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1 Probability

1.1 Events

Let Ω be a sample space. We are going to assume that Ω is either a finite set {ω1, . . . , ωn},
or infinite countable set {ωi, i ∈ N}, where N = {1, . . . , } is the set of positive integers.
The two kinds of such sets are called countable. Denote by #Ω the cardinality of Ω. Thus
#Ω = n ∈ N if Ω is a finite set. #Ω = ℵ0 if Ω is infinite countable. To each ω ∈ Ω we attach
a probability (mass) p(ω) ≥ 0. The normalization condition is

∑
ω∈Ω p(ω) = 1. That is,

the total mass of Ω is 1. The row vector µ := (p(ω1), p(ω2), . . .) is also called sometimes a
probability measure on Ω, or distribution.

A subset A of Ω, denoted as A ⊂ Ω is called an event. The set of all subsets of Ω is
denoted by 2Ω. It includes the empty set, denoted by ∅ and Ω. Then Pr(A) :=

∑
ω∈Ω p(ω)

is the probability of the event A. It is agreed the Pr(∅) = 0. Clearly Pr(Ω) = 1.
Example. Assume that Ω = {ω1, . . . , ωn} is a finite space. Let p(ω) = 1

n for any ω ∈ Ω.
Then Pr(A) = #A

#Ω . (Note #A = 0 ⇐⇒ A = ∅.) Such probability is called uniform
distribution.

Let A,B ∈ 2Ω be two events. Then A ∩ B is the intersection of A and B, is the set
which consists of all elements which belong to A and B. A ∪B is the union of A and B, is
the set which consists of all elements which belong either to A and to B. Then

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

Ac := Ω\A is the complement of A in Ω, which consists of all points in Ω which are not in
A. So

A ∪Ac = Ω, A ∩Ac = ∅ ⇒ 1 = Pr(A) + Pr(Ac).

Let Ai ⊂ Ω, i ∈ I, be a family of subsets of Ω. The the de Morgan rule states (∪i∈IAi)c =
∩i∈IAc

i . The sets Ai, i ∈ I are called pairwise disjoint if Ai ∩ Aj for any i 6= j, i, j ∈ I.
Assume that I is a countable set. Then for any pairwise disjoint countable events Ai, i ∈ I
in Ω one has

Pr(∪i∈IAi) =
∑

i∈I
Pr(Ai).

(This result holds also in the case Ω is not countable sample space.)
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Let A, B ⊂ Ω. Then A|B is the conditional event that A will occur if B already occurred.
This is equivalent to the event A ∩ B|B. Assume that P (B) > 0. Then Pr(A|B) is the
conditional probability of the conditional event A|B. Thus Pr(A|B) = Pr(A∩B)

Pr(B) .

1.2 One random variable

X : Ω → R is called a random variable. Here R is the set of real numbers and X is a map
from the sample space to R. That is X attaches to each ω ∈ Ω a real number X(ω). The
reason we call X a random variable is follows.

Suppose that Ω = {H,T}, which describes the outcome of a coin toss. If the coin falls
such that we see head then the outcome is H. If tails is up then the outcome is T . Assume
that X(H) = 1 and X(T ) = −1. That is you are paid $1 if head show up and you lose $1 if
tail shows up. Hence X is a random variable since the outcome of the coin toss is unknown
until the coined is tossed . If the coin is fair then Pr(X = 1) = 0.5 and Pr(X = −1) = 0.5.

Sometimes it would be convenient to consider more general random variable X : Ω → Θ,
where Θ is some set, not necessary the set of real numbers. In what follows we shall consider
the case X : Ω → R.

All the information about the random variable X : Ω → R is stored in the cumulative
distribution function c.d.f. FX : R→ [0, 1]:

FX(t) = Pr(X ≤ t) =
∑

X(ω)≤t

p(ω).

FX(t) is an increasing, (sometimes called also nondecreasing), i.e. FX(t1) ≤ FX(t2) for any
t1 ≤ t2. Moreover

lim
t→−∞

FX(t) = 0, lim
t→∞

FX(t) = 1, lim
t↘x

FX(t) = x for all x ∈ R.

Here t ↘ x stand for t approaches to x from the right, i.e. t > x and t converges to x. The
last condition of the above conditions means that FX is continuous form the right.

If f : R→ R is a function, then Y = f(X) is the random variable Y : Ω → R such that
Y (ω) := f(X(ω)). The expected value of X is denoted by E(X):

E(X) :=
∑

ω∈Ω

p(ω)X(ω).

Thus if we view each point ω ∈ Ω as a bead of mass p(ω) concentrated at the point X(ω)
on the real line then E(X) is the center of mass of the all the beads. If Ω is finite then E(X)
is well defined. If Ω is infinite countable then E(X) exists if

E(|X|) :=
∑

ω∈Ω

p(ω)|X(ω)| < ∞.

This is true if |X| ≤ M ⇐⇒ |X(ω)| ≤ M for all ω ∈ Ω, for some M > 0. The k − th
moment of X is defined as τk := E(Xk) for k ∈ N. (Note that τ0 := E(X0) = E(1) = 1.) If
Ω is finite the k − th moment exists always. If Ω is infinite countable then k − th moment
exists iff E(|X|k) < ∞. Assume that all the moments of X exist. Then under very mild
conditions the moments of X, i.e. the values τ1, . . . determine d.c.f. FX . For example, this
is true if |X| ≤ M for some M > 0. More generally it is true if there exist M > 0 such that

∞∑

i=1

E(X2k)
M2k(2k)!

< ∞.

The reason that it is enough to consider the even moments is as follows. Recall the Cauchy-
Schwarz inequality

|
n∑

i=1

xiyi| ≤
n∑

i=1

|xi| |yi| ) ≤
√√√√

n∑

i=1

x2
i

√√√√
n∑

i=1

y2
i , for any xi, yi ∈ R, i = 1, . . . , n. (1.1)
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Equality holds if there exist a, b ∈ R, a2 + b2 > 0 such that axi = byi for i = 1, . . . , n.
(x := (x1, . . . , xn)>,y := (y1, . . . , yn) ∈>∈ Rn are colinear.) Then for any k we have the
inequality

|E(Xk)| ≤ E(|X|k) =
∑

ω∈Ω

√
p(ω)(

√
p(ω)|X(ω)|k) ≤

√∑

ω∈Ω

p(ω)
√∑

ω∈Ω

p(ω)X(ω)2k = 1 ·
√

E(X2k).

Hence τ2
2k−1 ≤ τ2(2k−1) for k ∈ N.

The variance of V is defined as the second moment of X − E(X):

Var(X) := E((X − E(X))2) = E(X2)− E(X)2.

Note that the random variable X takes only one value (E(X)) iff Var(X) = 0. Clearly

E(cX) = cE(X), Var(cX) = c2Var(X) for any c ∈ R.

Recall that the standard deviation of X, denoted by σX , is defines as σX :=
√

Var(X).

Theorem 1.1 (Chebyshev’s inequality). Let X be random variable with finite E(X) and
Var(X). Then for any t > 0

Pr(|X − E(X)| ≥ t) ≤ Var(X)
t2

.

Proof.

Var(X) = E((X − E(X))2) =
∑

ω∈Ω

(X(ω)− E(X))2 =
∑

ω∈Ω,|X(ω)−E(X)|≥t

(X(ω)− E(X))2

+
∑

ω∈Ω,|X(ω)−E(X)|<t

(X(ω)− E(X))2 ≥
∑

ω∈Ω,|X(ω)−E(X)|≥t

t2 = Pr(|X − E(X)| ≥ t)t2,

which implies Chebyshev’s inequality. 2

X is called Bernoulli if X : Ω → {0, 1}, i.e. X takes either value 0 or 1. Assume that X
is Bernoulli. Let Pr(X = 1) = p ∈ [0, 1]. Then Pr(X = 0) = 1− p. Note that for any k ∈ N
Xk = X. Thus

E(X) = Pr(X = 0) · 0 + Pr(X = 1) · 1 = Pr(X = 1) = p, E(X2) = E(X) = p,

Var(X) = E(X2)− E(X)2 = p(1− p). (1.2)

To any event A ⊂ Ω one associates the following Bernoulli (characteristic) random
variable XA : Ω → R: XA(ω) = 1 ⇐⇒ ω ∈ A. Then E(XA) = Pr(A).
Remark. Assume that Ω is a general sample space, i.e. not necessary countable. Then a
random variable X : Ω → R, (which now satisfies the condition that is a measurable map),
is called countable if X(Ω) is a countable set in R. Then the treatment of X is equivalent
to the treatment of a random variable on a countable space. This is done identifying all
points in Ω whose image under X is identical. Then we obtain a countable space Ω′ and
X ′ : Ω′ → R such that FX = FX′ .

1.3 Several random variables

Let X, Y : Ω → R be two random variables. Then

Cov(X,Y ) := E((X − E(X))(Y − E(Y ))) =
E(XY )− E(XE(Y ))− E(E(X)Y ) + E(E(X)E(Y )) = E(XY )− E(X)E(Y ) (1.3)

3



is the covariance of X and Y . Note that Cov(X, X) = Var(X). Apply the Cauchy-Schwarz
inequality (1.1) to |E(XY )| to deduce that E(XY )2 ≤ E(X2)E(Y 2). Replace X and Y by
X − E(X) and Y − E(Y ) respectively to obtain the inequality

Cov(X,Y )2 ≤ Var(X)Var(Y ).

Thus if Var(X), Var(Y ) > 0 we get that Cov(X,Y )√
Var(X)

√
Var(Y )

∈ [−1, 1]. Then

θ := arccos
Cov(X, Y )√

Var(X)
√

Var(Y )
∈ [0, π]

is called the angle between X and Y . In particular X and Y are called orthogonal if
Cov(X, Y ) = 0.

Recall that X +Y : Ω → R is the random variable such that (X +Y )(ω) = X(ω)+Y (ω).
Clearly E(X + Y ) = E(X) + E(Y ). Furthermore

Var(X + Y ) = E((X + Y − E(X + Y ))2) =
E((X − E(X))2 + (Y − E(Y ))2 + 2(X − E(X))(Y − E(Y ))) ⇒
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ). (1.4)

X ≤ Y if X(ω) ≤ Y (ω) for all ω ∈ Ω. Then

X ≤ Y ⇒ E(X) =
∑

ω∈Ω

p(ω)X(ω) ≤
∑

ω∈Ω

p(ω)Y (ω) = E(Y ). (1.5)

Similarly, if X1, . . . , Xm : Ω → R are m random variables then

E(
m∑

i=1

Xi) =
m∑

i=1

E(Xi), Var(
m∑

i=1

Xi) =
m∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj). (1.6)

Let X, Y : Ω → R be two countable random variables. Then X,Y are called independent
if

Pr(X = a, Y = b) = Pr(X = a) Pr(X = b) for all a, b ∈ R.

That is the outcome of the event X = a is independent of the outcome of the event Y = b.
Assume that X,Y countable independent random variables. So X(Ω) = {xi ∈ R, i ∈ I}
and Y (Ω) = {yi ∈ R, i ∈ I}. and Ω is countable. Then

E(XY ) =
∑

i,j∈I
Pr(X = xi, Y = yj)xiyj =

∑

i,j∈I
Pr(X = xi) Pr(Y = yj)xiyj

(∑

i∈I
Pr(X = xi)xi

)( ∑

j∈I
Pr(Y = yj)yj

)
= E(X)E(Y ).

In particular Cov(X,Y ) = 0. That is two independent random variables are orthogonal.
Note that for any x, y ∈ R X − x and Y − y are also independent.

X1, . . . , Xm : Ω → R are called independent random variables over a countable sample
space Ω if

Pr(X1 = a1, X2 = a2, . . . , Xm = am) = Pr(X1 = a1) · Pr(X2 = a2) · · ·Pr(Xm = am)

for any a1, a2, . . . , am ∈ R. Assume that X1, . . . , Xm are independent random variables.
Then any subset Xi1 , . . . , Xil

, where 1 ≤ i1 < . . . < il ≤ m, is a set of independent random
variables. The arguments for the case m = 2 yield

E(X1X2 · · ·Xm) = E(X1)E(X2) · · ·E(Xm). (1.7)

Let X1, . . . , Xm be random variables such that any pair of random variables Xi, Xj are
independent for i 6= j. Hence Cov(Xi, Xj) = 0 for any i 6= j. The second equality of (1.6)
yields

Var(X1 + X2 + . . . + Xm) = Var(X1) + Var(X2) + . . . + Var(Xm). (1.8)

The above equality holds if X1, . . . , Xm are independent random variable.
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1.4 Inclusion-Exclusion Principle

The following fact about Bernoulli random variables is straightforward and its proof is left
to the reader.

Proposition 1.2 Let Ω be a sample space and X1, . . . , Xk : Ω → {0, 1} be Bernoulli
random variables. Let Ai := {ω ∈ Ω : Xi(ω) = 1} for i = 1, . . . , k. Then Xi = XAi

and
1 − Xi = XAc

i
is Bernoulli for i = 1, . . . , k. Furthermore X = X1 · X2 · · ·Xk is Bernoulli

and X = XA1∩A2∩...∩Ak
. In particular E(X1 ·X2 · · ·Xk) = Pr(A1 ∩A2 ∩ . . . ∩Ak).

Lemma 1.3 Let x1, . . . , xn ∈ C. Then

(1− x1) · (1− x2) · · · (1− xn) = 1 +
n∑

k=1

(−1)k
∑

1≤i1<...<ik≤n

xi1 · · ·xik
. (1.9)

Assume furthermore that x1, . . . , xn ∈ {0, 1}. Then for any even integer 2p ∈ [0, n] and odd
integer 2q − 1 ∈ [1, n] one has the inequalities

1 +
2q−1∑

k=1

(−1)k
∑

1≤i1<...<ik≤n

xi1 · · ·xik
≤

n∏

i=1

(1− xi) ≤ 1 +
2p∑

k=1

(−1)k
∑

1≤i1<...<ik≤n

xi1 · · ·xik
.

(1.10)

Proof. Equality (1.9) is straightforward and can be proven by induction on n. The
inequalities (1.10) are proved as follows. Assume that m out n variables x1, . . . , xn are
equal to 1. If m = 0 then x1 = . . . = xn = 0 and we have all the expression in (1.10) are
equal to 1. Hence (1.10) holds. Assume that m ∈ [1, n]. Without loss of generality we may
assume that x1 = . . . = xm = 1 and xm+1 = . . . xn = 0. In that case (1−x1) · · · (1−xn) = 0.
Observe next that xi1 . . . xil

= 0 for any 1 ≤ i1 < . . . < il ≤ n and l > m. It the follows
that ∑

1≤i1<...il≤n

xi1 · · ·xil
=

(
m

l

)
for any integer l ∈ [1, n].

Indeed, this equality corresponds to choose l xi1 , . . . , xil
out of {x1, . . . , xm} which are al

equal to 1. Thus (1.10) is equivalent to

2q−1∑

k=0

(−1)k

(
m

k

)
≤ 0 ≤

2p∑

k=0

(−1)k

(
m

k

)
(1.11)

for any p ∈ Z+ and q ∈ N. Recall that the sequence
(
m
l

)
is nondecreasing for l =

0, 1, . . . , dm
2 e. Since

2q−1∑

k=0

(−1)k

(
m

k

)
=

q−1∑

k=0

(
m

2k

)
−

(
m

2k + 1

)

it follows that for 2q − 1 ≤ dm
2 e we deduce the first inequality in (1.11). Since

(
m
0

)
= 1 we

clearly have the second inequality in (1.11) for p = 0. For p ≥ 1 we have the identity

2p∑

k=0

(−1)k

(
m

k

)
= 1 +

2p∑

k=1

(
m

2k

)
−

(
m

2k − 1

)
.

Hence for 2p ≤ dm
2 e we deduce the second inequality in (1.11).

As
(
m
l

)
= 0 for l > m it is enough to prove (1.11) for m ≥ 2q− 1, 2p ≥ dm

2 e. Recall that
0 = (1 − 1)m =

∑m
k=0(−1)k

(
m
k

)
. Subtract this identity from both sides of (1.11) and use

the identities
(
m
k

)
=

(
m

m−k

)
for k = 1, . . . , m to deduce the cases m ≥ 2q− 1, 2p ≥ dm

2 e from
the cases 2q − 1, 2p ≤ dm

2 e. 2
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Theorem 1.4 Let A1, . . . , An ⊂ Ω be n events in a sample space Ω. Then

Pr(A1 ∪A2 ∪ . . .∪An) =
n∑

i=1

Pr(Ai) +
n∑

k=2

(−1)k−1
∑

1≤i1<...<ik≤n

Pr(Ai1 ∩ . . .∩Aik
). (1.12)

Furthermore for any even integer 2p ∈ [1, n] and odd integer 2q − 1 ∈ [1, n] one has

2p∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

Pr(Ai1 ∩ . . . ∩Aik
) ≤ Pr(∪n

i=1Ai) ≤

2q−1∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

Pr(Ai1 ∩ . . . ∩Aik
). (1.13)

Proof. Let Xi = XAi , Yi = XAc
i

= 1−Xi, i = 1, . . . , n. Then

Pr(∪n
i=1Ai) = 1−Pr((∪n

i=1Ai)c) = 1−Pr(∩n
i=1A

c
i ) = 1−E(Y1 · · ·Yn) = 1−E((1−X1) · · · (1−Xn)).

Use expansion (1.9) and Proposition 1.2 to deduce

E((1−X1) · · · (1−Xn)) = E(1 +
n∑

k=1

(−1)k
∑

1≤i1<...ik≤n

Xi1 · · ·Xik
) =

1 +
n∑

k=1

(−1)k
∑

1≤i1<...ik≤n

E(Xi1 · · ·Xik
) = 1 +

n∑

k=1

(−1)k
∑

1≤i1<...ik≤n

Pr(Ai1 ∩ . . . ∩Aik
).

Combine the above two equalities to deduce (1.12). Since each Xi ∈ {0, 1} we can apply
inequality (1.10) to deduce

1+
2q−1∑

k=1

(−1)k
∑

1≤i1<...<ik≤n

Xi1 · · ·Xik
≤

n∏

i=1

(1−Xi) ≤ 1+
2p∑

k=1

(−1)k
∑

1≤i1<...<ik≤n

Xi1 · · ·Xik
.

Take the expected value of all the three random variables appearing in the above inequality,
use (1.5) and the above arguments to obtain (1.13). 2

Remark. The equality (1.12) is called the inclusion-exclusion principle. The inequalities
(1.13) are called the Bonferroni inequalities.

1.5 Binomial and Poisson random variables

Random variables X1, . . . , Xn : Ω → R are called be i.d., (identically distributed random
variables), if FX1 = . . . = FXn . X1, . . . , Xn are called i.i.d., (independent,identically dis-
tributed random variables), in addition to i.d. these variables are independent.

Let X1, . . . , Xn : Ω → {0, 1} be Bernoulli. Define Y = X1 + . . . + Xn then X : Ω →
{0, 1, . . . , n} have nonnegative integer values in [0, n]. The exact distribution of X depends
on the joint distribution of X1, . . . , Xn. For each integer k ∈ [0, n] Pr(X = k) can be ex-
pressed as the expectation of the following Bernoulli random variable Wk for k = 0, 1, . . . , n.
Let W0 = (1−X1) · · · (1−Xn). Then Pr(Y = 0) = E(W0). Consider the random variable
Uk = X1 . . . Xk(1−Xk+1) · · · (1−Xn). Then Uk is Bernoulli with

Uk = 1 ⇐⇒ X1 = . . . = Xk = 1, Xk+1 = . . . = Xn = 0.

Hence

Pr(X1 + . . .+Xn = k) = E(Wk), Wk =
∑

1≤i1<...<ik≤n

Xi1 · · ·Xik

∏

j 6=i1,...,j 6=ik

(1−Xj), (1.14)

6



for k = 0, 1, . . . , n.
In the case X1, . . . , Xn are i.i.d. Bernoulli one can find the distribution of Y := Y (p, n)

using one parameter p = E(X1) = . . . = E(Xn). Indeed Y = k if exactly Xi1 = . . . = Xik
=

1, 1 ≤ i1 < . . . < ik ≤ n, with probability pk, while all the other variables take the value 0,
with probability (1−p)n−k. Hence the probability of the above event is pk(1−p)n−k. Since
we can choose 1 ≤ i1 < . . . < ik ≤ n in

(
n
k

)
ways it follows

Pr(Y (n, p) = k) =
(

n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n. (1.15)

The random variable Y (n, p) is called binomial with parameters n and p. Note that from
the definition of Y (n, p) as sum of n Bernoulli it follows E(Y (n, p)) = np.

Let X : Ω → Z+ be a countable random variable. Then Pu(a)+ : X is called Poisson, if
X has the following distribution:

Pr(Pu(a) = k) = e−a ak

k!
for k = 0, 1, . . . , and some a ≥ 0.

Hence

E(Pu(a)) =
∞∑

k=0

e−a ak

k!
k = a

∑

k=1

e−a ak−1

(k − 1)!
= a.

It is possible to obtain Pu(a) as limit of the binomial binomial with certain parameters.

Proposition 1.5 Let Y (n, pn) = X1,n + . . . + Xn,n, where X1,n, . . . , Xn,n are i.i.d.
Bernoulli with E(X1,n) = pn ∈ [0, 1] for n ∈ N. Assume that there exists a subsequence
1 ≤ n1 < n2 < . . . such that limm→∞ E(Y (nm, pnm)) = limm→∞ nmpnm = a. Then
Xn1 , Xn2 , . . . converge in probability to Pu(a). That is

lim
m→∞

Pr(Y (nm, pnm) = k) = e−a ak

k!
for k = 0, 1, . . . .

Proof. Recall that

Pr(Y (n, p) = k) =
(

n

k

)
pk(1− p)n−k =

1
k!

(1− 1
n

) . . . (1− k − 1
n

)(np)k(1− p)n(1− p)−k.

Now
lim

m→∞
(nmpnm)k = ak, lim

m→∞
(1− pnm)nm = e−a, lim

m→∞
(1− pnm)−k = 1

and the proposition follows. 2

It is possible to deduce the conclusion of this proposition assuming much less than i.i.d.
Bernoulli X1,n, . . . , Xn,n.

Theorem 1.6 Let 1 ≤ n1 < n2 < . . . be a n increasing sequence of integers. Assume
that Z1,m, . . . , Znm,m be Bernoulli. Let Ym :=

∑nm

i=1 Zi,m. Suppose that for each k

lim
m→∞

E(
∑

1≤i1<...<ik≤nm

Zi1,m · · ·Zik,m) =
ak

k!
for k = 0, 1, . . . and a ≥ 0. (1.16)

Then Y1, Y2, . . . converges in probability to Pu(a). That is

lim
m→∞

Pr(Ym = k) = e−a ak

k!
for k = 0, 1, . . . . (1.17)
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Proof. We first prove (1.17) for k = 0. Note that

Ym = 0 ⇐⇒ Z1,m = . . . = Znm,m = 0 ⇐⇒
nm∏

i=1

(1− Zi,m) = 1.

Hence Pr(Ym = 0) = E(
∏nm

i=1(1−Zi,m)). Use the arguments of the proof of (1.13) to deduce
that

1 +
2q−1∑

k=1

(−1)k
∑

1≤i1<...<ik≤nm

E(Zi1,m) · · ·Zik,m) ≤ E(
nm∏

i=1

(1− Zi,m)) = Pr(Ym = 0) ≤

1 +
2p∑

k=1

(−1)k
∑

1≤i1<...<ik≤nm

E(Zi1,m · · ·Zik,m).

Let m →∞ and use the assumption (1.16) to deduce

1 +
2q−1∑

k=1

(−1)k ak

k!
≤ lim inf

m→∞
E(Ym) ≤ lim sup

m→∞
E(Ym) ≤ 1 +

2p∑

k=1

(−1)k ak

k!
.

Recall that e−a = liml→∞ 1 +
∑l

k=1(−1)k ak

k! . Let p, q → ∞ in the above inequalities to
deduce (1.17) for k = 0.

To prove (1.17) one need to use (1.14). Let

Wk,m =
∑

1≤j1<...<jk≤nm

Zj1,m · · ·Zjk,m

∏

j 6=j1,...,j 6=jk

(1− Zj,m).

For each
∏

j 6=j1,...,j 6=jk
(1 − Zj,m) use the inequalities (1.10) with fixed p and q. This will

give lower and upper bounds for E(Wk,m). Let m →∞ and use (1.16) to obtain lower and
upper bounds on lim infm→∞ E(Wk,m) ≤ lim supm→∞ E(Wk,m) as in the case k = 0. Now
let p, q →∞ to deduce (1.17) for any k ≥ 1. 2

Remark. We note that the assumptions of Proposition 1.5 imply the conditions of The-
orem 1.17. Indeed E(Xi1,n · · ·Xik,n) = pk

n for any 1 ≤ i1 < . . . < ik ≤ n. Hence
E(

∑
1≤i1<...<ik≤n Xi1,n · · ·Xik,n) =

(
n
k

)
pk

n. Let Zi,m = Xi,nm for i = 1, . . . , nm. The as-
sumption that limm→∞ nmpnm = a yields (1.16) for k ∈ Z+.

2 Graphs

2.1 Undirected Graphs 1-12-05

An undirected graph G := (V,E) consists of finite sets of vertices V and edges E. Each
edge is an unordered pair of (a, b)(= ab) of two distinct vertices a 6= b ∈ V . Sometimes we
let V = V (G), E = E(G) to emphasize that V and E correspond to the graph G. In this
section all the graphs assumed to be undirected.

The cardinality #V is called the the order of G. Let n = #V . Then it would be
convenient to identify V = 〈n〉 := {1, . . . , n}. The cardinality #E is called the size of G.

Two graphs G = (V,E) and H = (W,F ), having the same order and size, are called
isomorphic if there exists a bijection φ : V → W such that (u, v) ∈ E ⇐⇒ (φ(u), φ(v)) ∈ F .
G ∼= H denotes that G and H are isomorphic.

A complete n-graph is the graph on n vertices denoted by Kn := (〈n〉, En), were En

is the set
(
n
2

)
:= n(n−1)

2 of all edges (i, j) for i = 1, . . . , n, j = i + 1, . . . , n. Any graph
G = (〈n〉, E) on n vertices is a subgraph of Kn. The complement of G is Gc := (〈n〉, En\E).
(For any two subsets P, Q of a given set R, P\Q stands for all elements in P which are not
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in Q. Note that P\Q may be an empty set ∅.) The empty n-graph Kc
n := (〈n〉, ∅) is the

complement of Kn. K1 = Kc
1 is called trivial graph or isolated vertex.

Two vertices a, b ∈ V are called adjacent ⇐⇒ (a, b) ∈ E. Let G = (V, E) be a graph
and v ∈ V . Then Γ(v) denotes the neighborhood of v, i.e. the set of all neighbors of v.
deg(v) := #Γ(v), i.e. the number of neighbors of v, is called the degree of the vertex v. Let
#V = n. Then the degree sequence of G is the sequence of the degrees of all the vertices of
G arranged in a decreasing order: deg(v1) ≥ deg(v2) ≥ . . . ≥ deg(vn) ≥ 0. Since every edge
in G is connected to two distinct vertices it follows

∑

v∈V

deg(v) = 2#E. (2.1)

A path P of length l ≥ 1 in G is given the set of vertices V (P ) = {v0, v1, . . . , vl} such
that (vi−1, vi) ∈ E for i = 1, . . . , l and vi 6= vj for i 6= j. A walk P of length l ≥ 1 in G
is given the set of vertices V (W ) = {v0, v1, . . . , vl} such that (vi−1, vi) ∈ E for i = 1, . . . , l.
W is a closed walk if vl = v0. A walk W is called a trail if all the edges of in the walk
W (v0, v1), (v1, v2), . . . , (vl−1, vl) are distinct. A closed trail is called a circuit. A circuit W
is called a cycle if vi 6= vj for 0 ≤ i < j ≤ l − 1. Note that the closed walk {i, j.i} for
1 ≤ i < j ≤ n in Kn is not a cycle. We call such a closed walk as semi-cycle. Thus any
cycle in undirected graph has length 3 at least. The following result is straightforward and
its proof is left to the reader.

Proposition 2.1 Let W be a closed walk on an undirected graph G. Then the edges of
W can be decomposed to a union of the edges of cycles and semi-cycles.

Let u, v ∈ V be two distinct vertices. Then u is connected to v if there exists a path P
starting at u and ending at v. We denote u ∼ v if u is connected to v. Clearly u ∼ v ⇐⇒
v ∼ u. Thus u ∼ v if u and v are connected. It is convenient to assume that u ∼ u, i.e. u
is connected to itself. Then ∼ is an equivalence relation on V .

Definition 2.2 Let V be a set of elements and ∼ be a relation on some pairs of the
elements of V . That is, there exists a subset P ⊂ V × V such that u ∼ v ⇐⇒ (u, v) ∈ P.
(a) ∼ is called reflexive if for each v ∈ V v ∼ v.
(b) ∼ is called symmetric if u ∼ v ⇐⇒ v ∼ u.
(c) ∼ is called transitive if u ∼ v, v ∼ w ⇒ u ∼ w.

∼ is called an equivalence relation if ∼ is reflexive, symmetric and transitive.

Proposition 2.3 Let V be a set with an equivalence relation ∼. Then V decomposes to
a disjoint union of nonempty equivalence classes Vi, i ∈ I such that:
(a) For any i ∈ I and u, v ∈ Vi u ∼ v.
(b) For any i, j ∈ I, i 6= j and u ∈ Vi, v ∈ Vj one has u � v.

Corollary 2.4 Let G = (V, E) be an undirected graph. Then there is a unique decom-
position of V to disjoint union of nonempty subsets of vertices V = ∪k

i=1Vk, (where the
uniqueness is up to a permutation of the V1, . . . , Vk), such that the following conditions
hold:
(a) G = ∪k

i=1G(Vi).
(b) Any two vertices in each G(Vi) are connected.

G(V1), . . . , G(Vk) are called the connected components of G.

Definition 2.5 Let G = (V, E) be an undirected graph. G is called acyclic if G does not
have a cycle. An acyclic connected G is called a tree. An acyclic G is called a forest.

A subgraph T = (V, W ),W ⊂ E of a connected G is called a spanning tree if T is a tree.
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Let G = (V, E) be a connected digraph. For u, v ∈ G we define the distance dist(u, v)
as follows:
(a) dist(v, v) = 0 for all v ∈ V .
(b) For u 6= v ∈ V dist(u, v) is the shortest length of a path connecting u to v.

Clearly dist(u, v) = dist(v, u) (symmetricity). Note that if W is a walk of length l from
u to v then l ≥ dist(u, v). Equality holds iff W is a shortest path from u to v. Hence the
distance function satisfies the triangle inequality: dist(u,w) ≤ dist(u, v)+dist(v, w) for any
u, v, w ∈ V . Thus dist is a function dist(·, ·) : V × V → [0,∞) which satisfies property (a),
symmetricity, triangle inequality and dist(u, v) > 0 for any u 6= v ∈ V . Thus dist(·, ·) is the
distance function on V .

Proposition 2.6 Let G = (V, E) be a connected undirected graph. Then G has a span-
ning tree.

Proof. If G is trivial, i.e. #V = 1, then G is its spanning tree. Assume that n = #V > 1.
Let V0 := {v0}. For each i ∈ N let Vi := {v ∈ V : dist(v0, v) = i}. Then there exists positive
integer k such that Vi 6= ∅ for i = 1, . . . , k and Vi = ∅ for i > k. By the definition Vi∩Vj = ∅
for i 6= j. Since G is connected V = ∪k

i=0Vi. Also E ∪ Vi × Vj = ∅ for j − i ≥ 2. Now
let Ei = E ∩ Vi−1 × Vi for i = 1, . . . , k. By the definitions of Vi, i = 0, . . . , k Ei 6= ∅ for
i = 1, . . . , k. Then T := (V,∪k

i=0Ei) is a spanning tree of G. 2

The tree described in the proof of the above proposition is called a rooted tree, with the
root v0. It is straightforward to show:

Proposition 2.7 The following assertion are equivalent for an undirected graph G =
(V, E):
(a) G is a tree.
(b) G is a minimal connected graph on V . That is G is connected and for any edge (u, v) ∈ E
the subgraph H = (V, E\{(u, v)}) is disconnected.
(c) G is a maximal acyclic graph. That is G is acyclic and for any u 6= v ∈ V such that
that (u, v) 6∈ E the graph H = (V, E ∪ {(u, v)}) contains a cycle.

Proposition 2.8 A tree of order n has size n−1. A forest of order n with k components
has size n− k.

Proof. Assume first that G = (V,E) is a tree. We show that #E = #V − 1 by
induction on n := #V . For n = 1 G = K1 and E = ∅. Assume that the claim holds
for all trees of order m at most. Let G = (V, E) be a tree with #V = m + 1. Let
(u, v) ∈ E ad consider the subgraph H = (V, E\(u, v). Then G is a union of two disjoint
trees G1 = (V1, E1), G2 = (V2, E2) each of order m at most. The induction hypothesis yields
that #E1 = #V1−1, #E2 = #V2−1. Hence #E = #E1+#E2+1 = #V1+#V2−1 = #V−1.

To prove the corresponding claim for the forest, use the fact that a forest with k com-
ponents is a disjoint union of k trees. 2

Corollary 2.9 Any tree of size 2 at least has at least two vertices of degree 1.

Proof. Assume that G is a tree of order n ≥ 2. Let d1 ≥ . . . ≥ dn be the degree
sequence of G. Since G is connected dn ≥ 1. Since the size of G is n − 1 it follows that∑n

i=1 di = 2(n − 1). Since each di ∈ N it follows that we must have dn−1 = dn = 1. Oth-
erwise if dn−1 ≥ 2 and dn ≥ 1 we will have that

∑n
i=1 di ≥ 2(n − 1) + 1 > 2(n − 1) which

contradicts the above equality. 2

A vertex in a tree of size 2 at least is called a leaf if its degree is 1. A tree of size 2 at
least which have exactly two leaves is called a path: •− •− . . .−•−•. A tree of size n ≥ 2
which has n− 1 leaves is called a star. It is isomorphic to K1,n−1 := (〈n〉,∪n

i=2(1, i)).
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G = (V, E) is called bipartite if V decomposes to two disjoint nonempty sets V1, V2 such
that E ⊂ V1 × V2.

Theorem 2.10 Let G be an indirected graph. Then G is bipartite iff G does not have
cycles of odd length.

Proof. Clearly G is bipartite iff each connected component is bipartite. Thus it is
enough to prove the theorem in the case G = (V, E) is connected. If G is bipartite then any
walk is of the form V1 − V2 − V1 . . . or V2 − V1 − V2 . . .. In particular any closed walk on G
has an even length. In particular any cycle has an even length.

Assume that any cycle, if exists, has even length. Since the length of a semi-cycle is 2
Proposition 2.1 yields that any closed walk in G has an even length. Hence any two walks
between any two vertices u, v ∈ V have the same parity. Fix v0 ∈ V . Let V1 be the set of all
vertices in v ∈ V such that any walk from v0 to v has an odd length. Then V2 := V \V1 is
the set of all the vertices v ∈ V such that any walk from v0 to v has an even length. Hence
E ⊂ V1 × V2. 2

Let U, V be two disjoint sets of vertices of cardinality m, n respectively. The the complete
bipartite graph Km,n has order m + n and size mn, and is obtained by joining every vertex
u ∈ U to every vertex v ∈ V . Km,n is isomorphic to G := (U ∪ V, U × V ). Note that star
K1,n−1 is a complete bipartite graph on #U = 1, #V = n− 1.

Definition 2.11 Let G = (V,E) be an undirected connected graph. C is called a Hamil-
tonian cycle in G if C is a cycle on all vertices of G. P is called a Hamiltonian path in G if
P is a path on all vertices of G. C is called Eulerian circuit if C is a circuit of G containing
all edges of E. T is called an Eulerian trail if T is trail that contains all the the edges of G.

Theorem 2.12 Let G = (V,E) be an undirected connected nontrivial graph. Then G
has an Eulerian circuit iff the degree of each vertex in G is even. G contains a non-closed
Eulerian trail iff G has two vertices of odd degree and all other vertices have even degrees.

Proof. When travelling on a Eulerian circuit every time you enter the vertex v you exit
it, it follows that the degree of each vertex is even. We prove by induction that on the size
m = #V , that if all the vertices of G have even degree than G contains an Eulerian circuit.
For m = 3 G = K3 and the unique cycle on K3 is Eulerian. Assume that the theorem holds
for any G with of size m ≥ 3. Assume that #E = m + 1. Then #V > 3. Since each vertex
of v has an even degree, G can not be a tree, hence there exists a cycle C in G. Consider
a subgraph of G1 = (V, E1) obtained from G by deleting all edges in the cycle C. Suppose
first that G1 is connected. Then the induction hypothesis implies that G1 has a Eulerian
circuit Ce. Ce can be started from any vertex v ∈ V . Start it from the vertex v in the
cycle C. Complete first Ce ending at v and then complete the cycle C to obtain an Eulerian
circuit on G. If G1 is disconnected then any vertex in any nontrivial connected component
H has even degree. The induction hypothesis yields that each nontrivial component H has
an Eulerian circuit. It is straightforward to show how to combine these Eulerian circuits
with C to obtain a Eulerian circuit on G.

Assume that G contains a non-closed Eulerian trail T . Then the initial and the end ver-
tex T have odd degrees and all other vertices have even degrees. Suppose that a connected
G has two vertices u, v of odd degrees and all other vertices of V have even degree. Let P be
a path from u to v in G. Let G1 = (V,E1) be the a subgraph of G obtained by deleting all
edges on the path P . Then each vertex v ∈ V has even degree in G1. Hence every nontrivial
component of G1 has an Eulerian circuit. Combine these Eulerian circuits with the path P
to obtain a non-closed Eulerian trail from u to v. 2

Let P be a graph property. For example: PE - a graph G has an Eulerian circuit; PH

- a graph G has a Hamiltonian cycle. How ”difficult” is to find out if G has the property
P? By difficult we mean computational complexity of P, i.e. how many computational
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operations we need in the worst case scenario to find if a given G has property P. Clearly
the amount of computation depend on the size n of G.

Definition 2.13 A property P of a graph G is called polynomial if there exists a poly-
nomial p(x) = a0x

l + a1x
l−1 + . . . + al such that for every G = (〈n〉, E) one needs at most

p(n) operation to find out if G has property P for any n ∈ N. The set of all polynomial
properties P of graphs is denoted by Po.

A property P is called nondeterministic polynomial if there exists a polynomial q(x) =
b0x

m +b1x
m−1 + . . .+bm with the following property. For every G = (〈n〉, E) that is claimed

by somebody to have the property P with the provided documentation of the claim, it will
take you at most q(n) steps to find if the person is right. The set of all nondeterministic
polynomial P is denoted by NP.

The property PE is a polynomial property in view of Theorem 2.12. The property PH is
nondeterministic polynomial. Indeed to substantiate a claim that a given graph G = (〈n〉, E)
has a Hamiltonian cycle one should supply the Hamiltonian cycle C. Now it is your task to
check out if C is indeed a Hamiltonian cycle in G as the person claims. This check is clearly
polynomial in n.

It is straightforward to show that Po j NP. It is not known if Po  NP. (There is a
one million dollar prize for the solution of this problem!) It is believed that NP is strictly
larger than Po. It is known that NP contains a subset of the most difficult problems called
NP-complete, which are denoted by NPC. Every two problems in the class NPC are
polynomially equivalent. Put it differently, if P ∈ NPC is polynomial the Po = NPC.
Roughly speaking any problem in NPC is believed to have an exponential complexity. It
is known that PH ∈ NPC.

2.2 Directed Graphs 2-4-05

A directed graph, sometimes referred as digraph, is G := (V,E), where V is the set of
vertices and E ⊂ V × V is the set of edges. In what follows we assume that G = (V, E)
a digraph, unless stated otherwise. An edge of the form (u, v) ∈ V , where u 6= v is called
the edge from u to v. An edge of the form (u, u) ∈ E for some u ∈ G is called a loop
(on u). A digraph without loops is called loopless. A path P in G is given by the vertices
V (P ) = {v0, v1, . . . , vl} where vi 6= vj for i 6= j and (vi−1, vi) ∈ E for i = 1, . . . , l. A trail
T in G is given by the vertices V (T ) = {v0, v1, . . . , vl}, where (vi−1, vi) ∈ E, i = 1, . . . , l is
are l distinct edges in G. A cycle C of length l is given by a trail T as above, such that
vl = v0 and vi 6= vj for 1 ≤ i < j ≤ l. A cycle of length 1 is a loop on v0 and a cycle of
length 2 is given by the two edges (v0, v1), (v1, v0). A walk W of length l ≥ 1 is given by the
V (W ) = {v0, v1, . . . , vl}, where (vi−1, vi) ∈ E, i = 1, . . . , l.

For v ∈ V let

degout(v) := #{u ∈ V : (v, u) ∈ E}, degin(v) := #{u ∈ V : (u, v) ∈ E},

be the out and in degree of the vertex v. Note that if the loop (v, v) ∈ E, then it contributes
to out and in degree of v. It is straightforward to show that

∑

v∈V

degout(v) =
∑

v∈V

= degin(v) = #E.

If H = (V, Eundir) is an undirected graph, there are two standard ways to associate
with H a digraph G = (V,E) on the same set of vertices V . The maximal directed graph
G = (V,Emax) of H is given by letting (u, v) and (v, u) be in Emax if and only if the
indirected edge uv is in Eundir. A minimal directed graph G = (V,Eorient), Eorient ⊂ Emax,
such that if uv ∈ Eundir then either (u, v) ∈ Eorient or (v, u) ∈ Eorient but not both. This
is equivalent to an orientation of any undirected edge uv ∈ Eundir. Vice versa, any digraph
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G = (V, E) induces the following unique undirected graph H = (V,Eundir) on the same set
of vertices: For u, v ∈ V uv ∈ Eundir iff u 6= v and either (u, v) or (v, u) are in E, (or both).

G1 = (V1, E1) is a subgraph of a digraph G if V1 ⊂ V, E1 ⊂ E. Let V1 ⊂ V . Then
G(V1) := (V1, E ∩ (V1 × V1)) is the induced subgraph of G by V1. Let E1 ⊂ E. Let V1 ⊂ V
be all the vertices V which appear in the edges E1. Then G(E1) := (V1, E1) is the induced
subgraph of G by E1.

A digraph G = (V,E) is called disconnected, if the induced directed graph H = (V,Eundir)
is disconnected. (In the previous version H was called split.) That is, there exists a de-
composition of V to disjoint nonempty subsets V = V1 ∪ V2 such that G = G(V1) ∪G(V2).
Otherwise G is called connected. For each digraph G = (V,E) there exists a decomposi-
tion V = ∪k

i=1Vk to nonempty disjoint sets, called connected components of G, such that
G(V ) = ∪k

i=1G(Vi), where each G(Vi), (a component of G), is connected. This decomposi-
tion is unique up to permutation of V1, . . . , Vk. Note that a digraph with one vertex only is
always connected.

A digraph G is called strongly connected if for any two distinct vertices u, v ∈ G there
exists a path P from u to v, i.e. V (P ) = {u0 = u, u1, . . . , ul = w}. Note that a graph
having two vertices and exactly one edge from one vertex to another is connected but not
strongly connected. If G is the maximal directed graph of an undirected graph H, then G
is strongly connected if and only if H is connected.

Let W be a closed path on a digraph G = (V, E), i.e. V (W ) = {v0, v1, . . . , vl = v0}.
Denote by G(W ) the subgraph consisting of all vertices and all edges in W . Then it is
straightforward to see that G(W ) is strongly connected.

A directed graph G is called acyclic, if G has no cycles. Note that G is acyclic iff it has
no closed walks. (An undirected graph which is acyclic is called a forest.)

Proposition 2.14 Let G = (V, E) be an acyclic digraph. Then V decomposes to a
disjoint union of k nonempty subsets V1, . . . , Vk with the following properties: For each
v ∈ V1 deginn(v) = 0, i.e. v does not have incoming edges. Assume that k ≥ 2, i.e. G
contains non-isolated vertices. Then for each 2 ≤ i ≤ k Vi consists of all u in V such that:
(a) There exists v(u) ∈ V0 and a path of length i− 1 connecting v(u) to u.
(b) If there exists a path from v ∈ V0 to u then its length is at most i− 1.

Proof. We first show that V1 is nonempty. Take any vertex v0 ∈ V . If degin(v0) =
then v0 ∈ V1. If degin(v0) > 0 there exists v−1 ∈ V such that (v−1, v0) ∈ E. Suppose
we can continue this process j steps, i.e. we have a walk W on G, such that V (W ) =
{v−j , . . . , v−1, v0}. Since G is acyclic W is a path. Suppose that #V = n. Then j ≤ n− 1.
So this process must stop at some j ≤ n− 1, i.e. v−j ∈ V1.

Define V1 the set of all v ∈ V such that degin(v) = 0. Assume that V1 6= V . Let
v0 ∈ V \V1(= V − V1), i.e. v0 is any vertex in V which is not in V1. From the above
arguments there exists a path W on G, such that V (W ) = {v−j , . . . , v−1, v0} and vj ∈ V1.
Let i be the maximal value of all possible values of j. Then v0 belongs to Vi+1. Since V is
finite the maximal possible value of i is k. 2

Definition 2.15 Let G = (V, E) be acyclic digraph. A vertex v ∈ V is called initial
if degin(v) = 0 and is called terminal if degout(v) = 0. Any nonterminal vertex is called
transient.

Assume the conditions of Proposition 2.14. Then V1 is the set of initial vertices. Vk is a
subset of terminal vertices. Any Vi may contain a terminal vertex. A vertex v ∈ V is initial
and terminal iff v is isolated: degin(v) = degout(v) = 0.

Example: Let G be the following digraph on three vertices 〈3〉 and the edges E =
{(1, 2), (1, 3), (2, 3)}. Then G is acyclic. V1 = {1}, V2 = {2}, V3 = {3}.

The induced directed graph with the same vertices and undirected edges consists of one
3 cycle (1, 2), (2, 3), (3, 1).
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Reduced Graphs: We now discuss the structure of connected digraphs. Assume that
G = (V, E) is a connected digraph. On the set of vertices V of G we introduce the following
relation ∼:
a. v ∼ v for any v ∈ V .
b. For u, v ∈ V, u 6= v u ∼ v iff there exists a path (walk) in G connecting u to v and v to u.

It is straightforward to show that ∼ is an equivalence relation

u ∼ u, u ∼ v ⇐⇒ v ∼ u, u ∼ v and v ∼ w ⇒ u ∼ w.

Hence V decomposes to a disjoin union of m nonempty equivalence classes V = ∪m
i=1Vi. So

for each Vi any two members u, v ∈ Vi are connected in G, while for two disjoint Vi, Vj ,
and any u ∈ Vi, v ∈ Vj either u is not connected to v or v is not connected to u, (or both).
That is each G(Vi) is a maximal strongly connected subgraph of G. Thus G is strongly
connected iff m = 1. The reduced graph Grdc = (Vrdc, Erdc) is given as follows. Vrdc =
{{V1}, . . . , {Vm}}. That is the vertices of Grdc are the equivalence classes. Grdc is loopless.
For i 6= j ({Vi}, {Vj}) ∈ Erdc iff there exist u ∈ Vi, v ∈ Vj such that u is connected to v.
Since each Vi is an equivalence class it follows that Grdc is acyclic. (Recall that a subgraph
of a digraph induced by a cycle is strongly connected.) Since G is connected it follows that
Grdc is connected. Thus Grdc gives the exact information on the ”communication” between
the maximal strongly connected subgraphs of G. Proposition 2.14 gives the structure of
Grdc. The equivalence class Vi is called initial, terminal or transient, according to the status
of the vertex {Vi} in the acyclic graph Grdc.

Theorem 2.16 Let G = (V, E) be a strongly connected digraph. Let p be the gcd (the
greatest common divisor) of the lengths of all cycles of G.
(a) p = 1 if and only if there exits a positive integer N such that for any u, v ∈ V and any
m ≥ N there exists a walk W on G from u to v of length length m.
(b) p ≥ 2 if an only if the following conditions satisfied. It is possible to divide V to p
nonempty disjoint sets V1, . . . , Vp such that the following conditions are satisfied. First,

E ∩ (Vi × Vi+1) 6= ∅ for i = 1, . . . , p, E = ∪p
i=1E ∩ (Vi × Vi+1). (2.2)

Here Vp+1 ≡ V1. Second, there exists a positive integer N such that for each m ≥ N and
any u, v ∈ Vi there exists a a walk from u to v in pm steps for each i = 1, . . . , p.

See for example [17, Chap 3] for a proof of this theorem using matrix tools.
We give a short proof of Theorem 2.16 using the following well known theorem.

Theorem 2.17 Let 0 < a1 < . . . < ak be k positive integers whose gcd is p ∈ N. Then
there exists N ∈ N such so that for any m ≥ N there exists b1, . . . , bk nonnegative integers
such that mp = b1a1 + . . . + bkak.

Proof. By considering a′i = ai

p , i = 1, . . . , k it is enough to prove the theorem for p = 1.
Since for k = 1 p = a1 = 1 the theorem in this case is trivial since m = ma1. Assume that
k > 1. If a1 = 1 then again the theorem is trivial since m = ma1 + 0a2 + · · · + 0ak. So
assume assume 2 ≤ a1 < . . . < ak.

Since the gcd of a1, . . . , ak is 1 it is known that there exists integers c1, . . . , ck such that

c1a1 + c2a2 + · · ·+ ckak = 1. (2.3)

For a1, a2 one applies the Euclid algorithm to find (a1, a2) the gcd of (a1, a2). For example,
for a2 = 3, a2 = 17 we have 6 · 3 + (−1) · 17 = 1. Apply Euclid algorithm: 17 = 5 · 3 + 2; 3 =
1 · 2 + 1 ⇒ 17 = 5 · 3 + (3− 1) = 6 · 3− 1. For k > 2 one first applies the Euclid algorithm
to find the g2 = (a1, a2). Then apply Euclid algorithm to find g3 = (g2, a3) and cetera.

Since 2 ≤ a1 < . . . < ak and c1, . . . , ck are integer we must have at least one negative
integer ci and one positive integer cj . Let L := max(−c1, . . . ,−ck) and A :=

∑k
i=1 ai. We
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claim that any m ≥ LA2 is expressible as a nonnegative linear combination of a1, . . . , ak

with nonnegative integer coefficients.
First note that if m is divisible by A, i.e. m = tA, then m = ta1 + ta2 + . . . tak and

expressed m as a nonnegative linear combination of a1, . . . , ak with nonnegative integer
coefficients. Thus it is left to consider the case where m = tA + j for some j = 1, . . . , A− 1.
The assumption that m ≥ LA2 yields that we can assume that t ≥ LA. Multiply (2.3) by
j to deduce that

m = tA + j = t

k∑

i=1

ai + j

k∑

i=1

ciai =
k∑

i=1

(t + jcj)aj .

Since cj ≥ −L, j ≤ A− 1 it follows that (t + jcj) ≥ LA− (A− 1)L = L > 0. 2

Proof of Theorem 2.16.
Fix a vertex v ∈ V . Consider the following closed walks in G starting and ending at

v: W := {W1, . . . , WM}. First consider all cycles starting and ending at v. Now consider
all closed walks which decomposed to two cycles in G. Continue in this manner until any
cycle in G appears at least in one of this walks. It is not difficult to show that the gcd of
all lengths of the walks in W is equal to the gcd of all cycles in G.

Assume first the case p = 1. Theorem 2.17 yields that there exists N1 ∈ N such that for
any m ≥ N1 there exists a closed walk W of length m starting and ending at v, which is
obtained by using the set of walks in W.

Since G is strongly connected there exists a path of length P (v, w) from u to w, (u 6= w),
of length n− 1 := #V − 1 at most. To get u to w we first go from u to v in a path P (u, v),
if u 6= v, then we take a closed walk of any length ≥ N1 around v and then we take a path
P (v, w). This shows that we can go from any vertex u to any vertex u′ in a walk of length
m ≥ N1 + 2(n− 1).

Assume now that the gcd of all cycles G is p ≥ 2. Since any closed walk W in G can be
decomposed to a sum of cycles it follows that any closed walk in G is divisible by p. Let
u 6= w. Consider two walks W1,W2 from u to w. Complete each walk to a closed walk on
from u to itself by taking a fixed path from w to u. Since each closed walk is divisible by p
it follows that that the difference of lengths of W1 and W2 is divisible by p.

Fix a vertex v as above. The arguments of the proof of the theorem for p = 1 yield that
there exists N1 so that for any m ≥ N1 there is a closed walk from v to v in mp steps. For
i = 1, . . . , p let Vi be all vertices in u ∈ V such there exists a walk of from v to u of length
l, where l − i divisible by p. Note that v ∈ Vp. Next note that all vertices u ∈ V such
that (w, u) ∈ E, for some w ∈ Vp form exactly the set of vertices V1. Since G is strongly
connected degout(v) > 0 hence V1 6= ∅. Now V2 is the set of vertices u ∈ V such that
(w, u) ∈ E for some w ∈ V2. Since G is strongly connected and V1 is nonempty it follows
that V2 is not empty. Continue in the same manner to deduce that V1, . . . , Vp−1 are not
empty. Clearly Vi is only connected to Vi+1 for i = 1, . . . , p. The rest of the theorem follows
easily. 2

We discuss briefly some aspects of Theorem 2.17. It is enough to consider the case
2 ≤ a1 < . . . < ak such that a1, . . . , ak are coprime, i.e. the gcd of a1, . . . , ak is 1. The
problem of expressing m ∈ N as a linear combination of a1, . . . , ak with nonnegative integers
is called the coin problem. Can one express the quantity of money m using only k types
of coins of denomination a1, . . . , ak? The largest number f(a1, . . . , ak) that can not be
expressed as a linear combination of a1, . . . , ak with nonnegative integers is called is called
the Frobenius number. For k = 2 Sylvester (1884) showed that f(a1, a2) = (a1−1)(a2−1)−1.
Explicit solutions for k = 3 are known: Selmer and Beyer 1978, Rödseth 1978, Greenberg
1988. No closed-form solution is known for k > 3. For a big k the problem of finding the
Frobenius number is hard (NP-hard). The following theorem of I. Schur gives more precise
version of Theorem 2.17. We outline a short proof using elementary results in theory of one
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complex variable.

Theorem 2.18 Let 2 ≤ a1 < . . . < ak be k ≥ 2 positive integers whose gcd is 1. For any
m ∈ N let αm ∈ Z+ be the number of ways that m can be expressed as m = b1a1 + . . . bkak

with b1, . . . , bk nonnegative integers. Then

lim
m→∞

αm(k − 1)!a1 . . . ak

mk−1
= 1. (2.4)

Proof. For q ∈ N consider the polynomial sq(x) := 1−xq. The roots of this polynomial
are all q − th roots of unity:

xj,q := e
2πj

√−1
q , j = 0, . . . , q − 1.

Here
√−1 stands for the imaginary complex number, i.e.

√−1
2

= −1. Note that x0,q = 1.
Let p(x) =

∏k
i=1 sak

(x). Then the roots of p(x), are union of all ai − th roots of unity for
i = 1, . . . , k. Note that 1 is a root of p of multiplicity k. Since a1, . . . , ak are co-prime any
other root ζ of p(x) has multiplicity less than k. Let ζ0 = 1, . . . , ζl be all the distinct roots
of p(x). Let mj ∈ N be the multiplicity of the root ζj for j = 0, . . . , l. So k = m0 > mj for
j = 1, . . . , l. Thus p(x) = (−1)k

∏l
j=0(x−ζj)mj . Consider the rational function r(x) := 1

p(x) .
Note that r(0) = 1 and r(x) is analytic in the unit disk |x| < 1. Hence r(x) has power series
expansion around x = 0 (Maclaurin expansion), with αi := r(i)(0)

i! for i = 0, . . .. Use the
geometric expansion 1

1−t =
∑∞

i=0 ti to deduce the identity

r(x) =
∞∑

i=0

αix
i =

k∏

j=1

∞∑
n=0

xnaj .

Hence each αm is a nonnegative integer, and for m ∈ N αm is the number of ways that m
can be represented as a nonnegative linear combination b1a1 + . . . + bkak with nonnegative
integers b1, . . . , bk. Hence m is expressible as such a linear combination iff αm > 0. It is left
to prove that the limit in (2.4) exists and equal to 1. The partial fraction decomposition of
r(x) is of the form

r(x) =
l∑

j=0

mj∑

i=1

Aji

(1− xζ−1
j )i

. (2.5)

Note that

A0k = lim
x→1

(1− x)k

p(x)
=

k∏

i=1

lim
x→1

(1− x)
1− xai

=
1

a1 . . . ak
> 0 (L’Hopital rule).

It is left to show that the contribution to the Maclarin coefficients of r(x) by the terms given
in (2.5) is dominated the Maclarin coefficients of A0k

(1−x)k for high enough power of x. Recall
the Newton binomial for s ∈ N:

(1− t)−s =
∞∑

i=0

(
i + s− 1

s− 1

)
ti.

Thus the contribution of A0k

(1−x)k to the m− th Maclarin coefficient is of order A0kmk−1

(k−1)! . Use
the fact that A0k > 0, k > mj , |ζj | = 1 for each j > 0 to induce that the contributions from
other terms in (2.5) to the Maclarin coefficients of r(x) is of order mk−2 at most. Hence
(2.4) holds. 2

Let G = (V, E) be an undirected connected graph. Let Gmax = (V, Emax) be the directed
graph induced by converting each undirected edge uv to two directed edges (u, v), (v, u) in
the opposite directions. Then Gmax has a cycle of length 2: {u, v, u}. Use Theorems 2.16
and 2.10 to deduce:
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Corollary 2.19 Let G = (V, E) be a connected undirected graph. Then exactly one of
the following conditions hold:
(a) There exists a positive integer N such that for any u, v ∈ V and any m ≥ N there exists
a walk W on G from u to v of length length m.
(b) G is bipartite, i.e. V is a union of two disjoint nonempty sets V1, V2 such that E ⊂
E1 × E2. Let u, v ∈ Vi for some i ∈ {1, 2}. Then any walk from u to v has an even length.
Furthermore, there exists a positive integer N such that for any m ≥ N there exists a walk
W on G from u to v of length length 2m.

3 Random Graphs

3.1 Introduction

A random graph Gn,p consists of 2 ≤ n ∈ N, a number p ∈ [0, 1] and
(
n
2

)
independent, iden-

tically distributed, Bernoulli random variables X12, . . . , X1n, X23, . . . , X(n−1)n, such that
Pr(Xij = 1) = p, Pr(Xij = 0) = 1 − p for 1 ≤ i < j ≤ n. Let Xn := (X12, . . . , X(n−1)n) ∈
{0, 1}(n

2). Be a random vector. Then G(Xn) = (〈n〉, E(Xn)) be the following undirected
graph. For 1 ≤ i < j ≤ n the sedge (i, j) is in E(Xn) iff Xij = 1. Then Gn,p is a sample
space considering of all undirected graph G = (〈n〉, E) = G(Xn) = on n vertices. The
probability measure on Gn,p is given by Prn,p(G) = p#E(1−p)(

n
2)−#E . Let A be a property

of an undirected graph. For example A is the property that the graph is connected. Thus
An ⊂ Gn,p is the subset of all connected undirected graphs on n vertices. A is called a
monotone property (in p) if for the function fn(p) := Prn,p(An) is a monotone function.
Intuitively, it is clear that connectivity property is an increasing function of p. For a general
property A of undirected graphs, we let An := {G ∈ Gn,p : G has the property A}. As in
[22] we let Prn,p(An) = Pr(G ∈ Gn,p has A). A function, (sequence), p(n) > 0, n = 1, . . .,
such that p(n) ∈ [0, 1] for n > N , is called a threshold function for the property A if for any
sequence r(n) ∈ [0, 1], n ∈ N, the following conditions hold:
(a) limn→∞

r(n)
p(n) = 0 implies that limn→∞ Pr(G ∈ Gn,r(n) has A) = 0.

(b) limn→∞
r(n)
p(n) = ∞ implies that limn→∞ Pr(G ∈ Gn,r(n) has A) = 1.

The theory of random graphs was introduced by Paul Erdös and Alfred Renyi, see their
seminal paper [6]. (There were other previous works on some aspects of random graphs.)
Erdös and Renyi observed that for many natural properties A of undirected graphs there is
a simple threshold function:

Property Threshold

Contains path of length k p(n) = n−
k+1

k ,
Is not planar p(n) = 1

n ,

Contains a Hamiltonian path p(n) = log n
n ,

Is connected p(n) = log n
n ,

Contains a clique on k points p(n) = n−
2

k−1 .

In the following two subsections we discuss the k-clique property and the property of an
isolated vertex. (The property of non-isolated vertex is equivalent to connectivity.) In this
two cases one can obtain more precise results then the threshold function, using the Poisson
distribution.

3.2 k-clique property

Let S ⊂ 〈n〉 be a subset of k-elements. We denote this fact by #S = k and S =
{i1, i2, . . . , ik}, 1 ≤ i1 < i2 < . . . < ik ≤ n. Let G = (〈n〉, E) be an undirected graph on n
vertices. The G has an S-clique if (i, j) ∈ E for any two distinct vertices i, j ∈ S. G has a
k-clique if there exists S ⊂ 〈n〉, #S = 4 such that G has an S-clique. Let XS : Gn,p → {0, 1}
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be the following Bernoulli random variable. For G ∈ Gn,p XS(G) = 1 iff G contains a clique
on the set S. We claim that Prn,p(XS = 1) = p(#S

2 ). Indeed, to have a clique on S we must
have all edges (i, j) for each pair i, j ∈ S. That is each random variable Xij is equal to 1.
Fix k ≥ 2 and let n ≥ k. Let Xn =

∑
S⊂〈n〉,#S=k XS . Then Xn : Gn,p → Z+ is a random

variable, such that Xn(G) counts the number of k-cliques in a graph G on n vertices. Since
the number of all possible k-cliques in a graph on n vertices is

(
n
k

)
, i.e. the number of all

distinct choices of the sets of k elements in 〈n〉 it follows that

Ep(Xn) =
∑

S⊂〈n〉,#S=k

Ep(XS) =
(

n

k

)
p(k

2) =

n(n− 1) . . . (n− k + 1)
1 · 2 · . . . · k p

k(k−1)
2 = (np

k−1
2 )k 1

k!

k−1∏

j=0

(1− j

n
). (3.1)

Here we emphasized the fact that our expectation on Gn,p depends on p. Hence for sequences
r(n) ∈ [0, 1] ∈ N the following implication holds

lim
n→∞

n
2

k−1 r(n) = a ∈ [0,∞] ⇒ lim
n→∞

Er(n)(Xn) =
a(k

2)

k!
. (3.2)

In particular, if limn→∞ n
2

k−1 r(n) = 0,∞ then expected value of number of k-cliques tends
to zero or infinity respectively. Thus the threshold function p(n) = n−

2
k−1 essentially gives

the following rough information. If limn→∞ n
2

k−1 r(n) = 0,∞ then the probability of having
no k-clique is approaching to one or zero respectively as n →∞.

We first show that property (a) of the threshold function p(n) = n−
2

k−1 follows simply
for the fact that the expected number of cliques tends to 0. For that we need the following
lemma.

Lemma 3.1 Let Ω be a countable sample space with a probability measure. Let X : Ω ∈
{0} ∪ [1,∞) be a random variable. Then Pr(X ≥ 1) ≤ E(X).

Proof.

Pr(X ≥ 1) =
∑

ω∈Ω,X(ω)≥1

Pr(ω) ≤
∑

ω∈Ω,X(ω)≥1

X(ω) Pr(ω) =

0 · Pr(X = 0) +
∑

ω∈Ω,X(ω)≥1

X(ω) Pr(ω) = E(X).

2

Since Xn ∈ Z+ we deduce

lim
n→∞

n
2

k−1 r(n) = 0 ⇒ 1 ≥ Pr n,r(n)(X0) = 1− Pr n,r(n)(Xn ≥ 1) ≥ 1− En,r(n)(Xn) → 1,

and property (a) follows.
To show property (b) we use Chebyshev’s inequality. Clearly Xn = 0 satisfies the

inequality |Xn − En,p| ≥ |En,p(Xn)| = En,p(Xn) for any n ≥ k and p ∈ [0, 1]. Chebyshev’s
inequality, Theorem 1.1, yields Pr(|Xn − En,p| ≥ |En,p(Xn)|) ≤ Varn,p(Xn)

En,p(Xn)2 . Thus we need
to show that

lim
n→∞

n
2

k−1 r(n) = ∞⇒ lim
n→∞

Varn,r(n)(Xn)
En,r(n)(Xn)2

= 0. (3.3)

Recall that Xn =
∑

S⊂〈n〉,#S=k XS , where each XS is Bernoulli. If for any S 6= T XS , XT

are independent then (1.8) yields that

0 ≤ Varn,p(Xn) =
∑

S⊂〈n〉,#S=k

Varn,p(XS) ≤
∑

S⊂〈n〉,#S=k

En,p(XS) = En,p(Xn),
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and (3.3) will easily follows. However XS , XT are independent if #(S ∩ T ) ≤ 1. Hence we
need to use second equality of (1.6), rather than (1.8). Note that since S and T are sets
of a fixed size k and n → ∞ it follows that for most of pairs S, T ⊂ 〈n〉 of cardinality k
S ∩ T = ∅. Hence most of the pairs XS , XT are independent Bernoulli variables, for large
n. That is in (1.6) Cov(XS , XT ) = 0 for #(S ∩ T ) ≤ 1. Therefore (3.3) holds.

We now prove (3.3) for k = 4. Since the k-clique property is increasing in p. (The larger
probability, it is more likely you have more edges in the graph, and hence bigger chances to
have a k-clique.) It is enough to show property (b) under the condition

r(n) ≤ log n

n
2
3

for n ∈ N, and lim n
2
3 r(n) = ∞. (3.4)

First observe that XS , XT are independent if S ∩ T = ∅ since S and T are disjoint set.
Assume next that #(S ∩ T ) = 1. Then the set of edges on a complete graph on S and T
are disjoint sets. Hence XS , XT are independent. In both cases Cov(XS , XT ) = 0.

Assume next that #(S ∩ T ) ∈ {2, 3, 4}. Since XS , XT are Bernoulli, E(XS),E(XT ) ≥ 0
and XSXT is Bernoulli. Hence

Covn,p(XS , XT ) = En,p(XSXT )− En,p(XS)En,p(XT )) ≤
En,p(XSXT ) = Pr n,p(XSXT = 1) = Pr n,p(XS = 1, XT = 1).

The case #(S ∩ T ) = 2. Then XS = XT = 1 means that we have 12 edges in the com-
plete graph on S and T , of which 1 edge is a joint edge. Thus we have 11 edges. Hence
Pr n,p(XS = 1, XT = 1) = p11. The number of such S, T is found as follows. First choose
the 2 joint vertices in S ∩T . Then number of such vertices in

(
n
2

)
. Then choose the remain-

ing 2 vertices in S. The number of such choices is
(
n−2

2

)
. Then choose the other 2 vertices

in T . Their number is
(
n−4

2

)
. Thus the total number of 4-sets S, T satisfying the condition

#(S ∩ T ) = 2 is
(
n
2

)(
n−2

2

)(
n−4

2

) ≤ n6. Hence

∑

S,T⊂〈n〉,#S=#T=4,#(S∩T )=2

Covn,r(n)(XS , XT ) ≤ n6(
log n

n
2
3

)11 =
(log n)11

n
4
3

→ 0.

The case #(S ∩ T ) = 3. Then the complete graphs on S ∩ T have three common edges.
So the number of total edges in the complete graphs on S and T is 12 − 3 = 9. Hence
Pr n,p(XS = 1, XT = 1) = p9. The number of such S, T is found as follows. First choose
the 3 joint vertices in S∩T . Then number of such vertices in

(
n
3

)
. Then choose the remaining

vertex in S. The number of such choices is n − 3. Then choose the remaining vertex in
T . Their number is n − 4. Thus the total number of 4-sets S, T satisfying the condition
#(S ∩ T ) = 3 is

(
n
3

)
(n− 3)(n− 4) ≤ n5. Hence

∑

S,T⊂〈n〉,#S=#T=4,#(S∩T )=3

Covn,r(n)(XS , XT ) ≤ n5(
log n

n
2
3

)9 =
(log n)9

n
→ 0.

Thus

0 ≤ Varn,r(n)(Xn)
En,r(n)(Xn)2

=
1

En,r(n)(Xn)2
( ∑

S⊂〈n〉,#S=4

Varn,r(n)(XS) +

∑

S,T⊂〈n〉,#S=#T=4,#(S∩T )∈{2,3}
Covn,r(n)(XS , XT )

) ≤
En,r(n)(Xn) + (log n)11

n
4
3

+ (log n)9

n

En,r(n)(Xn)2
→ 0.

This shows (3.3) for k = 4, and completes the proof that p(n) = n−
2

k−1 is a threshold
function for k-clique for the case k = 4.

Actually a stronger result holds.
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Theorem 3.2 Assume the equality in the first part of (3.2) with a ∈ (0,∞). Then Xn

converges in probability to Poisson distribution Pu(b) with b = a(
k
2)

k! . That is the probability
that a random graph will have exactly j k-cliques is e−b bj

j! for any j ∈ Z+.

So if a → 0 we obtain that with probability 1 a random graphs has no k-clique. If a → ∞
then with probability 1 the random graph contains j k-cliques for any j ≥ 1.

To prove the above theorem one need to use Theorem 1.6. That is, we need to show that

lim
n→∞

En,r(n)(
∑

S1,...,Sj⊂〈n〉,#S1=...=#Sj=k,Si 6=Sl for i 6=l

XS1 . . . XSj
) = bj for each j = 2, . . .

Note that if Si ∩ Sl = ∅ for i 6= l then E(XS1 . . . XSj
) = E(XS1) . . . E(XSj

). Hence one has
to show that the contribution of other terms is negligible. To show that one does similar
computations as we did for the case k = 2 for Var(Xn) which is equivalent to consider the
case j = 2.

3.3 Isolated vertices and connectivity

Theorem 3.3 Let c ∈ R and p(n) = log n+c
n , n ∈ N. Then limn→∞ Pr(G ∈ Gn,p(n) does

not have an isolated vertex ) = e−e−c

.

Proof. Let Xi be the Bernoulli variable corresponding to the event Ai : the vertex i is
isolated. Then Pr n,p(Xi = 1) = (1− p)n−1. Note that

(1− p(n))n−1 = e(n−1) log(1−p(n)) = e−p(n)(n−1)+O((n−1)p(n)2) =

e− log n−c+O(
(log n)2

n ) =
e−c

n

(
1 + O(

(log n)2

n
)
)
.

Let Xn =
∑

i=1 Xi be the random variable on Gn,p, such that Xn(G) is the number of
isolated vertices in G. Then En,p(n)(Xn) =

(
1 + O( (log n)2

n )
)
e−c → e−c. We claim that Xn

converge in probability to the Poisson distribution Pu(b) with b = e−c. We use Theorem 1.6.
Note Pr n,p(Xi1 = 1, . . . , Xik

= 1) = (1−p)(n−1)k−(k
2), when 1 ≤ i1 < . . . < ik ≤ n. Indeed,

this is the event that the given k vertices are isolated. Consider the complete graph Kn on n
vertices. The degree of each vertex is n−1. So there are exactly (n−1)k edges that coming
out of these k vertices.

(
k
2

)
edges are common to both vertices in these groups. Hence the

total number of (distinct) edges that are connected to these k vertices is (n − 1)k − (
k
2

)
.

Hence En,p(n)(Xi1 = 1, . . . , Xik
= 1) ≈ (

b
n

)k. There are exactly
(
n
k

)
of choices of k distinct

vertices out of n. Hence

lim
n→∞

En,p(n)(
∑

1≤i1<...<ik≤n

Xi1 . . . Xik
) =

bk

k!
, for k = 1, 2, . . .

Note that the event G ∈ Gn,p(n) does not have an isolated vertex is equivalent to Xn = 0.
As Pr(Pu(b) = 0) = e−b we deduce the theorem. 2

It can be shown that under the assumptions of Theorem 3.3 when n → ∞ the the
probability that G does not have an isolated vertex is equal to the probability that G is
connected [6]. That is, under the assumptions of Theorem 3.3 limn→∞ Pr(G ∈ Gn,p(n) is
connected ) = e−e−c

. Therefore p(n) = log n
n is the threshold function for the connectivity

property.
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4 Matrices and Graphs 2-7-05

Let S be a set. In these notes S can be the set {0, 1}, or the set of natural integers N :=
{1, 2, . . .}, the set of integers Z = {0,±1,±2, . . .}, nonnegative integers Z+ := {0, 1, 2, . . .},
real numbers R and complex numbers C.

Denote by Sm×n the set of m× n matrices A = (aij)
m,n
i,j=1, where the entries aij ∈ S:

A =




a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn




The transpose of A, denoted by A> is an n × m matrix with A> = (aji)
n,m
j,i=1. Note that

(A>)> = A. Let A = (aij), B = (bij) ∈ Rm×n. Then B ≥ A ⇐⇒ bij ≥ aij for
i = 1, . . . , m, j = 1, . . . , n.

A is called a square matrix (of order n) if A has the equal number of rows and columns
(equal to n). A square matrix is called symmetric if A> = A.

Assume that A is a square matrix with complex entries A = (aij) ∈ Cn×n The trace
of A, denoted by trA, is the sum of all diagonal elements of : tr A :=

∑n
i=1 aii. For any

A ∈ Cn×n and a positive integer k, Ak = A · . . . ·A, where the product is taken k-times. It
is agreed that A0 := In, the n× n identity matrix. (I = (δij) ∈ {0, 1}n×n, where δij = 1 iff
i = j.) Note that if A is symmetric, i.e. A = A>, then Ak is also symmetric.

It is convenient to store graphs, as well to study certain graph properties, by using the
matrices and their properties. First consider undirected graph G = (V, E). Assume that
#V = n. Label the vertices V as {1, . . . , n}, i.e. identify V with 〈n〉. Associate with G the
matrix A(G) = (aij) ∈ {0, 1}n×n as follows. aij = 1 if (i, j) ∈ E. Otherwise aij = 0. Since
G does not have loops aii = 0, i = 1, . . . , n. Note that A(G) is symmetric, i.e. aij = aji

for all i, j = 1, . . . , n. (A(G)> = A(G).) Vice versa, any symmetric A = (aij) ∈ {0, 1}n×n

with zero diagonal induces a unique graph G = G(A) on the set of vertices 〈n〉. Namely
ij ∈ E ⇐⇒ aij = 1.

Next consider digraph G = (V,E). Assume that #V = n. Label the vertices V as
{1, . . . , n}, i.e. identify V with 〈n〉. Then with G we associate the matrix A(G) = (aij) ∈
{0, 1}n×n as follows. aij = 1 if (i, j) ∈ E. Otherwise aij = 0. Vice versa, any A = (aij) ∈
{0, 1}n×n a unique digraph G = G(A) on the set of vertices 〈n〉. Namely (i, j) ∈ E ⇐⇒
aij = 1.

Note that if A ∈ {0, 1}n×n is a symmetric 0− 1 matrix with zero diagonal, we can view
G(A) either as an undirected graph, or the maximal directed graph corresponding to some
undirected graph.

We now show how to read some graph properties from the matrices. Let A = (aij)
m,n
i,j=1 ∈

Cm×n. Then ri and ci are called the i− th row and the i− th column sum of A respectively:

ri :=
n∑

j=1

aij , cj :=
m∑

i=1

aij , j = 1, . . . , n, i = 1, . . . , m.

Assume that A is a square matrix. If A is symmetric than ri = ci. If A = A> ∈ {0, 1}n×n

with zero diagonal, i.e. A represents an undirected graph G on n vertices, then ri = deg(i)
is the degree of the vertex i. If A ∈ {0, 1}n×n, i.e. A represents a digraph G on n vertices,
then ri = degout(i), ci = degin(i).

Lemma 4.1 Let G be a directed or undirected graph on n vertices. Let A = (aij) ∈
{0, 1}n×n be the representation matrix of G. For k ∈ N let Ak := (a(k)

ij )n
i,j=1. Then Ak ∈

Zn×n
+ . a

(k)
ij is the number of walks on G from the vertex i to the vertex j of length k. In

particular, trAk is the number of closed walks on G of length k.
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Proof. Recall that Ak = AAk−1 for each k ∈ N. From the definition of matrix multipli-
cation it follows

a
(k)
ij =

n∑

l=1

aila
(k−1)
lj , i, j = 1, . . . , n. (4.1)

We first show by induction that the entries of any Ak, k ∈ N are nonnegative integers. Since
A ∈ {0, 1}n×n each entry of A is either 0 or 1, hence in Z+. Assume by induction that the
result hold for k = p. Let k = p + 1 and use the formula (4.1) for this k. Since the products
and the sum of nonnegative integers is a nonnegative integer it follows that every entry of
Ap+1 is a nonnegative integer.

We now show that the number of walks of from i to j of length k in G is given by by
a
(k)
ij . Assume first that G is digraph. For k = 1 this is equivalent to the definition of the

incidence matrix A = A(G) of the digraph G. Assume by induction that the result hold for
k = p. Let k = p + 1. Let W = {i0 = i, i1, . . . , ip+1 = j} be walk on G of length p + 1.
Note that such walk exists iff aii1ai1i2 . . . aipj = 1 ⇐⇒ aii1ai1i2 . . . aipj 6= 0. Denote by
Wp+1(i, j) ⊃ Wp+1(i, l, j) the set of all walks on G from i to j in p + 1 steps and the subset
of such walks so the first step in this walk is from i to l. Note that either if this sets can be
an empty set. (Wp+1(i, j) = ∅ iff there is no walk in G of length p + 1 from i to j.) Then
Wp+1(i, j) = ∪n

l=1Wp+1(i, l, j). Wp+1(i, l, j) 6= ∅ ⇐⇒ ail = 1 and Wp(l, j) 6= ∅. By the
induction assumption #Wp(l, j) = a

(p)
lj . Hence #Wp+1(i, l, j) = aila

(p)
lj . Thus

#Wp+1(i, j) =
n∑

l=1

#Wp+1(i, l, j) =
n∑

l=1

aila
(p)
lj = a

(p+1)
ij .

Therefore #Wk(i, j) = a
(k)
ij as claimed. In particular #Wk(i, i) = a

(k)
i is the number of

walks starting and ending at i. (Any walk that ends at the starting point is called a closed
walk, or periodic walk, (of period k). Hence tr Ak is the number of periodic walks on G with
period k.

For an undirected graph the proof is the same, since the walk on G = (〈n〉, E) corre-
sponds to the walk on the oriented graph where aij = aji = 1 iff ij ∈ E. 2

The above theorem is standard, can be found in [15, I.3]

Corollary 4.2 Let G be directed or undirected graph on n vertices. Then G has a cycle
of odd length iff tr A2k−1 is at least 1 for some k = 1, . . . , bn+1

2 c.
Proof. Assume first that G is a digraph. Assume first that there exists an odd cycle

of length 2k − 1 (≤ n). Clearly, k ≤ bn+1
2 c. Hence tr A2k−1 is at least 1. Suppose now

that tr A2k−1 is at least 1 for some k ≤ bn+1
2 c. Hence there exists a closed walk W on G of

length 2k−1. It is straightforward to show that any closed walk W on G can be decomposed
as a ”sum” of cycles. The length of the walk W is the sum of the lengths of the cycles.
Since the length of the closed walk A is odd, there must be at least one odd cycle in any
decomposition of W to a ”sum” of cycles.

Assume that G = (〈n〉, E) is an undirected graph. Then a semi-cycle on G is defined as
a closed walk of length 2 : W = (iji) where ij ∈ E. Then any closed walk on G decomposes
to ”sum” of cycles and semi-cycles and the proof in this case follows as for the digraph. 2

Remark 4.3 Recall that undirected or directed graph G = (〈n〉, E) has no odd cycles iff
it is bipartite. It is not difficult to find a fast polynomial (quadratic) algorithm in n, which
finds if G is bipartite or not.

However to find if a given undirected or directed graph G = (〈n〉, E) has an even cycle
is a hard (NP-complete) problem.
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Lemma 4.4 Let G be a digraph on n vertices and let A ∈ {0, 1}n×n be its representation
matrix. Then G is strongly connected iff all the entries of B = (bij)i,j=1n := A0 + A1 +
. . . + An−1 are positive.

Proof. Recall that Ak ∈ Zn×n
+ for each k ∈ Z+. Hence B ≥ Ak for any k ∈ [0, n − 1].

In particular B ≥ A0 = In, hence all diagonal entries of B are positive. Assume first that
G is strongly connected. Then for any two distinct vertices i 6= j ∈ 〈n〉 there exists a path
P of length k which connects i to j. Since all the vertices in P are distinct k ≤ n. So
bij ≥ a

(k)
ij ≥ 1.

Assume now that all the entries of B are positive. Let i 6= j be two distinct vertices.
From the definition of B it follows that there exists k ∈ [1, n− 1] such a

(k)
ij > 0. Since a

(k)
ij

is a nonnegative integer it follows that a
(k)
ij ≥ 1. Thus we have a walk of length k from i

to j. Hence we have a path of length k at most from i to j. Thus G is strongly connected. 2

A ∈ Cm×n is called a block matrix if if A = (Aij)
pq
i,j=1 and each Aij ∈ Cmi×nj for

i = 1, . . . , p, j = 1, . . . q:

A =




A11 A12 ... A1q

A21 A22 ... A2q

...
...

...
...

Ap1 Ap2 ... Apq


 , (4.2)

Aij ∈ Cmi×nj , i = 1, . . . , p, j = 1, . . . , q,

p∑

i=1

= mi,

q∑

j=1

nj = n.

A square matrix A ∈ Cn×n is called block diagonal is if it is a block matrix where each
diagonal block is a square matrix and all off-diagonal elements are zero matrices, i.e. their
entries are all equal to zero:

A = diag(A1, . . . , Aq) = ⊕q
j=1Aj :=




A1 0 ... 0
0 A2 ... 0
...

...
...

...
0 0 ... Aq


 ,

Ai ∈ Cni×ni , i = 1, . . . , q,

q∑

j=1

nj = n.

Note that if a digraph (undirected graph) is a disjoint union of q graphs: G = ∪q
j=1Gj then

A(G) = ⊕q
j=1A(Gj).

Assume that a digraph G = (V,E) is acyclic. Then Proposition 2.14 yields that the
representation matrix A(G) is the following k × k block matrix:

A =




0 A12 A13 A14 ... A1k

0 0 A23 A24 ... A2k

...
...

...
...

0 0 0 0 ... A(k−1)k

0 0 0 0 ... 0




, Aij ∈ Cni×nj , i = 1, . . . , k, j = i + 1, . . . , k.

(4.3)
Moreover Ai(i+1) 6= 0 for i = 1, . . . , k.

Assume that the digraph G = (V,E) is strongly connected and is periodic, i.e. not
aperiodic. That is, the conditions of Theorem 2.16 with p > 1. In the decomposition
V = ∪p

i=1Vi assume that #Vi = ni, i = 1, . . . , p. Then the representation matrix A(G) is
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the following p× p block matrix:

A =




0 A12 0 0 ... 0
0 0 A23 0 ... 0
...

...
...

...
0 0 0 0 ... A(p−1)p

Ap1 0 0 0 ... 0




, Ai(i+1) ∈ Cni×ni+1 , i = 1, . . . , p, (p + 1 ≡ 1).

(4.4)
Any directed (undirected) G is bipartite if it has a representation matrix of the above form
for p = 2.

Reduced Graphs and reducible matrices: Let G = (V, E) be a digraph. Assume that
G is not strongly connected. Recall the definition of the reduced graph given in §2.2. Let
V1, . . . , Vm be the decomposition of V to nonempty union such that each G(Vi) is a maximal
connected component. Then Grdc = (Vrdc, E) is acyclic. We can always assume that we
can rename the vertices of the maximal strongly connected components of G such that we
do not have edges from Vi to Vj if j < i. In particular the vertex {V1} ∈ V represents an
initial vertex in Grdc while {Vk} represents the terminal state in Grdc. It is possible that
Grdc have other terminal (initial) states {Vi}. Then the representation matrix A(G) has the
following upper diagonal block form induced by the nonempty sets Vi of cardinality ni for
i = 1, . . . , k:

A =




A11 A12 A13 ... A1(k−1) A1k

0 A22 A23 ... A2(k−1) A2k

...
...

...
...

0 0 0 ... A(k−1)(k−1) A(k−1)k

0 0 0 ... 0 Akk




, (4.5)

Aij ∈ Cni×nj , i = 1, . . . , k, j = i + 1, . . . , k.

Note that if ni = 1, i.e. Vi consists of one vertex, then either Aii = (0) or Aii = (1). If
ni > 1 then G(Vi) is a strongly connected graph having more than one vertex.

Vice versa, a matrix A ∈ Cn×n is called reducible if by renumbering the rows and the
columns (in the same way) A has the form (4.5). Equivalently, there exists a permutation
matrix X ∈ {0, 1}n×n such that XAX> is of the form (4.5). Recall that X is a permutation
matrix if each row and column of X has exactly one entry equal to 1 and all other entries
are equal to 0. Equivalently, X it is the representation matrix of a graph on n vertices which
is a disjoint union cycles. Recall that X>X = XX> = In, i.e. X−1 = X>.

A ∈ Cn×n is called a diagonal matrix if it is a square matrix, whose all off-diagonal
entries are 0:

diag(d1, d2, ..., dn) =




d1 0 . . . 0 0
0 d2 . . . 0 0
...

...
...

...
...

0 0 . . . 0 dn




Example: diag(3,−2, 7) =




3 0 0
0 −2 0
0 0 7


. Note that the identity matrix is a diagonal

matrix with all diagonal entries equal to 1. More general, an m × n matrix A = (aij)
m,n
i,j=1

is called a diagonal matrix and denoted by diag(d1, . . . , dmin(m,n)) if aij = 0 for i 6= j and
aii = di for i = 1, . . . , min(m,n).

Assume that A = diag(A1, . . . , Aq) is a block diagonal matrix. Then it is straightforward
to show that Ak = diag(Ak

1 , . . . , Ak
q ) for any k ∈ N. Clearly A0 = diag(A0

1, . . . , A
0
q). It is easy

to raise to the power k ∈ N a diagonal matrix D = diag(d1, . . . , dn): Dk = diag(dk
1 , . . . , dk

n).
This basic fact can be used for computing the powers of A for ”most”of matrices square
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matrices, since most of the quare matrices are similar to a diagonal matrix. That is for
most A ∈ Cn×n there exists an invertible matrix X ∈ Cn×n a a diagonal matrix Λ :=
diag(λ1, . . . , λn) ∈ Cn×n such that A = XΛX−1. (Note that XX−1 = X−1X = In.) Hence
Ak = XΛkX−1 for any k ∈ N.

Given any matrix A = (aij)n
i,j ∈ Cn×n we associated with A a digraph G(A) := (〈n〉, E)

as follows: (i, j) ∈ E ⇐⇒ aij 6= 0. We call G the graph associated with A.

5 Markov chains on digraphs 2-16-05

5.1 Basic properties 2-16-05

A nonnegative matrix P = (pij)n
i,j=1 ∈ [0,∞)n×n is called stochastic, or some times row

stochastic, if
∑n

j=1 pij = 1 for i = 1, . . . , n. That is each row of a stochastic matrix is a
probability vector. Equivalently, if e := (1, . . . , 1) ∈ Rn is the vector whose all coordinates
is equal to 1, then P ≥ 0 and Pe = e.

Let G = (〈n〉, E) a digraph. As in [10] is convenient to view the vertices 〈n〉 of G as
vertices V := {v1, . . . , vn} or states S := {s1, . . . , sn}. Assume that G has the following
property: For any i ∈ 〈n〉 degout(i) ≥ 1.

Imagine a particle jumps from vertex to vertex at discrete times measured by nonnegative
integers m = 0, 1, . . . ,. For each m ∈ Z+ let Xm be the random variable that gives the
position of a particle at time Xm. So Pr(Xm = i) = µ

(m)
i , i = 1, . . . , n. Here Xm = i means

that the particle is at time m is at the vertex vi (si). Hence µ(m) := (µ(m)
1 , . . . , µ

(m)
n ) is a

row probability vector. The sequence of random variables X0, X1, . . . , is called a process, or
random process. Denote by Pr(Xm|X0, X1, . . . , Xm−1) the probability of the distribution
of Xm knowing the values of X0, . . . , Xm−1. More specifically, Pr(Xm = im|X0 = i0, X1 =
i1, . . . , Xm−1 = im−1) denotes the probability of a particle being in location im ∈ 〈n〉,
provided the the particle was at the place il at time l = 0, . . . ,m− 1.

The process X0, X1, . . . , is called Markov process, or Markov chain if the following
property holds. For each m ≥ 1 the conditional probability Pr(Xm|X0, X1, . . . , Xm−1) is
equal to the conditional probability Pr(Xm|Xm−1). More precisely

Pr(Xm = im|X0 = i0, X1 = i1, . . . , Xm−1 = im−1) = Pr(Xm = im|Xm−1 = im−1)

for any i0, . . . , im ∈ 〈n〉. The exact values of the Pr(X = im|Xm−1 = im−1) are descrived as
follows. Let Pm := (pij,m)n

i,j=1,m = 1, . . . be a sequence n×n stochastic matrices such that
G(Pm) := (〈n〉, Em) is a subgraph of G for each m ∈ N. That is Em ⊂ E, m ∈ N. Then

Pr(X = im|Xm−1 = im−1) = pim−1im,m, im−1, im ∈ 〈n〉, m = 1, . . . . (5.1)

That is if we know that at time m− 1 the particle is at the place im−1 then at time m the
particle will only be at the places im where (im−1, im) ∈ E. This follows from the condition
that G(Pm) ⊂ G. The stochasticity of Pm equivalent to the fact that the particle at time
m jumps to some vertex in G from the vertex he was at time m − 1. The general form
(5.1) is called inhomogeneous Markov chain. See [10, §2,p’13-14] for a simple example for
inhomogeneous Markov chain model describing the weather of Gothenburg in summer and
winter.

We claim that
µ(m) = µ(m−1)Pm, m = 1, . . . . (5.2)

Indeed

Pr(Xm = j) =
n∑

i=1

Pr(Xm−1 = i) Pr(Xm = j|Xm−1 = i) =
n∑

i=1

µ
(m−1)
i pij,m.

In particular we have µ(m) = µ(0)P1P2 . . . Pm, for any m ∈ N.
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Markov chain is called homogeneous if Pm = P for all m ∈ N and some fixed stochastic
P . In that case P is called the transition matrix of the Markov chain. Usually one assumes
that G = G(P ). Then

µ(m) = µ(0)Pm, m = 1, . . . . (5.3)

See See [10, §2] for examples of simple homogeneous Markov chains.

5.2 Computer simulation of homogeneous Markov chains 2-18-05

Let P = (pij)n
i,j ∈ [0, 1]n×n be a stochastic matrix. How do we simulate the homogeneous

Markov chain generated by P on the graph G = G(P )? To do that one needs to assume
that we have a program that generates a random variable U with uniform distribution on
[0, 1]. That is U takes only values in the unit interval [0, 1], i.e. 0 ≤ U ≤ 1 and for any
t ∈ [0, 1] Pr(U ≤ t) = t.

Assume that the random variable Xm has value i ∈ 〈n〉 at time m ∈ Z+. Equivalently,
at time m our particle is at the state si. For j = 0, 1, . . . , n define qij ∈ [0, 1] as follows

qi0 = 0, qij =
j∑

l=1

pil, for j = 1, . . . , n, for i = 1, . . . , n. (5.4)

Apply the subroutine which generates the random variable U . Then there exists exactly
one j ∈ 〈n〉 such that qi(j−1) ≤ U < qij . (Show it! ) Now let Xm+1 = j. That is the particle
jumped from the state si at time m to the state sj at time m + 1. See for more details [10,
§3].

5.3 Stationary distributions

A row probability vector µ = (µ1, . . . , µn) is called a stationary distribution for a stochastic
matrix P = (pij)n

i,j if µP = µ. Assume that we have a homogeneous Markov chain on
G = G(P ) induced by P . Let X0, X1, . . . be the Markov process X0, X1, . . . of random
walks on G induced by P . Suppose that the initial distribution of X0 is given by the
stationary distribution µ: Pr(X0 = i) = µi, i = 1, . . . , n. Then (5.3) implies that µ(m) = µ
for any m ∈ N. That is X0, X1, . . . are identically distributed. We then have the following
natural problems in theory of Markov chains:
1. Do stationary distributions always exist?
2. Under what conditions there exists a unique stationary distribution?
3. Suppose that P admits a unique stationary distribution µ. Under what conditions the
Markov process X0, X1, . . . converges to a unique random variable X with the stationary
distribution µ?

The answer Problem 1 is yes. We know the answers to Problems 2 and 3. To state the
answers we need the following definitions.

Let G = G(P ). Then P is called irreducible if G is strongly connected. An irreducible
P is called aperiodic or periodic if G is a strongly connected graph, which is aperiodic or
periodic respectively. P is called reducible if G is not strongly connected. Let Grdc be the
reduced graph of G. Let G(Vi) be a maximal strongly connected component of G. Then Vi

is called a terminal subset if {Vi} is a terminal vertex in Grdc.

Proposition 5.1 Let P = (pij)n
i,j=1 be a stochastic matrix. Let G = G(P ) = (〈n〉, E)

and assume that that V ⊂ 〈n〉 be a nonempty subset of 〈n〉. Denote by P (V ) := (pij)i,j∈V

the square submatrix of P induced by the rows and columns of P which are in V . Then
P (V ) is a substochastic matrix. That is, each entry of P (V ) is nonnegative and the sum of
each row is at most 1. P (V ) is an irreducible stochastic matrix if and only if exactly on of
the following conditions holds.
(a) P is irreducible, i.e. G is strongly connected. Then V = 〈n〉.
(b) P is reducible, G(V ) is a maximal strongly connected component of G and {V } is a
terminal vertex in the acyclic reduced graph Grdc corresponding to G.
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Proof. Let i ∈ V . Then ∑

j∈V

pij ≤
n∑

j=1

pij = 1. (5.5)

Hence P (V ) is substochastic. Note that
∑

j∈V pij = 1 iff (i, j) 6∈ E for any j 6∈ V .
Suppose first that G is strongly connected. Let V $ 〈n〉 be a nonempty subset. (Hence

n > 1.) Since G is strongly connected there exist i ∈ V and k 6∈ V such that (i, k) ∈ E.
Hence pik > 0. In particular (5.5) yields that

∑
j∈V pij < 1. Thus P (V ) is not stochastic.

Thus we are left with the case V = 〈n〉. Then P (V ) = P is irreducible.
Assume that P is reducible, i.e. G is not strongly connected. Suppose first that P (V ) is

an irreducible stochastic matrix. In particular V 6= 〈n〉. Then G(V ) = G(P (V )) is strongly
connected. Since P (V ) is stochastic it follows that for any i ∈ V one has the equality sign
in (5.5). Thus i ∈ V, k 6∈ V ⇒ (i, k) 6∈ V . That is there are no edges from V to 〈n〉\V .
Therefore G(V ) is maximal connected component of G and V is terminal.

Suppose now that G(V ) is a maximal strongly connected component of G. As G(V ) =
G(P (V )) P (V ) is irreducible. Suppose that V is terminal. So there are no edges from V to
〈n〉\V . Hence for any i ∈ V the equality sign in (5.5). Thus P (V ) is stochastic. 2

Let α = (α1, . . . , αn) be a probability vector (distribution) on 〈n〉. Then supp α =
{i ∈ 〈n〉 : αi > 0} is the support of the distribution α. Denote by Πn the set of all
distributions α = (α1, . . . , αn) on 〈n〉. For any p ∈ N let x1, . . . ,xp ∈ Rd be p vectors.
Let (β1, . . . , βp) ∈ Πp be a distribution on 〈p〉. Then x :=

∑p
l=1 βlxl ∈ Rd is a convex

combination of x1, . . . ,xp. Let

conv (x1, . . . ,xp) := {x ∈ Rd : x =
p∑

l=1

βixi for all (β1, . . . , βp) ∈ Πp}.

Then conv (x1, . . . ,xp) is called the convex hull spanned by x1, . . . ,xp. It is a convex set.
(C ⊂ Rd is called convex set if any convex combination of any two points is in C.)

Here is a probabilistic interpretation of conv (x1, . . . ,xp). Let X : Ω → Rd be a random
variable such that X(Ω) = {x1, . . . ,xp}. Then E(X) is a point in Rd. The set of all possible
values of E(X) is given by conv (x1, . . . ,xp).

Similarly if α1, . . . , αp ∈ Πn are p distributions on 〈n〉 then conv (α1, . . . , αp) is the
convex hull of row vectors spanned by α1, . . . , αp. It is straightforward to show that each
α ∈ conv (α1, . . . , αp) is a distribution on 〈n〉.

Theorem 5.2 Let P = (pij)n
i,j be a stochastic matrix. Let G = G(P ) = (〈n〉, E) be the

induced digraph by P . Then the following holds:
1. Suppose that P is irreducible, i.e. G is strongly connected. Then P has a unique
stationary distribution µ = (µ1, . . . , µn), and µi > 0 for i = 1, . . . , n.
(a) If G (or P ) is aperiodic then for any distribution µ(0) limm→∞ µ(0)Pm = µ. That is
the Markov process X0, X1, . . . , converges to the unique random variable X given by the
stationary distribution µ. (Pr(X = i) = µi, i = 1, . . . , n.)
(b) G (or P ) is periodic. Assume that p ≥ 2 is the gcd of all cycles of G. Then for each
µ(0) each of the sequence µ(0)Pmp+i,m = 1, 2, . . . converges for i = 0, 1, . . . , p − 1. These
limits depend of µ(0) and i.
2. Assume that P is reducible, i.e. G is not strongly connected. Let Grdc be the reduced
graph of G with the vertices {V1}, . . . , {Vk}. Then for each terminal vertex {Vi} in Grdc there
exists a unique distribution µ(Vi) ∈ Πn with supp µ(Vi) = Vi. Assume that {Vi1}, . . . , {Vit}
are all the terminal vertices of Grdc. Then the set of all stationary distributions of P is the
convex hull spanned by µ(Vi1), . . . , µ(Vit). Hence P has a unique stationary distribution iff
Grdc has exactly one terminal vertex {Vi1}.
(a) Assume that Grdc has exactly one terminal vertex {Vi1} and suppose furthermore that
G(Vi1) is aperiodic. Then for any distribution µ(0) limm→∞ µ(0)Pm = µ(Vi1). That is
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the Markov process X0, X1, . . . , converges to the unique random variable X given by the
stationary distribution µ(Vi1).

(b) Assume that either t = 1 and G(Vi1) is periodic or t > 1. Let pi ≥ 1 be the gcd of
all cycles of G(Vij

) for j = 1, . . . , t. Let p be the smallest positive integer that is divisible
by p1, . . . , pt. Then for each µ(0) each of the sequence µ(0)Pmp+i,m = 1, 2, . . . converges for
i = 0, 1, . . . , p− 1. These limits depend of µ(0) and i.

To prove this theorem we will need some results on the spectral properties of nonnegative
matrices. The following corollary, which is deduced straightforward from the part (2b) of
the is called the mean ergodic theorem for stochastic matrices.

Corollary 5.3 Let P ∈ [0, 1]n×n be a stochastic matrix. Then 1
m

∑m−1
i=0 P i converges to

a stochastic matrix Q as m →∞. Q is a projection: Q2 = Q, which satisfies PQ = QP = Q.
Furthermore, for any distribution α ∈ Πn, limm→∞ 1

m

∑m−1
i=0 αP i = αQ is a stationary

distribution of P .

6 Square matrices with nonnegative entries

6.1 Eigenvectors and eigenvalues of square complex matrices

(All the results of this subsection can be found in [15] and are part of Math 310 course in
UIC.) Let Cn×n be the algebra of n × n complex valued matrices. That is, we can define
A + B, AB, aA for any A,B ∈ Cn×n, a ∈ C, which satisfy the appropriate rules. Then one
can define the determinant function det : Cn×n → C which satisfies the following properties

det aA = an det A, detAB = det A detB, det In = 1, for any A,B ∈ Cn×n, a ∈ C.

Moreover det : Rn×n → R, i.e. the determinant of a real matrix is a real number, and
det : Zn×n → Z, i.e. the determinant of a integer valued matrix is an integer. The great
advantage of det A that it can be computed in a polynomial time, e.g. at most in 2n3

3
operations.

Assume that A ∈ Cn×n. det A 6= 0 iff there exists A−1 ∈ Cn×n, called the inverse
of A, such that AA−1 = A−1A = In. detA = 0 iff the rows (columns) of A are linearly
independent. Equivalently, detA = 0 iff the system Ax = 0 has a nontrivial solution x 6= 0.
0 6= x ∈ Cn is called the right (left) eigenvector with the corresponding eigenvalue λ if
Ax = λx (x>A = λx>). The eigenvalues of A are the complex roots of the characteristic
polynomial

det(zIn −A) = zn − (tr A)zn−1 + . . . + (−1)n detA =
n∏

i=1

(z − λi). (6.1)

Hence

trA =
n∑

i=1

λi, detA = λ1 · λ2 · · ·λn. (6.2)

The set of all distinct eigenvalues of A, is denoted by spec A ⊂ C. Thus spec In = {1},
since det(zIn − In) = (z − 1)n. Hence 1 is the unique root of the characteristic polynomial
of multiplicity n. Thus In has n eigenvalues λ1 = . . . = λn = 1. It is customary to arrange
the n eigenvalues of A in one the following two orders

<(λ1) ≥ <(λ2) ≥ . . . ≥ <(λn)
(6.3)

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|.
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The spectral radius of A, denoted by ρ(A), is defined as the maximal modulus of all the
eigenvalues of A. That is, if we arrange the eigenvalues of A with respect to the second of
the above order, then ρ(A) = |λ1|.

The problem with the eigenvalues of A that it may happen that some or all eigenvalues

of a real matrix can be complex (not reals). For example A =
(

0 1
−1 0

)
has two complex

eigenvalues λ1 =
√−1, λ2 = −√−1. The corresponding eigenvectors can not be chosen real.

It is convenient to define

Eig(z, A) := {x ∈ Cn : Ax = zx}, for any z ∈ C.

Clearly Eig(z,A) is a subspace of A. Then z ∈ spec A ⇐⇒ dimEig(z, A) > 0. If z is not
an eigenvalue of A the Eig(z, A) = {0} is the trivial subspace. For λ ∈ spec A Eig(λ,A)
is the eigenspace of A corresponding to λ. Thus any 0 6= x ∈ Eig(λ,A) is an eigenvector
of A corresponding to λ. The dimension of the vector subspace Eig(λ, A), denoted by
dimEig(λ,A), is called the geometric multiplicity of λ. The multiplicity m(λ) of the root λ
in the characteristic polynomial det(zIn − A) is called the algebraic multiplicity of λ. It is
known that dim Eig(λ, A) ≤ m(λ). λ is called geometrically simple if dim Eig(λ,A) = m(λ).
Otherwise λ is called a defective eigenvalue.

Assume that λi 6= λj for 1 ≤ i < j ≤ m ≤ n are m distinct eigenvalues of A. Let
x1, . . . ,xm ∈ Cn×n be the corresponding eigenvectors of A: Axi = λixi, ; i = 1, . . . , m. Then
it is known that x1, . . . ,xm are linearly independent. This is equivalent to the statement
that the dimension of the subspace V, spanned by all eigenvectors vectors in of A, is equal
to the sum of the dimensions of all different eigenspaces of A. In other notation V =
⊕λ∈spec A Eig(λ,A).

Suppose that m = n, that is the characteristic polynomial of A has n distinct eigen-
values. (This is a generic situation. If one chooses at random all the n2 entries of A
then with probability 1 A will have n distinct eigenvalues.) This condition is equivalent to
the assumption that each eigenvalue of A is algebraically simple. Then the square matrix
X := (x1,x2, . . . ,xn) ∈ Cn×n whose i− th column is xi has nonzero determinant. That is
X−1 exists. Then

Axi = λixi, i = 1, . . . , n ⇐⇒ AX = XΛ ⇐⇒ A = XΛX−1, Λ := diag(λ1, . . . , λn).
(6.4)

Such an A is called diagonable. Recall that A is diagonable iff for any eigenvalue λ of
multiplicity m ≥ 1 in the characteristic polynomial of A, rank (λIn − A) = n − m. If
A = XΛX−1 then for any k ∈ N Ak = XΛkX−1 and it is fairly simple to understand the
behavior of Ak, k = 1, . . ..

Let G(A) = (V,E) be the digraph induced by A. Let V = ∪k
i=1Vi be a decomposition of

V to a union of nonempty disjoint sets such that each G(Vi) is a connected component of
G. (That does not mean that G(Vi) is strongly connected!) That is for i 6= j there are no
directed edges between Vi and Vj , and each undirected graph induced by G(Vi) is connected.
Then there exist a permutation matrix Q ∈ {0, 1}n×n such that

QAQT = diag(A1, . . . , Ak), Ai ∈ Cni×ni , i = 1, . . . , k. (6.5)

For simplicity of notation we assume that we renamed the vertices 〈n〉 such that Q = In,
i.e. A is a block diagonal

A = diag(A1, . . . , Ak) = ⊕k
i=1Ai, Ai ∈ Cni×ni . (6.6)

Then det(λIn − A) =
∏k

i=1 det(λIni − Ai). To find the eigenvalues and the eigenvectors of
A it is enough to find the eigenvalues and the eigenvectors of each Ai. More precisely we
view Cn = ⊕k

i=1Cni as follows. Every w ∈ Cn is viewed as w1 ⊕ . . .⊕wk, where wi ∈ Cni

for i = 1, . . . , k. That is w> = (w>
1 ,w>

2 , . . . ,w>
k ). (Remember that w and w1, . . . , wk are
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column vectors!) Then we can give the following description of the eigenspace Eig(λ,A):

Eig(λ,⊕k
i=1Ai) = ⊕k

i=1 Eig(λ,Ai), dimEig(λ,⊕k
i=1Ai) =

k∑

i=1

dim Eig(λ,Ai), (6.7)

for any λ ∈ spec A. (Actually the above formula hodls for any λ ∈ C.) That is, any
eigenvector of A corresponding to eigenvalue λ is of the form y> = (y>1 , . . . ,y>k ) where the
following conditions are satisfied. If λ 6∈ spec (Ai) then yi = 0. If λ ∈ spec (Ai) then either
yi is an eigenvector of Ai corresponding to λ or yi = 0. At least one of the vectors yi must
be nonzero. (For this yi λ ∈ spec Ai.)

Let P ∈ Rn×n
+ , i.e. P is an n×n matrix with nonnegative matrices. Then P is stochastic

iff P1 = 1, where 1 = (1, . . . , 1)>.

Theorem 6.1 Let P be a stochastic matrix. Denote by G(P ) = (〈n〉, E) the digraph
induced by P . Then 1 is an eigenvalue of P , and each other eigenvalue λ of P satisfies
|λ| ≤ 1. Let λ be an eigenvalue of P of modulus 1, i.e. |λ| = 1. Then there exists a
terminal vertex {V } in the reduced graph Grdc such that λ is an eigenvalue of the irreducible
stochastic matrix P (V ) of period p(V ). Furthermore λ is a simple root of det(zI − P (V ))
and λp(V ) = 1. Moreover any p(V )-root of 1 is an eigenvalue of P (V ) and hence of P .
Furthermore eigenvalue of P of modulus 1 is geometrically simple.

Proof. We show here that any eigenvalue λ of P satisfies |λ| ≤ 1. Assume that Px =
λx,x 6= 0. Let x = (x1, x2, . . . , xn)> and assume that |xk| = maxi∈[1,n] |xi| > 0. Then

|λxk| = |(Px)k| = |
n∑

i=1

pkixi| ≤
n∑

i=1

pki|xi| ≤
n∑

i=1

pki|xk| = |xk|.

Divide by |xk| to obtain |λ| ≤ 1. Other claims of the Theorem follow from Perron-Frobenius
theorem and Theorem 5.2. We will prove the special case where P is symmetric in the next
subsections. 2

6.2 Spectral theory of real symmetric matrices

(Most of the results of this subsection can be found in [15] and are part of Math 310 course
in UIC.) In this subsection we assume that A ∈ Rn×n matrix is symmetric, i.e. if A> = A.
Denote by Sn(R) the set of all n× n real symmetric matrices. Note that Sn(R) is a vectors
space over R. Then A has only real eigenvalues and is diagonable. In this case we assume
that Eig(λ,A) ⊂ Rn, i.e. we consider only the real eigenvectors of A. Note that any
right eigenvector of A is also left eigenvector of A corresponding to the same eigenvalue.
Furhtermore, it is possible to choose the eigenvectors x1, . . . ,xn ∈ Rn of A such that

Axi = λixi, i = 1, . . . , n, λ1 ≥ λ2 ≥ . . . ≥ λn, x>i xj = δij , i, j = 1, . . . , n. (6.8)

Recall that δij is the (i, j) entry of the identity matrix In. The set of n vectors x1, . . . ,xn ∈
Rn satisfying the conditions x>i xj = δij for i, j = 1, . . . , n is called an orthonormal basis of
Rn. Let X = (x1, . . . ,xn) ∈ Rn×n then the condition that x1, . . . ,xn is an orthonormal set
is equivalent to X>X = In ⇐⇒ X−1 = X>, i.e. X is an orthogonal matrix. Denote by On

the set, (group), of orthonormal matrices. Then (6.8) is equivalent to A = XΛX>. Note
that X ∈ Rn×n is orthogonal matrix iff (Xx)>(Xx) = x>x for any x ∈ Rn×n. Observe
that ||x|| :=

√
x>x is a nonnegative number, which is positive unless x = 0. ||x|| is called

norm or length of x. The maximal eigenvalue λ1 has the maximal characterization

λ1 = max
x 6=0

x>Ax
x>x

= max
||x||=1

x>Ax. (6.9)
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Equality is achieved iff x is an eigenvector corresponding to λ1. Here is a quick argument.
If A = Λ = diag(λ1, . . . , λn) the proof is straightforward. In the general case let y = X>x
and note that x>Ax = y>Λy and x>x = y>y and the proof of this case follows from the
previous case. Similarly

λn = min
x 6=0

x>Ax
x>x

= min
||x||=1

x>Ax.

Equality holds iff x is the eigenvector corresponding to λn. There is also an extremal
characterization of λ2:

λ2 = max
x 6=0,x>1 x=0

x>Ax
x>x

= max
||x||=1,x>1 x=0

x>Ax. (6.10)

Equality is achieved iff x is an eigenvector corresponding to λ2 which is orthogonal to x1.
The disadvantage of this characterization is that it requires the knowledge of x1. There are
other characterizations which avoid it, but we will not give them here.

Let G(A) = (V, E) be the graph induced by A. Let V = ∪k
i=1Vi be a decomposition of V

to a union of nonempty disjoint sets such that each G(Vi) is a connected component of G.
Then there exist a permutation matrix Q ∈ {0, 1}n×n such that (6.5) holds. Furthermore
each Ai ∈ Sni

(R) is real symmetric. Assume as in the previous subsection that Q = In. The
one has the decomposition (6.6) where Ai ∈ Sni

(R), i = 1, . . . , k. To find each eigenspace
Eig(λ,A) we use (6.7).

6.3 Singular value decomposition and lp operator norms of matrices

Theorem 6.2 Let A ∈ Rm×n. Then there exists orthogonal matrices U ∈ Rm×m, V ∈
Rn×n and a diagonal matrix Σ := diag(σ1, . . . , σmin(m,n)) ∈ Rm×n, with σ1 ≥ σ2 ≥ · · · ≥
σmin(n,m) ≥ 0, such that A = UΣV >. Assume that σ1 ≥ . . . ≥ σr > σr+1 = . . . =
σmin(m,n) = 0. Assume that σi = 0 for any i > min(m,n). Then r = rank A. σ2

1 ≥ . . . ≥ σ2
r

are all the positive eigenvalues of AA> and A>A, arranged is a decreasing order. All other
eigenvalues of AA> and A>A are equal to zero. Let U = (u1, . . . ,um) and V = (v1, . . . ,vn).
Then u1, . . . ,um are the orthonormal eigenvectors of AA> corresponding to the eigenvalues
σ2

1 , . . . , σ2
m. Furthermore vi = 1

σi
A>ui for i = 1, . . . , r is an orthonormal system in Rn.

vr+1, . . . ,vn is any completion of v1, . . . ,vr to an orthonormal basis v1, . . . ,vn of Rn.
Similarly, let v1, . . . ,vn be any orthonormal set of eigenvectors of A>A corresponding to the
eigenvalues σ2

1 , . . . , σ2
n. Then ui = 1

σi
Avi for i = 1, . . . , r. ur+1, . . . ,um is any completion

of u1, . . . ,ur to an orthonormal basis u1, . . . ,un of Rn.

Proof. Consider B = AA> ∈ Rm×m. Then B is symmetric and nonnegative definite,
i.e. x>Bx = (A>x)>(A>x) ≥ 0. Hence all the eigenvalues of B are nonnegative, and
denote them by σ2

1 ≥ . . . ≥ σ2
m ≥ 0. Note that A>x = 0 ⇒ Bx = 0. Furthermore

Bx = 0 ⇒ x>Bx = 0 = (A>x)>(A>x) ⇒ Ax = 0. Hence rank A = rank B = r. Therefore
σ1 ≥ . . . ≥ σr > σr+1 = . . . = σmin(m,n) = 0. Let Bui = σ2

i ui for i = 1, . . . , m, where
u1, . . . ,um is an orthonormal basis in Rm. So σ2

i = u>i Bui = (A>ui)>(A>ui). It now fol-
lows that vi = 1

σi
A>ui for i = 1, . . . , r is an orthonormal system in Rn. Let vr+1, . . . ,vn be

any completion of v1, . . . ,vr to an orthonormal basis v1, . . . ,vn of Rn. It is straightforward
to show that A = UΣV >. The other part of the theorem follows similarly. 2

Corollary 6.3 Let A ∈ Sn(R) and assume that A = X diag(λ1, . . . , λn)X>, X ∈ On be
the spectral decomposition of A. The the sequence σ1 ≥ . . . ≥ σn ≥ 0 of singular values of A
is the rearranged sequence of |λ1|, . . . , |λn|. Let σi = |λj | then one can choose vi = xj and
ui = εixj, where εi = λj

|λj | if λj 6= 0 and εj = ±1 if λj = 0.

Proof. Use the identity AA> = A>A = A2 = X diag(λ2
1, . . . , λ

2
n)X>. 2
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A function ν : Rn → R+ is called a norm if the following properties hold
a. ν(x) > 0 for x 6= 0 and ν(0) = 0. (positivity);
b. ν(ax) = |a|ν(x) for any a ∈ R and x ∈ Rn, (homogeneity);
c. ν(x + y) ≤ ν(x) + ν(y) for all x,y ∈ Rn, (triangle inequality).

The most common examples of norms are the lp norms

||x||p = ||x>||p :=
( n∑

i=1

|xi|p
) 1

p , for p ∈ [1,∞), ||x||∞ = ||x>||∞ := max
1≤i≤n

|xi|. (6.11)

(We remark that sometimes we use in the sequel lp norms of row vectors.) The Euclidean
norm ||x||2 = ||x>||2 is equal to the norm ||x|| = ||x>|| =

√
x>x defined in §6.2.

View A ∈ Rm×n as an operator A : Rn → Rm given by x 7→ Ax. The (operator) lp norm
of A is defined as

||A||p := max
||x||=1,x∈Rn

||Ax||p = max
06=x∈Rn

||Ax||p
||x||p for A ∈ Rm×n and p ∈ [1,∞]. (6.12)

|| · ||p is a norm on Rm×n such that ||In||p = 1 for any n ∈ N. Note that from the definition
of the operator norm it follows

||Ax||p ≤ ||A||p||x||p for all x ∈ Rn, A ∈ Rm×n,

||AB||p ≤ ||A||p||B||p for all A ∈ Rm×n, B ∈ Rn×l, (6.13)
||diag(d1, . . . , dmin(m,n))||p = max

i∈[1,min(m,n)]
|di| for any diag(d1, . . . , dmin(m,n)) ∈ Rm×n,

||Al+q||p ≤ ||Al||p||Aq||p for all l, q ∈ Z+ and A ∈ Rn×n.

Theorem 6.4 For any m× n real valued matrix A = (aij)
m,n
i,j=1 one has

||A|| := ||A||2 = σ1(A), ||A||1 = max
j∈[1,n]

m∑

i=1

|aij |, ||A||∞ = max
i∈[1,m]

n∑

j=1

|aij |.

Proof. Clearly ||Qx|| = ||x|| for any orthogonal matrix Q. Use singular value decompo-
sition of A to deduce

||A|| = ||U diag(σ1, . . . , σmin(m,n))V >|| =
||diag(σ1, . . . , σmin(m,n))V >|| = ||diag(σ1, . . . , σmin(m,n))|| = σ1.

For x = (x1, . . . , xn)> ∈ Rn we have

||Ax||1 =
m∑

i=1

|
n∑

j=1

aijxj | ≤
m,n∑

i,j=1

|aij | |xj | =
n∑

j=1

(
m∑

i=1

|aij |)|xj | ≤
(

max
j∈[1,n]

m∑

i=1

|aij |
)||x||1.

Hence ||A||1 ≤ maxj∈[1,n]

∑m
i=1 |aij |. Choose x = ek = (δ1k, . . . , δnk)>, where

k = arg maxj∈[1,n]

∑m
i=1 |aij |, i.e. an index for which the maximum is achieved. Then

||Aek||1 = maxj∈[1,n]

∑m
i=1 |aij | ||ek||1 = maxj∈[1,n]

∑m
i=1 |aij |. Hence the second equality

of the theorem follows. The third equality of the theorem follows similarly. 2

Corollary 6.5 Let A ∈ Rm×n. Then ||A>||1 = ||A||∞. Let P ∈ [0, 1]n×n be a stochastic
matrix. Then ||P ||∞ = ||P>||1 = 1. In particular ||Px||∞ ≤ ||x||∞ and ||y>P ||1 ≤ ||y>||1
for any x,y ∈ Rn. Equality hold for any y ∈ Rn

+.

Definition 6.6 A sequence of real numbers ai, i ∈ N is called subadditive if ai+j ≤ ai+aj

for all i, j ∈ N.
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The following lemma is fundamental in many areas of mathematics.

Lemma 6.7 Let ai, i ∈ N be a real subadditive sequence. Assume that ai

i , i ∈ N is
bounded from below. Then the sequence ai

i converges to a limit a ∈ R and a ≤ aj

j for each
j ∈ N.

Proof. Assume that a0 = 0. Then the subadditivity conditions extends to ai, i ∈ Z+.
Note that aij = aj+(i−1)j ≤ aj +a(i−1)j ≤ . . . ≤ iaj . Hence aij

ij ≤ aj

j . Let a = lim infi→∞ ai

i .
Since ai

i , i ∈ N is bounded from below a ∈ R. Assume that nj ∈ N, j ∈ N be an increasing
sequences of integers such that limj→∞

anj

nj
= a. Fix ε > 0 and assume that

anj

nj
≤ a + ε

for some big enough i. Let k ≥ nj . Then k = inj + r for some i ≥ 1 and r ∈ [0, nj − 1].
Use subadditivity to conclude ak ≤ ainj

+ ar ≤ ianj
+ ar ≤ inj(a + ε) + ar. This inequality

yields lim supk→∞
ak

k ≤ a + ε. Since we can ε to be an arbitrary positive small number it
follows that

a = lim inf
i→∞

ai

i
≤ lim sup

k→∞

ak

k
≤ a ⇒ lim

i→∞
ai

i
= a.

Since aij

ij ≤ aj

j it follows that a = limi→∞
aij

ij ≤ aj

j . 2

Remark 6.8 The above lemma holds also in the case that ai

i , i ∈ N is not bounded from
below. Then a = −∞.

Theorem 6.9 Let A ∈ Rn×n and assume that ρ(A) is the spectral radius of A. Then

for any k ∈ N and p ∈ [1,∞] ρ(A) ≤ ||Ak||
1
k
p . For p = 2 and any A ∈ Sn(R), k ∈ N the

equality ρ(A)k = ||Ak||2 holds. Furthermore limk→∞ ||Ak||
1
k
p = ρ(A) for any p ∈ [1,∞] and

A ∈ Rn×n.

Proof. Let λ be an eigenvalue of A. Hence Ax = λx,x 6= 0. Then

λkx = Akx ⇒ ||λkx||p = |λ|k||x||p = ||Akx||p ≤ ||Ak||p||x||p ⇒ |λ|k ≤ ||Ak||p ⇒ ρ(A) ≤ ||Ak||
1
k
p .

Use Theorem 6.4 and Corollary 6.3 to deduce that for any A ∈ Sn(R) we have ρ(A)k =
||Ak||2. Assume first that ρ(A) = 0. Then it is known that A is nilpotent, i.e An = 0 ⇒ Ak =

0 for k ≥ n. Hence 0 = ρ(A) = limk→∞ ||Ak||
1
k
p . Suppose that ρ(A). Use (6.13) to deduce

that the sequence log ||Ak||p, k ∈ N is a subadditive sequence. Clearly log ρ(A) ≤ log ||Ak||p
k

for any k ∈ N. Lemma 6.6 implies that limk→∞ log ||Ak||p
k = t ≥ log ρ(A). It is left

to show that t = log ρ(A). We will prove the generic case where A is diagonable, i.e.
A = X diag(λ1, . . . , λn)X−1. Then

||Ak||
1
k
p = ||X diag(λk

1 , . . . , λk
n)X−1||

1
k
p ≤ ||X||

1
k
p || diag(λk

1 , . . . , λk
n)||

1
k
p ||X−1||

1
k
p = ||X||

1
k
p ρ(A)||X−1||

1
k
p .

Let k →∞ to deduce that et ≤ ρ(A). Hence et = ρ(A). 2

6.4 Nonnegative symmetric matrices

Denote by Sn(R+) the set of all n×n real symmetric matrices with nonnegative entries. In
this subsection we assume that A ∈ Sn(R+).

Theorem 6.10 Let A = (aij)n
i,j=1 6= 0 be a real symmetric matrix with nonnegative

entries. Assume that G(A) is connected. Arrange the eigenvalues of A in a decreasing order
(6.8). Then λ1 > 0 and λ1 ≥ |λn|, i.e. λ1 = ρ(A). Furthermore λ1 > λ2, i.e. λ1 is a simple
root of det(zIn−A). The corresponding eigenvector x1 in (6.8) can be chosen to be a vector
of length one with positive coordinates. Furthermore λ1 > |λn| unless G(A) is bipartite. If
G(A) is bipartite then λn = −λ1 and λ1 > |λi| for i = 2, . . . , n− 1.
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Proof. For any vector x = (x1, . . . , xn)> ∈ Rn let |x| := (|x1|, . . . , |xn|)> be a vector with
nonnegative coordinates. Note that x>x = |x|>|x|. As all the entries of A are nonnegative
it follows that for any x ∈ Rn

|x>Ax| = |
n∑

i,j=1

aijxixj | ≤
n∑

i,j=1

aij |xi||xj = |x|>A|x|.

Thus in the maximum characterization of (6.9) it is enough to consider all x whose coor-
dinates are nonnegative. Let e = (1, . . . , 1)>. Then λ1 ≥ e>Ae

e>e
> 0. The maximum is

achieved for some x1, ||x1|| = 1 with nonnegative coordinates. x1 must be an eigenvector
of A corresponding to λ1, i.e. Ax1 = λ1x1. Note that (In + A)x1 = (1 + λ)x1. Hence
(In + A)n−1x1 = (1 + λ1)n−1x1. Since G(A) is connected Lemma 4.4 (In + A)n−1 has all
positive entries. Since x1 has at least one positive coordinate it follows that (In + A)n−1x1

has all positive coordinates. Thus x1 = (1+λ1)−n+1(In +A)n−1x1 has positive coordinates.
Since |λi| = |x>i Axi| ≤ |xi|>A|xi| ≤ λ1 it follows that λ1 ≥ |λi| for i = 2, . . . , n. It is left

to show that λ1 > λi for each i > 1. Consider the matrix B = (bij)n
i,j=1 = (In +A)n−1 it has

eigenvalues βi := (1 + λi)n−1 for i = 1, . . . , n. Clearly β1 = (1 + λ1)n−1 ≥ (1 + |λi|)n−1 ≥
|(1+λi)n−1| = |βi|. it is enough to show that β1 > βi for i > 1. We now repeat the arguments
for the maximal eigenvalue β1 of the real symmetric matrix B with positive entries. Let
y1 be a positive eigenvector of B corresponding to max||y||=1 y>By. It is known that it is
always possible to choose the eigenvector yi of B such that Byi = βiyi, ||yi|| = 1,y>1 yi = 0
for any i > 1. Since all the coordinates of y1 are positive, the condition y>1 yi = 0 implies
that yi has positive and negative coordinates for i > 1. As each bpq > 0 it follows that
|βi| = |y>i Byi| < |yi|>B|yi| ≤ β1 for i > 1.

Assume now that G(A) is not bipartite. Then G(A) is aperiodic (Corollary 2.19). Then
there exist N such that for any m ≥ N Am has positive entries. In particular A2N has
positive entries. Thus G(A2N ) is connected. The eigenvalues of A2N are λ2N

1 , . . . , λ2N
n are

all nonnegative. λ2N
1 is the maximal eigenvalue. Hence

λ2N
1 > λ2N

n = |λn|2N ⇒ λ1 > |λn|.
Assume that G(A) is bipartite. Then there exists a permutation matrix Q ∈ {0, 1}n×n

such that C = QAQ> =
(

0 A12

A21 0

)
. (Since C> = C it follows that A21 = A>12.)

Assume that A12 ∈ Rp×q. Clearly C and A are similar matrices, hence C and A have the
same eigenvalues. Note that C(Qx1) = λ1(Qx1). Let (Qx1)> = (u>,v>),u ∈ Rp,v ∈ Rq

are positive vectors. Then
(

0 A12

A21 0

)(
u
v

)
= λ1

(
u
v

)
⇒

(
0 A12

A21 0

)(
u
−v

)
= −λ1

(
u
−v

)
.

Hence −λn = λn. Consider C2 = diag(A12A21, A21A12). Since G(C2) is isomorphic to
G(A2) it follows that Corollary 2.19 that A12A21, A21A12 are irreducible and aperiodic.
Note that

A12A21u = λ2
1u, A21A12v = λ2

1v.

As the eigenvalues of C2 are λ2
1, . . . , λ

2
n, which are nonnegative and all the eigenvalues of

A12A21, A21A12 different from λ2
1 = λ2

n are strictly less than λ2
1, we deduce that |λi| < λ1

for i = 2, . . . , n− 1. 2

The arguments of the proof of this theorem that yield that λn = −λ1 in the case G(A)
is bipartite imply:

Corollary 6.11 Let A ∈ Sn(R) and assume that G(A) is bipartite. Then the first bn
2 c

eigenvalues of A are nonnegative and the last bn
2 c are nonpositive. Furthermore λn−i+1 =

−λi for i = 1, . . . , n.

34



Theorem 6.12 Let A ∈ Sn(R+) and assume that A is irreducible. Let Ax1 = λ1x1

where x1 is a positive vector of norm 1. Then

||λ−m
1 Am − x>1 x1|| = rm, where r := max

i∈[2,n]

|λi|
λ1

, for any m ∈ N. (6.14)

If G(A) is not bipartite then limm→∞ λ−m
1 Am = x>1 x1. If G(A) is bipartite then A2 de-

composes as to a direct sum of A12A21 ⊕ A12A12, where each summand is an irreducible
aperiodic symmetric matrix. In particular limm→∞ λ−2m

1 A2m exists and is a direct sum of
two symmetric rank one matrices, each one having one nonzero eigenvalue equal to 1.

Proof. Recall that A = X diag(λ1, λ2, . . . , λn)X> for an orthogonal X, whose first
column is x1. Observe next that x1x>1 = X diag(1, 0, . . . , 0)X>. Use Theorem 6.9 to
deduce

||λ−m
1 Am − x>1 x1 = ||X diag(1,

λm
2

λn
1

, . . . ,
λm

n

λn
1

)X> −X diag(1, 0, . . . , 0)X>|| =

||X diag(0,
λm

2

λn
1

, . . . ,
λm

n

λn
1

)X>|| = rm.

This proves (6.14). If G(A) is connected and not bipartite then r < 1. Hence

lim
k→∞

λ−m
1 Am = x1x>1 = X diag(1, 0, . . . , 0)X>, (6.15)

and the theorem follows in this case. The second case follows from the proof of Theorem
6.10. 2

Theorem 6.13 Let P ∈ Sn(R+) be a stochastic matrix. Let G(P ) = (〈n〉, E) be the
induced undirected graph by P .
1. Assume that G(P ) is connected. Then 1√

n
1,1 := (1, . . . , 1)> ∈ Rn is the unique positive

P -eigenvector of length one corresponding to the eigenvalue λ1 = 1. All other eigenvalue
of P are real and λi ∈ (−1, 1] for i = 2, . . . , n. P has unique stationary distribution
µ = 1

n (1, . . . , 1) = 1
n1>, called equidistribution.

(a) Suppose that G(P ) is not bipartite. Then λi ∈ (−1, 1) for i = 1, . . . , n,
r := max(|λ2|, |λn|) < 1 and

||Pm − 1(
1
n
1>)| ≤ rm, ||µ(0)Pm − 1

n
1>|| ≤ ||µ(0)||rm ≤ rm, for any m ∈ N,

lim
m→∞

Pm = 1(
1
n
1>) lim

m→∞
µ(0)Pm = µ =

1
n
1> for any µ(0) ∈ Πn. (6.16)

(b) Suppose that G(P ) is bipartite. Then λn = −1 and λi ∈ (−1, 1) for i = 1, . . . , n− 1. P 2

reduces to a direct sum of two stochastic matrices P1 ⊕ P2, where each G(Pi) = (Vi, Ei) is
connected and not bipartite. For each µ(0) ∈ Πn limm→∞ µ(0)P 2m = aµ1⊕ (1− a)µ2, where
µi is the equidistribution corresponding to Pi and a ∈ [0, 1] is Pr(X0 ∈ V1), i.e. the sum of
the coordinates on µ(0) corresponding to V1.
2. Assume that G(P ) is not connected and let G(V1), . . . , G(Vk) be the connected compo-
nents of G(P ). Then each P (Vi) is a symmetric and irreducible stochastic matrix. Fur-
thermore limm→∞ P 2m = P2,∞ is symmetric stochastic matrix, which has eigenvalues 1,
of multiplicity m ≥ k, and all other eigenvalues are equal to zero. Each connected com-
ponent contributes is either 1 to m, if G(Vi) is not bipartite, or 2 if G(Vi) is bipartite.
Furthermore P 2

2,∞ = P2,∞. If each connected component is not bipartite then m = k and
limm→∞ Pm = P2,∞ = ⊕k

i=11µi(V ), where µi(V ) is the unique stationary measure corre-
sponding to P (Vi) for i = . . . , k.
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Proof. Using the previous theorems it is enough to prove the case (1a). The inequality
||Pm − 1( 1

n1>)|| ≤ rm follows from (6.14). Furthermore, since µ = µ(0)1( 1
n1>) it follows

||µ(0)Pm − 1
n
1>|| = ||µ(0)(Pm − 1(

1
n
1>))|| ≤ ||µ(0)||Pm − 1(

1
n
1>)|| = ||µ(0)||rm.

Clearly ||µ(0)|| ≤
√
||µ(0)||1 = 1. This proves all the inequalities in (6.16). The equalities

parts of (6.16) follow easily.

6.5 Reversible Markov Chains

A stochastic matrix P = (pij) ∈ Rn×n
+ is reversible with respect to the distribution π =

(π1, . . . , πn) ∈ Πn if
πipij = πjpji for all i, j = 1, . . . , n. (6.17)

Lemma 6.14 Let P ∈ Rn×n
+ be a stochastic matrix reversible with respect to π ∈ Πn.

Then π is a stationary distribution of P . Let V = {i1, . . . , ik} = supp π ⊂ 〈n〉 be the set
of vertices of G(P ) where πj > 0. Then P (V ) is stochastic and π(V ) ∈ Πk is a stationary
distribution of P (V ). Let D = diag(

√
π1, . . . ,

√
πn). Then D(V ) is a diagonal matrix such

that its all diagonal are positive. Furthermore T := D(V )PD(V )−1 is a nonnegative sym-
metric matrix, which is diagonally similar to P (V ). Hence P (V ) has only real eigenvalues
and each eigenvalue of P is geometrically simple.

Proof. Fix j ∈ [1, n] in (6.17) and sum on i = 1, . . . , n. Since P is stochastic we obtain
πP = π, i.e. π is a stationary distribution. Let V c := 〈n〉\V . Suppose first that V c 6= ∅.
Assume in (6.17) that i ∈ V and j ∈ V c. Then pij = 0. Hence there are no edges from V
to V c and P (V ) is a stochastic submatrix of P . If V = 〈n〉 then P (V ) = P is stochastic.
Furthermore π(V ) is the stationary distribution of P (V ).

To show the rest of the lemma, one can assume for simplicity of the argument that
V = 〈n〉. Let T = DPD−1. Then is straightforward to show that (6.17) is equiva-
lent to T being a symmetric matrix. Thus P is diagonally similar to a symmetric ma-
trix with nonnegative entries T . Let λ1 ≥ . . . ≥ λn. So T = X diag(λ1, . . . , λn)X> and
P = D−1X diag(λ1, . . . , λn)X>D. Thus 1 = λ1 ≥ . . . ≥ λn are the eigenvalues of P and
each eigenvalue of P is geometrically simple. 2

Theorem 6.15 Let π = (π1, . . . , πn) be a probability vector with πi > 0 for i = 1, . . . , n.
Let P ∈ Rn×n

+ be a stochastic matrix reversible with respect to π. Let D = diag(
√

π1, . . . ,
√

πn).
Then T := DPD−1 is a nonnegative symmetric matrix, which is diagonally similar to P .
Then G := G(P ) = (〈n〉, E) is a reversible digraph: (i, j) ∈ E ⇐⇒ (j, i) ∈ E. Let 〈n〉 =
∪k

i=1Vi corresponds to the decomposition of G to its connected components G(V1), . . . , G(Vk).
Then P := ⊕k

i=1P (Vi), where each P (Vi) is an irreducible stochastic matrix reversible with
respect to the distribution µi := 1∑

j∈Vi
πj

π(Vi) for i = 1, . . . , k.

Assume now that G(P ) is connected and let 1 = λ1 > λ2 ≥ . . . ≥ λn.
1. Assume that G(P ) is not bipartite, i.e. −λn < λ1. Then r := maxi=2,...,n |λi| < 1 and

||D(Pm − 1π)D−1|| ≤ rm, ||(µ(m) − π)D−1|| ≤ ||µ(0)D−1||rm ⇒ lim
m→∞

Pm = 1π. (6.18)

2. Assume that G(P ) is bipartite where 〈n〉 = V ∪V c and E ⊂ V ×V c∪V c×V . Then P 2 =
Q(V )⊕Q(V c), where Q(V c), Q(V c) are irreducible stochastic reversible matrices with respect
to µ1 := 1∑

i∈V πi
π(V ), µ2 := 1∑

i∈V c πi
π(V c) respectively. Furthermore G(Q(V )), G(Q(V c))

are connected not bipartite matrices. Hence

lim
m→∞

P 2m = 1µ1 ⊕ 1µ2, (6.19)

and the convergence geometric in r := maxi=2,...,n−1 λ2
i . That is ||D(P 2m−1µ1⊕1µ2)D−1|| ≤

rm.
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Proof. The first part of the theorem follows straightforward from Lemma 6.14. The
second part follows from the fact that T := DPD−1 ∈ Sn(R+), Theorem 6.12 and the
arguments of the proof of Theorem 6.13. 2

Note that Theorem 5.2 follows form the above theorem if P is a reversible stochastic
matrix with respect to a distribution π = (π1, . . . , πn), where πi > 0 for i = 1, . . . , n. More-
over of P = P> is stochastic, then P is reversible with respect to the uniform distribution
π = 1

n1.
We now explain the terminology reversible Markov chain. Assume that (6.17) holds.

Then by Lemma 6.17 π is a stationary distribution. Let X0, . . . , be the Markov chain
associated with P , with the stationary distribution π. Then the condition (6.17) is equivalent
to Pr(Xm−1 = i,Xm = j) = Pr(Xm−1 = j,Xm = i) for each i, j ∈ 〈n〉. That is we can
reverse the random walk in time with the same probability. More generally

Pr(X0 = i0, Xi = i1, . . . , Xm = im) = Pr(X0 = im, Xi1 = im−1, . . . , Xm = i0).

6.6 Markov chains associated with digraphs

Let G = (〈n〉, E) be a digraph where for which vertex i the outdegree degout(i) ≥ 1 for each
i = 1. . . . , n. With such G we associate the following stochastic matrix

P (G) := P = (pij)n
i,j=1 ∈ Rn×n

+ , pij = 0 if (i, j) 6∈ E, pij =
1

degout(i)
if (i, j) ∈ E.

(6.20)
That is G(P ) = G and from each i the probability to go any vertex j, such that i is connected
to j, is constant, i.e. equal to the 1 divided by number of vertices which can be reached
from i.

Assume G is reversible, i.e (i, j) ∈ E ⇐⇒ (j, i) ∈ E. Then degout(i) = degin(i), i =
1, . . . , n. πi = degout(i)

#E , i = 1, . . . , n, where #E =
∑n

i=1 degout(i) is the number of directed
edges in G. A straightforward calculation shows that P is a reversible with respect to the
distribution π = (π1, . . . , πn). For this Markov chain we can use Theorem 6.15.

The problem with P (G), even if it is irreducible it may be periodic. To avoid this
possibility, sometimes one uses instead of stochastic matrix G(P ) the stochastic matrix
P (G, a) := aIn + (1 − a)P (G) for some a ∈ (0, 1). This guarantees that the loop (i, i) ∈
G(P, a) for any a ∈ (0, 1). Then the restriction of P (G, a) to each terminal ∅ 6= V ⊂ 〈n〉,
such that {V } is a terminal vertex in the reduced graph of Grdc, is an aperiodic stochastic
submatrix of P (G, a). (This trick is used also in the Google search engine!) This guarantees
that limm→∞ P (G, a)m = Q, where Q is some special stochastic matrix associated with G
independent of a ∈ (0, 1).

In the case that a = 0.5 then P (G, 0.5) represents lazy random walk on the graph G,
since with a probability at least 0.5 the particle stays at vertex i at time m + 1 if it was at
time m at the vertex i.

7 Perron-Frobenius theorem

Theorem 7.1 Let 0 6= A ∈ Rn×n
+ be an irreducible matrix, i.e. G(A) is strongly con-

nected. Then ρ(A) is an eigenvalue of A , which is a simple root of det(zI − A). The
eigenspace E(ρ(A)) is spanned by a positive vector v > 0. Let u > 0 be a left positive eigen-
vector of A corresponding to ρ(A): u>A = ρ(A)u>. Assume the normalization condition
u>v = 1. Then eigenvector z ∈ Cn corresponding to an eigenvalue λ 6= ρ(A) of A satisfies
u>z = 0.
1. Assume that A = (aij)n

i.j=1 is aperiodic, i.e. G(A) is aperiodic, then then ρ(A) =
λ1 > |λ1| ≥ . . . ≥ |λn| ≥ 0 and limm→∞ λ−m

1 Am = vu>. This convergence is geometric in
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r := maxi∈[2,n]
|λi|
|λ1| , i.e. ||λ−m

1 Am−vu>||p ≤ Kp(A)rm, for some constant Kp(A) depending
on A and p ∈ [1,∞]. Furthermore

ρ(A) = max
x=(x1,...,xn)>>0

min
i∈[1,n]

∑n
j=1 aijxj

xi
= min

x=(x1,...,xn)>>0
max

i∈[1,n]

∑n
j=1 aijxj

xi
. (7.1)

(This is Wielandt’s characterization.)
2. Assume that A is 2 ≤ p-periodic, i.e. G(A) is 2 ≤ p-periodic. Then A has exactly p

algebraically simple eigenvalues on the circle |z| = ρ(A): λi = ρ(A)e
(i−1)

√−1
p for i = 1, . . . , p.

All other eigenvalues of A satisfy |λ| < ρ(A): ρ(A) = λ1 = |λ2| = . . . = |λp| > |λp+1| ≥
. . . ≥ |λn|. Moreover the spectrum of A is invariant under the multiplication by e

√−1
p .

(Hence by any p− th root of unity). There exists a permutation matrix P such that PAP>

is of the form (4.4). In particular the eigenvectors corresponding to λi can be easily obtained
from v for i = 2, . . . , p. (Similarly to the situation described in the proof of Theorem 6.10
in the case G(A) is bipartite.) The matrix Ap = ⊕p

i=1Ai, where Ai satisfies the conditions
(1) f the theorem and ρ(Ai) = ρ(A)p for i = 1, . . . , p. In particular λ−m

1 Apm converges as
m →∞ to rank p nonnegative matrix, which is a direct sum of rank one positive matrices.

Historical remarks: The above theorem, (with small variations), is called the Perron-
Frobenius theorem. For matrices with positive entries this result is due to Perron 1907. For
nonnegative irreducible matrices this result is due to Frobenius 1908, 1909 and 1912. The
minimax characterization (7.1) is due to Wielandt 1950.

Theorem 7.2 Let A ∈ Rn×n
+ . Let G := G(A) and denote by Grdc the reduced graph of

G, which is acyclic. Assume that G has k vertices. (k = 1 corresponds to the case G is
strongly connected.)

Then A is permutationally similar to a nonnegative matrix of the form of the form (4.5).
Each Aii is irreducible, det(zI − A) =

∏k
i=1 det(zI − Aii) and spec (A) = ∪k

i=1spec (Aii).
Hence ρ(A) is an eigenvalue of A. There exists a nonzero nonnegative eigenvector v corre-
sponding to ρ(A): Av = ρ(A)v. Furthermore:

lim
m→∞

(
1>Am1

) 1
m = ρ(A) = lim sup

m→∞

(
trAm

) 1
m . (7.2)

Call a vertex {Vi} in Grdc, corresponding to an irreducible matrix Aii, singular if ρ(Aii) =
ρ(A), (det(ρ(A)I−Aii) = 0). Let j be the maximal number of singular vertices in all possible
paths in Grdc. (j = 1 may corresponds to a path of length 0.) Then j is the maximal size
of a Jordan block in A corresponding to ρ(A). Furthermore, the size of the Jordan block of
any eigenvalue λ of A satisfying |λ| = ρ(A) does not exceed the above j.

Proof. Consider Ak = A + 1
k11>. So each Ak has positive entries and limk→∞Ak = A.

Now use the fact that limk→∞ det(zIn −Ak) = det(zIn −A). Hence the eigenvalues of Ak,
counted with their multiplicities converge to the eigenvalues of A. So limk→∞ ρ(Ak) = ρ(A)
and ρ(A) ∈ spec (A). Let Akvk = ρ(Ak)vk where vk > 0 and ||vk|| = 1. By taking a
convergent subsequence vkq → v we deduce that v ≥ 0, ||v|| = 1 and Av = ρ(A)v. Clearly
spec (A) = ∪k

i=1spec (Aii).
Observe that ||Am||1 ≤ 1>Am1 ≤ n||Am||1. Use Theorem 6.9 for p = 1 to obtain the

first equality in (7.2). Since 1>Am1 ≥ trAm we deduce from the first equality in (7.2)

that ρ(A) ≥ lim supm→∞
(
tr Am

) 1
m . Use the fact that spec (A) = ∪k

i=1spec (Aii) and use
Perron-Frobenius theorem to deduce the second equality in (7.2).

The last claim about the maximal size of the Jordan block corresponding to ρ(A) is due
to Rothblum [19]. The claim that the maximal size of the Jordan block corresponding to
am eigenvalue λ on the circle |z| = ρ(A) is well known to the experts. See for example [9]
for the proofs of these claims. 2

The proof of Theorem 5.2 follows mainly from Theorem 7.1, Theorem 7.2 and Proposition
5.1.
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8 Symbolic dynamics and walks on graphs

8.1 Introduction

View 〈n〉 = {1, . . . , n} as an alphabet on n letters. Consider all the words of this alphabet
of length m: am := (a1, a2, . . . , am), where ai ∈ 〈n〉. Any word am can be viewed as a walk
of length m on the complete digraph KDn := (〈n〉, 〈n〉 × 〈n〉). That is, the walk is given
by a1 → a2 → . . . → am. Clearly the number of all walks of length m is nm. In electrical
engineering all words am are viewed as a transmission of information of length m. It is called
an unconstrained, (free), channel. The m − th capacity of free channel is log n = log nm

m .
In information theory, one usually considers logarithms on basis 2. So the capacity of the
free channel is log2 n. In mathematics and physics one usually uses the logarithms on the
natural basis e, which is here denoted simply by log x.

In many cases one has some local restrictions on the form of a word am that can be
transmitted. This restrictions can be always translated to the assumption that am is a walk
on some graph G = (〈n〉, E).

Consider the following example. Let G := (〈2〉, {(1, 2), (2, 1), (2, 2)}). That G is a re-
versible digraph such that from the state 1 one can go to the state 2, and from the state
2 one can go to the states 1 and 2. In this example it is common to replace 2 by 0. Thus
am = (a1, a2, . . . , am) is a signal of length m, consisting of 0 and 1, such that no two 1 are
adjacent. Let lm be the number of words am that satisfy the above restriction. Equivalently,
lm is the number of walk on G of length m. Clearly l1 = 2, l2 = 3. We claim that l1, l2, l3, . . .
is a Fibonacci sequence:

lm = lm−2 + lm−1, m = 3, . . . (8.1)

Indeed, consider the word am = (a1, a2, . . . , am). Suppose first that am = 0. Then
(a1, . . . , am−1) is any allowable word of length m − 1. Thus we have lm−1 words of length
m which end in 0 = am. Now suppose that am = 1. Then am−1 = 0 and (a1, . . . , am−2) is
any allowable word of length m− 2. This proves (8.1).

Try a solution of (8.1) of the form lm = tm. Then t satisfies quadratic equation t2 = t+1
which has two solutions t1 = 1+

√
5

2 > 0 > t2 = 1−√5
2 . The number t1 is called the golden

ration. The general solution of (8.1) is given by lm = a1t
m
1 + a2t

m
2 . The initial conditions

l1 = 2, l2 = 3 yield that

lm =
(5 + 3

√
5

10
)(1 +

√
5

2
)m +

(5− 3
√

5
10

)(1−√5
2

)m
, m = 1, 2, . . . (8.2)

Definition 8.1 Let G = (V,E) be an undirected graph. A configuration φ : V → {0, 1},
i.e. an assignment of 0 or 1 to each vertex of V , is called allowable if φ(u) + φ(v) < 2 for
any two adjacent vertices u, v ∈ V . (That is, one can not assign to any pair of adjacent
vertices u, v values φ(u) = φ(v) = 1.) The set of allowable configurations Φ ⊂ V {0,1} ia
called in physics the hard core model. An allowable configuration φ ∈ Φ is called a hard core
configuration.

Let Cm = (〈m〉, Em) be an undirected path on m vertices: 1 − 2 − . . . − m. (Em =
((1, 2), (2, 3), . . . , (m − 1,m)).) The the hard core configuration on Cm is a word of length
m in {0, 1}, where two 1 are not adjacent. Let Φm be the set of all hard core configurations
on Cm. Then #Φm, (the number of elements in Φm), is equal to lm. Introduce a uniform
probability on Φm: Pr(φ) = 1

lm
for any φ ∈ Φm. Let Xm : Φm → 〈m〉 be the random

variable Xm(φ) =
∑m

i=1 φ(i), which assigns to hard cover configuration φ ∈ Φm the number
of 1 in this configuration.

Let us compute E(Xm). Denote by sm :=
∑

φ∈Φm
Xm(φ). sm is the number of 1 all

hard core configurations on Cm. Note that s1 = 1, s2 = 2, s3 = 5, s4 = 10. It can be shown
that we have the following recursive relation

sm = sm−1 + sm−2 + lm−2, m = 3, . . . , (8.3)
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where lj , j = 1, . . . , is the Fibonacci sequence defined in (8.1). (That is a homework prob-
lem!). It is known that the general solution of (8.3), under the assumption that lm satisfies
(8.1), is of the form

sm = (mb1 + b2)
(1 +

√
5

2
)m + (mb3 + b4)

(1−√5
2

)m
, m = 1, . . . (8.4)

The values of b1, b2, b3, b4 are completely determined by s1, s2, s3, s4. One can show that
b1 > 0. Thus E(Xm) = sm

lm
. From these results we deduce

lim
m→∞

log lm
m

= log
(1 +

√
5

2
)
, (8.5)

lim
m→∞

E(Xm)
m

=
10b1

3 +
√

5
. (8.6)

(This is a homework problem too!)
Finally consider the following problem. For t ∈ Z+ the integer f(t,m) := lm Pr(Xm = t)

is the number of all configurations in Φm with t 1’s. Note that for t > dm
2 e f(t,m) = 0.. Fix

p ∈ [0, 0.5) and consider the sequence of integers tm ∈ Z+,m ∈ N such that limm→∞ tm

m . Is
it true that the sequence log f(tm,m)

m ,m ∈ N converges to some function h(p), which depends
only on p and not on a particular sequence? We will show that the answer to this problem
is positive.

The next subsections give generalizations to the problems posed by the hard core model
on Cm, where m tends to ∞.

8.2 Shannon capacity of a channel

Consider an alphabet of n letters denoted by 〈n〉. Let G = (〈n〉, E) be a digraph which
contains a cycle. A word am = (a1, a2, . . . , am) is called allowable, or G-allowable, if the
letter j can follow the letter i, i.e. (i, j) ∈ G. Equivalently the word am describes a walk
on G, where aq is the vertex location on the G at time q. (Time starts at q = 1 and then
is equal 2, 3, . . .) Let W(m) be the set of all allowable words of length m. The assumption
that G contains a cycle is equivalent to the assumption that W(m) 6= ∅ for each m ∈ N.

Theorem 8.2 Let n ∈ N and denote by 〈n〉 an alphabet on n letters. Let G = (〈n〉, E)
be a digraph which contains a cycle. Denote by A = A(G) the representation matrix of G
and let ρ(A) = ρ(G) be the spectral radius of A, (and hence of G). Let W(m) be the set
of G-allowable words of length m. Denote lm := #W (m),m ∈ N. Then lm = 1>Am1 and
log lm,m ∈ N is a nonnegative subadditive sequence. Hence h(G) := limm→∞

log lm
m exists,

and is called the Shannon capacity of the channel, given by G. Furthermore h(G) = log ρ(G)
and h(G) ≤ log lm

m for any m ∈ N.

Proof. Recall that if Am = (a(m)
ij )n

i,j=1 then a
(m)
ij is the number of walks from i to

j in m steps. (Lemma 4.1.) Hence lm =
∑n

i,j=1 a
(m)
ij = 1>A1. Since G has a cy-

cle lm ≥ 1. We next observe that lp+q ≤ lplq for any p, q ∈ N. Indeed and word of
length p + q ap+q = (a1, . . . , ap+q) ∈ W(p + q) is a superposition of two words b =
(a1, . . . , ap) ∈ W(p), cp = (ap+1, . . . , ap+q) ∈ W(q). In general, a superposition of two
words b = (b1, . . . , bp) ∈ W(p), c = (c1, . . . , cq) to a = (b1, . . . , bp, c1, . . . , cq) does not have
to be in W(p+ q). (It depends if (bp, c1) ∈ E or not.) Hence lp+q ≤ lplq. Thus the sequence
log lm,m ∈ N is a nonnegative subadditive sequence. Lemma 6.7 yields that the sequence
log lm

m converges to a (nonnegative) limit denoted by h(G). Furthermore h(G) ≤ log lm
m for

any m ∈ N. The equality lm = 1>Am1 and (7.2) yield that h(G) = log ρ(A). 2

Denote by 〈n〉N the set of all mapping a : N→ 〈n〉. That is a can be identified with an
infinite sequence a = (a1, a2, . . .) where ai ∈ 〈n〉 for any i ∈ N. One can view a as an infinite

40



word on the alphabet 〈n〉. a is called periodic if there exists q ∈ N such that ai+q = ai for
all i ∈ N. A word satisfying this condition is called q-periodic. Assume that a is periodic.
The smallest q ∈ N for which a is q-periodic is called the period of a. Thus if the period of
a is p then a is q-periodic iff p divides q.

Let G = (〈n〉, E) be a digraph that contains a loop. Denote by

〈n〉N(G) := {a = (a1, . . .) ∈ 〈n〉N : (ai, ai+1) ∈ E, i = 1, 2, . . .}.
Thus a ∈ 〈n〉N(G) can be considered an infinite allowable word or an infinite walk on G.
Note a ∈ 〈n〉N(G) is q-periodic then aq := (a1, . . . , aq) ∈ W(q) and (aq, a1) ∈ E. The
set of all q-allowable words aqnW(q) satisfying the condition (aq, a1) ∈ E is denoted by
Wper(q). It is possible that Wper(q) is empty for some q. (For example assume that G
consists exactly of one cycle.) Thus aq ∈ Wper(q) iff aq = (a1, . . . , aq) can be extended
to a q-periodic word a ∈ 〈n〉N(G). Equivalently Wper(q) can be identified with all aq+1 =
(a1, . . . , aq+1) ∈ W(q + 1), where aq+1 = a1. Thus aq+1 corresponds to closed walk on G of
length q.

Proposition 8.3 Let G = (〈n〉, E) be a digraph which contains a cycle. Assume that
A = A(G) is its representation matrix. Let W(q) ⊃ Wper(q) be the set of all aq G-allowable
words and the projection of all q-periodic words in 〈n〉N(G) on the first q coordinates. Then
lq := W(q) ≥ lq,per := Wper(q)

lq,per = tr Aq, q ∈ N, and lim sup
q→∞

log lq,per

q
= h(G) = log ρ(G). (8.7)

Proof. Recall that if Aq = (a(q)
ij )n

i,j=1 then a
(q)
ij is the number of walks from i to j

in m steps. (Lemma 4.1.) Hence tr Aq =
∑n

i=1 a
(q)
ii is the number of closed walks on G of

length q, i.e. tr Aq = lq,per. The second part of (8.7) follows from the second part of (7.2). 2

Note that in the second part of (8.7) one can not in general replace lim sup by lim.
Indeed, assume that G is strongly connected and 2 ≤ p-periodic. If aq+1 is a closed walk on
G, of length q, then p divides q. Thus if p does not divide q then tr Aq = 0. This shows that
in this case one can not replace lim sup by lim in (8.7). In the case G is strongly connected
and aperiodic we can replace lim sup by lim in (8.7). (Use Part 1 of Theorem 7.1.)

8.3 Entropy of Markov Chains

For x ∈ R+ let f(x) = −x log x. Then f(0) = f(1) = 0, f(x) > 0 for x ∈ (0, 1) and f(x) < 0
for x > 1. Note that for x > 0 f ′′ = − 1

x < 0. Hence f(x) is a concave continuous function
on R+. For a distribution π = (π1, . . . , πn) ∈ Πn the quantity H(π) := −∑n

i=1 πi log πi

is called the entropy of π. The function H was introduced by Boltzmann, (1844-1906), in
Boltzmann H theorem, in his work in statistical mechanics. (Not to be confused with the
entropy concept in thermodynamics, introduced by Rudolf Clausius in 1850 and used by
Boltzmann.)

In probability H(π) measures the uncertainty of the outcome of random random variable
X such that Pr(X = i) = πi, i = 1, . . . , n. It is not difficult to show that H(π) ≤ H( 1

n1) =
log n and equality holds iff π is the uniform distribution 1

n . If π = ei = (δi1, . . . , δin) then
H(ei) = 0. In this case we know with probability 1 that X = i.

H(π) measures the capacity of the the channel which transmits the alphabet 〈n〉 such
that the frequency of each letter i is πi for i = 1, . . . , n. Indeed, assume that we consider
all words am = (a1, . . . , am) ∈ 〈n〉m such that each letter i appears mi ∈ N times with
m1 + . . . + mn = m. Then the total number of such words is t(m) = m!

m1!...mn! , where
m = (m1, . . . , mn) ∈ Zn

+. Let pi := mi

m , i = 1, . . . , n and p := (p1, . . . , pn) ∈ Πn. Recall
Stirling’s formula:

k! ≈
√

2πk
(k

e

)k
as 1 << k ∈ N.
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Using Stirling’s formula, a straightforward calculation shows that

lim
m→∞,

mi
m →πi,i∈〈n〉

log t(m)
m

= H(π). (8.8)

Indeed

log t(m) = log m!−
n∑

i=1

log mi! ≈ m log m−
n∑

i=1

mi log mi + O(log m) =

m∑

i=1

−mi log
mi

m
+ O(log m) = −m

n∑

i=1

pi log pi + O(log m).

Divide the above formula by m and let m →∞ to obtain (8.8).
Consider next the Markov chain given by a stochastic matrix P = (pij)n

i,j=1. Assume

that µ(1) = (µ(1)
1 , . . . , µ

(1)
n ) ∈ Π is a given distribution. Let Xm ∈ 〈n〉 be the position of a

particle doing the random walk on G = G(P ) = (〈n〉, E). We can view this random walk as
a walk on the complete directed graph KDn = (〈n〉, E) such that

Pr(Xm = im|Xm−1 = im−1, Xm−2 = im−2, . . . , X1 = i1) = pim−1im
.

Assume Pr(X1 = i) = µ
(1)
i for i = 1, . . . , n. Thus

Pr(X1 = i1, X2 = i2, . . . , Xm−1 = im−1, Xm = im) = pim−1im = µ
(1)
i1

pi1i2 . . . pim−1im . (8.9)

This is equivalent to saying that the probability of the walk (i1, i2, . . . , im−1, im) is µ
(1)
i1

∏m−1
j=1 pijij+1 .

We now consider the channel with the following property: Given that the letter am−1

was transmitted at the time m − 1 the probability of the next transmitted letter am is
given by pam−1am . Assume that the probability that the first letter ia a1 is µ

(1)
a1 . Then the

probability of the word am = (i1, . . . , im) is given by the right-hand side of (8.9). Then the
nomalized entropy of all words of length m is

− 1
m

∑

i1,...,im∈〈n〉
µ

(1)
i1

m−1∏

j=1

pijij+1 log(µ(1)
i1

m−1∏

k=1

pikik+1) =

− 1
m

∑

i1,...,im∈〈n〉
µ

(1)
i1

m−1∏

j=1

pijij+1(log µ
(1)
i1

+
m−1∑

k=1

log pikik+1) =

− 1
m

∑

i1,...,im∈〈n〉
µ

(1)
i1

m−1∏

j=1

pijij+1 log µ
(1)
i1

+

− 1
m

m−1∑

k=1

( ∑

i1,ik−1,ik+1,...,im∈〈n〉
µ

(1)
i1

m−1∏

j=1

pijij+1

)
log pikik+1 =

− 1
m

n∑

i=1

µ
(1)
i log µ

(1)
i −

n∑

i,j=1

1
m

m−1∑

k=1

(µ(1)P k−1)ipij log pij .

The last equality is deduced as follows. In the expression that involves log µ
(1)
i1

sum on the
indices im, im−1, . . . , i2 and take into the account that P is stochastic, i.e.

∑n
ij+1=1 pijij+1 =

1 for j = m − 1, . . . , 1. This gives the first expression in the last equality. To deduce the
second part of the equality fix k ∈ [1, n]. Then sum on the indices i1, . . . , ik−1 and use the
definition of the product of matrices to obtain the expression (µ(1)P k−1)ik

. Then sum on
the indices im, . . . , ik+2 to obtain the expression (µ(1)P k−1)ik

pikik+1 log pikik+1 and use the
stochasticity of P . Now sum on ik, ik+1 to obtain the second part of the last equality.
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Now let m →∞. Use Corollary 5.3 to deduce that

lim
m→∞

1
m

m−1∑

k=1

µ(1)P k−1 = µ ∈ Πn, µ = Pµ. (8.10)

Note that any stationary distribution µ of P can be obtained this way, e.g. assume that
µ(1) = µ. Hence the entropy of the given Markov chain is given by

h(P, µ) := −
n∑

i,j=1

µipij log pij , (8.11)

If P has a unique stationary distribution, e.g. P is irreducible, then h(P ) := h(P, µ) is
uniquely defined.

Theorem 8.4 Let G = (〈n〉, E) be a digraph such that the out degree of every vertex
in G is positive. Let A = (aij)n

i,j=1 ∈ {0, 1}n×n be the representation matrix of G, and
denote by ρ(A) the spectral radius of A. Let P ∈ [0, 1]n×n be a stochastic matrix such that
G(P ) is a subgraph of G. Let µ ∈ Πn be a stationary distribution of P : µP = µ. Then
h(P, µ) ≤ h(G) = log ρ(A). Furthermore, there exists a stochastic matrix P , (G(P ) ⊂ G),
and a stationary distribution µ of P such that h(P, µ) = h(G). If G is strongly connected
then P is a unique irreducible stochastic matrix given as follows:

P = (pij)n
i,j=1, pij =

aijuj

ρ(A)ui
, i, j = 1, . . . , n, Au = ρ(A)u, u = (u1, . . . , un)> > 0. (8.12)

The stationary distribution µ = (µ1, . . . , µn) is unique and given by µi = uivi for i =
1, . . . , n, where

A>v = ρ(A)v, v = (v1, . . . , vn)> > 0, v>u = 1 (8.13)

Proof. The inequality h(P, µ) ≤ h(G) follows from the fact that Markov chain is con-
strained by the Markov condition, hence its capacity can not exceed the Shannon capacity
of the channel given by G. Since ρ(G) = ρ(A) is the maximal spectral radius of out of all
spectral radii of the strongly connected components of G, it is enough to show that we can
find a Markov chain with h(P, µ) = h(G) in the case where G is strongly connected.

We now show that we have equality for P of the form (8.12). Since G is strongly
connected, it contains a cycle. Hence ρ(A) ≥ 1. As A irreducible the right and the left
eigenvectors u,v of A corresponding to ρ(A) are unique positive vectors up to a multipli-
cation by a positive scalar. The assumption that Au = ρ(A)u implies that P is stochastic,
and G(P ) = G. The equalities (8.13) yield that µ is the unique stationary distribution
corresponding to P . We now show that h(P, µ) = log ρ(A). Indeed

h(P, µ) = −
n∑

i,j=1

uivi
aijuj

ρ(A)ui
log

aijuj

ρ(A)ui
= −

n∑

i,j=1

vi
aijuj

ρ(A)
(
log aij+log uj−log ρ(A)−log ui

)
.

Since aij ∈ {0, 1} it follows that aij log aij = 0 hence all the expressions that contain
aij log aij vanish. Observe next

log ρ(A)
n∑

i=1

n∑

j=1

vi
aijuj

ρ(A)
= log ρ(A)

n∑

i=1

viui = log ρ(A).

Now
n∑

i,j=1

vi
aijuj

ρ(A)
log ui =

n∑

i=1

(vi

n∑

j=1

aijuj

ρ(A)
) log ui =

n∑

i=1

viui log ui.

Similarly
∑n

i,j=1 vi
aijuj

ρ(A) log uj =
∑n

j=1 vjuj log uj . Hence h(P, µ) = log ρ(A).
To show that this is the only case when the equality occurs is more complicated. I know

that this result follows from more general result called Parry’s theorem [18]. 2
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8.4 Pressure

This section is an adaptation of some of the notions and the results given in [7]. View a word
am = (a1, . . . , am) ∈ 〈n〉m as a molecule of length m arranged linearly on the lattice N ⊂ R,
where the place i is occupies by an atom of a kind ai ∈ 〈n〉 for i = 1, . . . , m. (Thus we
have n kinds of different atoms.) We call am an m-configuration. The set of all unrestricted
m-configurations is 〈n〉m. Assume that a potential of each atom of type i is eui for some
fixed ui ∈ R for i = 1, . . . , n. Then the potential of each m-configuration am is

∏n
i=1 euai .

Let u := (u1, . . . , un)> ∈ Rn. Given a digraph G = (〈n〉, E), which has a cycle, let W(m)
be the set of all G-allowable words of length m , i.e. all allowable walks on G of length m.
Then the grand partition function, (the notion from statistical mechanics), is the sum of all
potentials of all G-allowable m-configurations:

Z(m,u, G) :=
∑

am=(a1,...,am)∈W(m)

m∏

i=1

euai . (8.14)

A function f : Rn → R is called nondecreasing if for any u = (u1, . . . , un)> ≤ v =
(v1, . . . , vn), (ui ≤ vi, i = 1, . . . , n), f(u) ≤ f(v). Clearly

∏m
i=1 euai is a nondecreasing

function on Rn for any (a1, . . . , am) ∈ 〈n〉m. Hence Z(m,u, G) and log Z(m,u, G) are non-
decreasing functions. Let C ⊂ Rn be a convex set. Then f : C → R is called a convex
function if f(tu+(1− t)v) ≤ tf(u)+ (1− t)f(v) for any u,v ∈ C and t ∈ [0, 1]. It is known
that log Z(m,u, G) is a convex function on Rn [13].

Theorem 8.5 Let G = (〈n〉, E) be a directed graph with a cycle. Then the sequence
log Z(m,u, G),m = 1, . . . , is a sequence of nondecreasing, convex functions, which is sub-
additive for each fixed u ∈ Rn. Then the pressure P (u, G) is the defined as the limit
limm→∞ 1

m log Z(m,u, G). P (u, G) is a nondecreasing, convex, Lipschitz function on Rn:

|P ((u1, . . . , un), G)− P ((v1, . . . , vn), G)| ≤ max
i∈[1,n]

|ui − vi|. (8.15)

Denote by A = (aij)n
i,j=1 ∈ {0, 1}n×n the representation matrix of G. Let

A(u) := (aije
ui+uj

2 )n
i,j=1 ∈ Rn×n

+ . Denote by ρ(u) the spectral radius of A(u). Then
P (u, G) = log ρ(u). If G is strongly connected then log ρ(u) is a smooth function of u.

Proof. The sequence log Z(m,u, G),m = 1, . . . , is subadditive for the same reason
log lm = log Z(m,0, G) is subadditive. Hence the sequence 1

m log Z(m,u, G) converges
to P (u, G) for each u ∈ Rn. Since each 1

m log Z(m,u, G) is nondecreasing and convex
on Rn it follows that P (u, G) is nondecreasing and convex. Fix u = (u1, . . . , un)>,v =
(v1, . . . , vn)> ∈ Rn. Let t = maxi∈[1,n] |ui−vi|. Then vi− t ≤ ui ≤ vi + t for all i = 1, . . . , n.
Hence

Z(m,v, G)e−mt ≤ Z(m,u, G) ≤ Z(m,v, G)emt ⇒ | 1
m

log Z(m,u, G)− 1
m

log Z(m,v, G)| ≤ t.

Let m → ∞ and deduce (8.15). We now compare 1>A(u)m−11 with Z(m,u, G). One

term in 1>A(u)m−11 is of the form e
ui1
2 ai1i2e

ui2
2 e

ui2
2 ai2i3e

ui3
2 . . . e

uim−1
2 aim−1ime

uim
2 . If

(i1, i2, . . . , im) 6∈ W(m) then this product is equal to zero. If (i1, i2, . . . , im) ∈ W(m) then

this product is equal to e−(
ui1
2 +

uim
)

2
∏m

j=1 euij . Let t = maxi∈[1,n] |ui|. Then Z(m,u, G)e−t ≤
1>Am−11 ≤ Z(m,u, G)et. Take the logarithm in all the terms of this inequality, divide by,
let m →∞ and use (7.2) to deduce the equality P (u, G) = log ρ(A(u)).

Assume finally that G is strongly connected. Then A is irreducible, hence A(u) is ir-
reducible. So ρ(u) > 0 is a simple root of the characteristic equation of det(zI − A(u)).
Note that coefficient of this characteristic polynomial are analytic functions of u. Hence the
implicit function theorem yields that ρ(u) and hence log ρ(u) are smooth functions of u. 2
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For m ∈ N denote

Cn(m) := {c = (c1, . . . , cn) ∈ Zn
+ : c1 + · · ·+ cn = m}.

or any G-allowable word am = (a1, . . . , am) ∈ W(m), let c(am) = (c1, . . . , cn) ∈ Cn(m)
the frequency vector of the letter distributions in am. That is ci is the number the letter i
appears in am. For any c ∈ Cn(m) set

W(m, c) := {am ∈ W(m) : c(am) = c}, for all c ∈ Cn(m).

This is the set of G-allowable words of am ∈ W(m) with color frequency vector c.

Definition 8.6 p ∈ Πn is called a density point of 〈n〉N(G), when there exist an in-
creasing sequences of natural integers mq ∈ N and color frequency vectors cq ∈ Cn(mq) such
that

mq →∞, W(mq, cq) 6= ∅ ∀q ∈ N, and lim
q→∞

cq

mq
= p. (8.16)

We denote by ΠG the set of all density points of 〈n〉N(G). For p ∈ ΠG we let

h∗G(p) := sup
mq,cq

lim sup
q→∞

log #W(mq, cq)
mq

≥ 0, (8.17)

where the supremum is taken over all sequences satisfying (8.16). One can think of h∗G(p)
as the entropy for the color density p.

It is straightforward to show (using a variant of the Cantor diagonal argument) that ΠG is
a closed set. Furthermore, h∗G is upper semi-continuous on ΠG.

Theorem 8.7 Let G = (〈n〉, E) be a strongly connected graph. Let P (·, G) : Rn → R be
the pressure function associate with G. Then ∇P (u) := ( ∂P

∂u1
(u), . . . , ∂P

∂un
(u)) (∈ Πn) is a

distribution for each u ∈ Rn. Furthermore, ∇P (u) ∈ ΠG and

h∗G(∇P (u)) = P (u)−∇P (u)u, (8.18)
P (u) = max

p∈ΠG

(pu + h∗G(p)), (8.19)

for each u ∈ Rn.

Proof. We first show that ∇P (u) ∈ Πn. Since P (u, G) is nondecreasing it follows that
∇P (u) ≥ 0. Let f(t,u) = P (u + t1) for any t ∈ R. From the definition of A(u) it follows
that A(u + t1) = etA(u). Hence

f(t,u) = P (u + t1) = log ρ(A(u + t1)) = t + log ρ(u) = t + P (u).

Fix u and take the derivative with respect to t. The chain rule implies 1 = df(t,u)
dt = ∇P (u)1,

which implies that ∇P (u) ∈ Πn.
We now show the inequality

P (u) ≥ pu + h∗G(p) for any p ∈ ΠG and u ∈ Rn. (8.20)

Fix p ∈ ΠG and let mq, cq, q ∈ N, be sequences satisfying (8.16). We have Z(mq,u, G) ≥
#W(mq, cq)ecqu, since the right-hand side is just a partial sum of the sum represented by
left-hand side. Take logarithms, divide by mq, take lim supq→∞ and use the definition of
P (u) and the limit in (8.16) to deduce P (u) ≥ pu + lim supq→∞

log #W(mq,cq)
mq

. Now take
the supremum over all sequences mq, cq satisfying (8.16) and use (8.17) to obtain (8.20).
Hence

P (u, G) ≥ sup
p∈ΠG

pu + h∗Γ(p). (8.21)
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We now show that for each u ∈ Rn there exists p(u) ∈ ΠG such that

P (u, G) = p(u)u + h∗G(p(u)). (8.22)

Observe first that

#Cn(m) =
(

m + n− 1
n− 1

)
= O(mn−1), m →∞.

Then for each m ∈ Nd

Z(m,u, G) = O(mn−1) max
c∈Πn(m)

#W(m, c)ec>u.

Let
c(m,u) := arg max

c∈Πn(m)
#W(m, c)ecu. (8.23)

Then
Z(m,u, G) = O(mn−1)#W(m, c(m,u))ec(m,u)u. (8.24)

Choose a sequence mq such that c(mq,u)
mq

converges to some p(u). We have p(u) ∈ ΠG by
Definition 8.16. Apply (8.24) to mq, and use the definition of P (u, G), h∗G(p(u)) to deduce

P (u, G) ≤ p(u)u + lim sup
l→∞

log #W(mq, c(mq))
mq

≤ p(u)u + h∗G(p(u)).

Combine (8.21) with the above inequality to deduce (8.22) and(8.19).
It is left to show that ∇P (u) = p(u). Let v ∈ Rn and t ∈ R. Since p(u) ∈ ΠG the

inequality (8.21) combined with the quality (8.22) yields that

P (u+tv, G) ≥ p(u)(u+tv)+h∗G(p(u)) = tp(u)v+P (u, G) ⇒ P (u+tv, G)−P (u, G) ≥ tp(u)v.

Assume that t > 0. Divide by t and let t ↘ 0 to deduce that ∇P (u)v ≥ p(u)v. As-
sume that t < 0. Divide by t and let t ↗ 0 to deduce that ∇P (u)v ≤ p(u)v. Hence
∇P (u)v = p(u)vfor all v ∈ Rn which implies that ∇P (u) = p(u). Use (8.22) to deduce
(8.18). 2

Proposition 8.8 Let G = (〈n〉, E) be a strongly connected graph. For each u ∈ Rn let
A(u) ∈ Rn×n

+ be defined as in Theorem 8.5. Assume that x(u) = (x1(u), . . . , xn(u))>,y(u) =
(y1(u), . . . , yn(u))> ∈ Rn

+ be positive left and right eigenvectors of A(u): A(u)x(u) =
ρ(u)x(u), A(u)>y(u) = ρ(u)y(u) normalized by the condition y(u)>x(u) = 1. Then
∇P (u) = (y1(u)x1(u), . . . , yn(u)xn(u)) for each u ∈ Rn.

Proof. Since ρ(u) > 0 is a simple root of det(zI −A(u)) it follows that one can choose
x(u),y(u) to be analytic on Rn in u. (For example first choose x(u), ỹ(u) ∈ Rn

+ to be the
unique left and right eigenvectors of A(u) of length 1. Then let y(u) = 1

ỹ(u)>x(u)
y(u). Let

∂i be the partial derivative with respect to ui. Then

y(u)>x(u) = 1 for all u ∈ Rn ⇒ ∂iy(u)>x(u) + y(u)>∂ix(u) = 0, for i = 1, . . . , n.

Observe next that y(u)>A(u)x(u) = ρ(u). Taking the partial derivative with respect to ui

we get

∂iρ(u) = ∂iy(u)>A(u)x(u) + y(u)>A(u)∂ix(u) + y(u)>∂iA(u)x(u).
ρ(u)(∂iy(u)>x(u) + y(u)>∂ix(u)) + ρ(u)yi(u)xi(u) = ρ(u)yi(u)xi(u).

Recalling the equality P (u, G) = log ρ(u) we deduce that∇P (u) = (y1(u)x1(u), . . . , yn(u)xn(u)).
2
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Since h(G) = P (0, G) the characterization (8.19) yields:

h(G) = max
p∈ΠG

h∗G(p). (8.25)

Let A ∈ [0, 1]n×n be an irreducible matrix. Let x = (x1, . . . , xn)>,y = (y1, . . . , yn)> ∈
Rn

+ be the left and the right eigenvectors of A corresponding to ρ(A), and normalized by
the condition y>x = 1. Then the distribution (y1x1, . . . , ynxn) ∈ Πn appears naturally in
other problems as well. For example the Friedland-Karlin characterization of log ρ(A) is [8]:

log ρ(A) = min
z=(z1,...,zn)>>0

n∑

i=1

yixi log
(Az)i

zi
. (8.26)

We now apply Theorem 8.7 to the hard core model on 〈2〉N(G), where A(G) =
(

0 1
1 1

)
.

(We identified 0 with 2.) Let u = (s, t)>. Then ∇P (u, G) = (p1(u), p2(u)) ∈ Π2 it follows
that p2(u) = 1 − p1(u). It is enough to consider u = (s, 0) and p1(s) = dP ((s,0)>,G)

ds . So
p := p1(s) is the density of 1 in all the configurations of infinite strings of 0, 1, where no two

1 are adjacent. Clearly A(u) =
(

0 e
s
2

e
s
2 1

)
. Hence

ρ(u) =
1 +

√
1 + 4es

2
, p1(s) =

2es

(1 +
√

1 + 4es)
√

1 + 4es
=

2
(e−

s
2 +

√
e−s + 4)

√
e−s + 4

=
1
2
(
1− 1√

1 + 4es

) ∈ (0,
1
2
).

Note that p1(s) is increasing on R, and p1(−∞) = 0, p1(∞) = 1
2 . As P (0) = h(G) =

log 1+
√

5
2 it follows that the value p∗ := p1(0) = 2

(1+
√

5)
√

5
= .2763932024 is the density p∗ of

1’s for which h(G) = h∗G(p∗). To find the formula for hG(p) first note that if p = p1(s) then

√
1 + 4es =

1
1− 2p

, s(p) = log
p(1− p)
(1− 2p)2

.

Then

h∗G(p) = log
1− p

1− 2p
− p log

p(1− p)
(1− 2p)2

, p ∈ (0,
1
2
).

9 Simulation of the gradient of pressure

In this section we show that the gradient of a pressure is easy to simulate. Let

Pm(u, G) :=
log Z(m,u, G)

m
, m ∈ N. (9.1)

Then
∂Pm(u, G)

∂ui
=

1
m

∑

φ∈W(m)

ci(φ)
ec(φ)u

Z(m,u, G)
. (9.2)

On W(m) we introduce that following probability which depends on u:

Pr u(φ) :=
ec(φ)u

Z(m,u, G)
, for any φ ∈ W(m). (9.3)

Let Xi,m : W(m) → Z+ be the random variable that counts the number of atoms, (letters),
of type i in the state φ ∈ W(m). That is Xi,m = ci(φ) for i = 1, . . . , n. Let Xm :=
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(X1,m, . . . , Xn,m) : W(m) → Zm
+ be a vector random variable. Then Xm(φ) = c(φ). Use

(9.1) and (9.3) to deduce that

∇Pm(u, G) =
1
m

Eu(Xm), m ∈ N. (9.4)

Note that in HW 3 we considered the computation of the expected number of 1′s in
the hard core configurations. This quantity corresponds to E0(X1,m). Second part of the
Problem 4 was to show that E0(X1,m)

m converges to a limit. It can be shown that this limit
is given by p1(0) = 2

(1+
√

5)
√

5
, where p1(s) is defined in the last part of the previous section.

More precisely, if G is strongly connected it can be shown that limm→∞∇Pm(u, G) =
∇P (u, G).

To find the approximate value of ∇Pm(u, G) we simulate a random walk on G using a
Markov chain as follows. (We assume that G is strongly connected and m > 1.)
Variant 1 : Start the program with w = e1 = . . . = en = 0. Let P = (pambm)am,bm∈W(m)

be the following stochastic matrix on the graph Gm = (W(m), Em), with vertices indexed
by all allowable m - walks W(m). (am,bm) ∈ Em if and only if am = (a1, . . . , am),bm =
(b1, . . . , bm) ∈ W(m) differ at most in one vertex k, for some k = 1, . . . , n. Clearly Gm is
reversible, i.e. (am,bm) ∈ Em ⇐⇒ (bm,am) ∈ Em. Assume that a1 = b1, . . . , ak−1 =
bk−1, ak+1 = bk+1, . . . , am = bm. Let r = r(ak−1, ak+1) be the number of all j ∈ 〈n〉 such
that

(ak−1, j) ∈ E(G) and (j, ak+1) ∈ E(G), for all j ∈ 〈n〉. (9.5)

If k = 1 then the above condition reduces to (j, a2) ∈ E(G). If k = m the above condition
reduces to (am−1, j) ∈ E(G). Then for ak 6= bk, (hence ai = bi for i 6= k), we have that
pambm = 1

mr(ak−1,ak+1)
. pamam is determined by the stochasticity condition. Then P is a

symmetric stochastic matrix. If Gm is connected then P has a unique uniform distribution.
(We do not in general that Gm is connected, but it is straightforward to show that Gm is
connected for the hard core model.)

Our random walk on Gm is given as follows. First generate a walk of length am. Let
v = c(am)u = c1(am)u1 + . . . cn(am)un, where ci(am) is the number of i vertices in the walk
given by am. Let s = exp(v), w = w + s and ei = ei + ci(am)s for i = 1, . . . ,m.

Then move form am to bm as follows. Choose a vertex ak for some k = 1, . . . , m
with probability 1

m . Then choose bk = j, where (9.5) holds, with probability 1
r(ak−1,ak+1)

.
Thus bm = (a1, . . . , ak−1, bk, ak+1, . . . , am). Then ci(bm) = ci(am) − ci(ak) + ci(bk) for
i = 1, . . . , n. (Here ci(j) is the number of the color i in the color j. So ci(j) = δij .) Now
find s, w, e = (e1, . . . , en) by replacing am by bm in the above equalities, and continue.

When you finished the iterations the vector 1
we is an estimate of E(Xm) and 1

mwe is an
estimate of ∇Pm(u, G). (If Gm is connected it is straightforward to show that these are
valid estimates.)
Variant 2 : Start the program with w = e1 = . . . = en = 0. Let P = (pij)n

i,j=1 where
pij =

aijxj

ρ(G)xi
, where A(G) = (aij)n

i,j=1 ∈ {0, 1}n×n is the incidence matrix of G and x =
(x1, . . . , xn)> ∈ Rn

+ is the positive eigenvector of A(G) corresponding to A(G): A(G)x =
ρ(G)x. Choose a vertex a1 at random with probability 1

n . Then choose a neighbor of a2

with probability pa1a2 and so on until one gets a word am = (a1, . . . , am) ∈ W(m). Then
let v = c(am)u = c1(am)u1 + . . . cn(am)un, where ci(am) is the number of i vertices in the
walk given by am. Let s = xa1 exp(v)

xam
, w = w + s and ei = ei + ci(am)s for i = 1, . . . , m.

Pick a vertex am+1, such (am, am+1) ∈ E(G), and define the configuration bm :=
(a2, . . . , am+1). Then ci(bm) = ci(am) − ci(a1) + ci(am+1) for i = 1, . . . , n. (Here ci(j)
is the number of the color i in the color j. So ci(j) = δij .) Now find s, w, e = (e1, . . . , en)
by replacing am by bm in the above equalities, and continue.

When you finished the iterations the vector 1
we is an estimate of E(Xm) and 1

mwe is an
estimate of ∇Pm(u, G).
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We now explain why 1
we is an estimate of E(Xm) in this case, i.e. Variant 2. In-

deed the probability of generating a word am = (a1, . . . , am) is 1
npa1a2pa2a3 . . . pam−1am

=
1
n

xam

ρ(G)m−1xa1
. This explains why we consider the product s = xa1 exp(v)

xam
. Hence 1

we is an
estimate of E(Xm).

It is straightforward to show that if under the assumption that G is strongly connected
you can go from any am ∈ W(m) to any other bm ∈ W(m) using the Markov chain described
above in a finite number of steps. The disadvantage Variant 2 is that we need to know the
eigenvector x and ρ(G).

Remark 9.1 Assume that G = (〈n〉, E) is strongly connected. A(G) = (aij)n
i,j=1 ∈

{0, 1}n×n is the incidence matrix of G and x = (x1, . . . , xn)>,y = (y1, . . . , yn)> ∈ Rn
+ is the

positive left and right eigenvectors of A(G) corresponding to A(G): A(G)x = ρ(G)x,y>A(G) =
ρ(G)y>, normalized by the condition y>x = 1. Introduce on 〈n〉m, the sets of walks of length
m on the complete digraph on n vertices the following probability measure:

Pr(bm = (b1, . . . , bm)) :=
1

ρ(G)m−1
yb1ab1b2 . . . abm−1bm

xbm
, for all b1, . . . , bm ∈ 〈n〉.

(9.6)
Then Pr(b) = 0 if b 6∈ W(m), and Pr(b) = 1

ρ(G)m−1 yb1xbm
if bm = (b1, . . . , bm) ∈ W(m).

This measure is called Parry measure, and is an example of Gibbs measure.
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