Counting matchings in graphs with applications to the monomer-dimer models

Shmuel Friedland
Univ. Illinois at Chicago \& Berlin Mathematical School

KTH, 16 April, 2008

Overview

Overview

- Matchings in graphs

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^{2}, \mathbb{Z}^{3}$

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^{2}, \mathbb{Z}^{3}$
- Asymptotic lower and upper matching conjectures

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^{2}, \mathbb{Z}^{3}$
- Asymptotic lower and upper matching conjectures
- Plots and results

Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^{2}, \mathbb{Z}^{3}$
- Asymptotic lower and upper matching conjectures
- Plots and results
- Summary and open problems

Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices, 101 edges, 24 dimers, 12 monomers

Matchings

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$ no two edges in M share a common endpoint.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \Longleftrightarrow no monomers.

Matchings

- $G=(V, E)$ undirected graph with vertices V, edges E.
- matching in $G: M \subseteq E$
no two edges in M share a common endpoint.
- $e=(u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \Longleftrightarrow no monomers.
- M is k-matching $\Longleftrightarrow \# M=k$.

Generating matching polynomial

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices
$q K_{r, r} \in \mathcal{G}(r, 2 r q)$ a union of q copies of $K_{r, r}$.

Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in $G, \phi(0, G):=1$
- $\Phi_{G}(x):=\sum_{k} \phi(k, G) x^{k}$ matching generating polyn.
- roots of $\Phi_{G}(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_{1} \cup G_{2}}(x)=\Phi_{G_{1}}(x) \Phi_{G_{2}}(x)$

Example: $K_{r, r}$ complete bipartite graph on $2 r$ vertices.

$$
\Phi_{K_{r, r}}(x)=\sum_{k=0}^{r}\binom{r}{k}^{2} k!x^{k}
$$

$\mathcal{G}(r, 2 n)$ set of r-regular bipartite graphs on $2 n$ vertices
$q K_{r, r} \in \mathcal{G}(r, 2 r q)$ a union of q copies of $K_{r, r}$.

$$
\Phi_{q K_{r, r}}=\Phi_{K_{r, r}}^{q}
$$

Notations and definitions

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if

$$
\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n
$$

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if

$$
\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j j}, \quad i=1, \ldots, n
$$

- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices
is the set of the extreme points of Ω_{n}

Notations and definitions

- $\langle n\rangle:=\{1,2, \ldots, n-1, n\}$
- For $A=\left[a_{i j}\right]_{i, j}^{n} \in \mathbb{R}^{n \times n}$ permanent of A :

$$
\operatorname{perm} A=\sum_{\text {all permutations } \sigma \text { on }\langle n\rangle} \prod_{i=1} a_{i \sigma(i)}
$$

- For $C \in \mathbb{R}^{m \times n}$ and $k \in\langle\min (m, n)\rangle$ $\operatorname{perm}_{k} C$ is the sum of the permanents of all $k \times k$ submatrices of C
- $A=\left[a_{i j}\right] \in \mathbb{R}_{+}^{n \times n}$ doubly stochastic if $\sum_{j=1}^{n} a_{i j}=1=\sum_{j=1}^{n} a_{j i}, \quad i=1, \ldots, n$
- $\Omega_{n} \subset \mathbb{R}_{+}^{n \times n}$ is the set of doubly stochastic matrices
- $\mathcal{P}_{n} \subset \Omega_{n}$ the set of permutation matrices
is the set of the extreme points of Ω_{n}
Birkhoff-Egerváry-König theorem (1946-1931-1916)

Bipartite graphs

Figure: An example of a bipartite graph

Incidence matrix $\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$

Formulas for k-matchings in bipartite graphs

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$, represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.

Example: Any subgraph of \mathbb{Z}^{d} is bipartite

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,
represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.
Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,
represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.
Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$.
The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,
represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.
Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$.
The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.
For $G=(\langle 2 n\rangle, E)$ bipartite $G \in \mathcal{G}(r, 2 n) \Longleftrightarrow \frac{1}{r} B(G) \in \Omega_{n} \Longleftrightarrow$ G is a disjoint (edge) union of r perfect matchings

Formulas for k-matchings in bipartite graphs

$G=(V, E)$ bipartite $V=V_{1} \cup V_{2}, E \subset V_{1} \times V_{2}$,
represented by $B(G)=B=\left[b_{i j}\right]_{i, j=1}^{m \times n} \in\{0,1\}^{m \times n}, \# V_{1}=m, V_{2}=n$.
Example: Any subgraph of \mathbb{Z}^{d} is bipartite
CLAIM: $\phi(k, G)=\operatorname{perm}_{k}(B(G))$.
Prf: Suppose $n=\# V_{1}=\# V_{2}$.
Then permutation $\sigma:\langle n\rangle \rightarrow\langle n\rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i \sigma(i)}=1$.
The number of perfect matchings in G is $\phi(n, G)=\operatorname{perm} B(G)$.
For $G=(\langle 2 n\rangle, E)$ bipartite $G \in \mathcal{G}(r, 2 n) \Longleftrightarrow \frac{1}{r} B(G) \in \Omega_{n} \Longleftrightarrow$ G is a disjoint (edge) union of r perfect matchings
$r^{k} \min _{C \in \Omega_{n}} \operatorname{perm}_{k} C \leq \phi(k, G)$ for any $G \in \mathcal{G}(r, 2 n)$

van der Waerden and Tverberg conjectures

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices
van der Waerden permanent conjecture 1926:

$$
\min _{C \in \Omega_{n}} \operatorname{perm} C=\operatorname{perm} \frac{1}{n} J_{n}\left(=\frac{n!}{n^{n}} \approx \sqrt{2 \pi n} e^{-n}\right)
$$

van der Waerden and Tverberg conjectures

$J_{n}=B\left(K_{n, n}\right)=[1]$ the incidence matrix of the complete bipartite graph $K_{n, n}$ on $2 n$ vertices
van der Waerden permanent conjecture 1926:

$$
\min _{C \in \Omega_{n}} \operatorname{perm} C=\operatorname{perm} \frac{1}{n} J_{n}\left(=\frac{n!}{n^{n}} \approx \sqrt{2 \pi n} e^{-n}\right)
$$

Tverberg permanent conjecture 1963:

$$
\min _{C \in \Omega_{n}} \operatorname{perm}_{k} C=\operatorname{perm}_{k} \frac{1}{n} J_{n}\left(=\binom{n}{k}^{2} \frac{k!}{n^{k}}\right)
$$

for all $k=1, \ldots, n$.

History

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
- 82 proof uses methods of 81 proofs with extra ingredients

History

- In 1979 Friedland showed the lower bound perm $C \geq e^{-n}$ for any $C \in \Omega_{n}$ following T. Bang's announcement 1976.
This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982
- 79 proof is tour de force according to Bang
- 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
- 82 proof uses methods of 81 proofs with extra ingredients
- There are new simple proofs using nonnegative hyperbolic polynomials e.g. Friedland-Gurvits 2008

Lower matching bounds for $0-1$ matrices

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($d=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($d=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} .
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($d=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\text { Cor }: \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($d=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\text { Cor: } \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Con FKM 2006 : $\phi(k, G) \geq\binom{ n}{k}^{2}\left(\frac{n r-k}{n r}\right)^{n r-k}\left(\frac{k r}{n}\right)^{k}, G \in \mathcal{G}(r, 2 n)$

Lower matching bounds for $0-1$ matrices

Voorhoeve-1979 ($d=3$) Schrijver-1998

$$
\phi(n, G) \geq\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n} \quad \text { for } \quad G \in \mathcal{G}(r, 2 n)
$$

Gurvits 2006: $A \in \Omega_{n}$, each column has at most r nonzero entries:

$$
\begin{gathered}
\operatorname{perm} A \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{r-1}{r}\right)^{(r-1) n} . \\
\operatorname{Cor}: \phi(n, G) \geq \frac{r!}{r^{r}}\left(\frac{r}{r-1}\right)^{r(r-1)}\left(\frac{(r-1)^{r-1}}{r^{r-2}}\right)^{n}
\end{gathered}
$$

Con FKM 2006 : $\phi(k, G) \geq\binom{ n}{k}^{2}\left(\frac{n r-k}{n r}\right)^{n r-k}\left(\frac{k r}{n}\right)^{k}, G \in \mathcal{G}(r, 2 n)$
F-G 2008 showed weaker inequalities

Upper matching bounds for $0-1$ matrices

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4 -cycles in G

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4-cycles in G
- Thm: For any r-regular graph $G=(V, E)$,

$$
c_{4}(G) \leq \frac{r \# V}{2} \frac{(r-1)^{2}}{4}
$$

Equality iff $G=q K_{r, r}$

Upper matching bounds for $0-1$ matrices

- Assume $A \in\{0,1\}^{n \times n}$.
- r_{i} is i - th row sum of A
- Bregman 1973: perm $A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{\frac{1}{r_{i}}}$
- $\phi(q r, G) \leq \phi\left(q r, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$
- Con FKM 2006: $\phi(k, G) \leq \phi\left(k, q K_{r, r}\right)$ for any $G \in \mathcal{G}(r, 2 q r)$ and $k=1, \ldots, q r$
- $c_{4}(G)$ - The number of 4-cycles in G
- Thm: For any r-regular graph $G=(V, E)$,

$$
c_{4}(G) \leq \frac{r \# V}{2} \frac{(r-1)^{2}}{4}
$$

Equality iff $G=q K_{r, r}$

- Prf: Any edge in $e \in E$ can be in at most $(r-1)^{2}$ different 4-cycles.

An example

Figure: Edge neighborhood of $\overline{V_{2} W_{2}}$ of 4- regular graph on 8 vertices

Upper perfect matching bounds for general graphs

$G=(V, E)$ Non-bipartite graph on $2 n$ vertices

$$
\phi(n, G) \leq \prod_{v \in V}((\operatorname{deg} v)!)^{\frac{1}{2 \operatorname{deg} v}}
$$

If deg $v>0, \forall v \in V$ equality holds iff G is a disjoint union of complete balanced bipartite graphs
Kahn-Lóvasz unpublished, Friedland 2008-arXiv, Alon-Friedland 2008-arXiv.

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$

(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$
(3) $\phi(4, G)=p_{1}(n, r)+c_{4}(G)$
$p_{1}(n, r)=$
$\frac{n^{4} r^{4}}{24}+\frac{n^{3} r^{3}}{4}(1-2 r)+\frac{n^{2} r^{2}}{24}\left(19-60 r+52 r^{2}\right)+n r\left(\frac{5}{4}-5 r+7 r^{2}-\frac{7 r^{3}}{2}\right)$

Exact values for small matchings

For $G \in \mathcal{G}(r, 2 n)$
(1) $\phi(1, G)=n r$
(2) $\phi(2, G)=\binom{n r}{2}-2 n\binom{r}{2}=\frac{n r(n r-(2 r-1))}{2}$
(3) $\phi(3, G)=\binom{n r}{3}-2 n\binom{r}{3}-n r(r-1)^{2}-2 n\binom{r}{2}(n r-2 r-(r-2))$
(4) $\phi(4, G)=p_{1}(n, r)+c_{4}(G)$

$$
p_{1}(n, r)=
$$

$$
\frac{n^{4} r^{4}}{24}+\frac{n^{3} r^{3}}{4}(1-2 r)+\frac{n^{2} r^{2}}{24}\left(19-60 r+52 r^{2}\right)+n r\left(\frac{5}{4}-5 r+7 r^{2}-\frac{7 r^{3}}{2}\right)
$$

Notation:

$$
\begin{array}{r}
f(x)=\sum_{i=0}^{N} a_{i} x^{i} \preceq g(x)=\sum_{i=0}^{N} b_{i} x^{i} \Longleftrightarrow \\
a_{i} \leq b_{i} \text { for } i=1, \ldots, N
\end{array}
$$

2-regular graphs

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n-5}{3} K_{3} \cup C_{5}}(x)=\Phi_{C_{3}}(x)^{\frac{n-5}{3}} \Phi_{C_{5}}(x)$ if $3 \mid n-2$

2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_{n}: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2}=C_{4}$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2,2 n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
$\Phi_{G}(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x)=\Phi_{C_{4}}(x)^{\frac{n}{4}}$ if $4 \mid n$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_{5}}(x)=\Phi_{C_{4}}(x)^{\frac{n-5}{4}} \Phi_{C_{5}}(x)$ if $4 \mid n-1$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_{6}}(x)=\Phi_{C_{4}}(x)^{\frac{n-6}{4}} \Phi_{C_{6}}(x)$ if $4 \mid n-2$
$\Phi_{G}(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_{7}}(x)=\Phi_{C_{4}}(x)^{\frac{n-7}{4}} \Phi_{C_{7}}(x)$ if $4 \mid n-3$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n}{3} K_{3}}(x)=\Phi_{C_{3}}(x)^{\frac{n}{3}}$ if $3 \mid n$
$\Phi_{G}(x) \succeq \Phi_{\frac{n-4}{3} K_{3} \cup C_{4}}(x)=\Phi_{C_{3}}(x)^{\frac{n-4}{3}} \Phi_{C_{4}}(x)$ if $3 \mid n-1$,
$\Phi_{G}(x) \succeq \Phi_{\frac{n-5}{3} K_{3} \cup C_{5}}(x)=\Phi_{C_{3}}(x)^{\frac{n-5}{3}} \Phi_{C_{5}}(x)$ if $3 \mid n-2$
If n even G multi-bipartite 2 -regular graph then $\Phi_{G}(x) \succeq \Phi_{C_{n}}(\underline{x})$.

Relations between matching polynomials

- For $0 \leq i \leq j$
$\Phi_{C_{i}}(x) \Phi_{C_{j}}(x)-\Phi_{C_{i+j}}(x)=(-1)^{i} x^{i} \Phi_{C_{j-i}}(x)$
- P_{n} path $1 \rightarrow 2 \rightarrow \ldots \rightarrow n$.
- $p_{n}(x):=\Phi_{P_{n}}(x), q_{n}(x):=\Phi_{C_{n}}(x)$
- $p_{k}(x)=p_{k-1}(x)+x p_{k-2}(x)$
- $q_{k}(x)=p_{k}(x)+x p_{k-2}(x)$
- If $n=0,1 \bmod 4$
$p_{n-1}=p_{1} p_{n-1} \prec p_{3} p_{n-3} \prec \cdots \prec p_{2\left\lfloor\frac{n}{4}\right\rfloor-1} p_{n-2\left\lfloor\frac{n}{4}\right\rfloor+1} \prec$
$p_{2\left\lfloor\frac{n}{4}\right\rfloor} p_{n-2\left\lfloor\frac{n}{4}\right\rfloor} \prec p_{2\left\lfloor\frac{n}{4}\right\rfloor-2} p_{n-2\left\lfloor\frac{n}{4}\right\rfloor+2} \prec \cdots \prec p_{2} p_{n-2} \prec p_{0} p_{n}=p_{n}$
$q_{n-1}=q_{1} q_{n-1} \prec q_{3} q_{n-3} \prec \cdots \prec q_{2\left\lfloor\frac{n}{4}\right\rfloor-1} q_{n-2\left\lfloor\frac{n}{4}\right\rfloor+1} \prec$
$q_{2\left\lfloor\frac{n}{4}\right\rfloor} q_{n-2\left\lfloor\frac{n}{4}\right\rfloor} \prec q_{2\left\lfloor\frac{n}{4}\right\rfloor-2} q_{n-2\left\lfloor\frac{n}{4}\right\rfloor+2} \prec \cdots \prec q_{2} q_{n-2} \prec q_{n+1}$
- Characterization of maximal and minimal matching polynomial graphs in family of graphs with given number of vertices of degrees one and two

Cubic bipartite graphs

Cubic bipartite graphs

- $\mathcal{G}(3,6)=\left\{K_{3,3}\right\}$

Cubic bipartite graphs

- $\mathcal{G}(3,6)=\left\{K_{3,3}\right\}$
- $\mathcal{G}(3,8)=\left\{Q_{3}\right\}$ three dimensional cube

Cubic bipartite graphs

- $\mathcal{G}(3,6)=\left\{K_{3,3}\right\}$
- $\mathcal{G}(3,8)=\left\{Q_{3}\right\}$ three dimensional cube
- $\mathcal{G}(3,10)=\left\{G_{1}, M_{10}\right\}$ have incomparable matching polynomials $\psi\left(x, G_{1}\right):=1+15 x+75 x^{2}+145 x^{3}+96 x^{4}+12 x^{5}$ $\psi\left(x, M_{10}\right):=1+15 x+75 x^{2}+145 x^{3}+95 x^{4}+13 x^{5}$

Cubic bipartite graphs

- $\mathcal{G}(3,6)=\left\{K_{3,3}\right\}$
- $\mathcal{G}(3,8)=\left\{Q_{3}\right\}$ three dimensional cube
- $\mathcal{G}(3,10)=\left\{G_{1}, M_{10}\right\}$ have incomparable matching polynomials $\psi\left(x, G_{1}\right):=1+15 x+75 x^{2}+145 x^{3}+96 x^{4}+12 x^{5}$ $\psi\left(x, M_{10}\right):=1+15 x+75 x^{2}+145 x^{3}+95 x^{4}+13 x^{5}$
- For $2 n$ from 12 to 24 the extremal graphs, with the maximal $\phi(I, G)$:

$$
\begin{array}{ll}
\frac{2 n}{6} K_{3,3} & \text { if } 6 \mid 2 n \\
\frac{2 n-8}{6} K_{3,3} \cup Q_{3} & \text { if } 6 \mid(2 n-2) \\
\frac{2 n-10}{6} K_{3,3} \cup\left(G_{1} \text { or } M_{10}\right) & \text { if } 6 \mid(2 n-4)
\end{array}
$$

Two bipartite 3-regular graphs on 10 vertices

M_{10}

G_{1}

Expected values of k-matchings

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa

$$
G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle
$$ number of different σ inducing the same simple G is $(r!)^{n}$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$ number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$ number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$
- FKM 06:
$\left.\left.E(k, n, r):=\mathrm{E}(\phi(k, G))=\binom{n}{k}^{2} r^{2 k} k!(n r-k)!\right)(n r)!\right)^{-1}$,
$k=1, \ldots, n$

Expected values of k-matchings

- Permutation $\sigma:\langle n r\rangle \rightarrow\langle n r\rangle$ induces $G(\sigma) \in \mathcal{G}_{\text {mult }}(r, 2 n)$ and vice versa
$G(\sigma)=\left\{\left(i,\left\lceil\frac{\sigma((i-1) r+j)}{r}\right\rceil\right), j=1, \ldots, r, i=1, \ldots, n\right\} \subset\langle n\rangle \times\langle n\rangle$
number of different σ inducing the same simple G is $(r!)^{n}$
- μ probability measure on $\mathcal{G}_{\text {mult }}(r, 2 n)$:
$\mu(G(\sigma))=((n r)!)^{-1}$
- FKM 06:
$\left.\left.E(k, n, r):=\mathrm{E}(\phi(k, G))=\binom{n}{k}^{2} r^{2 k} k!(n r-k)!\right)(n r)!\right)^{-1}$, $k=1, \ldots, n$
- $1 \leq k_{l} \leq n_{l}, I=1, \ldots$, increasing sequences of integers s.t.
$\lim _{l \rightarrow \infty} \frac{k_{l}}{n_{l}}=p \in[0,1]$. Then

$$
\lim _{l \rightarrow \infty} \frac{\log E\left(k_{l}, n_{l}, r\right)}{2 n_{k}}=f(p, r)
$$

$f(p, r):=\frac{1}{2}\left(p \log r-p \log p-2(1-p) \log (1-p)+(r-p) \log \left(1-\frac{p}{r}\right)\right)$

p-matching and total matching entropies

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

and total matching entropy, (monomer-dimer entropy)

$$
h_{G}=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \sum_{k=0}^{0.5\left(\# V_{l}\right)} \phi\left(k, G_{l}\right)}{\# V_{l}}
$$

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

and total matching entropy, (monomer-dimer entropy)

$$
h_{G}=\sup _{\text {on all sequences }} \limsup _{l \rightarrow \infty} \frac{\log \sum_{k=0}^{0.5\left(\# V_{l}\right)} \phi\left(k, G_{l}\right)}{\# V_{l}},
$$

$G_{I}=\left(E_{l}, V_{I}\right), I \in \mathbb{N}$ a sequence of finite graphs converging to G, and

$$
\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p
$$

p-matching and total matching entropies

$G=(V, E)$ infinite, degree of each vertex bounded by N,
$p \in[0,1]$-matching entropy, (p-dimer entropy) of G

$$
h_{G}(p)=\sup _{\text {on all sequences }} \lim _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

and total matching entropy, (monomer-dimer entropy)

$$
h_{G}=\sup _{\text {on all sequences }} \limsup _{I \rightarrow \infty} \frac{\log \sum_{k=0}^{0.5\left(\# V_{l}\right)} \phi\left(k, G_{l}\right)}{\# V_{l}},
$$

$G_{I}=\left(E_{I}, V_{I}\right), I \in \mathbb{N}$ a sequence of finite graphs converging to G, and

$$
\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p
$$

$h_{G}=\max _{p \in[0,1]} h_{G}(p)$

Hammersley's results

John Michael Hammersley 21.3.1920-2.5.2004

Hammersley's results

John Michael Hammersley 21.3.1920-2.5.2004

- Book: Monte Carlo Methods 1964 (MCM attributed to Stan Ulam - 1944)
- Self Avoiding Walks and Percolation Theory

Hammersley's results

John Michael Hammersley 21.3.1920-2.5.2004

- Book: Monte Carlo Methods 1964 (MCM attributed to Stan Ulam - 1944)
- Self Avoiding Walks and Percolation Theory
- 60's: $G:=\mathbb{Z}^{d}$ infinite $2 d$-regular bipartite graph

$$
\begin{array}{r}
V_{I}=\left\langle s_{1, I}\right\rangle \times\left\langle s_{2, I}\right\rangle \times \ldots \times\left\langle s_{d, I}\right\rangle \\
\quad \lim s_{i, l}=\infty, i=1, \ldots, d
\end{array}
$$

Then $h_{d}(p):=h_{G}(p)$ same for all sequences

Hammersley's results

John Michael Hammersley 21.3.1920-2.5.2004

- Book: Monte Carlo Methods 1964 (MCM attributed to Stan Ulam - 1944)
- Self Avoiding Walks and Percolation Theory
- 60's: $G:=\mathbb{Z}^{d}$ infinite $2 d$-regular bipartite graph

$$
\begin{array}{r}
V_{I}=\left\langle s_{1, I}\right\rangle \times\left\langle s_{2, I}\right\rangle \times \ldots \times\left\langle s_{d, I}\right\rangle \\
\quad \lim s_{i, l}=\infty, i=1, \ldots, d
\end{array}
$$

Then $h_{d}(p):=h_{G}(p)$ same for all sequences

- $h_{p}(d)$ is concave

Facts

Facts

- $h_{d}(p)-p$ - d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937

Facts

- $h_{d}(p)-p$ - d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$

Facts

- $h_{d}(p)-p-d$-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy

Facts

- $h_{d}(p)-p$-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy

Facts

- $h_{d}(p)$ - p-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961

Facts

- $h_{d}(p)-p$-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961
$h_{2}(p), \quad p \in[0,1)$

Facts

- $h_{d}(p)$ - p-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy
-

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961
$h_{2}(p), \quad p \in[0,1)$

- Baxter 1968 heuristical high precision computations

Facts

- $h_{d}(p)$ - p-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy
-

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961
$h_{2}(p), \quad p \in[0,1)$

- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC

Facts

- $h_{d}(p)$ - p-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy
-

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961
$h_{2}(p), \quad p \in[0,1)$

- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC
- .66279897(190) $\leqslant h_{2} \leqslant .66279897$ (2844913) F-P 2005

Facts

- $h_{d}(p)-p$-d-dimensional monomer-dimer entropy L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_{1}(p)=f(p, 2)$
- $h_{d}(1)$ - d-dimer entropy
- $h_{d}=\max _{p \in[0,1]} h_{d}(p)$ - d-monomer-dimer entropy
-

$$
h_{2}(1)=\frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^{q}}{(2 q+1)^{2}}=0.29156090 \ldots
$$

Fisher,Kasteleyn 1961
$h_{2}(p), \quad p \in[0,1)$

- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC
- .66279897(190) $\leqslant h_{2} \leqslant .66279897$ (2844913) F-P 2005
- Friedland-Peled confirmed Baxter's computations to be published

Computations of 3-dimensional entropies

Computational methods

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998
- $h_{3}(1) \leqslant 0.457547$ Lundow 2001 (massive parallel computations)

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998
- $h_{3}(1) \leqslant 0.457547$ Lundow 2001 (massive parallel computations)
- $h_{3} \geqslant 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998
- $h_{3}(1) \leqslant 0.457547$ Lundow 2001 (massive parallel computations)
- $h_{3} \geqslant 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_{3} \leqslant .7862023450$ Friedland-Peled 2005

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998
- $h_{3}(1) \leqslant 0.457547$ Lundow 2001 (massive parallel computations)
- $h_{3} \geqslant 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_{3} \leqslant .7862023450$ Friedland-Peled 2005
- $h_{3} \geq .7845241927$ Friedland-Gurvits 2008

Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations Estimate of 3-dimensional entropies
- $h_{3}(1) \geqslant 0.440075$ Schrijver's lower bound 1998
- $h_{3}(1) \leqslant 0.463107$ Ciucu 1998
- $h_{3}(1) \leqslant 0.457547$ Lundow 2001 (massive parallel computations)
- $h_{3} \geqslant 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_{3} \leqslant .7862023450$ Friedland-Peled 2005
- $h_{3} \geq .7845241927$ Friedland-Gurvits 2008
- $h_{3} \geq .7849602275$ Friedland-Krop-Lundow-Markström accepted JOSS 2008

Asymptotic Lower and Upper Matching conjectures

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{I \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$\mathrm{ALMC}^{\operatorname{low}_{r}(p)=f(p, r)(\text { For most of the sequences lim inf }=f(p, r)), ~(x)}$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{I \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$\mathrm{ALMC}^{\operatorname{low}_{r}(p)=f(p, r)}$ (For most of the sequences lim inf $\left.=f(p, r)\right)$

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$\mathrm{ALMC}^{\operatorname{low}_{r}(p)=f(p, r)}$ (For most of the sequences lim inf $\left.=f(p, r)\right)$

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

AUMC: $\operatorname{upp}_{r}(p)=h_{K(r)}(p), K(r)$ countable union of $K_{r, r}$

Asymptotic Lower and Upper Matching conjectures

FKLM 06:
$G_{l}=\left(E_{l}, V_{l}\right) \in \mathcal{G}\left(r, \# V_{l}\right), I=1,2, \ldots$, and $\lim _{l \rightarrow \infty} \frac{2 k_{l}}{\# V_{l}}=p$.

$$
\operatorname{low}_{r}(p):=\inf _{\text {all allowable sequences }} \liminf _{I \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

$\mathrm{ALMC}^{\operatorname{low}_{r}(p)=f(p, r)}$ (For most of the sequences lim inf $\left.=f(p, r)\right)$

$$
\operatorname{upp}_{r}(p):=\sup _{\text {all allowable sequences }} \limsup _{l \rightarrow \infty} \frac{\log \phi\left(k_{l}, G_{l}\right)}{\# V_{l}}
$$

AUMC: $\operatorname{upp}_{r}(p)=h_{K(r)}(p), K(r)$ countable union of $K_{r, r}$

$$
\begin{array}{r}
P_{r}(t):=\frac{\log \sum_{k=0}^{r}\binom{r}{k}^{2} k!e^{2 k t}}{2 r}, t \in \mathbb{R}, \\
p(t):=P_{r}^{\prime}(t) \in(0,1), \quad h_{K(r)}(p(t)):=P_{r}(t)-t p(t)
\end{array}
$$

$r=4$

$r=6$

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2 n)$

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2 n)$

- Cor: r-ALMC holds for $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$,

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2 n)$

- Cor: r-ALMC holds for $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$,
- Con: under Thm assumptions

$$
\liminf _{n \rightarrow \infty} \frac{\log _{\operatorname{perm}}^{k_{n}} B_{n}}{2 n} \geqslant f(r, p)-\frac{p}{2} \log r
$$

Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_{n} \in \Omega_{n}, n=1,2, \ldots$ each column of B_{n} has at most r-nonzero entries. $k_{n} \in[0, n] \cap \mathbb{N}, n=1,2, \ldots, \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=p \in(0,1]$ then

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\log \operatorname{perm}_{k_{n}} B_{n}}{2 n} \geqslant \frac{1}{2}(-p \log p-2(1-p) \log (1-p))+ \\
& \frac{1}{2}(r+s-1) \log \left(1-\frac{1}{r+s}\right)-\frac{1}{2}(s-1+p) \log \left(1-\frac{1-p}{s}\right)
\end{aligned}
$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2 n)$

- Cor: r-ALMC holds for $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$,
- Con: under Thm assumptions

$$
\liminf _{n \rightarrow \infty} \frac{\log _{\operatorname{perm}}^{k_{n}} B_{n}}{2 n} \geqslant f(r, p)-\frac{p}{2} \log r
$$

- For $p_{s}=\frac{r}{r+s}, s=0,1, \ldots$, conjecture holds

Known lower and upper bounds for p-matchings

FKLM accepted JOSS 08:

$$
\begin{aligned}
& \operatorname{low}_{r}(p) \geq \max \left(\operatorname{low}_{r, 1}(p), \operatorname{low}_{r, 2}(p)\right) \\
& \operatorname{upp}_{r}(p) \leq \min \left(\operatorname{upp}_{r, 1}(p), \operatorname{upp}_{r, 2}(p)\right)
\end{aligned}
$$

Lower estimates are based on F -G inequalities and Newton inequalities:
$f(x)=x^{n}+\sum_{i=1}^{n} a_{i} x^{n-i}$ have nonpositive roots
then $\binom{n}{k}^{-1} a_{k} \log$ concave sequence
Upper estimates are based on Bregman inequalities :

$$
\phi(k, G) \leq\binom{ n}{k} \frac{\left(r!!^{\frac{k}{n}}(n!)^{\frac{n-k}{n}}\right.}{(n-k)!}
$$

and

$$
\max _{G \in \mathcal{G}_{\text {mult }}(r, 2 n)} \phi(k, G)=\binom{n}{k} r^{k}
$$

Concavity results

$$
h_{d}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave

Concavity results

$$
h_{d}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave
Hence $h_{d}(p)$ concave - Hammersley

Concavity results

$$
h_{d}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave
Hence $h_{d}(p)$ concave - Hammersley

$$
\operatorname{low}_{r}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave

Hence $^{\text {low }} r(p)$ concave -

Concavity results

$$
h_{d}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave
Hence $h_{d}(p)$ concave - Hammersley

$$
\operatorname{low}_{r}(p)+\frac{1}{2}(p \log p+(1-p) \log (1-p))
$$

concave

Hence $\operatorname{low}_{r}(p)$ concave -

Prf: Newton inequalities

$r=4$ lower bounds

Figure: $f(p, 4)$-red, low $_{4,1}(p)$-blue, $f(p, 4)$-green

$r=4$ lower bounds differences

Figure: $\operatorname{low}_{4,1}(p)-f(p, 4)$-black, $\operatorname{low}_{4,2}(p)-f(p, 4)$-blue

$r=4$ upper bounds

Figure: $h_{K(4)}$-green, upp $_{4,1}$-blue, upp $_{4,2}$-orange

Summary

Summary

- Matches in graphs and their number is a basic concept in graphs.

Summary

- Matches in graphs and their number is a basic concept in graphs.
- Counting k-matching in bipartite graphs is equivalent to computing permanents of $0-1$ matrices.

Summary

- Matches in graphs and their number is a basic concept in graphs.
- Counting k-matching in bipartite graphs is equivalent to computing permanents of $0-1$ matrices.
- Estimating matchings in regular bipartite graphs fuses combinatorics and analysis.

Summary

- Matches in graphs and their number is a basic concept in graphs.
- Counting k-matching in bipartite graphs is equivalent to computing permanents of $0-1$ matrices.
- Estimating matchings in regular bipartite graphs fuses combinatorics and analysis.
- Generalizing matching concepts to infinite graphs brings in the elements of statistical physics: entropies, the grand partition function, pressure and probability.

Summary

- Matches in graphs and their number is a basic concept in graphs.
- Counting k-matching in bipartite graphs is equivalent to computing permanents of $0-1$ matrices.
- Estimating matchings in regular bipartite graphs fuses combinatorics and analysis.
- Generalizing matching concepts to infinite graphs brings in the elements of statistical physics: entropies, the grand partition function, pressure and probability.
- Computation of these entropies to a good precision needs massive memory and huge computational power.

Open problems

Open problems

- Lower and upper matching conjectures for regular bipartite graphs.

Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.

Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for $d \geq 3$ dimer and monomer-dimer entropies in \mathbb{Z}^{d}.

Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for $d \geq 3$ dimer and monomer-dimer entropies in \mathbb{Z}^{d}.
- Other lattices as Bethe lattices, i.e. infinite regular trees

Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for $d \geq 3$ dimer and monomer-dimer entropies in \mathbb{Z}^{d}.
- Other lattices as Bethe lattices, i.e. infinite regular trees
- Non-bipartite graphs

References

Tin R.J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968), 650-654.
L.M. Bregman, Some properties of nonnegative matrices and their permanents, Soviet Math. Dokl. 14 (1973), 945-949.
R. M. Ciucu, An improved upper bound for the 3-dimensional dimer problem, Duke Math. J. 94 (1998), 1-11.
(G.P. Egorichev, Proof of the van der Waerden conjecture for permanents, Siberian Math. J. 22 (1981), 854-859.
R. P. Erdös and A. Rényi, On random matrices, II, Studia Math. Hungar. 3 (1968), 459-464.
D.I. Falikman, Proof of the van der Waerden conjecture regarding the permanent of doubly stochastic matrix, Math. Notes Acad. Sci. USSR 29 (1981), 475-479.
M.E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124 (1961), 1664-1672.
R. R.H. Fowler and G.S. Rushbrooke, Statistical theory of perfect solutions, Trans. Faraday Soc. 33 (1937), 1272-1294.
(S. Friedland, A lower bound for the permanent of doubly stochastic matrices, Ann. of Math. 110 (1979), 167-176.
S. Friedland, A proof of a generalized van der Waerden conjecture on permanents, Lin. Multilin. Algebra 11 (1982), 107-120.

References

S. Friedland and L. Gurvits, Lower bounds for partial matchings in regular bipartite graphs and applications to the monomer-dimer entropy, Combinatorics, Probability and Computing, 2008, 15pp.
S. Friedland, E. Krop, P.H. Lundow and K. Markström, Validations of the Asymptotic Matching Conjectures, arXiv:math/0603001 v2, 21 June, 2007, to appear in JOSS.S. Friedland, E. Krop and K. Markström, On the Number of Matchings in Regular Graphs, arXiv:0801.2256v1 [math.Co] 15 Jan 2008.
S. Friedland and U.N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem, Advances of Applied Math. 34(2005), 486-522.
L. Gurvits, Hyperbolic polynomials approach to van der Waerden/Schrijver-Valiant like conjectures, STOC'06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 417-426, ACM, New York, 2006.
T-M. Hammersley, Existence theorems and Monte Carlo methods for the monomer-dimer problem, in Reseach papers in statistics: Festschrift for J. Neyman, edited by F.N. David, Wiley, London, 1966, 125-146.
T.M. Hammersley, An improved lower bound for the multidimesional dimer problem, Proc. Camb. Phil. Soc. 64 (1966), 455-463.
T. J.M. Hammersley, Calculations of lattice statistics, in Proc. Comput. Physics Con., London: Inst. of Phys. \& Phys. Soc., 1970.

References

J．Hammersley and V．Menon，A lower bound for the monomer－dimer problem，J．Inst．Math． Applic． 6 （1970），341－364．

O．J．Heilmann and E．H．Lieb，Theory of monomer－dimer systems．，Comm．Math．Phys． 25 （1972），190－232．

P．W．Kasteleyn，The statistics of dimers on a lattice，Physica 27 （1961），1209－1225．
L．Lovász and M．D．Plummer，Matching Theory，North－Holland Mathematical Studies，vol． 121，North－Holland，Amsterdam， 1986.P．H．Lundow，Compression of transfer matrices，Discrete Math． 231 （2001），321－329．
C．Niculescu，A new look and Newton＇inequalties，J．Inequal．Pure Appl．Math． 1 （2000）， Article 17.
T．L．Pauling，J．Amer．Chem．Soc． 57 （1935），2680－．
T．A．Schrijver，Counting 1－factors in regular bipartite graphs，J．Comb．Theory B 72 （1998）， 122－135．
T H．Tverberg，On the permanent of bistochastic matrix，Math．Scand． 12 （1963），25－35．

L．G．Valiant，The complexity of computing the permanent，Theoretical Computer Science 8 （1979），189－201．B．L．van der Waerden，Aufgabe 45，Jber Deutsch．Math．－Vrein． 35 （1926）， 117.

