appearing in (1.8) satisfy (1.5) we deduce (1.8) for all $t \in \mathbb{R}$.

It is straightforward to show that the condition (1.8) yields the condition (1.9). In the next section we show that the condition (1.9) is sometimes weaker than (1.8). Recall that a (k-)partition $\mathcal{A} = \{A_1, ..., A_k\}$ of I is called a regular (k-)partition if $\lambda(A_i) > 0$ for i = 1, ..., k. The following Proposition is straightforward.

Proposition 4.3 Let

$$\mathcal{A} = \{[0,t), [t,1)\}, \ \mathcal{B} = \{[0,t), \emptyset, [t,1)\} \text{ for } t \in [0,1].$$
(4.6)

Then (1.8) holds. Let \mathcal{A} and \mathcal{B} be 2 and 3-partitions of I which are not strongly equivalent to the corresponding two partitions given in (4.6). Assume that (1.8) holds. Then \mathcal{A} and \mathcal{B} are regular partitions of I.

5 Interval exchanges

In this section we consider only partitions of the interval I = [0, 1) induced by the partition of I to n intervals of equal length $\frac{1}{n}$. Let $\mathcal{J} := \{J_1, ..., J_n\}$ be a partition of I to $n \ge 2$ half closed intervals of length $\frac{1}{n}$ arranged in an increasing order. Let $2 \le k \le n$ and let $\Omega_1, ..., \Omega_k$ be a partition of < n > to k disjoint (possibly empty) sets. Set

$$A_j = \bigcup_{l \in \Omega_j} J_l, \quad j = 1, ..., k.$$

Then $\mathcal{A} = \{A_1, ..., A_k\}$ is called a *k*-*n*-partition of *I*. \mathcal{A} is a regular *k*-*n*-partition of *I* if and only if each Ω_j is a nonempty set. Then $\phi_{\mathcal{A}}$ is an interval exchange. $\phi_{\mathcal{A}}$ induces the following permutation $\sigma :< n > \rightarrow < n >:$

$$\phi_{\mathcal{A}}(J_i) = J_{\sigma(i)}, \quad i = 1, \dots, n.$$

 σ maps the nonempty set Ω_j to the set $[\gamma_{j-1} + 1, \gamma_{j-1} + |\Omega_j|] \cap \mathbb{Z}$ monotonically for j = 1, ..., k. Here

$$\gamma_0 = 0, \quad \gamma_j = \sum_{l=1}^{j} |\Omega_l|, \quad j = 1, ..., k.$$

Any k-n-interval partition \mathcal{A} induces a unique regular m-n-interval partition \mathcal{A}' with $1 \leq m \leq n$, by discarding the empty sets. Clearly, $\phi_{\mathcal{A}} = \phi_{\mathcal{A}'}$, that is \mathcal{A} and \mathcal{A}' induce the same interval exchange on I. Equivalently, \mathcal{A} and \mathcal{A}' induce the same permutation $\sigma :< n > \rightarrow < n >$. Any permutation σ on < n > we identify with the ordered set of the elements of < n >:

$$\{i_1, i_2, ..., i_n\} = \{\sigma^{-1}(1), \sigma^{-1}(2), ..., \sigma^{-1}(n)\}.$$
(5.1)

It is easy to show that σ given in the above form is iduced by a unique minimal regular *m*-*n*-interval partition, where *m* is exactly the number of $j \leq n-1$ for which $i_j > i_{j+1}$.

Lemma 5.1 Let \mathcal{A} and \mathcal{B} be 2-*n*-interval and 3-*n*-interval regular partitions of I respectively. Assume that the condition (1.8) holds. Suppose furthermore that the induced permutations σ , η fixes either 1 or n. Then there exist 2-(n - 1)-interval and 3-(n - 1)-interval partitions \mathcal{A}' and \mathcal{B}' satisfying the condition (1.8).

Proof. Since \mathcal{B} is a regular 3-*n* partition of *I* we obtain that $n \geq 3$. Let

$$\begin{split} &\Gamma_1 := \{1 \leq i_1 < i_2 < \ldots < i_p\}, \\ &\Gamma_2 = \{1 \leq i_{p+1} < i_{p+2} < \ldots < i_n\}, \end{split}$$

$$1 \leq p < n, \ \Gamma_{1} \cup \Gamma_{2} = < n >,$$

$$\Delta_{1} := \{1 \leq j_{1} < j_{2} < \dots < j_{q}\},$$

$$\Delta_{2} = \{1 \leq j_{q+1} < j_{q+2} < \dots < j_{q'}\},$$

$$\Delta_{3} = \{1 \leq j_{q'+1} < j_{q'+2} < \dots < j_{n}\},$$

$$1 \leq q < q' < n, \ \Delta_{1} \cup \Delta_{2} \cup \Delta_{3} = < n >,$$

$$A_{i} = \cup_{m \in \Gamma_{i}} [\frac{m-1}{n}, \frac{m}{n}), \ i = 1, 2, \quad B_{j} = \cup_{m \in \Delta_{j}} [\frac{m-1}{n}, \frac{m}{n}), \ j = 1, 2, 3.$$

(5.2)

Assume first that σ, η fix 1. Then $i_1 = j_1 = 1$. Let

$$\begin{split} \Gamma_1' &= \{i_2 - 1, ..., i_p - 1\}, \\ \Gamma_2' &= \{i_{p+1} - 1, ..., i_n - 1\}, \\ \Delta_1' &= \{j_2 - 1, ..., j_q - 1\}, \\ \Delta_2' &= \{j_{q+1} - 1, j_{q+2} - 1, ..., j_{q'} - 1\}, \\ \Delta_3' &= \{j_{q'+1} - 1, j_{q'+2} - 1, ..., j_n - 1\}. \end{split}$$

Let $\mathcal{A}', \mathcal{B}'$ be induced by $\{\Gamma'_1, \Gamma'_2\}, \{\Delta'_1, \Delta'_2, \Delta'_3\}$ respectively. A straightforward argument using Lemma 4.2 shows that

$$f_{\mathcal{A}} \circ f_{\mathcal{B}} = f_{\mathcal{B}} \circ f_{\mathcal{A}} \Rightarrow f_{\mathcal{A}'} \circ f_{\mathcal{B}'} = f_{\mathcal{B}'} \circ f_{\mathcal{A}'}.$$
(5.3)

(Another way to deduce the above implication is to collaps each interval $[m, m + \frac{1}{n}) \subset \mathbb{R}$, $m \in \mathbb{Z}$ to a point to obtain R. Then (1.8) holds also on R, which is equivalent to $f_{\mathcal{A}'} \circ f_{\mathcal{B}'} = f_{\mathcal{B}'} \circ f_{\mathcal{A}'}$.)

to $f_{\mathcal{A}'} \circ f_{\mathcal{B}'} = f_{\mathcal{B}'} \circ f_{\mathcal{A}'}$.) Assume now that σ, η fix n. Then $i_{p'} = j_{q''} = n$. Let $\Gamma'_2 = \Gamma_2 \setminus \{n\}, \Delta'_3 = \Delta_3 \setminus \{n\}$. Let $\mathcal{A}', \mathcal{B}'$ be induced by $\{\Gamma_1, \Gamma'_2\}, \{\Delta_1, \Delta_2, \Delta'_3\}$ respectively. Then (5.3) holds. \Box

Lemma 5.2 Let \mathcal{A} and \mathcal{B} be regular 2-n and 3-n-partitions induced by the regular 2-n and 3-n-partitions of $\langle n \rangle$ given in (5.2). Let the partition $\mathcal{C} = \mathcal{A} \cdot \mathcal{B}$, given by (4.4), be induced by

$$\Omega_{1} = \Gamma_{1} \cap \Delta_{1} = \{k_{1}, \dots, k_{r_{11}}\}, \quad r_{11} \ge 0,
\Omega_{2} = \Gamma_{2} \cap \Delta_{2} = \{k_{r_{11}+1}, \dots, k_{r_{22}}\}, \quad r_{22} \ge r_{11},
\Omega_{3} = \Gamma_{1} \cap \Delta_{3} = \{k_{r_{22}+1}, \dots, k_{r_{13}}\}, \quad r_{13} \ge r_{22},
\Omega_{4} = \Gamma_{2} \cap \Delta_{1} = \{k_{r_{13}+1}, \dots, k_{r_{21}}\}, \quad r_{21} \ge r_{13},
\Omega_{5} = \Gamma_{1} \cap \Delta_{2} = \{k_{r_{21}+1}, \dots, k_{r_{12}}\}, \quad r_{12} \ge r_{21}, \\ \Omega_{6} = \Gamma_{2} \cap \Delta_{3} = \{k_{r_{12}+1}, \dots, k_{r_{23}}\}, \quad n = r_{23} \ge r_{12}.$$
(5.4)

Assume that (1.8) holds. Then

$$q = r_{22} \le p = r_{13} \le q' = r_{21}. \tag{5.5}$$

$$k_u = i_{j_u} = j_{i_u}, \quad u = 1, ..., n.$$
(5.6)

$$\begin{aligned}
 j_{r_{11}} &\leq p < j_{r_{11}+1} \leq j_q, \\
 j_{q+1} &\leq j_p \leq p < j_{p+1} \leq j_{q'}, \\
 j_{q'+1} &\leq j_{r_{12}} \leq p < j_{r_{12}+1}, \\
 (5.7)
 \end{aligned}$$

$$i_{r_{11}} \leq q < i_{r_{11}+1} \leq i_q \leq q' < i_{q+1} \leq i_p,$$

$$i_{p+1} \leq i_{q'} \leq q < i_{q'+1} \leq i_{r_{12}} \leq q' < i_{r_{12}+1}.$$
(5.8)

If one the below equalities hold

$$0 = r_{11}, r_{11} = q, q = p, p = q', q' = r_{12}, r_{12} = n,$$
(5.9)

then the above corresponding inequalities are vacuous.

Proof. Lemma 4.2 yields

$$\begin{aligned} f_{\mathcal{A}}(A(2) \cap B(2)) &= B(1) = B_1 \Rightarrow \frac{r_{22}}{n} = \lambda(f_{\mathcal{A}}(A(2) \cap B(2))) = \lambda(B_1) = \frac{q}{n}, \\ f_{\mathcal{A}}(A(4) \cap B(4)) &= B(2) = B_1 \cup (1 + B_2) \Rightarrow \\ \frac{r_{21}}{n} &= \lambda(f_{\mathcal{A}}(A(2) \cap B(2))) = \lambda(B_1) + \lambda(B_2) = \frac{q'}{n}, \\ f_{\mathcal{B}}(A(3) \cap B(3)) &= A(1) = A_1 \Rightarrow \frac{r_{13}}{n} = \lambda(f_{\mathcal{B}}(A(3) \cap B(3))) = \lambda(A_1) = \frac{p}{n}. \end{aligned}$$

Hence (5.5) holds.

Let σ, η be the permutations of $\langle n \rangle$ induced by $\{\Gamma_1, \Gamma_2\}, \{\Delta_1, \Delta_2, \Delta_3\}$ respectively. Consider $k_u \in \Gamma_i \cap \Delta_j$ for some $i \in \langle 2 \rangle, j \in \langle 3 \rangle$. Then $k_u = i_l$ for $l \in \langle p \rangle$ if i = 1 and $l \rangle p$ if i = 2. k_u corresponds to the interval $[t_u - \frac{1}{n}, t_u] \in A(2m_{ij}) \cap B(2m_{ij})$ for the smallest integer $m_{ij} \in \langle 3 \rangle$. Then $f_{\mathcal{A}}(A(t_u) \cap B(t_u)) = B(f_{\mathcal{A}}(t_u))$ is of total length $\frac{u}{n}$. So the interval $[t_u - \frac{1}{n}, t_u)$ is mapped on the interval $[m_{ij} - 1 + \frac{j_u - 1}{n}, m_{ij} - 1 + \frac{j_u}{n}) \in m_{ij} - 1 + B_{m_{ij}}$. Hence $\sigma(i_l) = l = j_u$. This proves the first equality in (5.6). Observe next that $k_u = j_v$. Use the identity $f_{\mathcal{B}}(A(t_u) \cap B(t_u)) = A(f_{\mathcal{B}}(t_u))$ to deduce the the equality $v = i_u$.

If $r_{11} > 0$ then $k_{r_{11}} \in \Omega_1 \subset \Gamma_1$. As $k_{r_{11}} = i_{j_{r_{11}}}$ it follows that $j_{r_{11}} \leq p$. If $q = r_{22} > r_{11}$ then $k_{r_{11}+1} \in \Omega_2 \subset \Gamma_2$. As $k_{r_{11}+1} = i_{j_{r_{11}+1}}$ it follows that $j_{r_{11}+1} > p$. If $q = r_{22} < r_{13} = p$ then $\Omega_3 \neq \emptyset$. Then $k_{q+1}, k_p \in \Gamma_1$. As $k_{q+1} = i_{q+1}, k_p = i_{j_p}$ it follows that $j_{q+1} \leq j_p \leq p$. If $p = r_{13} < r_{21} = q'$ then $\Omega_4 \neq \emptyset$. Then $k_{p+1} \in \Gamma_2$. As $k_{p+1} = i_{j_{p+1}}$ it follows that $j_{p+1} > p$. If $q' = r_{21} < r_{12}$ then $\Omega_5 \neq \emptyset$. Then $k_{q'+1}, k_{r_{12}} \in \Gamma_1$. As $k_{q'+1} = i_{q'+1}, k_{r_{12}} = i_{j_{r_{12}}}$ it follows that $j_{q'+1} \leq j_{r_{12}} \leq p$. If $r_{12} < r_{23}$ then $\Omega_6 \neq \emptyset$. Then $k_{r_{12}+1} \in \Gamma_2$. As $k_{r_{12}+1} = i_{j_{r_{12}+1}}$ it follows that $j_{r_{12}+1} > p$. These arguments prove (5.7).

Recalling that Ω_i is also a subset of the corresponding Δ_j and combining the above arguments with the equality $k_u = j_{i_u}$ we deduce (5.8).

Corollary 5.3 Let the assumptions of Lemma 5.2 hold. Then

$$q + q' = 2p, \ r_{11} = q - q' + p, \ r_{12} = q' - q + p,$$

$$1 \le q < q' < n, \ q \le p \le q', \ 2q \ge p, \ 3p - 2q \le n.$$
(5.10)

Corollary 5.4 Let \mathcal{A} and \mathcal{B} be 2-n and 3-n-partitions which are not of the form (4.6). Assume that $n \leq 3$. Then (1.8) does not hold.

Let n = 3 and assume that σ is the cyclic permutation on $\langle 3 \rangle$. Let $\eta = \sigma^2$. A straightforward calculation shows that for $\mathcal{A} = \{A_1, A_2\}$ and $\mathcal{B} = \{B_1, B_2, B_3\}$:

$$A_1 = \{J_2, J_3\}, A_2 = \{J_1\}, B_1 = J_3, B_2 = J_1, B_3 = J_2,$$

 $\phi_{\mathcal{A}}$ and $\phi_{\mathcal{B}}$ are inducing the permutations σ and η of < 3 > respectively. Hence (1.9) holds. In view of Corollary 5.4 (1.8) does not hold.

Lemma 5.5 The following regular 2-4 and 3-4-interval partitions

$$\mathcal{A} = \{\{J_2, J_4\}, \{J_1, J_3\}\}, \quad \mathcal{B} = \{\{J_3\}, \{J_1, J_4\}, \{J_2\}\}$$
(5.11)

are the unique regular 2-4 and 3-4-interval partitions for which (1.8) holds. The induced permutations σ, η are cyclic permutation with $\eta = \sigma^{-1}$.

The proof of the lemma is left to the reader. Combine Lemma 5.1 with Lemma 5.5 to obtain:

Corollary 5.6 Let p, n be nonnegative integers such that $0 \le p \le n-4$. Then the following regular 2-n and 3-n-partitions satisfy (1.8):

$$\begin{split} \mathcal{A} &:= \\ \{\{[0,\frac{p}{n}), [\frac{p+1}{n}, \frac{p+2}{n}), [\frac{p+3}{n}, \frac{p+4}{n})\}, \{[\frac{p}{n}, \frac{p+1}{n}), [\frac{p+2}{n}, \frac{p+3}{n}), [\frac{p+4}{n}, 1)\}\}, \\ \mathcal{B} &:= \\ \{\{[0,\frac{p}{n}), [\frac{p+2}{n}, \frac{p+3}{n})\}, \{[\frac{p}{n}, \frac{p+1}{n})\}, \{[\frac{p+3}{n}, \frac{p+4}{n})\}, \{[\frac{p+1}{n}, \frac{p+2}{n}), [\frac{p+4}{n}, 1)\}\}. \end{split}$$

The corresponding permutations σ, η satisfy $\eta = \sigma^{-1}$.

For n = 2m with $m \ge 2$ and $3 \nmid 2m + 1$, there exist regular 2 - n and 3 - n partitions of I, induced by the commuting maps G_2, G_3 , for which (1.8) holds.

Lemma 5.7 Let $m \ge 2$ be an integer and assume that 2m + 1 is not divisible by 3. Let $\sigma_1, \eta_1 :< 2m > \rightarrow < 2m >$ are given by the maps $x \rightarrow 2x, x \rightarrow 3x$ modulo 2m+1 restricted to < 2m >. Then σ_1 and η_1 commute. Let $\mathcal{A}_{2m}, \mathcal{B}_{2m}$ be the regular 2-2m, 3-2m partitions induced by

$$\begin{split} &\Gamma_1 := \{\sigma_1(1), \sigma_1(2), \dots, \sigma_1(m)\}, \ \Gamma_2 := \{\sigma_1(m+1), \sigma_1(m+2), \dots, \sigma(2m)\}, \\ &\Delta_1 = \{\eta_1(1), \dots, \eta_1(\lfloor \frac{2m+1}{3} \rfloor)\}, \ \Delta_2 = \{\eta_1(\lfloor \frac{2m+1}{3} \rfloor + 1), \dots, \}, \eta_1(\lfloor \frac{4m+2}{3} \rfloor)\}, \\ &\Delta_3 = \{\eta_1(\lfloor \frac{4m+2}{3} \rfloor + 1), \dots, \eta_1(2m)\}. \end{split}$$

Then $\phi_{\mathcal{A}_{2m}} \circ \phi_{\mathcal{B}_{2m}} = \phi_{\mathcal{B}_{2m}} \circ \phi_{\mathcal{A}_{2m}}.$

The proof is left to the reader. Note that

$$\lim_{m \to \infty} \phi_{\mathcal{A}_{2m}}(x) = \frac{x}{2} = G_2^{-1}(x), \quad \lim_{m \to \infty} \phi_{\mathcal{B}_{2m}}(x) = \frac{x}{3} = G_3^{-1}(x).$$

Thus Lemma 5.7 does not give in the limit a contradiction to the 2-3 conjecture.

We do not know for which $m \geq 3$ the converse to Lemma 5.7 holds. That is, assume that $m \geq 3$, $3 \nmid 2m + 1$ and $\mathcal{A} = \{A_1, A_2\}, \mathcal{B} = \{B_1, B_2, B_3\}$ are regular 2 - 2m, 3 - 2m partitions. Suppose furthermore that $J_{2m} \in A_1, J_1 \in A_2$ and (1.8) holds. Are \mathcal{A}, \mathcal{B} equal to $\mathcal{A}_{2m}, \mathcal{B}_{2m}$ respectively?

Another way to find a counterexample to the 2-3 conjecture is to study the ergodic measures invariant under \tilde{G}_2, \tilde{G}_3 , which are supported on a finite number of points. It is straightforward to show that such measure is equi-distributed on an orbit of the action of the permutations σ_1, η_1 given in Lemma 5.7. It seems that this approach is not straightforward related to the problem of the converse to Lemma 5.7 we discussed above.

References

- P. Arnoux, D.S. Ornstein and B. Weiss, Cutting and stacking, interval exchanges and geometric models, *Israel J. Math.* 50 (1985), 160-168.
- [2] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, *Math. Sys. Theory* 1 (1967), 1-49.
- [3] W. Parry, In general a degree two map is an automorphism, Contemporary Math. 135 (1992), 219-224.
- [4] D. Rudolph, ×2 and ×3 invariant measures and entropy, Ergodic Theory & Dynamical Systems 10 (1991), 395-406.
- [5] Jean-Paul Thouvenot, private communication.
- [6] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.