Generalized interval exchanges and the $2-3$ conjecture

SHMUEL FRIEDLAND
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago
Chicago, Illinois 60607-7045, USA
email: friedlan@uic.edu
BENJAMIN WEISS
Institute of Mathematics
Hebrew University
Jerusalem 91904, Israel
email:weiss@math.huji.ac.il

January 20, 2005

Abstract

We introduce the notion of a generalized interval exchange $\phi_{\mathcal{A}}$ induced by a measurable k-partition $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of $[0,1) . \phi_{\mathcal{A}}$ can be viewed as the corresponding restriction of a nondecreasing function $f_{\mathcal{A}}$ on \mathbb{R} with $f_{\mathcal{A}}(0)=$ $0, f_{\mathcal{A}}(k)=1 . \mathcal{A}$ is called λ-dense if $\lambda\left(A_{i} \cap(a, b)\right)>0$ for each i and any $0 \leq a<b \leq 1$. We show that the $2-3$ Furstenberg conjecture is invalid if and only if there are 2 and 3λ-dense partitions \mathcal{A} and \mathcal{B} of $[0,1)$, such that $f_{\mathcal{A}} \circ f_{\mathcal{B}}=f_{\mathcal{B}} \circ f_{\mathcal{A}}$. We give necessary and sufficient conditions for this equality to hold. We show that for each integer $m \geq 2$, such that $3 \nmid 2 m+1$, there exist 2 and 3 non λ-dense partitions \mathcal{A} and \mathcal{B} of $[0,1)$, corresponding to the interval exchanges on $2 m$ intervals, for which $f_{\mathcal{A}}$ and $f_{\mathcal{B}}$ commute.

2000 Mathematical Subject Classification: 37A05, 37A35
Keywords: Generalized interval exchange, entropy, 2-3 conjecture.

1 Introduction

Let Σ the σ-algebra of measurable sets in \mathbb{R} with respect to the Lebesgue measure λ. Let $k \in \mathbb{N}$ and $J \in \Sigma$. $\mathcal{A}:=\left\{A_{1}, \ldots, A_{k}\right\}$ is called a partition (or k-partition)
of J if A_{1}, \ldots, A_{k} are pairwise disjoint measurable sets whose union is J. Let $I=$ $[0,1)$. Then a k-partition \mathcal{A} of I induces the following partition $\left\{I_{1}, \ldots, I_{k}\right\}$ of I to k intervals:

$$
\begin{equation*}
I_{j}=\left[\beta_{j-1}, \beta_{j}\right), \quad j=1, \ldots, k, \quad \beta_{0}=0, \beta_{j}=\sum_{i=1}^{j} \lambda\left(A_{j}\right), j=1, \ldots, k . \tag{1.1}
\end{equation*}
$$

\mathcal{A} is called regular if $\lambda\left(A_{j}\right)>0$ for $j=1, \ldots, k$. For $A \subset \mathbb{R}$ let $\chi_{A}(x)$ be the characteristic function of A. Then the partition \mathcal{A} induces the following generalized k-interval exchange $\phi_{\mathcal{A}}: I \rightarrow I$:

$$
\begin{equation*}
\phi_{\mathcal{A}}: A_{j} \rightarrow \bar{I}_{j}, \quad \phi_{\mathcal{A}}(x)=\beta_{j-1}+\int_{0}^{x} \chi_{A_{j}} d \lambda, \quad x \in A_{j}, \quad j=1, \ldots, k . \tag{1.2}
\end{equation*}
$$

$\phi_{\mathcal{A}}: I \rightarrow I$ is a measure preserving transformation of $(I, \Sigma(I), \lambda)$. If each A_{j} is a finite union of intervals then $\phi_{\mathcal{A}}$ is an orientation preserving interval exchange. See [1] for other generalizations of interval exchange maps.

Let $A \subset \mathbb{R}$ be the following measurable set induced by \mathcal{A} :

$$
\begin{equation*}
A \cap[m-1, m)=A_{i}+m-1 \quad \text { for } m \in \mathbb{Z} \text { with } m \equiv i \bmod k . \tag{1.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
f_{\mathcal{A}}(x):=\int_{0}^{x} \chi_{A} d \lambda, \quad x \in \mathbb{R} . \tag{1.4}
\end{equation*}
$$

Clearly $f_{\mathcal{A}}$ is a continuous nondecreasing function on \mathbb{R} with the properties

$$
\begin{equation*}
f_{\mathcal{A}}(0)=0, \quad f_{\mathcal{A}}(x+k)=f_{\mathcal{A}}(x)+1, x \in \mathbb{R} . \tag{1.5}
\end{equation*}
$$

A measurable set $T \subset[s, t]$ is called λ-dense if

$$
\lambda(T \cap(a, b))>0 \quad \text { for all } s \leq a<b \leq t .
$$

\mathcal{A} is called λ-dense if each A_{j} is λ-dense in I. Then $f_{\mathcal{A}}$ is increasing on \mathbb{R} if and only if \mathcal{A} is λ-dense. Assume that $f_{\mathcal{A}}$ is increasing on \mathbb{R}. Let $F_{\mathcal{A}}$ be the inverse function of $f_{\mathcal{A}}$. Then $F_{\mathcal{A}}(0)=0$ and $F_{\mathcal{A}}(1)=k$. Furthermore $F_{\mathcal{A}}=F$ is expansive:

$$
\begin{equation*}
y-x<F(y)-F(x), \quad \text { for all } x<y . \tag{1.6}
\end{equation*}
$$

Let $S^{1}=\mathbb{R} / \mathbb{Z}$. Then $F_{\mathcal{A}}$ induces an expansive orientation preserving k-covering map $\tilde{F}_{\mathcal{A}}: S^{1} \rightarrow S^{1}$, which fixes 0 and preserves λ. Furthermore $\tilde{F}_{\mathcal{A}}$ is λ-invertible. The λ-inverse of $F_{\mathcal{A}}$ is $\phi_{\mathcal{A}}$. Hence the entropy $h_{\lambda}\left(\phi_{\mathcal{A}}\right)$ is 0 if \mathcal{A} is λ-dense. (We prove that $h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0$ for any partition \mathcal{A} of I.)

We show that $\tilde{F}_{\mathcal{A}}$ is conjugate to the standard k-covering map \tilde{G}_{k}, where $G_{k}(x)=$ $k x, x \in \mathbb{R}$. λ is conjugate to a nonatomic probability measure ω on I whose support is $S^{1} . \tilde{G}_{k}$ preserves ω and \tilde{G}_{k} is ω invertible. Vice versa, a nonatomic \tilde{G}_{k}-invariant probability measure, ω whose support is S^{1} and which is invertible with respect to ω, is conjugate to $\tilde{F}_{\mathcal{A}}$ for some λ-dense k-partition \mathcal{A}.

Recall the $2-3$ conjecture of Furstenberg [2]. Let ω be a nonatomic probability measure on S^{1} which is invariant for $\tilde{G}_{2}, \tilde{G}_{3}$. Then $\omega=\lambda$. Furstenberg showed that the support of ω is S^{1}. Rudolph [4] proved the $2-3$ conjecture if either $h_{\omega}\left(\tilde{G}_{2}\right)$ or $h_{\omega}\left(\tilde{G}_{3}\right)$ are positive. Thus it is left to consider the $2-3$ conjecture in the case $h_{\omega}\left(\tilde{G}_{2}\right)=h_{\omega}\left(\tilde{G}_{3}\right)=0$. This is equivalent to the ω invertibility of \tilde{G}_{2} and \tilde{G}_{3}. We show

Theorem 1.1 The $2-3$ conjecture is false if and only there exist 2 and 3λ dense partitions \mathcal{A} and \mathcal{B} of I respectively such that

$$
\begin{equation*}
F_{\mathcal{A}} \circ F_{\mathcal{B}}=F_{\mathcal{B}} \circ F_{\mathcal{A}} \tag{1.7}
\end{equation*}
$$

Clearly the condition (1.7) yields that condition

$$
\begin{equation*}
f_{\mathcal{A}} \circ f_{\mathcal{B}}=f_{\mathcal{B}} \circ f_{\mathcal{A}}, \tag{1.8}
\end{equation*}
$$

which in turn implies

$$
\begin{equation*}
\phi_{\mathcal{A}} \circ \phi_{\mathcal{B}}=\phi_{\mathcal{B}} \circ \phi_{\mathcal{A}} \tag{1.9}
\end{equation*}
$$

We give necessary and sufficient conditions for the equality (1.8) for any 2 and 3 -partitions \mathcal{A} and \mathcal{B} respecitively. A k-partition \mathcal{C} is called a k - n-partition if it is induced by the partition of I to n equal length intervals. (\mathcal{C} is not λ-dense.) Assume that \mathcal{A} and \mathcal{B} are $2-n$ and $3-n$-partitions of I respectively. Then $\phi_{\mathcal{A}}, \phi_{\mathcal{B}}$ induce permutation σ, η respectively on the set $<n>:=\{1, \ldots, n\}$. Assume that (1.8) holds. Then σ and η are two commuting permutations. The equality (1.8) gives the precise structure of σ and η. We show that for $n \leq 3$ there are no regular $2-n$ and 3 - n-partitions for which (1.8) holds. For $n=4$ there are unique regular 2-4 and 3 -4-partitions which satisfy (1.8)

$$
\begin{equation*}
\mathcal{A}=\left\{\left\{\left[\frac{1}{4}, \frac{1}{2}\right),\left[\frac{3}{4}, 1\right)\right\},\left\{\left[0, \frac{1}{4}\right),\left[\frac{1}{2}, \frac{3}{4}\right)\right\}\right\}, \mathcal{B}=\left\{\left\{\left[\frac{1}{2}, \frac{3}{4}\right)\right\},\left\{\left[0, \frac{1}{4}\right),\left[\frac{3}{4}, 1\right)\right\},\left\{\left[\frac{1}{4}, \frac{1}{2}\right)\right\}\right\} \tag{1.10}
\end{equation*}
$$

It is possible to extend this example in a trivial way to any $n \geq 5$, by letting σ and η to fix a few first and last integers in the interval $[1, n]$. For each integer $m \geq 2$, where $3 \nmid 2 m+1$, the maps G_{2}, G_{3} induce regular $2-2 m$ and $3-2 m$ partitions which satisfy (1.8). It seems that the non-validity of the $2-3$ conjecture is closely related to the existence of other type $2-n$ and 3 -n-partitions which satisfy (1.8).

We now summarize briefly the contents of the paper. Section 2 is devoted to the discussion of the connection between k - λ dense partitions and a nonatomic invariant measure of \tilde{G}_{k} whose support is S^{1}. In Section 3 we discuss the map $\phi_{\mathcal{A}}$ for any k-partition of I. In particular we show that the λ entropy of $\phi_{\mathcal{A}}$ is zero. In Section 4 we discuss the conditions on 2 and 3 partitions \mathcal{A} and \mathcal{B} of I which satisfy the condition (1.8). In the last section we discuss the combinatorial conditions on $2-n$ and 3 - n-partitions of I which satisfy (1.8). In particular we show that the example (1.10) is the first nontrivial example of 2-4 and 3-4-partitions of I satisfying (1.8). This example is a particular case of the examples of $2-2 m$ and $3-2 m$ partitions $(3 \nmid 2 m+1)$ satisfying (1.8), induced by the maps G_{2}, G_{3}.

2 Covering maps of S^{1}

Let $F: \bar{I} \rightarrow \mathbb{R}$ be a continuous function such that $F(0)=0, F(1)=k$ for some $1 \leq k \in \mathbb{Z}$. We then extend F to \mathbb{R}

$$
\begin{equation*}
F(0)=0, \quad F(x+1)=F(x)+k \text { for all } x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

Then F induces the map $\tilde{F}: S^{1} \rightarrow S^{1}$ where the degree of \tilde{F} is $k . \tilde{F}$ is a k-covering map if and only if F is increasing on \mathbb{R}. We call F expansive if (1.6) holds.

Theorem 2.1 Let $\mathbb{F}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous increasing function on \mathbb{R} satisfying (2.1) for an integer $k \geq 2$. Assume that F is expansive. Then there exist a unique continuous increasing function $H: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (2.1) with $k=1$ such that

$$
\begin{equation*}
F \circ H=H \circ G_{k} \tag{2.2}
\end{equation*}
$$

where $G_{k}(x)=k x$. In particular \tilde{F} is conjugate to \tilde{G}_{k} on S^{1}.
Proof. Observe that (2.1) implies that $F(j)=j k$ for $j \in \mathbb{Z}$. Let $1 \leq m \in \mathbb{Z}$ and define $F^{\circ m}=\underbrace{F \circ \ldots \circ F}_{m}$. Then $F^{\circ m}(1)=k^{m}$. Observe that $F^{\circ m}$ is also expansive. For $i \in\left[0, k^{m}\right] \cap \mathbb{Z}$ let $x(i, m) \in[0,1]$ be the unique solution of $F^{\circ m}(x(i, m))=i$. Clearly, if $i=i^{\prime} k$ then $x\left(i^{\prime}, m-1\right)=x(i, m)$. Moreover

$$
0=x(0, m)<x(1, m)<\ldots<x\left(k^{m}, m\right)=1
$$

We claim that the set $T:=\cup_{m=1}^{\infty} \cup_{i=0}^{k^{m}}\{x(i, m)\}$ is dense in I. This is equivalent to the statement that for any $0 \leq x<y \leq 1$ there exists $x(i, m)$ such that $x<$ $x(i, m)<y$. Assume to the contrary that there exist $0 \leq x<y \leq 1$ such that for any $m \geq 1$ and $i \in\left[0, k^{m}\right] \cap \mathbb{Z}$ the condition $x(i, m) \notin(x, y)$ holds. Hence
$0<F^{\circ m}(y)-F^{\circ m}(x)<1, m=1, \ldots$ Choose x^{\prime}, y^{\prime} such that $x<x^{\prime}<y^{\prime}<y$. As $F^{\circ m}$ is expansive

$$
\begin{aligned}
& F^{\circ m}\left(y^{\prime}\right)-F^{\circ m}\left(x^{\prime}\right)= \\
& F^{\circ m}(y)-F^{\circ m}(x)-\left(F^{\circ m}(y)-F^{\circ m}\left(y^{\prime}\right)\right)-\left(F^{\circ m}\left(x^{\prime}\right)-F^{\circ m}(x)\right)< \\
& 1-\epsilon, \quad \epsilon=\left(y-y^{\prime}+x^{\prime}-x\right)>0
\end{aligned}
$$

Since F is expansive it follows that

$$
0<F^{\circ m}\left(y^{\prime}\right)-F^{\circ m}\left(x^{\prime}\right)<F^{\circ(m+1)}\left(y^{\prime}\right)-F^{\circ(m+1)}\left(x^{\prime}\right)<1-\epsilon, \quad m=0,1, \ldots
$$

Hence

$$
\lim _{m \rightarrow \infty} F^{\circ m}\left(y^{\prime}\right)-F^{\circ m}\left(x^{\prime}\right)=a, \quad 0<a \leq 1-\epsilon
$$

Let
$p_{m}:=\left\lfloor F^{\circ m}\left(x^{\prime}\right)\right\rfloor, u_{m}:=F^{\circ m}\left(x^{\prime}\right)-p_{m} \in[0,1), v_{m}:=F^{\circ m}\left(y^{\prime}\right)-p_{m}, \quad m=0,1, \ldots$
Choose a subsequence $u_{m_{j}}, j=1, \ldots$ which converges to $u \in I$. Then $v_{m_{j}}, j=1, \ldots$ converges to $u+a$. Observe that

$$
\begin{aligned}
& F(v)-F(u)= \\
& \lim _{j \rightarrow \infty} F\left(v_{m_{j}}\right)-F\left(u_{m_{j}}\right)=\lim _{j \rightarrow \infty} F\left(F^{\circ m_{j}}\left(y^{\prime}\right)-p_{m_{j}}\right)-F\left(F^{\circ m_{j}}\left(x^{\prime}\right)-p_{m_{j}}\right)= \\
& \lim _{j \rightarrow \infty} F\left(F^{\circ m_{j}}\left(y^{\prime}\right)\right)-p_{m_{j}} k-\left(F\left(F^{\circ m_{j}}\left(x^{\prime}\right)\right)-p_{m_{j}} k\right)= \\
& \lim _{j \rightarrow \infty} F^{\circ\left(m_{j}+1\right)}\left(y^{\prime}\right)-F^{\circ\left(m_{j}+1\right)}\left(x^{\prime}\right)=a=v-u .
\end{aligned}
$$

This contradicts the expansiveness of F. Define H on the following dense countable set $S:=\cup_{m=1}^{\infty} \cup_{i=0}^{k^{m}}\left\{\frac{i}{k^{m}}\right\}$:

$$
\begin{equation*}
H\left(\frac{i}{k^{m}}\right)=x(i, m), \quad i=0, \ldots, k^{m}, m=1, \ldots \tag{2.3}
\end{equation*}
$$

Note that if $i=i^{\prime} k$ then $H\left(\frac{i}{k^{m}}\right)=H\left(\frac{i^{\prime}}{k^{m-1}}\right)=x\left(i^{\prime}, m-1\right)=x(i, m)$. So H is well defined on S. Furthermore H is an increasing function on S. As S and T are dense in $I H$ has a unique continuous extension to I. Clearly the function H is increasing on I with $H(0)=0, H(1)=1$. Extend H to \mathbb{R} by (2.1). For $i \in\left[0, k^{m}\right] \cap \mathbb{Z}$ such that $i=j+i_{j} k^{m-1}$ with $j \in\left[0, m^{k-1}\right] \cap \mathbb{Z}, i_{j} \in[0, k] \cap \mathbb{Z}$ we have

$$
H\left(G_{k}\left(\frac{i}{k^{m}}\right)\right)=H\left(\frac{i}{k^{m-1}}\right)=H\left(\frac{j}{k^{m-1}}+i_{j}\right)=H\left(\frac{j}{k^{m-1}}\right)+i_{j}=x(j, m-1)+i_{j}
$$

Observe next that $F\left(H\left(\frac{i}{k^{m}}\right)\right)=F(x(i, m))$. We claim that $F(x(i, m))=x(j, m-$ 1) $+i_{j}$. Indeed

$$
\begin{aligned}
& F^{\circ(m-1)}\left(x(j, m-1)+i_{j}\right)=F^{\circ(m-1)}(x(j, m-1))+i_{j} k^{m-1}= \\
& j+i_{j} k^{m-1}=i=F^{\circ(m-1)}(F(x(i, m))
\end{aligned}
$$

Hence (2.2) holds on S. Since S is dense in I (2.2) holds on I. Use the "periodic" properties of F, G_{k}, H to deduce (2.2) on \mathbb{R}.

It is left to show that H is unique. Recall that H is the identity map on \mathbb{Z}. Assume that (2.2) holds. Then $H \circ G_{k}^{\circ m}=F^{\circ m} \circ H$. Clearly

$$
H\left(G_{k}^{\circ m}\left(\frac{i}{k^{m}}\right)\right)=H(i)=i=F^{\circ m}(x(i, m))=F^{\circ m}\left(H\left(\frac{i}{k^{m}}\right)\right), \quad i \in\left[0, k^{m}\right] \cap \mathbb{Z}
$$

Hence $H\left(\frac{i}{k^{m}}\right)=x(i, m)$.
Theorem 2.2 Let F be a continuous increasing function on \mathbb{R} satisfying (2.1) for an integer $k \geq 2$. Let f be the inverse function of F. Then the orientation preserving k-covering map $\tilde{F}: S^{1} \rightarrow S^{1}$ preserves the Lebesgue measure λ if and only if there exists k nonnegative measurable functions p_{1}, \ldots, p_{k} such that

$$
\begin{align*}
& 0<\int_{a}^{b} p_{i} d \lambda \quad \text { for all } 0 \leq a<b \leq 1, \quad i=1, \ldots k \\
& \sum_{i=1}^{k} p_{i}(x)=1, \quad \text { a.e. in } I \tag{2.4}\\
& f(x+i-1)=\int_{0}^{x} p_{i} d \lambda+\sum_{j=0}^{i-1} \int_{0}^{1} p_{j} d \lambda, \quad p_{0}(x)=0, x \in I, i=1, \ldots, k
\end{align*}
$$

In particular, \tilde{F} is λ-preserving and is invertible with respect to λ if and only if there exists a k - λ-dense partition $\mathcal{A}=\left\{A_{1}, \ldots, A_{\tilde{F}}\right\}$ of I such that $p_{i}=\chi_{A_{i}}$ a.e. for $i=1, \ldots, k$. In this case $\phi_{\mathcal{A}}$ is the λ inverse of \tilde{F}.

Proof. Clearly, for $0 \leq x<y \leq 1$

$$
\begin{equation*}
\tilde{F}^{-1}(x, y)=\cup_{i=1}^{k}(f(x+i-1), f(y+i-1)) \tag{2.5}
\end{equation*}
$$

Then \tilde{F} is λ-preserving if and only if $\lambda\left(\tilde{F}^{-1}(x, y)\right)=y-x$. Hence for each $i \in<k>$ $0<f(y+i-1)-f(x+i-1)<y-x$. Therefore $0 \leq \frac{d f(x+i-1)}{d x}=p_{i} \leq 1$ for some measurable function on I for $i=1, \ldots, k$. In particular the last equality of
(2.4) holds. Since $f(x)$ is increasing in the interval $[0, k]$ we deduce the first equality of (2.4). The second equality of (2.4) is equivalent to the assumption that \mathbb{F} is λ-preserving.

Vice versa, suppose that we are given k nonnegative measurable function p_{1}, \ldots, p_{k} which satisfy the first two conditions of (2.4). Define $f:[0, k] \rightarrow \mathbb{R}$ by the last condition of (2.4). Then f is an increasing function which maps $[0, k]$ on I. Let $F: I \rightarrow[0, k]$ be the inverse of of f. Then \tilde{F} is an orientation preserving k-covering of S^{1} which preserves λ. Note that for any set $B \subset I$, which is a finite union of intervals, the last equality of (2.4) and (2.5) yield
$\lambda(f(B+i-1))=\int_{B} p_{i} d \lambda, i=1, \ldots, k, \quad \lambda(B)=\lambda\left(\tilde{F}^{-1}(B)\right)=\sum_{i=1}^{k} \lambda(f(B+i-1))$.
Hence the above equalities hold for any measurable set $B \subset I$. Suppose furthermore that $p_{i}(x)=\chi_{A_{i}}$ a.e. for some measurable set $A_{i} \subset I$ for $i=1, \ldots, k$. The first two conditions of (2.4) are equivalent to the assumption that $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ can be chosen to be k - λ-dense partition. (2.6) yields

$$
\begin{equation*}
\tilde{F}^{-1}(B)=\int_{B} \chi_{A_{i}} d \lambda, \quad \text { for any measurable set } B \subset A_{i}, i \in<k> \tag{2.7}
\end{equation*}
$$

Hence \tilde{F} has the λ inverse $\phi_{\mathcal{A}}$ given by

$$
\begin{equation*}
\phi_{\mathcal{A}}(x)=f(x+i-1) \quad \text { for } x \in A_{i}, \quad i \in<k> \tag{2.8}
\end{equation*}
$$

Assume finally that \tilde{F} preserves λ and \tilde{F} has λ inverse ψ. In particular (2.4) holds. As $\tilde{F}^{-1}(x)=\cup_{i=1}^{k} f(x+i-1)$, the existence of ψ implies the partition of I to k measurable pairwise distinct sets A_{1}, \ldots, A_{k}, $\operatorname{such}_{\tilde{\sim}}$ that for $\psi(x)=f(x+i-1)$ $x \in A_{i}$. Let B be a measurable subset of A_{i}. Since \tilde{F} preserves λ the first equality of (2.6) implies

$$
\lambda(B)=\lambda\left(\tilde{F}^{-1}(B)\right)=\lambda(\psi(B))=\lambda(f(B+i-1))=\int_{B} p_{i} d \lambda \leq \int_{B} d \lambda=\lambda(B)
$$

Hence $p_{i} \mid B=1$ a.e.. The second condition of (2.4) yields $p_{i}=\chi_{A_{i}}$ a.e. for $i=$ $1, \ldots, k$. The first condition of (2.4) implies that $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ is k - λ-dense partition of I.

Theorem 2.2 was inspired by Parry's paper [3].
Theorem 2.3 Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ be k - λ-dense partition with $k \geq 2$. Let $f_{\mathcal{A}}$ be given by (1.4) and $F_{\mathcal{A}}$ be the inverse of $f_{\mathcal{A}}$. Then $F_{\mathcal{A}}$ is expansive, $\tilde{F}_{\mathcal{A}}$ is an
orientation preserving k covering of S^{1} which preserves λ. The generalized interval exchange $\phi_{\mathcal{A}}$ given by (1.2) is the λ inverse of $\tilde{F}_{\mathcal{A}}$. Furthermore

$$
\begin{equation*}
h_{\lambda}\left(\tilde{F}_{\mathcal{A}}\right)=h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0 \tag{2.9}
\end{equation*}
$$

Proof. Assume that $x, y \in[j-1, j], j \in \mathbb{Z}$ and $x<y$. Let $j \equiv i \bmod k$ for some $i \in<k>$. Since \mathcal{A} is λ-dense

$$
y-x=\int_{x}^{y} d \lambda=\sum_{p=1}^{k} \int_{x}^{y} \chi_{p} d \lambda>\int_{x}^{y} \chi_{i} d \lambda=f(y)-f(x) .
$$

Hence $F(v)-F(u)>v-u$ for any $v>u$. The proof of Theorem 2.2 and the definitions of $f_{\mathcal{A}}$ and $\phi_{\mathcal{A}}$ yield that $\tilde{F}_{\mathcal{A}}$ is λ preserving and $\phi_{\mathcal{A}}$ is the λ inverse of $\tilde{F}_{\mathcal{A}}$. As $F_{\mathcal{A}}$ is expansive by Theorem $2.1 F_{\mathcal{A}}$ is conjugate to G_{k}. In particular $\tilde{F}_{\mathcal{A}}$ is conjugate to \tilde{G}_{k}. λ is conjugate to nonatomic probability measure ω, whose support is \bar{I} and which is \tilde{G}_{k}-invariant. As \tilde{G}_{k} has the standard Markov partition $M_{i}=\left[\frac{i-1}{k}, \frac{i}{k}\right), i=1, \ldots, k$, we deduce that $\tilde{F}_{\mathcal{A}}$ is equivalent to complete \mathbb{Z}_{+}shift on k symbols. Let $\left.\mathcal{M}=\left\{H\left(M_{1}\right), \ldots, H\left(M_{k}\right)\right\}\right)$ the Markov partition for $\tilde{F}_{\mathcal{A}}$. Then $\mathcal{F}=\vee_{i=0}^{\infty} \tilde{F}^{-i} \mathcal{M}$ is the σ-subalgebra generated by the cylinders, which is equivalent to the Borel algebra for any nonatomic probability measure ν. Since \tilde{F} is λ invertible it follows that $h_{\lambda}(\tilde{F})=0$ (cf.[6, Cor. 4.18.1]).

In the next section we show that for any k-partition \mathcal{A} of $I h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0$.
Problem 2.4 Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ be k-partition of I. When $\phi_{\mathcal{A}}$ is ergodic?
Corollary 2.5 Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{p}\right\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{q}\right\}$ be two $p, q-\lambda$-dense partitions of I with $p, q \geq 2$. Then

$$
\begin{equation*}
h_{\lambda}\left(\phi_{\mathcal{A}} \circ \phi_{\mathcal{B}}\right)=h_{\lambda}\left(\tilde{F}_{\mathcal{B}} \circ \tilde{F}_{\mathcal{A}}\right)=0 \tag{2.10}
\end{equation*}
$$

Proof. $F:=F_{\mathcal{B}} \circ F_{\mathcal{A}}$ is a continuous increasing expansive function on \mathbb{R} satisfying (2.1) for $k=p q$. Furthermore \tilde{F} preserves λ. Theorem 2.2 implies that $F=F_{\mathcal{C}}$ for some k - λ-dense partition of I. Hence (2.10) holds.

Problem 2.6 Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{p}\right\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{q}\right\}$ be two p and $q-\lambda$ dense partitions of I with $p, q \geq 2$. Estimate from above

$$
\begin{equation*}
h_{\lambda}\left(\phi_{\mathcal{A}}^{-1} \circ \phi_{\mathcal{B}}\right)=h_{\lambda}\left(\phi_{\mathcal{B}}^{-1} \circ \phi_{\mathcal{A}}\right) . \tag{2.11}
\end{equation*}
$$

Theorem 2.7 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function satisfying (2.1) a.e. for some $k \in \mathbb{Z}$. Assume that

$$
\begin{equation*}
F \circ G_{m}=G_{m} \circ F, \quad|m| \in[2, \infty) \cap \mathbb{Z} \tag{2.12}
\end{equation*}
$$

Then $F=G_{k}=k x$ a.e..

Proof. Let $E(x)=F(x)-k x$. Then $E(x+1)=E(x)$ a.e. in \mathbb{R}. Let j be a positive integer. Since F and G_{k} commute with G_{m} it follows that $E \circ G_{m^{j}}=G_{m^{j}} \circ E$. Hence

$$
\begin{aligned}
& m^{j} E(x)=E\left(m^{j} x\right)=E\left(m^{j} x+1\right)=E\left(m^{j}\left(x+\frac{1}{m^{j}}\right)\right)=m^{j} E\left(x+\frac{1}{m^{j}}\right) \Rightarrow \\
& E\left(x+\frac{1}{m^{j}}\right)=E(x)
\end{aligned}
$$

Since j is an arbitrary positive integer it follows that E is constant a.e.. The condition $E(m x)=m E(x)$ yields that $E=0$ a.e..

The above theorem is related to a theorem (unpublished) of Jean-Paul Thouvenot:

Theorem 2.8 Let $p, q \in \mathbb{Z} \backslash\{-1,0,1\}$ and assume that p and q are multiplicatively independent, i.e. p and q are not integer powers of some integer r. Let $T: S^{1} \rightarrow S^{1}$ be measurable λ-preserving. Assume that T commutes with \tilde{G}_{p} and \tilde{G}_{q}. Then $T=\tilde{G}_{k}$ for some $k \in \mathbb{Z}^{*}$.

Proof of Theorem 1.1. Suppose first that there exist 2 and 3 - λ-dense partitions \mathcal{A} and \mathcal{B} of I such that (1.7) holds. Theorem 2.3 yields that $F_{\mathcal{A}}$ is expansive. Theorem 2.1 yields that $H^{-1} \circ F_{\mathcal{A}} \circ H=G_{2}$. Let $F:=H^{-1} \circ F_{\mathcal{B}} \circ H$. Then F is a continuous function on \mathbb{R} satisfying (2.1) with $k=3$ which commutes with G_{2}. Theorem 2.7 yields that $F=G_{3}$. As $\tilde{F}_{\mathcal{A}}, \tilde{F}_{\mathcal{B}}$ preserve the Lebesgue measure λ it follows that $\tilde{G}_{2}, \tilde{G}_{3}$ preserve the probability measure $\omega=\left(H^{-1}\right)^{*} \lambda$, which is nonnatomic and whose support is \bar{I}. As $\tilde{F}_{\mathcal{A}}, \tilde{F}_{\mathcal{B}}$ are λ-invertible (Theorem 2.3), $\tilde{G}_{2}, \tilde{G}_{3}$ are ω-invertible. Hence $\omega \neq \lambda$, which contradicts the $2-3$ conjecture.

Assume now that $2-3$ conjecture is false. Then there exists a nonatomic probability measure ω which is $\tilde{G}_{2}, \tilde{G}_{3}$ invariant. According to [2] the support of ω is \bar{I}. Rudolph's theorem [4] claims that $h_{\omega}\left(\tilde{G}_{2}\right)=h_{\omega}\left(\tilde{G}_{3}\right)=0$. Hence $\tilde{G}_{2}, \tilde{G}_{3}$ are ω-invertible (cf.[6, Cor. 4.14.3]). Let

$$
H(x)=\int_{0}^{x} d \omega, \quad x \in I
$$

Then $H(x)$ is strictly increasing function on I with $H(0)=0, H(1)=1$. Extend H to \mathbb{R} using (2.1) with $k=1$. Let $F_{k}=H \circ G_{k} \circ H^{-1}, k=2,3$. Then $F_{2} \circ F_{3}=$ $F_{3} \circ F_{2}$. Furthermore $\tilde{F}_{2}, \tilde{F}_{3}$ preserve λ and are λ invertible. Theorem 2.2 implies that $F_{2}=F_{\mathcal{A}}$ and $F_{3}=F_{\mathcal{B}}$ for some 2 and 3 - λ-dense partitions \mathcal{A} and \mathcal{B} of I.

$3 \quad h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0$

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ is be a nondecreasing function, which may be discontinuous. Then F has a countable number of point of discontinuities. We will assume the normalization that F is right continuous. Assume now that F is an increasing function on \mathbb{R} which is not bounded from below and above. Then there exists a unique continuous nondecreasing function $f: \mathbb{R} \rightarrow \mathbb{R}$, which unbounded from below and above, such that $f \circ F=\mathrm{Id}$. We call f the inverse of F. Vice versa, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous nondecreasing function, which is not bounded from below and above, then there exists a unique increasing function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \circ F=\mathrm{Id}$. We call F the inverse of f.

Let $k \in \mathbb{N}$ and assume that F is an increasing function on \mathbb{R} which is continuous at the integer points \mathbb{Z} and satisfies (2.1). Then we can define a measurable map $\tilde{F}: S^{1} \rightarrow S^{1}$. We call \tilde{F} an almost k-covering map.

Theorem 3.1 Let F be an increasing function on \mathbb{R} continuous on \mathbb{Z} and satisfying (2.1) for an integer $k \geq 2$. Let f be the inverse function of F. Then almost k-covering map $\tilde{F}: S^{1} \rightarrow S^{1}$ preserves the Lebesgue measure λ if and only if there exists k nonnegative measurable functions p_{1}, \ldots, p_{k} such that

$$
\begin{aligned}
& \sum_{i=1}^{k} p_{i}(x)=1, \quad \text { a.e. in } I, \\
& f(x+i-1)=\int_{0}^{x} p_{i} d \lambda+\sum_{j=0}^{i-1} \int_{0}^{1} p_{j} d \lambda, \quad p_{0}(x)=0, x \in I, i=1, \ldots, k .
\end{aligned}
$$

In particular, \tilde{F} is λ-preserving and is invertible with respect to λ if and only if there exists a k-partition $\mathcal{A}=\left\{A_{1}, \ldots,{\underset{\tilde{F}}{k}}\right\}$ of I such that $p_{i}=\chi_{A_{i}}$ a.e. for $i=1, \ldots, k$. In this case $\phi_{\mathcal{A}}$ is the λ inverse of \tilde{F}.

The proof of this theorem follows from simple modifications of the proof of Theorem 2.2 and is left to the reader.

Let $U, V \in \Sigma$. In what follows we use the notation:

$$
U \sim V \Longleftrightarrow \lambda(U \Delta V)=0, \quad U \nsim V \Longleftrightarrow \lambda(U \Delta V)>0 .
$$

Let $J \subset \mathbb{R}$ be an interval of positive Lebesgue measure (open, closed or half open). Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$ be two partitions of J. Recall that \mathcal{A} and \mathcal{B} are equivalent if there exist permutationa $\mu:\langle k\rangle \rightarrow\langle k\rangle, \nu:\langle m\rangle \rightarrow\langle m\rangle$ and positive integer p such that

$$
\left.A_{\mu(i)} \sim B_{\nu(i)}, i=1, \ldots, p, A_{\mu(i)} \sim B_{\nu(j)}\right) \sim \emptyset \text { for } i>p \text { and } j>p .
$$

Theorem 3.2 Let $k \geq 1$ and assume that $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ is a partition of $I=[0,1)$. Let $f_{\mathcal{A}}$ be the continuous nondecreasing function defined by (1.3-1.4). Let $F_{\mathcal{A}}: \mathbb{R} \rightarrow \mathbb{R}$ be the increasing function which is the inverse of $f_{\mathcal{A}}$. Let $\tilde{F}_{\mathcal{A}}$ be almost k-covering of S^{1} preserving λ and whose λ inverse is $\phi_{\mathcal{A}}$. Let $0=\beta_{0} \leq$ $\beta_{1} \leq \ldots \leq \beta_{k}=1$ be defined in (1.1). Let $\mathcal{B}=\left\{\left[\beta_{0}, \beta_{1}\right),\left[\beta_{1}, \beta_{2}\right), \ldots,\left[\beta_{k-1}, \beta_{k}\right)\right\}$ be a partition of S^{1} to k intervals. Then the partition $\mathcal{B}_{n}:=\mathcal{B} \vee \phi_{\tilde{\mathcal{A}}} \mathcal{B} \vee \ldots \vee \phi_{\tilde{\mathcal{A}}}^{n} \mathcal{B}$ is equivalent to a partition of $[0,1)$ to intervals $\mathcal{C}_{n}:=\left\{J_{n, 1}, \ldots, J_{n, \ell(n)}\right\}$ with the following properties:
(a) $\ell(0)=k, J_{0, j}=\left[\beta_{j-1}, \beta_{j}\right), j=1, \ldots, k$.
(b) \mathcal{C}_{n} is obtained from \mathcal{C}_{n-1} by subdividing each interval $J_{n-1, j}$ to a finite number of subintervals for each $n \in \mathbb{N}$.
Then one of the following conditions holds:
(c) The partitions $\mathcal{C}_{n}, n=0,1, \ldots$, separate points on S^{1}.
(d) The partitions $\mathcal{C}_{n}, n=0,1, \ldots$, do not separate points on S^{1}. Then there exists a nonempty countable \mathcal{J} with the following properties. For each $j \in \mathcal{J}$ there exist $m_{j} \in \mathbb{N}$ pairwise disjoint open intervals $I_{j, 1}, \ldots, I_{j, m_{j}} \subset S^{1}$ of equal length such that $\phi_{\mathcal{A}}$ acts on $\left\{I_{j, 1}, \ldots, I_{j, m_{j}}\right\}$ as an orientation preserving cyclic interval exchange up to a set of zero measure:

$$
\begin{align*}
& \phi_{\mathcal{A}}\left(I_{j, p}\right) \subset \bar{I}_{j, p+1} \\
& I_{j, p+1} \sim \phi_{\mathcal{A}}\left(I_{i, p}\right), p=1, \ldots, m_{j},\left(I_{j, m_{j}+1}=I_{i, 1}\right), \text { for any } j \in \mathcal{J} \tag{3.1}\\
& I_{j, p} \cap I_{j^{\prime}, p^{\prime}}=\emptyset \text { for any } j \neq j^{\prime} \text { and } p \in<m_{j}>, p^{\prime} \in<m_{j^{\prime}}>
\end{align*}
$$

Let $X=\cup_{j \in \mathcal{J}} \cup_{p=1}^{m_{j}} \bar{I}_{j, q}$. Then the restriction of the partitions $\mathcal{C}_{n}, n=0,1, \ldots$ to $S \backslash X$ separate the points in $S \backslash X$.

Hence in both of the cases the measure entropy $h_{\lambda}\left(\phi_{\mathcal{A}}\right)$ equals to zero.
Proof. For $k=1 \tilde{F}_{\mathcal{A}}=$ Id and the theorem is trivial. Without a loss of generality we may assume that $k \geq 2$ and $\lambda\left(A_{i}\right)>0$ for $i=1, \ldots, k$.

Let $J \subset \mathbb{R}$ be an interval. From the definition of $f_{\mathcal{A}}$ it follows that $f_{\mathcal{A}}(J)$ is an interval. Let $J \subset[0,1)$. Define $I_{i}=f_{\mathcal{A}}(J+i-1) \cap\left[\beta_{j-1}, \beta_{j}\right)$ for $i=1, \ldots, k$. Then I_{1}, \ldots, I_{k} are pairwise distinct intervals, which may be empty or consisting of one point. From the definition of $\phi_{\mathcal{A}}$ it follows that $\phi_{\mathcal{A}}(J) \sim \cup_{i=1}^{k} I_{i}$. Hence \mathcal{B}_{n} is equivalent to a partition \mathcal{C}_{n} of $[0,1)$ to disjoint intervals. Furthermore \mathcal{C}_{n} is the refinement of \mathcal{C}_{n-1}. Hence (a) and (b) hold.

Assume first that the partitions $\mathcal{C}_{n}, n=0,1, \ldots$, separate points. Hence $\vee_{n=0}^{\infty} \mathcal{C}_{n}$ is equivalent to the Borel σ-algebra on S^{1} up to sets of zero measure. Therefore $\vee_{n=0}^{\infty} \phi_{\mathcal{A}}^{n} \mathcal{B}$ is equivalent to the Borel σ-algebra on S^{1} up to sets of zero measure. As $\tilde{F}_{\mathcal{A}}^{-1}=\phi_{\mathcal{A}}$ we deduce that $h_{\lambda}\left(\tilde{F}_{\mathcal{A}}\right)=0$, e.g. [6, Cor.4.18.1], which implies that $h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0$.

Assume now that $\mathcal{C}_{n}, 0,1, \ldots$, do not separate points. That is there is at least one nested set of intervals $J_{1, q_{1}} \supset J_{2, q_{2}} \supset \ldots$ such that $\cap_{i=1}^{\infty} \bar{J}_{i, q_{i}}=K=\bar{K}_{o}, K_{o}=$ $(a, b), 0 \leq a<b \leq 1$. Note that for each $i \geq 2$ there exists $J_{i-1, q_{i-1}^{1}}^{1}$ such that $J_{i, q_{i}} \backslash \phi_{\mathcal{A}}\left(J_{i-1, q_{i-1}^{1}}^{1}\right) \sim \emptyset$. Then $J_{1, q_{1}^{1}}^{1} \supset J_{2, q_{2}^{1}}^{1} \supset \ldots$ is nested set of intervals such that $\cap_{i=1}^{\infty} \bar{J}_{i, q_{i}^{1}}^{1}=K^{1}$ is a closed interval in S. Clearly $\lambda\left(K \backslash \phi_{\mathcal{A}}\left(K^{1}\right)\right)=0$. Hence $\lambda\left(K^{1}\right) \geq$ $\lambda(K)$, i.e. $K^{1}=\bar{K}_{o}^{1}, K_{o}^{1}=\left(a_{1}, b_{1}\right), 0 \leq a_{1}<b_{1} \leq 1, b_{1}-a_{1} \geq b-a$. Since K and K^{1} are intersection of nested sequences of the intervals in the partitions $\mathcal{C}_{n}, n=1, \ldots$, it follows that either $K_{o}=K_{o}^{1}$ or $K_{o} \cap K_{o}^{1}=\emptyset$. Repeating this argument we obtain for each integer $p \geq 2$ a sequence of nested intervals $J_{1, q_{1}^{p}}^{p} \supset J_{2, q_{2}^{2}}^{p} \supset \ldots$ such that $\cap_{i=1}^{\infty} \bar{J}_{i, q_{i}^{p}}^{p}=K^{p}$ is a closed interval in S. Furthermore $\lambda\left(K^{p-1} \backslash \phi_{\mathcal{A}}\left(K^{p}\right)\right)=0$. Hence $K^{p}=\bar{K}_{o}^{p}, K_{o}^{p}=\left(a_{p}, b_{p}\right), 0 \leq a_{p}<b_{p} \leq 1, b_{p}-a_{p} \geq b_{p-1}-a_{p-1}$ for $p=2,3, \ldots$, . Let $K=K^{0}$. Then for any $0 \leq r<p$ either $K_{o}^{r}=K_{0}^{p}$ or $K_{o}^{r} \cap K_{o}^{p}=\emptyset$. Consider the sequence of open intervals $K_{o}^{0}, K_{o}^{1}, K_{o}^{1}, \ldots$ in $(0,1)$, whose length is a nondecresing sequence. Then it is impossible that all these open intervals are pairwise disjoint. So assume that $K_{o}^{r} \cap K_{o}^{p} \neq \emptyset$ for some $0 \leq r<p$. Hence $K_{o}^{r}=K_{o}^{p}$. If $K_{o}^{r+1}=K_{o}^{r}$ we choose $p=r+1$. Otherwise we can assume without loss of generality that $K_{o}^{j} \neq K_{o}^{r}$ for $j=p-1, \ldots, r+1$. Clearly $\lambda\left(K^{j}\right)=\lambda\left(K^{r}\right), j=p-1, \ldots, r+1$. Therefore up a zero measure $\phi_{\mathcal{A}}$ acts the orientation preserving interval exchange $K_{o}^{r}=K_{o}^{p} \rightarrow K_{o}^{p-1} \rightarrow \ldots \rightarrow K_{o}^{r}$ of $p-r$ distinct open intervals in (0,1). Obviuosly K_{o}^{0} appears among this $p-r$ intervals.

Clearly all maximal open intervals K_{o} whose points are not separated by $\mathcal{C}_{n}, n=$ $0, \ldots$, is a countable set of pairwise disjoint intervals of $(0,1)$. If we group each K_{o} with the other $p-r-1$ intervals as above, we obtain a countable set \mathcal{J} of such groups as described in the theorem. Let $X=\cup_{j \in \mathcal{J}} \cup_{p=1}^{m_{j}} \bar{I}_{j, q}$. Then $\phi_{\mathcal{A}}(X)=X$ (up to zero measure sets). Clearly $h_{\lambda}\left(\left.\phi_{\mathcal{A}}\right|_{X}\right)=0$. Then $Y=S^{1} \backslash X$ is $\phi_{\mathcal{A}}$ invariant set (up to a set of zero measure). $\mathcal{C}_{n} \cap Y, n=0, \ldots$, separates the points on Y. The arguments in the beginning of the proof of the theorem yield that $h_{\lambda}\left(\left.\phi_{\mathcal{A}}\right|_{Y}\right)=0$. Hence $h_{\lambda}\left(\phi_{\mathcal{A}}\right)=0$.

4 The condition $f_{\mathcal{A}} \circ f_{\mathcal{B}}=f_{\mathcal{A}} \circ f_{\mathcal{B}}$

Lemma 4.1 Let \mathcal{A}, \mathcal{B} be 2 and 3 partitions of $I=[0,1)$ respectively. Then

$$
\begin{equation*}
f_{\mathcal{A}} \circ f_{\mathcal{B}}=f_{\mathcal{C}}, \quad f_{\mathcal{B}} \circ f_{\mathcal{A}}=f_{\mathcal{D}} \tag{4.1}
\end{equation*}
$$

for some 6 -partitions \mathcal{C}, \mathcal{D} of I. Suppose furthermore that \mathcal{A} and \mathcal{B} are λ-dense partitions. Then \mathcal{C} and \mathcal{D} are λ-dense partitions.

Proof. Clearly

$$
\begin{aligned}
& f_{\mathcal{A}}^{\prime}=\chi_{A}, \quad f_{\mathcal{B}}^{\prime}=\chi_{B}, \\
& \left(f_{\mathcal{A}} \circ f_{\mathcal{B}}\right)^{\prime}=\chi_{f_{\mathcal{B}}^{-1}(A)} \chi_{B}, \quad\left(f_{\mathcal{B}} \circ f_{\mathcal{A}}\right)^{\prime}=\chi_{f_{\mathcal{A}}^{-1}(B)} \chi_{A}, \\
& f_{\mathcal{A}} \circ f_{\mathcal{B}}(x+6)=f_{\mathcal{A}} \circ f_{\mathcal{B}}(x)+1, \quad f_{\mathcal{B}} \circ f_{\mathcal{A}}(x+6)=f_{\mathcal{B}} \circ f_{\mathcal{A}}(x)+1 .
\end{aligned}
$$

Let

$$
\begin{array}{ll}
B_{i, j}:=\left\{x \in B_{i}:\right. & \left.f_{\mathcal{B}}(i-1+x) \in A_{j}\right\}, \text { for } i=1,2,3, j=1,2, \\
A_{j, i}:=\left\{x \in A_{j}:\right. & \left.f_{\mathcal{A}}(j-1+x) \in B_{i}\right\}, \text { for } i=1,2,3, j=1,2, \tag{4.2}
\end{array}
$$

We claim that

$$
\begin{equation*}
\mathcal{C}:=\left\{B_{1,1}, B_{2,1}, B_{3,1}, B_{1,2}, B_{2,2}, B_{3,2}\right\}, \quad \mathcal{D}:=\left\{A_{1,1}, A_{2,1}, A_{1,2}, A_{2,2}, A_{1,3}, A_{2,3}\right\} \tag{4.3}
\end{equation*}
$$

are 6 -partitions of I and (4.1) holds. Since \mathcal{B} is a partition of $I B_{i, j} \cap B_{p, q}=\emptyset$ for $i \neq p$. As \mathcal{A} is a partition of $I B_{i, j} \cap B_{i, p}=\emptyset$ for $j \neq p$. As $f_{\mathcal{B}}([0,3])=[0,1]$ and $f_{\mathcal{B}}(B \cap[0,3])$ has measure 1 it follows that \mathcal{C} is a 6 -partition of I. Similar arguments show that \mathcal{D} is a 6 partition of I. Let $C, D \subset \mathbb{R}$ be the induced sets by \mathcal{C}, \mathcal{D} respectively. The definition of \mathcal{C} and a straightforward calculation shows that $\left(f_{\mathcal{A}} \circ f_{\mathcal{B}}\right)^{\prime}=\chi_{C}$. As $f_{\mathcal{A}} \circ f_{\mathcal{B}}(0)=0$ we deduce the first equality of (4.1). The second equality of (4.1) follows similarly.

Suppose now that \mathcal{A} and \mathcal{B} are λ-dense partitions. Then $f_{\mathcal{A}}$ and $f_{\mathcal{B}}$ are increasing. Hence $f_{\mathcal{A}} \circ f_{\mathcal{B}}$ and $f_{\mathcal{B}} \circ f_{\mathcal{A}}$ are also increasing. The equalites (4.1) yield that \mathcal{C} and \mathcal{D} are λ-dense partitions.

For a set $A \subset \mathbb{R}$ we denote

$$
\begin{aligned}
& A(s, t):=A \cap[s, t], \quad s \leq t \\
& A(t):=A \cap[0, t], \quad 0 \leq t
\end{aligned}
$$

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\mathcal{A}^{\prime}=\left\{A_{1}^{\prime}, \ldots, A_{k}^{\prime}\right\}$ be two k-partitions of $[0,1)$. We say that \mathcal{A} and \mathcal{A}^{\prime} are strongly equivalent, and denote it by $\mathcal{A} \sim \mathcal{B}$ if $A_{i} \sim A_{i}^{\prime}$ for $i=1, \ldots, k$.

Lemma 4.2 Let \mathcal{A} and \mathcal{B} be 2 and 3 partitions of $[0,1]$ respectively. Let $A, B \in$ Σ be defined by \mathcal{A}, \mathcal{B} using (1.3) respectively. Then the following are equivalent
(a) (1.8) holds.
(b) The partitions \mathcal{C} and \mathcal{D} given in (4.3) are both strongly equivalent to the partition

$$
\begin{equation*}
\mathcal{A} \cdot \mathcal{B}:=\left\{A_{1} \cap B_{1}, A_{2} \cap B_{2}, A_{1} \cap B_{3}, A_{2} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{3}\right\} \tag{4.4}
\end{equation*}
$$

(c)

$$
\begin{align*}
& A\left(f_{\mathcal{B}}(s), f_{\mathcal{B}}(t)\right) \sim f_{\mathcal{B}}(A(s, t) \cap B(s, t)), \text { for all } s \leq t, \\
& B\left(f_{\mathcal{A}}(s), f_{\mathcal{A}}(t)\right) \sim f_{\mathcal{A}}(A(s, t) \cap B(s, t)), \quad \text { for all } s \leq t \tag{4.5}
\end{align*}
$$

Proof. Assume (a). Then (4.1) implies that $\mathcal{C} \sim \mathcal{D}$. Furthermore $C \sim D \subset$ $A \cap B$. A straightforward argument yields that $A \cap B$ is induced by a partition $\mathcal{A} \cdot \mathcal{B}$. As $1=\lambda(C(6))=\lambda(A \cap B \cap[0,6]$ we deduce that $C \sim A \cap B$ and $\mathcal{C} \sim \mathcal{D} \sim \mathcal{A} \cdot \mathcal{B}$.

Assume (b). Then (4.1) implies (a).
Assume (a) and (b). Use the definition of \mathcal{C} and the condition $C \sim A \cap B$ and to deduce the first condition in (4.5) with $s=0$ and $t \geq 0$. Hence the first condition of (4.5) holds for any $0 \leq s \leq t$. Use the the condition (1.5) for $f_{\mathcal{B}}$ with $k=3$ to deduce the condition of (4.5) for any $s \leq t$. The second condition in (4.5) is derived similarly.

Assume (c). Recall that $f_{\mathcal{B}}$ maps any measurable set $E \subset B$ to a set E^{\prime} of the same measure. Furthermore the complement of $B\left(B^{c}\right)$ is mapped to a set of zero measure. Hence

$$
f_{\mathcal{B}}(B(t)) \sim f_{\mathcal{B}}([0, t])=\left[0, f_{\mathcal{B}}(t)\right] \Rightarrow \lambda(A(t) \cap B(t))=\lambda\left(f_{\mathcal{B}}(A(t) \cap B(t)) .\right.
$$

Similar conditions hold for $f_{\mathcal{A}}([0, t])$. Assume first that (4.5) holds for $s=0$ and any $t \geq 0$. Then

$$
\begin{aligned}
& f_{\mathcal{A}}\left(f_{\mathcal{B}}(t)\right)=\lambda\left(A\left(f_{\mathcal{B}}(t)\right)=\lambda\left(f_{\mathcal{B}}(A(t) \cap B(t))=\lambda(A(t) \cap B(t))=\right.\right. \\
& \lambda\left(f_{\mathcal{A}}(A(t) \cap B(t))=\lambda\left(B\left(f_{\mathcal{A}}(t)\right)=f_{\mathcal{B}}\left(f_{\mathcal{A}}(t)\right) .\right.\right.
\end{aligned}
$$

Hence (1.8) holds for any $t \geq 0$. Since the two functions appearing in (1.8) satisfy (1.5) we deduce (1.8) for all $t \in \mathbb{R}$.

It is straightforward to show that the condition (1.8) yields the condition (1.9). In the next section we show that the condition (1.9) is sometimes weaker than (1.8). Recall that a $\left(k\right.$-)partition $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of I is called a regular $(k$-) partition if $\lambda\left(A_{i}\right)>0$ for $i=1, \ldots, k$. The following Proposition is straightforward.

Proposition 4.3 Let

$$
\begin{equation*}
\mathcal{A}=\{[0, t),[t, 1)\}, \mathcal{B}=\{[0, t), \emptyset,[t, 1)\} \quad \text { for } t \in[0,1] . \tag{4.6}
\end{equation*}
$$

Then (1.8) holds. Let \mathcal{A} and \mathcal{B} be 2 and 3 -partitions of I which are not strongly equivalent to the corresponding two partitions given in (4.6). Assume that (1.8) holds. Then \mathcal{A} and \mathcal{B} are regular partitions of I.

5 Interval exchanges

In this section we consider only partitions of the interval $I=[0,1)$ induced by the partition of I to n intervals of equal length $\frac{1}{n}$. Let $\mathcal{J}:=\left\{J_{1}, \ldots, J_{n}\right\}$ be a partition of I to $n \geq 2$ half closed intervals of length $\frac{1}{n}$ arranged in an increasing order. Let $2 \leq k \leq n$ and let $\Omega_{1}, \ldots, \Omega_{k}$ be a partition of $\langle n>$ to k disjoint (possibly empty) sets. Set

$$
A_{j}=\cup_{l \in \Omega_{j}} J_{l}, \quad j=1, \ldots, k
$$

Then $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ is called a k - n-partition of $I . \mathcal{A}$ is a regular k - n-partition of I if and only if each Ω_{j} is a nonempty set. Then $\phi_{\mathcal{A}}$ is an interval exchange. $\phi_{\mathcal{A}}$ induces the following permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$:

$$
\phi_{\mathcal{A}}\left(J_{i}\right)=J_{\sigma(i)}, \quad i=1, \ldots, n .
$$

σ maps the nonempty set Ω_{j} to the set $\left[\gamma_{j-1}+1, \gamma_{j-1}+\left|\Omega_{j}\right|\right] \cap \mathbb{Z}$ monotonically for $j=1, \ldots, k$. Here

$$
\gamma_{0}=0, \quad \gamma_{j}=\sum_{l=1}^{j}\left|\Omega_{l}\right|, \quad j=1, \ldots, k
$$

Any k - n-interval partition \mathcal{A} induces a unique regular m - n-interval partition \mathcal{A}^{\prime} with $1 \leq m \leq n$, by discarding the empty sets. Clearly, $\phi_{\mathcal{A}}=\phi_{\mathcal{A}^{\prime}}$, that is \mathcal{A} and \mathcal{A}^{\prime} induce the same interval exchange on I. Equivalently, \mathcal{A} and \mathcal{A}^{\prime} induce the same permutation $\sigma:\langle n>\rightarrow\langle n\rangle$. Any permutation σ on $<n\rangle$ we identify with the ordered set of the elements of $\langle n\rangle$:

$$
\begin{equation*}
\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\left\{\sigma^{-1}(1), \sigma^{-1}(2), \ldots, \sigma^{-1}(n)\right\} \tag{5.1}
\end{equation*}
$$

It is easy to show that σ given in the above form is iduced by a unique minimal regular m - n-interval partition, where m is exactly the number of $j \leq n-1$ for which $i_{j}>i_{j+1}$.

Lemma 5.1 Let \mathcal{A} and \mathcal{B} be 2 -n-interval and 3 -n-interval regular partitions of I respectively. Assume that the condition (1.8) holds. Suppose furthermore that the induced permutations σ, η fixes either 1 or n. Then there exist $2-(n-1)$-interval and $3-(n-1)$-interval partitions \mathcal{A}^{\prime} and \mathcal{B}^{\prime} satisfying the condition (1.8).

Proof. Since \mathcal{B} is a regular $3-n$ partition of I we obtain that $n \geq 3$. Let

$$
\begin{aligned}
& \Gamma_{1}:=\left\{1 \leq i_{1}<i_{2}<\ldots<i_{p}\right\}, \\
& \Gamma_{2}=\left\{1 \leq i_{p+1}<i_{p+2}<\ldots<i_{n}\right\},
\end{aligned}
$$

$$
\begin{align*}
& 1 \leq p<n, \Gamma_{1} \cup \Gamma_{2}=<n>, \\
& \Delta_{1}:=\left\{1 \leq j_{1}<j_{2}<\ldots<j_{q}\right\}, \\
& \Delta_{2}=\left\{1 \leq j_{q+1}<j_{q+2}<\ldots<j_{q^{\prime}}\right\}, \\
& \Delta_{3}=\left\{1 \leq j_{q^{\prime}+1}<j_{q^{\prime}+2}<\ldots<j_{n}\right\}, \\
& 1 \leq q<q^{\prime}<n, \Delta_{1} \cup \Delta_{2} \cup \Delta_{3}=<n>, \\
& A_{i}=\cup_{m \in \Gamma_{i}}\left(\frac{m-1}{n}, \frac{m}{n}\right), i=1,2, \quad B_{j}=\cup_{m \in \Delta_{j}}\left(\frac{m-1}{n}, \frac{m}{n}\right), j=1,2,3 . \tag{5.2}
\end{align*}
$$

Assume first that σ, η fix 1 . Then $i_{1}=j_{1}=1$. Let

$$
\begin{aligned}
& \Gamma_{1}^{\prime}=\left\{i_{2}-1, \ldots, i_{p}-1\right\}, \\
& \Gamma_{2}^{\prime}=\left\{i_{p+1}-1, \ldots, i_{n}-1\right\}, \\
& \Delta_{1}^{\prime}=\left\{j_{2}-1, \ldots, j_{q}-1\right\}, \\
& \Delta_{2}^{\prime}=\left\{j_{q+1}-1, j_{q+2}-1, \ldots, j_{q^{\prime}}-1\right\}, \\
& \Delta_{3}^{\prime}=\left\{j_{q^{\prime}+1}-1, j_{q^{\prime}+2}-1, \ldots, j_{n}-1\right\} .
\end{aligned}
$$

Let $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}$ be induced by $\left\{\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}\right\},\left\{\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, \Delta_{3}^{\prime}\right\}$ respectively. A straightforward argument using Lemma 4.2 shows that

$$
\begin{equation*}
f_{\mathcal{A}} \circ f_{\mathcal{B}}=f_{\mathcal{B}} \circ f_{\mathcal{A}} \Rightarrow f_{\mathcal{A}^{\prime}} \circ f_{\mathcal{B}^{\prime}}=f_{\mathcal{B}^{\prime}} \circ f_{\mathcal{A}^{\prime}} . \tag{5.3}
\end{equation*}
$$

(Another way to deduce the above implication is to collaps each interval $\left[m, m+\frac{1}{n}\right.$) \subset $\mathbb{R}, m \in \mathbb{Z}$ to a point to obtain R. Then (1.8) holds also on R, which is equivalent to $f_{\mathcal{A}^{\prime}} \circ f_{\mathcal{B}^{\prime}}=f_{\mathcal{B}^{\prime}} \circ f_{\mathcal{A}^{\prime}}$.)

Assume now that σ, η fix n. Then $i_{p^{\prime}}=j_{q^{\prime \prime}}=n$. Let $\Gamma_{2}^{\prime}=\Gamma_{2} \backslash\{n\}, \Delta_{3}^{\prime}=\Delta_{3} \backslash\{n\}$. Let $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}$ be induced by $\left\{\Gamma_{1}, \Gamma_{2}^{\prime}\right\},\left\{\Delta_{1}, \Delta_{2}, \Delta_{3}^{\prime}\right\}$ respectively. Then (5.3) holds.

Lemma 5.2 Let \mathcal{A} and \mathcal{B} be regular $2-n$ and 3 -n-partitions induced by the regular 2 -n and 3 - n-partitions of $\langle n\rangle$ given in (5.2). Let the partition $\mathcal{C}=\mathcal{A} \cdot \mathcal{B}$, given by (4.4), be induced by

$$
\begin{array}{ll}
\Omega_{1}=\Gamma_{1} \cap \Delta_{1}=\left\{k_{1}, \ldots k_{r_{11}}\right\}, & r_{11} \geq 0, \\
\Omega_{2}=\Gamma_{2} \cap \Delta_{2}=\left\{k_{r_{11}+1}, \ldots, k_{r_{22}}\right\}, & r_{22} \geq r_{11}, \\
\Omega_{3}=\Gamma_{1} \cap \Delta_{3}=\left\{k_{r_{22}+1}, \ldots, k_{r_{13}}\right\}, & r_{13} \geq r_{22}, \\
\Omega_{4}=\Gamma_{2} \cap \Delta_{1}=\left\{k_{r_{13}+1}, \ldots, k_{r_{21}}\right\}, & r_{21} \geq r_{13}, \\
\Omega_{5}=\Gamma_{1} \cap \Delta_{2}=\left\{k_{r_{21}+1}, \ldots, k_{r_{12}}\right\}, & r_{12} \geq r_{21}, \\
\Omega_{6}=\Gamma_{2} \cap \Delta_{3}=\left\{k_{r_{12}+1}, \ldots, k_{r_{23}}\right\}, & n=r_{23} \geq r_{12} . \tag{5.4}
\end{array}
$$

Assume that (1.8) holds. Then

$$
\begin{gather*}
q=r_{22} \leq p=r_{13} \leq q^{\prime}=r_{21} \tag{5.5}\\
k_{u}=i_{j_{u}}=j_{i_{u}}, \quad u=1, \ldots, n \tag{5.6}\\
\quad j_{r_{11}} \leq p<j_{r_{11}+1} \leq j_{q} \\
j_{q+1} \leq j_{p} \leq p<j_{p+1} \leq j_{q^{\prime}} \\
j_{q^{\prime}+1} \leq j_{r_{12}} \leq p<j_{r_{12}+1} \tag{5.7}
\end{gather*}
$$

$$
\begin{align*}
& i_{r_{11}} \leq q<i_{r_{11}+1} \leq i_{q} \leq q^{\prime}<i_{q+1} \leq i_{p} \\
& i_{p+1} \leq i_{q^{\prime}} \leq q<i_{q^{\prime}+1} \leq i_{r_{12}} \leq q^{\prime}<i_{r_{12}+1} \tag{5.8}
\end{align*}
$$

If one the below equalities hold

$$
\begin{equation*}
0=r_{11}, r_{11}=q, q=p, p=q^{\prime}, q^{\prime}=r_{12}, r_{12}=n \tag{5.9}
\end{equation*}
$$

then the above corresponding inequalities are vacuous.
Proof. Lemma 4.2 yields

$$
\begin{aligned}
& f_{\mathcal{A}}(A(2) \cap B(2))=B(1)=B_{1} \Rightarrow \frac{r_{22}}{n}=\lambda\left(f_{\mathcal{A}}(A(2) \cap B(2))\right)=\lambda\left(B_{1}\right)=\frac{q}{n}, \\
& f_{\mathcal{A}}(A(4) \cap B(4))=B(2)=B_{1} \cup\left(1+B_{2}\right) \Rightarrow \\
& \frac{r_{21}}{n}=\lambda\left(f_{\mathcal{A}}(A(2) \cap B(2))\right)=\lambda\left(B_{1}\right)+\lambda\left(B_{2}\right)=\frac{q^{\prime}}{n}, \\
& f_{\mathcal{B}}(A(3) \cap B(3))=A(1)=A_{1} \Rightarrow \frac{r_{13}}{n}=\lambda\left(f_{\mathcal{B}}(A(3) \cap B(3))\right)=\lambda\left(A_{1}\right)=\frac{p}{n} .
\end{aligned}
$$

Hence (5.5) holds.
Let σ, η be the permutations of $\left\langle n>\right.$ induced by $\left\{\Gamma_{1}, \Gamma_{2}\right\},\left\{\Delta_{1}, \Delta_{2}, \Delta_{3}\right\}$ respectively. Consider $k_{u}, \in \Gamma_{i} \cap \Delta_{j}$ for some $i \in<2>, j \in<3>$. Then $k_{u}=i_{l}$ for $l \in<\gg$ if $i=1$ and $l>p$ if $i=2$. k_{u} corresponds to the interval $\left[t_{u}-\frac{1}{n}, t_{u}\right] \in A\left(2 m_{i j}\right) \cap B\left(2 m_{i j}\right)$ for the smallest integer $m_{i j} \in<3>$. Then $f_{\mathcal{A}}\left(A\left(t_{u}\right) \cap B\left(t_{u}\right)\right)=B\left(f_{\mathcal{A}}\left(t_{u}\right)\right)$ is of total length $\frac{u}{n}$. So the interval $\left[t_{u}-\frac{1}{n}, t_{u}\right)$ is mapped on the interval $\left[m_{i j}-1+\frac{j_{u}-1}{n}, m_{i j}-1+\frac{j_{u}}{n}\right) \in m_{i j}-1+B_{m_{i j}}$. Hence $\sigma\left(i_{l}\right)=l=j_{u}$. This proves the first equality in (5.6). Observe next that $k_{u}=j_{v}$. Use the identity $f_{\mathcal{B}}\left(A\left(t_{u}\right) \cap B\left(t_{u}\right)\right)=A\left(f_{\mathcal{B}}\left(t_{u}\right)\right)$ to deduce the the equality $v=i_{u}$.

If $r_{11}>0$ then $k_{r_{11}} \in \Omega_{1} \subset \Gamma_{1}$. As $k_{r_{11}}=i_{j_{r_{11}}}$ it follows that $j_{r_{11}} \leq p$. If $q=r_{22}>r_{11}$ then $k_{r_{11}+1} \in \Omega_{2} \subset \Gamma_{2}$. As $k_{r_{11}+1}=i_{j_{r_{11}+1}}$ it follows that $j_{r_{11}+1}>p$. If $q=r_{22}<r_{13}=p$ then $\Omega_{3} \neq \emptyset$. Then $k_{q+1}, k_{p} \in \Gamma_{1}$. As $\left.k_{q+1}\right)=i_{q+1}, k_{p}=i_{j_{p}}$ it follows that $j_{q+1} \leq j_{p} \leq p$. If $p=r_{13}<r_{21}=q^{\prime}$ then $\Omega_{4} \neq \emptyset$. Then $k_{p+1} \in \Gamma_{2}$. As $k_{p+1}=i_{j_{p+1}}$ it follows that $j_{p+1}>p$. If $q^{\prime}=r_{21}<r_{12}$ then $\Omega_{5} \neq \emptyset$. Then $k_{q^{\prime}+1}, k_{r_{12}} \in \Gamma_{1}$. As $k_{q^{\prime}+1}=i_{q^{\prime}+1}, k_{r_{12}}=i_{j_{r_{12}}}$ it follows that $j_{q^{\prime}+1} \leq j_{r_{12}} \leq p$. If $r_{12}<r_{23}$ then $\Omega_{6} \neq \emptyset$. Then $k_{r_{12}+1} \in \Gamma_{2}$. As $k_{r_{12}+1}=i_{j_{r_{12}+1}}$ it follows that $j_{r_{12}+1}>p$. These arguments prove (5.7).

Recalling that Ω_{i} is also a subset of the corresponding Δ_{j} and combining the above arguments with the equality $k_{u}=j_{i_{u}}$ we deduce (5.8).

Corollary 5.3 Let the assumptions of Lemma 5.2 hold. Then

$$
\begin{align*}
& q+q^{\prime}=2 p, r_{11}=q-q^{\prime}+p, r_{12}=q^{\prime}-q+p \\
& 1 \leq q<q^{\prime}<n, q \leq p \leq q^{\prime}, 2 q \geq p, 3 p-2 q \leq n \tag{5.10}
\end{align*}
$$

Corollary 5.4 Let \mathcal{A} and \mathcal{B} be $2-n$ and 3 -n-partitions which are not of the form (4.6). Assume that $n \leq 3$. Then (1.8) does not hold.

Let $n=3$ and assume that σ is the cyclic permutation on $<3>$. Let $\eta=\sigma^{2}$. A straightforward calculation shows that for $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$:

$$
A_{1}=\left\{J_{2}, J_{3}\right\}, A_{2}=\left\{J_{1}\right\}, \quad B_{1}=J_{3}, B_{2}=J_{1}, B_{3}=J_{2}
$$

$\phi_{\mathcal{A}}$ and $\phi_{\mathcal{B}}$ are inducing the permutations σ and η of $<3>$ respectively. Hence (1.9) holds. In view of Corollary 5.4 (1.8) does not hold.

Lemma 5.5 The following regular 2-4 and 3-4-interval partitions

$$
\begin{equation*}
\mathcal{A}=\left\{\left\{J_{2}, J_{4}\right\},\left\{J_{1}, J_{3}\right\}\right\}, \quad \mathcal{B}=\left\{\left\{J_{3}\right\},\left\{J_{1}, J_{4}\right\},\left\{J_{2}\right\}\right\} \tag{5.11}
\end{equation*}
$$

are the unique regular 2-4 and 3-4-interval partitions for which (1.8) holds. The induced permutations σ, η are cyclic permutation with $\eta=\sigma^{-1}$.

The proof of the lemma is left to the reader. Combine Lemma 5.1 with Lemma 5.5 to obtain:

Corollary 5.6 Let p, n be nonnegative integers such that $0 \leq p \leq n-4$. Then the following regular $2-n$ and $3-n$-partitions satisfy (1.8):

$$
\begin{aligned}
& \mathcal{A}:= \\
& \left\{\left\{\left[0, \frac{p}{n}\right),\left[\frac{p+1}{n}, \frac{p+2}{n}\right),\left[\frac{p+3}{n}, \frac{p+4}{n}\right)\right\},\left\{\left[\frac{p}{n}, \frac{p+1}{n}\right),\left[\frac{p+2}{n}, \frac{p+3}{n}\right),\left[\frac{p+4}{n}, 1\right)\right\}\right\}, \\
& \mathcal{B}:= \\
& \left\{\left\{\left[0, \frac{p}{n}\right),\left[\frac{p+2}{n}, \frac{p+3}{n}\right)\right\},\left\{\left[\frac{p}{n}, \frac{p+1}{n}\right)\right\},\left\{\left[\frac{p+3}{n}, \frac{p+4}{n}\right)\right\},\left\{\left[\frac{p+1}{n}, \frac{p+2}{n}\right),\left[\frac{p+4}{n}, 1\right)\right\}\right\} .
\end{aligned}
$$

The corresponding permutations σ, η satisfy $\eta=\sigma^{-1}$.
For $n=2 m$ with $m \geq 2$ and $3 \nmid 2 m+1$, there exist regular $2-n$ and $3-n$ partitions of I, induced by the commuting maps G_{2}, G_{3}, for which (1.8) holds.

Lemma 5.7 Let $m \geq 2$ be an integer and assume that $2 m+1$ is not divisible by 3. Let $\sigma_{1}, \eta_{1}:<2 m>\rightarrow<2 m>$ are given by the maps $x \rightarrow 2 x, x \rightarrow 3 x$ modulo $2 m+1$ restricted to $<2 m>$. Then σ_{1} and η_{1} commute. Let $\mathcal{A}_{2 m}, \mathcal{B}_{2 m}$ be the regular $2-2 m, 3-2 m$ partitions induced by

$$
\begin{aligned}
\Gamma_{1} & :=\left\{\sigma_{1}(1), \sigma_{1}(2), \ldots, \sigma_{1}(m)\right\}, \Gamma_{2}:=\left\{\sigma_{1}(m+1), \sigma_{1}(m+2), \ldots, \sigma(2 m)\right\} \\
\Delta_{1} & \left.=\left\{\eta_{1}(1), \ldots, \eta_{1}\left(\left\lfloor\frac{2 m+1}{3}\right\rfloor\right)\right\}, \Delta_{2}=\left\{\eta_{1}\left(\left\lfloor\frac{2 m+1}{3}\right\rfloor+1\right), \ldots,\right\}, \eta_{1}\left(\left\lfloor\frac{4 m+2}{3}\right\rfloor\right)\right\}, \\
\Delta_{3} & =\left\{\eta_{1}\left(\left\lfloor\frac{4 m+2}{3}\right\rfloor+1\right), \ldots, \eta_{1}(2 m)\right\}
\end{aligned}
$$

Then $\phi_{\mathcal{A}_{2 m}} \circ \phi_{\mathcal{B}_{2 m}}=\phi_{\mathcal{B}_{2 m}} \circ \phi_{\mathcal{A}_{2 m}}$.
The proof is left to the reader. Note that

$$
\lim _{m \rightarrow \infty} \phi_{\mathcal{A}_{2 m}}(x)=\frac{x}{2}=G_{2}^{-1}(x), \quad \lim _{m \rightarrow \infty} \phi_{\mathcal{B}_{2 m}}(x)=\frac{x}{3}=G_{3}^{-1}(x)
$$

Thus Lemma 5.7 does not give in the limit a contradiction to the 2-3 conjecture.
We do not know for which $m \geq 3$ the converse to Lemma 5.7 holds. That is, assume that $m \geq 3,3 \nmid 2 m+1$ and $\mathcal{A}=\left\{A_{1}, A_{2}\right\}, \mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$ are regular $2-2 m, 3-2 m$ partitions. Suppose furthermore that $J_{2 m} \in A_{1}, J_{1} \in A_{2}$ and (1.8) holds. Are \mathcal{A}, \mathcal{B} equal to $\mathcal{A}_{2 m}, \mathcal{B}_{2 m}$ respectively?

Another way to find a counterexample to the $2-3$ conjecture is to study the ergodic measures invariant under $\tilde{G}_{2}, \tilde{G}_{3}$, which are supported on a finite number of points. It is straightforward to show that such measure is equi-distributed on an orbit of the action of the permutations σ_{1}, η_{1} given in Lemma 5.7. It seems that this approach is not straightforward related to the problem of the converse to Lemma 5.7 we discussed above.

References

[1] P. Arnoux, D.S. Ornstein and B. Weiss, Cutting and stacking, interval exchanges and geometric models, Israel J. Math. 50 (1985), 160-168.
[2] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Sys. Theory 1 (1967), 1-49.
[3] W. Parry, In general a degree two map is an automorphism, Contemporary Math. 135 (1992), 219-224.
[4] D. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory \mathcal{G} Dynamical Systems 10 (1991), 395-406.
[5] Jean-Paul Thouvenot, private communication.
[6] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.

