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1 Main Topics of the Course

• SYSTEMS OF EQUATIONS

• VECTOR SPACES

• LINEAR TRANSFORMATIONS

• DETERMINANTS

• INNER PRODUCT SPACES

• EIGENVALUES

• JORDAN CANONICAL FORM-RUDIMENTS

Text : Jim Hefferon, Linear Algebra, and Solutions

Available for free download

ftp://joshua.smcvt.edu/pub/hefferon/book/book.pdf

ftp://joshua.smcvt.edu/pub/hefferon/book/jhanswer.pdf

Software : MatLab,Maple, Matematica.
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2 Applications of Linear Algebra

• Engineering

• Biology

• Medicine

• Business

• Statistics

• Physics

• Mathematics

• Numerical Analysis

Reason: Many real world systems consist of many parts

which interact linearly.

Analysis of such systems involves the notions and the tools

from Linear Algebra.

3



3 Lecture 1

I. Systems of Linear Equations

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2
...

...
...

...
...

...
...

am1x1 + am2x2 + ... + amnxn = bm

a. Examples

b. Solutions: Unique, Many and None (Inconsistent).

c. Graphical Examples of Systems in Two Variables

d. Equivalent Systems (have same solutions):

• Change the order of the equations

• Multiply an equation by a nonzero number

• Add (subtract) from one equation a multiple of another

equation
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Examples

x1 + 2x2 = 5

2x1 + 3x2 = 8

Subtract 2 times row from row 2.

Hefferon notation: ρ2 − 2ρ1 → ρ2

My notations:

R2 − 2R1 → R2,

R2 ← R2 − 2R1,

R2 → R2 − 2R1

Obtain a new system

x1 + 2x2 = 5

− x2 = −2

Find first the solution of the second equation: x2 = 2.

Substitute x2 to the first equation:

x1 + 2× 2 = 5⇒ x1 = 5− 4 = 1.

Unique solution (x1, x2) = (1, 2)
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e. Triangular Systems and their solutions

a11x1 + a12x2 + ... + a1nxn = b1

+ a22x2 + ... + a2nxn = b2
...

...
...

...
...

...
...

... annxn = bn

n equations in n unknowns with n pivots:

a11 6= 0, a22 6= 0, . . . ann 6= 0.

Solve the system by back substitution from down to up:

xn =
bn

ann

,

xn−1 =
−a(n−1)nxn + bn−1

a(n−1)(n−1)

,

xi =
−ai(i+1)xi+1 − ...− ainxn + bi

aii

,

i = n− 2, ..., 1.
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4 Lecture 1

II. Matrix Formalism for Solving Linear Equations

a. The Coefficient Matrix of the system:

A =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn










b. The Augmented Matrix (A|b), (A|B)

(A|b) =










a11 a12 ... a1n | b1

a21 a22 ... a2n | b2
...

...
...

... |
...

am1 am2 ... amn | bm
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5 Lecture 2

c. Elementary Row Operations (ERO)

• Interchange two rows

Ri ←→ Rj, i 6= j

Example: R2 ←→ Rj

• Multiply a row by a nonzero number

a×Ri −→ Ri, a 6= 0, (Ri −→ a×Ri).

• Replace a row by its sum with a multiple of another row

Ri+a×Rj −→ Ri, (Ri −→ Ri+a×Rj).

Example:

R2−0.7R4 −→ R2, (R2 −→ R2−0.7R4).

d. Pivotal Row

e. The elementary row operations are reversible: If D is

obtained from C using elementary row operations then C is

obtained from D using (the inverse elementary) row

operations

8



6 Inverse elementary row operation

Ri ←→ Rj, i 6= j is inverse to itself

1
a
×Ri −→ Ri, a 6= 0

is the inverse of a×Ri −→ Ri

Ri − a×Rj −→ Ri

is the inverse of Ri + a×Rj −→ Ri

Denote by E−1 the inverse elementary row operation

Assume that D was obtained from C by using the following

sequence of k elementary row operations:

EkEk−1 . . . E2E1

Then C is obtained from D by the elementary operations

E−1
1 E−1

2 . . . E−1
k−1E

−1
k

Elementary row operations on the system of linear equations

performed on augmented matrices give rise to the

equivalent system of equations

Two systems of linear equations are equivalent if they have

the same solutions
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Row Echelon Form of a matrix.

• The first nonzero entry in each row is 1. This entry is

called a pivot.

• If row k does not consists entirely of zeros, then the

number of leading zero entries in row k + 1 is greater

then the number of leading zeros in row k.

• Zero rows appear below the rows having nonzero

entries.

The process of using ERO to transform a linear system into

one whose augmented matrix is in row echelon form is

called Gaussian Elimination.

Corollary. The given system is inconsistent if and only if the

REF of its augmented matrix contains a row of the form:

[0 0 . . . 0| 1] (6.1)
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Constructive proof of existence of REF A = [aij ]
m,n
i=j=1

0. If A = 0 (Zero matrix) A in REF done! Assume

A 6= 0.

1. If a11 6= 0:

a. divide the first row by a11: 1
a11

R1 → R1 to obtain

A1 = [a
(1)
ij ].

Note: a1
11 = 1.

b. Subtract a
(1)
i1 times row 1 from row i ≥ 2:

−ai1R1 + Ri → Ri for i = 2, . . . ,m

c. Put all zero rows to be the last rows

d. GO TO

2. If a11 = . . . = a(i−1)0 = 0 and ai1 6= 0 for some

1 < i ≤ m: R1 ↔ Ri

GO TO 1.

3. Suppose that the first k − 1 columns of A are zero, but

not k − th row.

So A = [0m×k−1 B, where B obtained from A by

removing first k − 1 zero rows
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REF of A is C = [0m×k−1 C′], C′ REF of B.

Replace A by B and GO TO 1.
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Examples of REF







1 a b c

0 1 d e

0 0 0 1













0 1 a b

0 0 1 c

0 0 0 0







Five possible REF of (a b c d) (1× 4 matrix):

(1 u v w) if a 6= 0,

(0 1 p q) if a = 0, b 6= 0,

(0 0 1 r) if a = b = 0, c 6= 0,

(0 0 0 1) if a = b = c = 0, d 6= 0,

(0 0 0 0) if a = b = c = d = 0.
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Overdetermined System m (number of equations) > n

(number of unknowns):

if there are more equations then unknowns.

Usually (but not always) overdetermined system are

inconsistent.

Underdetermined System m < n:

if there are less equations then unknowns.

Usually (but not always) underdetermined system are

solvable with many solutions.
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7 Lecture 3

The general solution of the system in REF.

Assume that REF does not contain a row of the form (6.1):

[0 0 . . . 0| 1].

The variables associated with pivots are called lead

variables. The rest of the variables are called free variables.

The solution of the system is given by expressing each lead

variable as a linear (affine) function of free variables.

Examples






1 −2 3 −1 | 0

0 1 3 1 | 4

0 0 0 1 | 5







x1, x2, x4 are lead variables, x3 is a free variable.

x4 = 5, x2+3x3+x4 = 4⇒ x2 = −3x3−x4+4

x2 = −3x3 − 1, x1−2x2+3x3+−x4 = 0⇒
x1 = 2x2−3x3+x4 = 2(−3x3−1)−3x3+5⇒

x1 = −9x3 + 3
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The simplest way (but not the fastest) to find the general

solution of the system is to find its RREF.

Reduce Row Echelon Form (RREF):

• The matrix is in REF.

• If 1 is a pivot on row k and column p then all other

elements on the column p are zero.

Examples






1 0 b 0

0 1 d 0

0 0 0 1













0 1 0 b

0 0 1 c

0 0 0 0







Bringing a matrix to RREF is called Gauss-Jordan reduction.
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It is easy to find from RREF the solution of the system:







1 0 b 0 | u

0 1 d 0 | v

0 0 0 1 | w







x1, x2, x4 lead variables x3 free variable

x1 + bx3 = u⇒ x1 = −bx3 + u,

x2 + dx3 = v ⇒ x2 = −dx3 + v,

x4 = w.
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8 Vector and Matrix Notations

Vectors: Row Vector x = (x1, x2, ..., xn) is 1× n

matrix

Column Vector u =










u1

u2

...

um










is m× 1 matrix. For

convenience of notation we denote column vector u as

u = (u1, u2, . . . , um)⊤

Vectors with two coordinates represent vectors in the plane

x = (x1, x2) represents a vector joining the origin with

P = (x1, x2).

ax = a(x1, x2) := (ax1, ax2) stretch of x by factor

a.

x+y = (x1, x2)+(y1, y2) := (x1+y1, x2+y2)

represents vector obtained by the parallelepiped law.

Draw the two dimensional picture.
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The coordinates of a vector and real numbers are called

scalars

Caution!: In Leon’s book scalars are often denoted by Greek

letters: α, β, γ.... In these notes scalars are denoted by

small Latin letters, while vector are in a different font:

a, b, c, d, x, y, z, u, v,w are vectors, while

a, b, c, d, x, y, z, u, v, w are scalars.

The rules for multiplications of vector by scalars and

additions of vectors are:

ax = a(x1, ..., xn) := (ax1, ..., axn),

x + y = (x1, ..., xn) + (y1, ..., yn) :=

(x1 + y1, ..., xn + yn),

the set of all vectors with n coordinates is denoted by Rn.
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au = a










u1

u2

...

um










,

u + v =










u1

u2

...

um










+










v1

v2

...

vm










:=










u1 + v1

u2 + v2

...

um + vm










The zero vector 0 has all its coordinate 0.

−x := (−1)x := (−x1, ...,−xn)

x + (−x) = x− x = 0.
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9 Lecture

Homogeneous Systems of Equations

a11x1 + a12x2 + ... + a1nxn = 0

a21x1 + a22x2 + ... + a2nxn = 0
...

...
...

...
...

...
...

...

am1x1 + am2x2 + ... + amnxn = 0

Augmented Matrix (A|0).

HSE is always solvable:

x1 = x2 = ... = xn = 0.

Trivial Solution

The number of pivots does not exceed m.

If n > m there is at least n−m free variables.

If n > m HSE has infinite number of nontrivial solutions
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10 Products Matrix with vector

scalar product: (u1, u2, u3) · (x1, x2, x3) = u1x1 + u2x2 + u3x3.

Product of row vector with column vector with the same number of coordinates:

ux = (u1 u2...un)










x1

x2

...

xn










= u1x1 + u2x2 + ... + unxn

product of m× nA and column vector x ∈ Rn:

Ax =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn



















x1

x2

...

xn










=
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a11x1 + a12x2 + ... + a1nxn

a21x1 + a22x2 + ... + a2nxn

...

am1x1 + am2x2 + ... + annxn










∈ Rm

The system of m equations in n unknowns

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2
...

...
...

...
...

...
...

am1x1 + am2x2 + ... + amnxn = bm

can be compactly written as

Ax = b

A is an m× n coefficient matrix, x ∈ Rn is the columns

vector of unknowns and b ∈ Rm is the given column

vector.

Clearly A(x + y) = Ax + Ay, where A is m× n

matrix, and x, y are two column vectors with n coordinates
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11 General solution of systems of LE

A vector u = (u1, . . . , un)
⊤ satisfying Au = b is

called a particular solution to system Ax = b.

Thm 1. The general solution of the system

Ax = b

of m equations in n unknowns is of the form

x = u + y,

where u is a particular solution of Ax = b and y is the

general solution of the homogeneous system

Ay = 0

Proof. Write x = u + y. Then

A(u + y) = Au + Ay = b + Ay. Hence x is a

solution to Ax = b if and only if Ay = 0.
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12 Existence of REF and RREF

Thm 2. Let A be a given m× n matrix. Then

1. It is always possible to bring A to a row echelon form C

(REF), where C is m× n matrix, by using elementary

row operations

(a) C usually is not unique

(b) If we consider the homogeneous system Ax = 0,

then the lead and the free variables are uniquely

determined, i.e. they do not depend on a particular

form of C .

2. It is always possible to bring A to a reduced row

echelon form F (RREF), by using elementary row

operations, and F is unique.
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13 Proof of Theorem 2

1. We show the existence of REF of A by induction on m.

I. Assume m = 1. So A = (a11 a12 . . . a1n).

i. If A = 0 then A is already in row echelon form.

ii. A 6= 0. Let a1k be the first nonzero element of the row

matrix A. Then a−1
1k A is the row echelon form of A.

II. Assume the induction hypothesis that any positive integer

M any M × n matrix A can be brought to a REF using

elementary row operations, i.e. we assume the induction

hypothesis for m = M .

III. Assume that A = (aij) (M + 1)× n matrix, i.e.

m = M + 1.

i. Suppose first that a11 6= 0. Let a11 R1 → R1 to

obtain A1. Then Ri → Ri − ai1 ×R1 for

i = 2, . . . ,M + 1 to obtain the matrix A2 with a pivot

on the entry (1, 1) and all other entries of the first column

of A2 are zero.
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A2 =










1 a12,2 ... a1n,2

0 a22,2 ... a2n,2

...
...

...
...

0 am2,2 ... amn,2










If n = 1A2 is the row echelon form of A.

Assume n > 1. Let B2 be the following M × (n− 1)

matrix:

B2 =










a22,2 a23,2 ... a2n,2

a32,2 a33,2 ... a3n,2

...
...

...
...

am2,2 am3,2 ... amn,2










Use the induction hypothesis to deduce the existence of

ERO to bring B2 to REF D2. Apply the same row

operation on the last M rows of A2 to bring A2 to a REF

C2 =




1 ∗
0 D2



 (block matrix form)
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ii. Suppose a11 = 0 but the first column of A is not zero

column. Let ai1 6= 0, (you may choose i to be the

smallest number i > 1 to satisfy this assumption.) Switch

rows 1 and i, i.e. perform R1 ↔ Ri, to obtain A1. Now

use the previous case i. to bring A1 to REF C , which is a

REF of A.

iii. Suppose A = 0. Then A in REF.

iv. Suppose A 6= 0 and the first k columns of A are zero

(1 ≤ k < n). Let B be (M + 1)× (n− k) matrix

obtained from A by deleting the first k columns. Now use

cases (i-ii) to bring B to a REF D.

Use the same row operations on A to bring it to REF:

C := (0m×k D),

where 0m×k denotes the zero matrix of order m× k.
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14 Non-uniqueness of REF

Let A =




1 1

1 2





Do R2 −R1 → R2 to obtain REF

A1 =




1 1

0 1





Now switch the two rows of A, i.e. R1 ↔ R2 to obtain

B =




1 2

1 1





Let R2 −R1 → R2 to obtain B1 =




1 2

0 −1





Let−R2 → R2 to obtain REF B2 =




1 2

0 1





Note A1 6= B2
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15 Lead & free variables uniqueness

Assume that Am× n . Assume that B and C are two

m× n matrices which are two REF of A. Then Bx = 0

and Cx = 0 are equivalent systems to Ax = 0.

We show by induction on n that the systems Bx = 0 and

Cx = 0 have the same set of lead and free variables.

I. n = 1.

i. A = 0. Then B = C = 0. x1 is free variable.

ii. A 6= 0. Then B = C = (1 0 . . . 0)⊤. x1 is lead

variable

II. Assume that the statement holds for n = N .

III. Let n = N + 1, i.e. A,B,C are m× (N + 1).

Let A1, B1, C1 are n×N matrices obtained from

A,B,C by deleting their last columns respectively. Note

that B1 and C1 are REF of A1. The homogeneous

systems A1x1 = 0, B1x1 = 0, C1x1 = 0 obtained

from the equivalent systems

Ax = 0, Bx = 0, Cx = 0 by letting xn = 0.

30



The induction hypothesis claims that among x1, ..., xn−1

the lead and free variables in the systems

B1x1 = 0, C1x1 = 0 are the same. This is equivalent

to to the statement that among x1, ..., xn−1 the lead and

free variables in the systems Bx = 0, Cx = 0 are the

same. It is left to show that xn in the both system is either

lead or free. Set all free variables in x1, ..., xn−1 to be

zero.

i. Assume that xn is a lead variable in Bx = 0 we deduce

that xn = 0. Hence in the equivalent system Cx = 0

xn = 0. Therefore xn is a lead variable too in Cx = 0.

ii. Assume that xn is free variable in Bx = 0. So the

value of xn can be anything. Hence in the equivalent

system Cx = 0 xn can have any value. Therefore xn is

a free variable too in Cx = 0.
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16 Uniqueness of RREF

Assume that Am× n . Assume that B and C are two

m× n matrices which are two RREF of A. Then

Bx = 0 and Cx = 0 are equivalent systems to

Ax = 0.

We claim that B = C .

From previous part we now that the equivalent systems

Bx = 0, Cx = 0 have the same lead and free variables.

By transferring the free variables of in these equivalent

systems to right hand-side we obtain each lead variable as

the same linear function of free variables. Hence B = C .

�
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17 Row equivalence of matrices

Definition

a. Denote by Rm×n the set of m× n matrices with real

entries

b. Let A,B ∈ Rm×n. B Is called row equivalent to A,

denoted by B ∼ A, if B can be obtained from A using

ERO

Thm 3. Let A,B ∈ Rm×n. Then

a. B ∼ A ⇐⇒ A ∼ B

b. B ∼ A if and only if A and B have the same REF C .

Remark. Assume that B ∼ A and B has the row echelon

form. Thm 2 yields these facts independent of choice of B

1. The number of nonzero rows of B is called rank of A,

and is denoted by rankA.

2. The pivots of A are the first nonzero elements in each

nonzero row of B, which are equal to 1. Their location:

(1, j1), . . . , (r, jr), 1 ≤ i1 < . . . < ir ≤ n,

where r = rankA. So xj1 , . . . , xjr free variables
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18 Vector Spaces -

A set V is called a vector space if:

I. For each x, y ∈ V, x + y is an element of V.

(Addition)

II. For each x ∈ V and a ∈ R, ax is an element of V.

(Multiplication by scalar)

The two operations satisfy the following laws:

1. x + y = y + x, commutative law

2. (x + y) + z = x + (y + z), associative law

3. x + 0 = x for each x, neutral element 0

4. x + (−x) = 0, unique anti element

5. a(x + y) = ax + ay for each x, y, distributive law

6. (a + b)x = ax + bx, distributive law

7. (ab)x = a(bx), distributive law

8. 1x = x.

corollary: 0x = 0 neutral element:

0x = (0 + 0)x = 0x + 0x⇒
0 = 0x− 0x = (0x + 0x)− 0x = 0x.
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Examples:

1. R - Real Line

2. R2 = Plane

3. R3 - Three dimensional space

4. Rn - n-dimensional space

5. Rm×n - Space of m× n matrices
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m× n matrices

A = (aij), i = 1, ...,m, j = 1, ...n

denoted by Rm×n.

(We can identify Rm×n with vectors Rmn in some cases)

We can multiply matrices by a scalar

sA = s(aij) = (saij) and add two matrices of the

same dimension:










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn










+










b11 b12 ... b1n

b21 b22 ... b2n
...

...
...

...

bm1 bm2 ... bmn










=
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a11 + b11 a12 + b12 ... a1n + b1n

a21 + b21 a22 + b22 ... a2n + b2n
...

...
...

...

am1 + bm1 am2 + bm2 ... amn + bmn










The zero matrix 0 is an m× n whose al entries are equal to 0:

0 =










0 0 ... 0

0 0 ... 0
...

...
...

...

0 0 ... 0










−A = −(aij) := (−aij) = (−1)A and

A + (−A) = A−A = 0,

A−B = A + (−B)
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19 Transpose of a matrix A⊤

Let A =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn










Then A⊤ =










a11 a21 ... am1

a12 a22 ... am2

...
...

...
...

a1n a2n ... amn










(A + B)T = AT + BT

(aA)⊤ = aA⊤
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6a. Diagonal matrices (denoted byDn ⊂ Rn×n): Those

are square matrices whose all off-diagonal entries are 0:

diag(d1, d2, ..., dn) =










d1 0 . . . 0 0

0 d2 . . . 0 0
...

...
...

...
...

0 0 . . . 0 dn










Example : diag(3,−2, 7) =







3 0 0

0 −2 0

0 0 7







Claim: The sum and the product of two diagonal matrices is

a diagonal matrix:

diag(d1, ..., dn) + diag(q1, ..., qn) =

diag(d1 + q1, ..., dn + qn),

diag(d1, ..., dn) diag(q1, ..., qn) =

diag(d1q1, ..., dnqn),

diag(d1, ..., dn) is invertible⇐⇒ d1...dn 6= 0 and

diag(d1, ..., dn)
−1 = diag(d−1

1 , ..., d−1
n )
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6b. Upper Triangular Matrices (denoted by

UTn ⊂ Rn×n): Those are square matrices where all

elements below the main diagonal entries are 0:










a11 a12 . . . a1(n−1) a1n

0 a22 . . . a2(n−1) a2n

...
...

...
...

...

0 0 . . . 0 ann










Example :







3 0.1 −8
0 −2 6.1

0 0 7







Claim: The sum and the product of two upper triangular

matrices is an upper triangular matrix.

Claim: An upper triangular matrix is invertible⇐⇒ its all

diagonal entries are nonzero. The inverse of an upper

triangular matrix is upper triangular.
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6c. Lower Triangular Matrices (denoted by

LTn ⊂ Rn×n): Those are square matrices where all

elements above the main diagonal entries are 0:










a11 0 . . . 0 0

a21 a22 . . . 0 0
...

...
...

...
...

an1 an2 . . . an(n−1) ann










Example :







3 0 0

0.1 −2 0

−8 6.1 7







Claim: The sum and the product of two lower triangular

matrices is a lower triangular matrix.

Claim: A lower triangular matrix is invertible⇐⇒ its all

diagonal entries are nonzero. The inverse of a lower

triangular matrix is lower triangular.

Claim: A matrix is lower triangular⇐⇒ its transpose is

upper triangular.
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7. Pn - Space of polynomials of degree at most n: Pn :=

{p(x) = anx
n + an−2x

n−2 + ...+ a1x+ a0}.
8. C[a, b] - Space of continuous functions on the interval

[a, b].

Note. The examples 1 - 7 are finite dimensional vector

spaces. 8 - is infinite dimensional vector space.

Note. In this course all vector spaces are finite dimensional

and isomorphic to Rn (or Cn as in Chapter 6).
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20 Subspaces

Let V be a vector space. A subset W of V is called a

subspace of V if the following two conditions hold:

a. for any x, y ∈W⇒ x + y ∈W,

b. for any x ∈W, a ∈ R⇒ ax ∈W.

Note: The zero vector 0 ∈W since by the condition a. for

any x ∈W one has 0 = 0x ∈W.

Equivalently: W ⊆ V is a subspace ⇐⇒ W is a

vector space with respect to the addition and the

multiplication by a scalar defined in V.

Claim The conditions a. and b. above are equivalent to one

condition

If x, y ∈ U then ax + by ∈ U for any scalars a, b

Every vector space V has the following two subspaces:

1. V.

2. The trivial subspace consisting of the zero element:

W = {0}.
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Examples of subspaces

1. R2 - Plane: the whole space, lines through the origin, the

trivial subspace.

2. R3 3-dimensional space: the whole space, planes

through the origin, lines through the origin, the trivial

subspace.

3. For A ∈ Rm×n the null space of A, denoted by

N(A), is a subspace of Rn consisting of all vectors

x ∈ Rn such that Ax = 0.

Note: N(A) is also called the kernel of A, and denoted by

kerA. (See below the explanation for this term.)

4. For A ∈ Rm×n the range of A, denoted by R(A), is

a subspace of Rm consisting of all vectors y ∈ Rm such

that y = Ax for some x ∈ Rn. Equivalently

R(A) = ARn.

In 3. and 4. A is viewed as a transformation

A : Rn → Rm: The vector x ∈ Rn is mapped to the

vector Ax ∈ Rm (x 7→ Ax.) So R(A) is the range of

the transformation induced by A and N(A) the set of

vectors mapped to zero vector in Rm.

44



21 Linear combination & span

For v1, ..., vk ∈ V and a1, ..., ak ∈ R the vector

a1v1 + a2v2 + ... + akvk

is called a linear combination of v1, ..., vk.

The set of all linear combinations of v1, ..., vk is called the

span of v1, ..., vk and denoted by span(v1, ..., vk).

Claim: span(v1, ..., vk) is a linear subspace of V.

Fact: All subspaces in a finite dimensional vector spaces are

always given as span(v1, ..., vk) for some

corresponding vectors v1, ..., vk.

Examples:

1. Any line through the origin in 1, 2, 3 dimensional space

is spanned by any nonzero vector on the line.

2. Any plane through the origin in 2, 3 dimensional space is

spanned by any two nonzero vectors not lying on a line, i.e.

non collinear vectors.

3. R3 spanned by any 3 non planar vectors.
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In the following examples A ∈ Rm×n.

4. Consider the null space N(A). Let B ∈ Rm×n be the

RREF of A. B has p pivots and k := n− p free

variables. Let vi ∈ Rn be the following solution of

Ax = 0. Let the i− th free variable be equal to 1 while

all other free variables are equal to 0. Then

N(A) = span(v1, ..., vk).

5. Consider the range R(A), which is a subspace of Rm.

View A = [c1...cn] as a matrix composed of n columns

c1, ..., cn ∈ Rm. Then R(A) = span(c1, ..., cn).

Proof. Observe that for x = (x1, ..., xn)
T one has

Ax = x1c1 + x2c2 + ... + xncn.

Corollary. The system Ax = b is solvable ⇐⇒ b is a

linear combination of the columns of A.

Problem. Let v1, ..., vk ∈ Rn. When b ∈ Rn is a linear

combination of v1, ..., vk?

Answer. Let C := [v1 v2... vk] ∈ Rn×k. Then

b ∈ span(v1, ..., vk) ⇐⇒ the system Ay = b is

solvable.
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Example. v1 = (1, 1, 0)T, v2 = (2, 3,−1)T, v3 =

(3, 1, 2)T, x = (2, 1, 1)T, y = (2, 1, 0)T ∈ R3.

Show x ∈W := span(v1, v2, v3), y 6∈W.

Spanning set of a vector space

v1, ..., vk is called a spanning set of V ⇐⇒
V = span(v1, ..., vk)

Example: Let Veven,Vodd ⊂ P4 be the subspaces of

even and odd polynomials of degree 4 at most. Then

Veven = span(1, x2, x4), Vodd = span(x, x3).

Example: which of these sets is a spanning set of R3?

a. [(1, 1, 0)T, (1, 0, 1)T],

b. [(1, 1, 0)T, (1, 0, 1)T, (0, 1,−1)T],
c. [(1, 1, 0)T, (1, 0, 1)T, (0, 1,−1)T, (0, 1, 0)T].
Theorem. v1, ..., vk ∈ V is a spanning set of

Rn ⇐⇒ k ≥ n and REF of

A = [v1 v2...vk] ∈ Rn×k has n pivots.

2.5.07 Lemma: Let v1, ..., vk ∈ V and assume

vi ∈W := span(v1, ..., vi−1, vi+1, ..., vk).

Then span(v1, ..., vk) = W .
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Corollary. Let v1, ..., vn ∈ Rm. Form

A = [v1 v2...vn] ∈ Rm×n. Let B ∈ Rm×n be

REF of A. Then span(v1, ..., vn) is spanned by

vj1 , ..., vjr corresponding to the columns of B at which

the pivots are located.

Proof Assume that xi is a free variable. Set xi = 1 and all

other free variables are zero. We obtain a nontrivial solution

a = (a1, . . . , an)
⊤ such that ai = 1 and ak = 0 if

xk is another free variable. Aa = 0 implies that

vi ∈ span(vj1 , . . . , vjr). �

Work out example in the class

Corollary. Let A ∈ Rm×n and assume that

B ∈ Rm×n be REF of A. Then R(A)-the column

space of A is spanned by the columns of A corresponding

to the columns of B at which the pivots are located.

Corollary. Let v1, ..., vn ∈ Rn. Then v1, ..., vn span

Rn ⇐⇒ REF of A := [v1 v2...vn] has n pivots.

Definition: A square matrix A ∈ Rn×n is called

nonsingular if REF of A has n pivots
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22 Linear Independence

v1, ..., vn ∈ V are linearly independent ⇐⇒ the

equality a1v1 + a2v2 + ... + anvn = 0 implies that

a1 = a2 = ... = an = 0.

Equivalently v1, ..., vn ∈ V are linearly independent

⇐⇒ every vector in span(v1, ..., vn) can be written

as a linear combination of v1, ..., vn in a unique (one)

way. (Explain!)

v1, ..., vn ∈ V are linearly dependent ⇐⇒
v1, ..., vn ∈ V are not linearly independent.

Equivalently v1, ..., vn ∈ V are linearly dependent

⇐⇒ there exists a nontrivial linear combination of

v1, ..., vn which equals to zero vector:

a1v1 + ...+ anvn = 0 and |a1|+ ...+ |an| > 0.
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Lemma The following statements are equivalent

(i) v1, . . . , vn l.d.

(ii) vi ∈W := span(v1, ..., vi−1, vi+1, ..., vn)

for some i.

Proof (i)⇒(ii). a1v1 + . . . + anvn = 0 for some

(a1, . . . , an)
⊤ 6= 0. Hence ai 6= 0 for some i. So

vi =
−1
ai

(a1v1 + ... + ai−1vi−1 + ai+1vi+1 +

. . . + anvn).

(ii)⇒(i) vi =

a1v1+ ...+ai−1vi−1+ai+1vi+1+ . . .+anvn.

So a1v1 + ... + ai−1vi−1 + (−1)vi +

ai+1vi+1 + . . . + anvn = 0 �

Claim Let v1, ..., vn ∈ Rm. Form

A = [v1...vn] ∈ Rm×n. Then v1, ..., vn are linearly

independent ⇐⇒ Ax = 0 has only the trivial solution.

⇐⇒ (REF of A has n pivots).
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23 Basis and dimension

Definition: v1, ..., vn form a basis in V if v1, ..., vn are

linearly independent and span V.

Equivalently: Any vector in V can be expressed as a linear

combination of v1, ..., vn in a unique way.

Theorem 3: Assume that v1, ..., vn spans V. Then any

collection of m vectors u1, . . . , um ∈ V, such that

m > n is linearly dependent.

Proof Let

uj = a1jv1 + . . . + anjvn, j = 1, . . . ,m Let

A = (aij) ∈ Rn×m. Homogeneous system Ax = 0

has more variables than equations. It has a free variable,

hence a nontrivial solution x = (x1, . . . , xm)⊤ 6= 0. It

follows x1u1 + ... + xmum = 0. �

Corollary If [v1, ..., vn] and [u1, ..., um] are bases in

V then m = n.
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Definition: V is called n-dimensional, if V has a basis

consisting of n -elements. The dimension of V is n, which

is denoted by dimV.

The dimension of the trivial space {0} is 0.

Theorem 4. Let dimV = n Then

(i) Any set of n linearly independent vectors v1, . . . , vn is

a basis in V.

(ii) Any set of n vectors v1, . . . , vn that span V is a basis

in V.

Proof (i). Let v ∈ V. Thm 4 implies v1, . . . , vn, v l.d.:

a1v1 + . . . + anvn + av =

0, (a1, . . . , an, a)
⊤ 6= 0. If a = 0 it follows

v1, . . . , vn are l.d. contradiction! So

v = −1
a
(a1v1 + ... + anvn).

(ii). Need to show v1, . . . , vn l.i. If not Lemmas p’45, p’42

and Thm 3 contradict that V has n l.i. vectors. �
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Theorem 5. Let dimV = n. Then:

a. No set of less than n vectors can span V.

b. Any spanning set of more than n vectors can be paired

down to form a basis for V.

c. Any subset of less than n linearly independent vectors

can be extended to basis of V.

Proof a. If less than n vectors span V, V can not have n

l.i. vectors.

b. See Pruning Lemma.

c. See Completion Lemma.
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24 Pruning Lemma

Prunning Lemma. Let v1, . . . , vm be vectors in a vector

space V. Let W = span(v1, . . . , vm) and

k = dimW. Then 0 ≤ k ≤ m.

• k = 0 if and only if vi = 0 for i = 1, . . . ,m.

• Assume that k > 0. Then W has a basis

vi1 , . . . , vik , where 1 ≤ i1 < . . . < ik ≤ m.

Proof. By Thm 3 (p’46) k ≤ m.

k = 0 if and only if W = {0}, which is equivalent to the

assumption that each vi = 0.

Assume that k > 0. Suppose that v1, . . . , vm are

linearly independent. Then by definition v1, . . . , vm is a

basis.

Suppose that v1, . . . , vm are linearly dependent. by

Lemma p’45

vj ∈ U := span(v1, . . . , vi−1, vi+1, . . . , vm).

Hence U = W. Continue this process to conclude the

lemma
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25 Completion lemma

Lemma. Let V be a vector space of dimension n. Let

v1, . . . , vm ∈ V be m linearly independent vectors.

(Hence m ≤ n.) Then there exist n−m vectors

vm+1, . . . , vn such that v1, . . . , vn is a basis in V.

Proof. If m = n then by Thm 4 v1, . . . , vn is a basis.

Assume that m < n. Hence by Thm 4

W := span(v1, . . . , vm) 6= V. Let vm+1 ∈ V

and vm+1 6∈W. We claim that v1, . . . , vm+1 are

linearly independent. Suppose that

a1v1 + . . . + am+1vm+1 = 0. If am+1 6= 0 then

vm+1 = − 1
am+1

(a1v1 + . . . + amvm) ∈W,

which contradicts our assumption. So am+1 = 0. Hence

a1v1 + . . . + amvm = 0. As v1, . . . , vm are

linearly independent a1 = . . . = am = 0. So

v1, . . . , vm+1 are l.i.

Continue in this manner to deduce the lemma.
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26 Row & column spaces of matrix

Def. Let A ∈ Rm×n.

(a) Let r1, . . . , rm ∈ R1×n be the m rows of A. Then

the row space of A is span(r1, . . . , rm), which is a

subspace of R1×n.

(b) Let c1, . . . , cn ∈ Rm be the n columns of A. Then

the column space of A is span(c1, . . . , cm), which is a

subspace of Rm = Rm×1.

Claim Let A,B ∈ Rm×n and assume that A ∼ B.

Then A and B have the same row spaces

Recall that the column space of A can be identified with the

range of A, denoted by R(A). The row space of A can be

identified with R(A⊤).

Proof We can obtain B from A

A
ERO1→ A1

ERO2→ A2
ERO3→ . . . Ak−1

EROk→ B

using a sequence of ERO.
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Need to show that A
ERO1→ A1

ERO I: Ri ←→ Rj . For example R1 ←→ R2. Clearly

span(r1, r2, r3, . . . , rm) =

span(r2, r1, r3, . . . , rm)

Hence the row spaces of A and A1 are the same.

ERO II: aRi ←→ Ri, where a 6= 0. For example

aR1 ←→ R1. Clearly span(r1, r2, . . . , rm) =

span(ar1, r2, r3, . . . , rm) since x1r1 = y1(ar1)

by letting x1 = ay1 or y1 = x1

a
. Hence the row spaces

of A and A1 are the same.

ERO III: Ri ←→ Ri + aRj , where i 6= j. For

example R1 ←→ R1 + aR2. Straightforward argument

yields span(r1, r2) = span(r1 + ar2, r2). Hence

the row spaces of A and A1 are the same.

�
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27 Dimension and basis for row,

column and null space

Let A ∈ Rm×n and let B be its REF.

Rank of A, denoted by rankA is the number of pivots in

B, which is the number of nonzero rows in B.

a. A basis of the row space of A, which is a basis for

R(AT), consists of nonzero rows in B.

dimR(AT) = rankA. (number of lead variables.)

Reason: Two row equivalent matrices A and C have the

same row space. (But not the same column space!)

b. A basis of column space of A consists of the columns of

A in which the pivots of B located.

dimR(A) = rankA.

c. A basis of the null space of A obtained by letting each

free variable to be equal 1 and all the other free variable

equal to 0 and then finding the corresponding solution of

Ax = 0. The dimension of N(A) called the nullity of A

is the number of free variables:

nulA := dimN(A) = n− rankA.
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28 A basis of N(A): Example

Consider the homogeneous system Ax = 0 and assume

that the RREF of A is given by

B =




1 2 0 3

0 0 1 −5





Bx = 0 is the system

x1 + 2x2 + 3x4 = 0

x3 − 5x4 = 0

Note that x1, x3 are lead variables and x2, x3 are free

variables. Express lead variables as functions of free

variables: x1 = −2x2 − 3x4, x3 = 5x4

First set x2 = 1, x4 = 0 to obtain x1 = −2, x3 = 0.

So the whole solution is u = (−2, 1, 0, 0)⊤

Second set x2 = 0, x4 = 1 to obtain

x1 = −3, x4 = 5. So the whole solution is

v = (−3, 0, 5, 1)⊤

u, v is a basis in N(A).
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29 Useful facts

a. The column and the row space of A have the same

dimension. Hence rankAT = rankA.

b. Standard basis in Rn are given by the n columns of

n× n identity matrix In.

e1 = (1, 0)T, e2 = (0, 1)T is a standard basis in R2.

e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T

is a standard basis in R3.

c. v1, v2, ..., vn ∈ Rn form a basis in

Rn ⇐⇒ A := [v1 v2...vn] has n pivots.

d. v1, ..., vk ∈ Rn.

Question: Find the dimension and a basis of

V := span(v1, v2, ..., vk).

Answer: Form a matrix A = [v1 v2...vk] ∈ Rn×k.

Then dimV = rankA Let B be REF of A. Then the

vectors vj corresponding to the columns of B where the

pivots are located form a basis in V.
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30 The space Pn

To find the dimension and a basis of a subspace inPn One

corresponds to each polynomial

p(x) = a0 + a1x + ... + anx
n the vector

(a0, a1, . . . , an) ∈ Rn+1 and treats these problems

as corresponding problems in Rn+1
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31 Sum of two subspaces

Definition For any two subspaces U,W ⊆ V Denote

U + W := {v := u + w, u ∈ U,w ∈W},

where we take all possible vectors u ∈ U,w ∈W}.

Thm 6: Let V be a vector space and U,W be subspaces

in V. Then

(a) U + W and U ∩W are subspace of V.

(b) Assume that V is finite dimensional. Then

1. U,W,U ∩W are finite dimensional Let

l = dimU ∩W ≥ 0, p = dimU ≥ 0, q =

dimW ≥ 0 (So l ≤ p, l ≤ q.)

2. There exists a basis in v1, . . . , vm in U + W such

that v1, . . . , vl is a basis in U ∩W, v1, . . . , vp a

basis in U and v1, . . . , vl, vp+1, . . . , vp+q−l is a

basis in W.

3. dim(U+W) = dimU+dimW−dimU∩W

Identity #(A ∪B) = #A + #B −#(A ∩B)

for finite sets A,B is analogous to 3.
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32 Proofs

(a) 1. Let u,w ∈ U ∩W. Since u,w ∈ U it follows

au + bw ∈ U. Similarly au + bw ∈W. Hence

au + bw ∈ U ∩W and U ∩W is a subspace. (See

Claim on p’ 38.)

(a) 2. Assume that u1, u2 ∈ U,w1,w2 ∈W. Then

a(u1 + w1) + b(u2 + w2) =

(au1 + bu2) + (aw1 + bw2) ∈ U + W Hence

U + W is a subspace.

(b) 1. Any subspace of an m an dimensional space has

dimension m at most.

(b) 2. Let v1, . . . , vl be a basis in U∩W. Complete this

linearly independent set in U and W to a basis

v1, . . . , vp in U and a basis

v1, . . . , vl, vp+1, . . . , vp+q−l in W Hence any for

any u ∈ U,w ∈W

u + w ∈ span(v1, . . . , vp+q−l). Hence

U + W = span(v1, . . . , vp+q−l).
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We show that v1, . . . , vp+q−l l.i. Suppose that

a1v1 + . . . + ap+q−lvp+q−l = 0 So

u := a1v1 + . . . apvp =

−ap+1vp+1 + . . .− ap+q−lvp+q−l := w

Note u ∈ U,w ∈W. So w ∈ U ∩W. Hence

w = b1v1 + . . . + blvl. Since

v1, . . . , vl, vp+1, . . . , vp+q−l l.i.

ap+1 = . . . ap+q−l = b1 = . . . = bl = 0. So

w = 0 = u. Since v1, . . . , vp l.i.

a1 = . . . = ap = 0. Hence v1, . . . , vp+q−l l.i.

(b) 3. Note from (b) 2 dim(U + W) = p + q − l. �

Note U + W = W + U.

Definition: The subspace X := U + W is called a direct

sum of U and W, if any vector v ∈ U+W has a unique

representation of the form v = u + w, where

u ∈ U,w ∈W. Equivalently, if

u1 + w1 = u2 + w2, where

u1, u2 ∈ U,w1,w2 ∈W, then u1 = u2, v1 = v2.

A direct sum of U and W is denoted by U⊕W
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Claim For two finite dimensional vectors subspaces

U,W ⊆ V TFAE (the following are equivalent):

(a) U + W = U⊕W

(b) U ∩W = {0}
(c) dimU ∩W = 0

(d) dim(U + W) = dimU + dimW

(e) For any bases u1, . . . , up, w1, . . . ,wq in U,W

respectively u1, . . . , up,w1, . . . ,wq is a basis in

U + W.

Proof Straightforward

Example 1. Let A ∈ Rm×n, B ∈ Rl×n. Then

N(A) ∩N(B) = N(




A

B



)

Note x ∈ N(A) ∩N(B) ⇐⇒ Ax = 0 = Bx

Example 2. Let A ∈ Rm×n, B ∈ Rm×l. Then

R(A) + R(B) = R((A B)).

Note R(A) +R(B) is the span of the columns of A and

B
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33 Sums of many subspaces

Defn Let U1, . . . ,Uk be k subspaces of V. Then

X := U1 + . . . + Uk is the subspace consisting all

vectors of the form u1 + u2 + . . . + uk, where

ui ∈ Ui, i = 1, . . . , k. U1 + . . . + Uk is called a

direct sum of U1. . . . ,Uk, and denoted by

⊕k
i=1Ui := U1 ⊕ . . .⊕Uk if any vector in X can be

represented in a unique way as u1 + u2 + . . . + uk,

where ui ∈ Ui, i = 1, . . . , k.

Claim For finite dimensional vectors subspaces

Ui ⊆ V, i = 1, . . . , k TFAE (the following are

equivalent):

(a) U1 + . . . + Uk = ⊕k
i=1Ui,

(b) dim(U1 + . . . + Uk) =
∑k

i=1 dimUi

(e) For any bases u1,i, . . . , upi,i in Ui, i = 1, . . . , k

the vectors uj,i, j = 1, . . . , pi, i = 1, . . . , k form a

basis in U1 + . . . + Uk.
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34 Fields

Defn: A set F is called a field if for any two elements

a, b ∈ F one has two operations a + b, ab, such that

a + b, ab ∈ F and these two operations satisfy the

following properties:

A. The addition operation has the same properties as the

addition operation of vector spaces (page 30):

1. a + b = b + a, commutative law

2. (a + b) + c = a + (b + c), associative law

3. There exists unique neutral element 0 such that

a + 0 = a for each a,

4. For each a there exists a unique anti element

a + (−a) = 0,

B. The multiplication operation has similar properties as the

addition operation

5. ab = ba, commutative law

6. (ab)c = a(bc), associative law

7. There exists unique identity element 1 such that

67



a1 = a for each a,

8. For each a 6= 0 there exists a unique inverse

aa−1 = 1,

C. The distributive law:

9. a(b+c)=ab+ac

Note The commutativity implies (b + c)a = ba + ca.

0a = a0 = 0 for all a ∈ F:

0a = (0 + 0)a = 0a + 0a⇒ 0a = 0

Examples of Fields

1. Real numbers R

2. Rational numbers Q

3. Complex numbers C
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35 Finite Fields

Defn Denote by N = {1, 2, . . .},

Z = {0, 1,−1, 2,−2, . . .} the set of positive integers

and the set of whole integers respectively Let m ∈ N.

i, j ∈ Z are called equivalent modulo m, denoted as

i ≡ j mod m, if i− j is divisible by m. mod m is an

equivalence relation (easy to show). Denote by

Zm = Z/mZ the set of equivalence classes, usually

identified with {0, . . . ,m− 1}.

(Any integer i ∈ Z induces a unique element

a ∈ {0, . . . ,m− 1} such that i−a is divisible by m.)

In Zm define a + b, ab by taking representatives

i, j ∈ Z.

Claim For any m ∈ N, Zm satisfies all the properties on

p’62-62, except 8 for some m.

Property 8 holds, i.e. Zm is a field, if and only if m is a

prime number.

(p ∈ N is a prime number if p is divisible by 1 and p only)
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Proof. Note that Z satisfies all the properties on p’62-62,

except 8. (0, 1 are the zero and the identity element of Z.)

Hence Zm satisfies all the properties on p’62-62, except 8.

Suppose m is composite m = ln, l, n ∈ N, l, n > 1.

Then l, n ∈ 2, . . . ,m− 2 and ln is zero element in

Zm. So l and n can not have inverses.

Suppose m = p prime. Take i ∈ {1, . . . ,m− 1}.

Look at S := {i, 2i, . . . , (m− 1)i} ⊂ Zm.

Consider ki− ji = (k − j)i for

1 ≤ j < k ≤ m− 1. So (k − j)i is not divisible by

p. Hence S = {1, . . . ,m− 1} as a subset of Zm. So

there is exactly one integer j ∈ [1,m− 1] such that

ji = 1. i.e. j is the inverse of i ∈ Zm.

Thm 7. The number of elements in a finite field F is pk,

where p is prime and k ∈ N. For each prime p > 1 and

k ∈ N there exists a finite field F with pk elements. Such

F is unique up to an isomorphism.
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36 Vector spaces over fields

Defn. Let F be a field. Then V is called vector field over F if

V satisfies all the properties stated on p’30, where the

scalars are the elements of F.

Example For any n ∈ N

Fn := {x = (x1, . . . , xn)
⊤ : x1, . . . , xn ∈ F}

is a vector space over F.

We can repeat all the notions that we developed for vector

spaces over R for a general field F.

For example dim Fn = n

If F is a finite field with #F elements, then Fn is a finite

vector space with (#F)n elements.

Finite vector spaces are very useful in coding theory.
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37 One-to-one and onto maps

Defn. T is called a transformation or map from the source

space V to the target space W, if to each element v ∈ V

the transformation T corresponds an element w ∈W.

We denote w = T (v), and T : V→W. (In other

books T is called a map.)

Example 1: A function f(x) on the real line R can be

regarded as a transformation f : R→ R.

Example 2: A function f(x, y) on the plane R2 can be

regarded as a transformation f : R2 → R.

Example 3: A transformation f : V→ R is called a real

valued function on V.

Example 4: Let V be a map of USA, where at each point we

plot the vector of the wind blowing at this point. Then we get

a transformation T : V→ R2.
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T is called one-to-one, or injective, denoted by 1− 1, if for

any x, y ∈ V one has Tx 6= Ty, i.e. the image of two

different elements of V by T are different.

T is called onto, or surjective if

TV = W ⇐⇒ Range (T ) = W, i.e, for each

y ∈ Y there exists x ∈ X so that Tx = y.

Example 1. V = N, T : N→ N given by T (i) = 2i.

T is 1− 1 but not onto. However T : N→ Range T

is one-to-one and onto.

Example 2. Id : V→ V defined as Id(x) = x for all

x ∈ V is one-to-one and onto map of V onto itself

Claim. Let X, Y be two sets. Assume that F : X → Y

is one-to-one and onto. Then there exists a one-to-one and

onto map G : Y → X such that

F ◦G = IdY , G ◦ F = IdX . G is the inverse of F

denoted by F−1. Note (F−1)−1 = F .
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38 Isomorphism of vector spaces

Defn. Two vector spaces U,V over field F(= R) are

called isomorphic if there exists one-to-one and onto map

L : U→ V, which preserves the linear structure on

U,V:

1. L(u1 + u2) = L(u1) + L(u2) for all

u1, u2 ∈ U. (Note that the first addition is in U, and the

second addition is in V.)

2. L(au) = aL(u) for all u ∈ U, a ∈ F(= R).

Note that the above two conditions are equivalent to one

condition

3. L(a1u1 + a2u2) = a1L(u1) + a2L(u2) for all

u1, u2 ∈ U, a1, a2 ∈ F(= R).

Intuitively U and V are isomorphic if they are the same

spaces modulo renaming, where L is the renaming function

If L : U→ V is an isomorphism then L(0U) = 0V:

0V = 0L(0U) = L(0 0U) = L(0U)

Claim. The inverse of isomorphism is an isomorphism

74



39 Iso. of fin. dim. vector spaces

Thm 8. Two finite dimensional vector spaces U,V over

F (= R) are isomorphic if and only if they have the same

dimension.

Proof. (a) dimU = dimV = n. So

{u1, . . . , un}, {v1, . . . , vn} are bases in U,V

respectively. Define T : U→ V by

T (a1u1 + . . . + anun) = a1v1 + . . . anvn.

Since any u ∈ U is of the form u = a1u1 + . . . anun

T is a mapping from U to V. It is straightforward to check

that T is linear. As v1, . . . , vn is a basis in V, it follows

that T is onto. Furthermore Tu = 0 implies

a1, . . . , an = 0. Hence u = 0, i.e. T−10 = 0.

Suppose that T (x) = T (y). Hence

0V = T (x)− T (y) = T (x− y). Since

T−10V = 0U ⇒ x− y = 0, i.e. T is 1-1.
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(b) Assume T : U→ V is an isomorphism. Let

{u1, . . . , un} be a basis in U. Denote

T (ui) = vi, i = 1, . . . , n. The linearity of T yields

T (a1u1 + . . . + anun) = a1v1 + . . . anvn.

Assume that a1v1 + . . . anvn = 0. Then

a1u1 + . . . + anun = 0. Since u1, . . . , un l.i.

a1 = . . . = an = 0, i.e. v1, . . . , vn l.i.. For an

v ∈ V, there exists u = a1v1 + . . . + anvn ∈ U

s.t. v = Tu = T (a1u1 + . . . + anun) =

a1v1 + . . . anvn. So V = span(v1, . . . , vn) and

v1, . . . , vn is a basis. So dimU = dimV = n. �

Corollary. Any finite dimensional vector space is isomorphic

to Rn (Fn).

Example. Pn- the set of polynomials of degree n at most

isomorphic to Rn+1:

T ((a0, . . . , an)
⊤) = a0 + a1x + . . . + anx

n.
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40 Isomorphisms of Rn

Defn. A ∈ Rn×n is nonsingular if any REF of A has n

pivots, i.e. RREF of A is In, the n× n diagonal matrix

which has all 1′s on the main diagonal.

Note that the columns of In: e1, . . . , en form a standard

basis of Rn.

Thm 9. T : Rn → Rn is an isomorphism if and only if

there exists a nonsingular matrix A ∈ Rn×n such that

T (x) = Ax for any x ∈ Rn.

Proof. (a) Suppose A ∈ Rn×n is nonsingular. Let

T (x) = Ax. Clearly T linear. Since any system

Ax = b has a unique solution T is onto and 1− 1.

(b) Assume T : Rn → Rn isomorphism. Let

T ei = ci, i = 1, . . . , n. Proof of Thm 8, p’ 69,

c1, . . . , cn are linearly independent. Let

A = [c1 c2 . . . cn]. rankA = n so A is

nonsingular. Note

T ((a1, . . . , an)
⊤) = T (

∑n

i=1 aiei) =
∑

i=1 aiT (ei) =
∑n

i=1 aici = A(a1, . . . , an)
⊤
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41 Examples

Defn The matrix A corresponding to the isomorphism

T : Rn → Rn in Thm 9 is called the representation

matrix of T .

Examples: (a) The identity isomorphism Id : Rn → Rn,

i.e. Id(x) = x, is represented In, as Inx = x. Hence

In is called the identity matrix.

(b) The dilatation isomorphism T (x) = ax, a 6= 0 is

represented by aIn.

(c) The reflection of R2: R((a, b)⊤) = (a,−b)⊤ is

represented by




1 0

0 −1



.

(d) A rotation by an angle θ in R2:

(a, b)⊤ 7→ (cos θa+sin θb,− sin θa+cos θb)⊤

represented by




cos θ sin θ

− sin θ cos θ



.
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42 Linear Transformations

(Homomorphisms)

T is called a transformation or map from the source space

V to the target space W, if to each element v ∈ V the

transformation T corresponds an element w ∈W. We

denote w = T (v), and T : V→W. (In other books

T is called a map.)

Definition: Let V and W be two vector spaces. A

transformation T : V→W is called linear if

1. T (u + v) = T (u) + T (v).

2. T (av) = aT (v) for any scalar a ∈ R.

Equivalently: T (au + bv) = aT (u) + bT (v) for all

u, v ∈ V and a, b ∈ R.

Corollary: If T : V→W is linear then T (0V) = 0W.

Proof 0W = 0T (v) = T (0v) = T (0V).

Linear transformation is also called linear operator
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Example: Let A ∈ Rm×n and define T : Rn → Rm

as T (v) = Av. Then T is a linear transformation.

A(u + v) = Au + Av,

A(av) = a(Av).

R(T ) Range of T . R(T ) Is a subspace of W.

dimR(T ) = rankT is called the rank of T .

kerT kernel of T , null space of T , all vectors in V

mapped by T to a zero vector in W. ker T is a subspace

of V. dimker T = nul T is called the nullity of T .

Proof. aT (u) + bT (v) = T (au + bv).

T (u) = T (v) = 0⇒ T (au + bv) =

aT (u) + bT (v) = a0 + b0 = 0.
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Thm. 10 : Any linear transformation T : Rn → Rm is

given by some A ∈ Rm×n: Tx = Ax for each

x ∈ Rn.

Prf. Let T (ei) = ci ∈ Rm, i = 1, . . . , n. Then

A = [c1 . . . cn].

Examples: (a) Ck(a, b) all continuous functions on he

interval (a, b) with k continuous derivatives.

C0(a, b) = C(a, b) the set of continuous functions in

(a, b). Let p(x), q(x) ∈ C(a, b). Then

L : C2(a, b)→ C(a, b) given by

L(f)(x) = f ′′(x) + p(x)f ′(x) + q(x)f(x) is a

linear operator. kerL is the subspace of all functions f

satisfying the second order linear differential equation:

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

It is known that the above ODE has a unique solution

satisfies the initial conditions, IC:

y(x0) = a1, y
′(x0) = a2 for any fixed x0 ∈ (a, b).

Hence dimkerL = 2. Using the theory of ODE one can

show that R(L) = C(a, b).

(b) L : Pn → Pn−2 given by L(f) = f ′′ is a linear

operator. L is onto and dimkerL = 2 if n ≥ 2.
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43 Rank-nullity theorem

Thm 11. For linear T : V→W

rankT + nul T = dimV.

Remark. If V = Rn,W = Rm by Thm 10 Tx = Ax.

for some A ∈ Rm×n. rankT = rankA = # of

lead variables, nul T = nulA = dimN(A) = #

number of free variables, so the total number of variables is

n = dimRn.

Proof. (a) Suppose that nul T = 0. Then T is 1− 1. So

T : V→ R(T ) isomorphism. dimV = rank T .

(b) If kerT = V then R(T ) = {0} so

nul T = dimV, rankT = 0.

(c) 0 < m := nul T < n := dimV. Let

v1, . . . , vm be a basis in ker T . Complete these set of

l.i. vectors to a basis of V: v1, . . . , vn. Show that

T (vm+1), . . . , T (vn) is a basis in R(T ). Hence

n−m = rankT . So

rankT + nul T = m + (n−m) = dimV. �
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44 Matrix representations of linear

transformations

Let V and W be finite dimensional vector spaces with the

bases [v1 v2 . . . vn] and [w1 w2 . . .wm]. Let

T : V→W be a linear transformation. Then T induces

the representation matrix A ∈ Rm×n as follows. The

column j of A is the coordinate vector of T (vj) in the

basis [w1 w2 . . .wm].

The definition of A can be formally stated as

[T (v1) T (v2) . . . T (vn)] = [w1 w2 . . .wm]A.

A is called the representation matrix of T in the bases

[v1 v2 . . . vn] and [w1 w2 . . .wm].

Thm 12. Assume the above assumptions. Assume that

a ∈ Rn is the coordinate vector of v ∈ V in the basis

[v1 v2 . . . vn] and b ∈ Rm is the coordinate vector of

T (v) ∈W in the basis [w1 w2 . . .wm]. Then

b = Aa.
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45 Composition of maps

Definition: Let U,V,W be three sets. Assume that we

have two maps S : U→ V, T : V→W.

T ◦ S : U→W defined by T ◦ S(u) = T (S(u))

is called the composition map, and denoted TS.

Example 1: f : R→ R, g : R→ R. Then

(f ◦ g)(x) = f(g(x)), (g ◦ f)(x) = g(f(x)).

Example 2: f : R2 → R, i.e. f = f(x, y),

g : R→ R then (g ◦ f)(x, y) = g(f(x, y)), while

f ◦ g is not defined

Claim. Let U,V,W be vector spaces. Assume that the

maps S : U→ V, T : V→W are linear. Then

T ◦ S : U→W is linear.

Proof.

T (S(au1 + bu2)) = T (aS(u1) + bS(u2)) =

aT (S(u1)) + bT (S(u2)) =

a(T ◦ S)(u1) + b(T ◦ S)(u2). �
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46 Product of matrices

We can multiply A times B if the number of columns in the

matrix A is equal to the number of columns in B.

Equivalently A is m× n matrix and B is n× p matrix.

The resulting matrix C = AB is m× p matrix. The

(i, k) entry of AB is obtained by multiplying i− th row

of A and k − th column of B.

A = (aij)
i=m,j=n
i=j=1 , B = (bjk)

j=n,k=p
j=k=1 ,

C = (bik)
i=m,k=p
i=k=1 ,

cik = ai1b1k + ai2b2k + ... + ainbnk =
n∑

j=1

aijbjk.

So A,B can be viewed as linear transformations

B : Rp → Rn, B(u) = Bu,

A : Rn → Rm, A(v) = Bv

So AB represents the composition map

AB : Rp → Rm.
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Example









1 −2
−3 4

0 2

−7 −1













a b c

d e f



 =










a− 2d b− 2e c− 2f

−3a + 4d −3b + 4e −3c + 4f

2d 2e 2f

−7a− d −7b− e −7c− f










Note in general AB 6= BA for several reasons

1. AB may be defined but not BA, (as in the above

example), or the other way around.

2. AB and BA defined ⇐⇒
A ∈ Rm×n, B ∈ Rn×m ⇒
AB ∈ Rm×m, BA ∈ Rn×n

3. A,B ∈ Rn×n usually for n > 1AB 6= BA,

Example A =




0 1

0 0



 , B =




0 0

1 0
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Rules involving products and additions of matrices

Note: whenever we write additions and products of matrices

we assume that they are all defined, i.e. the dimensions of

corresponding matrices match.

1. (AB)C = A(BC), associative law.

2. A(B + C) = AB + AC , distributive law.

3. (A + B)C = AC + BC , distributive law.

4. a(AB) = (aA)B = A(aB), algebra rule.
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47 Transpose of a matrix AT

.

Let A =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

am1 am2 ... amn










Then AT =










a11 a21 ... am1

a12 a22 ... am2

...
...

...
...

a1n a2n ... amn










(A + B)T = AT + BT

(AB)T = BTAT
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Examples







−1 2

a b

e10 π







T

=




−1 a e10

2 b π



 .










2 3 −4
5 −1 0











−1 2

3 −4
10 1













T

=




−33 −12
−8 14





T

=




−33 −8
−12 14











−1 2

3 −4
10 1







T



2 3 −4
5 −1 0





T

=
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−1 3 10

2 −4 1











2 5

3 −1
−4 0







=




−33 −8
−12 14





Let A ∈ Rm×n.

Then AT ∈ Rn×m and (AT)T = A.














−1 2

a b

e10 π







T







T

=




−1 a e10

2 b π





T

=







−1 2

a b

e10 π







.
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Symmetric Matrices

A ∈ Rm×m is called symmetric if AT = A.

The i− th row of a symmetric matrix is equal to its

i− th column for i = 1, ...,m.

Equivalently: A = (aij)
m
i,j=1 symmetric ⇐⇒

aij = aji for all i, j = 1, ...,m.

Examples of 2× 2 and 3× 3 symmetric matrices:




a b

b c



 ,







a b c

b d e

c e f







Note symmetricity with respect to the main diagonal

A ∈ Rm×n ⇒
ATA ∈ Rn×n and AAT ∈ Rm×m are symmetric.

Indeed (AAT)T = (AT)TAT = AAT

(ATA)T = AT(AT)T = ATA
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Identity Matrix

In =










1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1










∈ Rn×n.

In is in RREF with no zero rows.

In is a symmetric matrix.

Example I2 =




1 0

0 1



 , I3 =







1 0 0

0 1 0

0 0 1







Property of the identity matrix:

ImA = AIn = A, for all A ∈ Rm×n

Example: I2A, where A ∈ R2×3:



1 0

0 1








a b c

d e f



 =




a b c

d e f
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Square matrices: A ∈ Rm×m.

I. Positive Powers of Square Matrices

A2 := AA

A3 := A(AA) = (AA)A = A2A = AA2

is equal to the product of A three times AAA

If k positive integer Ak := A...A - product of A k times

If k, q positive integers Ak+q = AkAq = AqAk.

A0 := Im.

A invertible if there exists A−1 such that

AA−1 = A−1A = Im

Thm 12. Let A ∈ Rm×m. View A : Rm → Rm as a

linear transformation. TFAE

a. A 1-1.

b. A onto.

c. A : Rm → Rm is isomorphism.

d. A is invertible.
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Applications of matrix powers for Markov chains

In one town people catch cold and recover every day at the

following rate: 90% of healthy stay in the morning healthy

the next morning; 60% of sick in the morning recover the

next morning.

Find the transition matrix of this phenomenon after one day,

two days, and after many days.

aHH = 0.9, aSH = 0.1, aHS = 0.6, aSS = 0.4

A =




0.9 0.6

0.1 0.4



 , x =




xH

xS



 .

Note that if xT = (xH , xS) represents the number of

healthy and sick in a given day, then the situation in the next

day is given by

(0.9xH + 0.6xS, 0.1xH + 0.4xS)
T = Ax Hence

the number of healthy and sick after two days are given by

A(Ax) = A2x, i.e. the transition matrix given by A2:




0.9 0.6

0.1 0.4








0.9 0.6

0.1 0.4



 =




0.87 0.78

0.13 0.22
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The transition matrix after k days is given by Ak. It can be

shown that

lim
k→∞

Ak =





6
7

6
7

1
7

1
7



 ∼




0.857 0.857

0.143 0.143



 .

The reason for these numbers is the equilibrium state for

which we have the equations Ax = x = I2x⇒
(A− I2)x = 0⇒ 0.1xH = 0.6xS ⇒
xH = 6xS . If

xH + xS = 1⇒ xH = 6
7
, xS = 1

7
.

In the equilibrium stage 6
7

of all population: xH + xS are

healthy and 1
7

of all population is sick.
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Inverse matrices

Suppose A ∈ Rn×n is invertible. Then the system

Ax = b where

x = (x1 x2...xn)
T, b = (b1 b2...bn)

T ∈ Rn, i.e.

the system of n equations and n unknowns has a unique

solution: x = A−1b.

Indeed multiply the above system by A−1 to obtain

A−1(Ax) = (A−1A)x = Inx = x = A−1b.

Inverse of 2× 2 matrix:



a b

c d





−1

=
1

ad− bc




d −b
−c a





if ad− bc 6= 0.

If ad− bc = 0 then



a b

c d








d

−c



 =




a b

c d








−b
a



 = 0

So A is not invertible.

If A1, ..., Ak ∈ Rn×n invertible then A1...Ak are

invertible and (A1...Ak)
−1 = A−1

k ...A−1
1 . 9.11.06

96



48 Elementary Matrices

Elementary Matrix is a square matrix of order m which is

obtained by applying one of the three Elementary Row

Operations to the identity matrix Im.

• Interchange two rows Ri ←→ Rj .

Example: Apply R1 ←→ R3 to I3:







1 0 0

0 1 0

0 0 1






→ EI =







0 0 1

0 1 0

1 0 0







• Multiply i-th row by a 6= 0: aRi −→ Ri

Example: Apply aR2 −→ R2 to I3:







1 0 0

0 1 0

0 0 1






→ EII =







1 0 0

0 a 0

0 0 1
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• Replace a row by its sum with a multiple of another row

Ri + a×Rj −→ Ri

Example: Apply R1 + a×R3 −→ R1:







1 0 0

0 1 0

0 0 1






→ EIII =







1 0 a

0 1 0

0 0 1







All elementary matrices are invertible.

The inverse of an elementary matrix is given by another

elementary matrix of the same kind corresponding to

reversing the first elementary operation:

• The inverse of EI is EI : EIEI = E2
I = Im.

Example:







0 0 1

0 1 0

1 0 0













0 0 1

0 1 0

1 0 0







=







1 0 0

0 1 0

0 0 1
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• The inverse of EII corresponding to aRi −→ Ri is

E−1
II corresponding to 1

a
Ri −→ Ri

Example:







1 0 0

0 a 0

0 0 1













1 0 0

0 1
a

0

0 0 1







=







1 0 0

0 1 0

0 0 1







• The inverse of EIII corresponding to

Ri + aRj −→ Ri is E−1
III corresponding to

Ri − aRj −→ Ri Example:







1 0 a

0 1 0

0 0 1













1 0 −a
0 1 0

0 0 1







=







1 0 0

0 1 0

0 0 1
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Let A ∈ Rm×n. Then performing an elementary row

operation on A is equivalent to multiplying A by the

corresponding elementary matrix E: A→ EA.

Example I: Apply R1 ↔ R3 to A ∈ R3×2:







u v

w x

y z






→







y z

w x

u v







=







0 0 1

0 1 0

1 0 0













u v

w x

y z
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Example II: Apply aR2 → R2 to A ∈ R3×2:







u v

w x

y z






→







u v

aw ax

y z







=







1 0 0

0 a 0

0 0 1













u v

w x

y z







Example III: Apply R1 + a×R3 −→ R1: to

A ∈ R3×2:






u v

w x

y z






→







u + ay v + az

w x

y z







=







1 0 a

0 1 0

0 0 1













u v

w x

y z
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Elementary Row Operations in terms of Elementary Matrices

Let B ∈ Rm×p and perform k ERO:

B
ERO1→ B1

ERO2→ B2
ERO3→ . . . Bk−1

EROk→ Bk

B1 = E1B, B2 = E2B1 = E2E1B, . . .

Bk = Ek . . . E1B ⇒
Bk = MB, M = EkEk−1...E2E1

M is invertible matrix since M−1 = E−1
1 E−1

2 ...E−1
k .

The system Ax = b, represented by the augmented

matrix B := (A|b), after k ERO is given by Bk =

(Ak|bk) = MB = M(A|b) = (MA,Mb)

and represents the system MAx = Mb. As M

invertible

M−1(MAx) = Ax = M−1(Mb) = b.

Thus performing elementary row operations on a system

results in equivalent system, i.e. the original and the new

system of equations have the same solutions.
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The inverse of a matrix as products of elementary matrices

Let Ak be the reduced row echelon form of A. Then

Ak = MA.

Assume that A ∈ Rn×n. As M invertible A invertible

⇐⇒ Ak invertible:

A = M−1Ak ⇒ A−1 = A−1
k M .

If A invertible Ax = 0 has only the trivial solution, hence

Ak has n pivots (no free variables). Thus Ak = In and

A−1 = M !

Summary A ∈ Rn×n is invertible ⇐⇒ its reduced row

echelon form is the identity matrix. If A is invertible its

inverse is given by the product of the elementary matrices:

A−1 = M = Ek . . . E1.

Gauss-Jordan algorithm to compute the inverse of A:

• form the matrix B = (A|In).

• Perform the ERO to obtain RREF of B: C = (D|F ).

• A is invertible ⇐⇒ D = In.

• If D = In then A−1 = F .
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Numerical Example

A =







1 2 −1
−2 −5 5

3 7 −5







.

Write B = (A|I3) and observe the (1, 1) entry in B is

a pivot: B =







1 2 −1 | 1 0 0

−2 −5 5 | 0 1 0

3 7 −5 | 0 0 1







Perform ERO: R2 +2R1 → R2, R3− 3R1 → R3:

B1 =







1 2 −1 | 1 0 0

0 −1 3 | 2 1 0

0 1 −2 | −3 0 1







.

To make (2, 2) entry pivot do: −R2 → R2:

B2 =







1 2 −1 | 1 0 0

0 1 −3 | −2 −1 0

0 1 −2 | −3 0 1







.

To eliminate (1, 2), (1, 3) entries do

R1 − 2R2 → R1, R3 −R2 → R3
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B3 =







1 0 5 | 5 2 0

0 1 −3 | −2 −1 0

0 0 1 | −1 1 1







.

(3, 3) is a pivot. To eliminate (1, 3), (2, 3) entries do:

R1 − 5R3 → R1, R2 + 3R3 → R2

B4 =







1 0 0 | 10 −3 −5
0 1 0 | −5 2 3

0 0 1 | −1 1 1







.

So B4 = (I3|F ) is RREF of B. Thus A has inverse:

A−1 =







10 −3 −5
−5 2 3

−1 1 1







.
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Why Gauss-Jordan algorithm works

(For Gauss see later. Wilhelm Jordan (1842-1899), German

geodesist)

Perform ERO operations on B = (A|In) to obtain RREF

of B, which is given by Bk =

MB = M(A|In) = (MA|MIn) = (MA|M).

M ∈ Rn×n is an invertible matrix, which is a product of

elementary matrices.

A is invertible ⇐⇒ RREF of A is In ⇐⇒
The first n columns of B have n pivots ⇐⇒
MA = In ⇐⇒ M = A−1 ⇐⇒
Bk = (In|A−1).

Claim. A ∈ Rn×n is invertible if and only if A⊤ is

invertible. Furthermore (A⊤)−1 = (A−1)⊤.

Proof. The first part of Claim follows from

rankA = rankA⊤. (Recall A invertible iff

rankA = n.)

The second part follows from the identity

In = I⊤
n = (AA−1)⊤ = (A−1)⊤A⊤.
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49 Change of basis

Assume that V is an n-dimensional vector space. Let

v = v1, ..., vn be a basis in V. Notation:

[v1 v2 . . . vn]. Then any vector x ∈ V can be uniquely

presented as x = a1v1 + a2v2 + . . . + anvn.

There is one to one correspondence between x ∈ V and

the coordinate vector of x in the basis [v1 v2 . . . vn]:

a = (a1, a2, . . . , an)
T ∈ Rn. Thus if

y = b1v1 + b2v2 + . . . bnvn, so

y↔ b = (b1, b2, ..., bn)
T ∈ Rn then

rx↔ ra and x + y↔ a + b.

Thus V is isomorphic Rn.

Denote x = [v1 v2 . . . vn]










a1

a2

...

an
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Let u1 u2 . . . un be n vectors in V. Write

uj = u1jv1 +u2jv2 + . . .+unjvj, j = 1, ..., n.

Define U =










u11 u12 ... u1n

u21 u22 ... u2n

...
...

...
...

un1 un2 ... unn










.

Claim: u1, u2, ..., un is a basis in V ⇐⇒ U is

invertible.

Let u1, u2, ..., un is a basis in V. Then

[u1 u2 . . . un] = [v1 v2 . . . vn]U. (49.1)

U is called the transition matrix from basis [u1 u2 . . . un]

to basis [v1 v2 . . . vn]. Denoted as

[u1 u2 . . . un]
U−→[v1 v2 . . . vn]

Claim: U−1 is the transition matrix from basis

[v1 v2 . . . vn] to basis [u1 u2 . . . un]:

[u1 u2 . . . un]
U−1

←−[v1 v2 . . . vn].

Proof Multiply (49.1) by U−1 to obtain

[u1 u2 . . . un]U
−1 = [v1 v2 . . . vn].
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Let x = [u1 u2 . . . un](b1, b2, ..., bn)
T ⇐⇒

x = b1u1 + . . . bnun , i.e. the vector coordinates of x

in the basis [u1 u2 . . . un] is b := (b1, b2, ..., bn)
T.

Then the coordinate vector of x in the basis

[v1 v2 . . . vn] is a = Ub.

Proof: x = [u1 u2 . . . un]b = [v1 v2 . . . vn]Ua.

If a ∈ Rn is the coordinate vector of x in the basis

[v1 v2 . . . vn] then U−1a is the coordinate vector of x

in the basis [u1 u2 . . . un].

Theorem 12: Let [u1 u2 . . . un]
U−→[v1 v2 . . . vn]

and [w1 w2 . . .wn]
W−→[v1 v2 . . . vn]. Then

[w1 w2 . . .wn]
U−1W−→ [u1 u2 . . . un].

Proof. [w1 w2 . . .wn] = [v1 v2 . . . vn]W =

([u1 u2 . . . un]U
−1)W .

Note To obtain U−1W take

A := [U W ] ∈ Rn×(2n) and bring it to RREF

B = [I C]. Then C = U−1W .
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50 An example

Let

u = [




1

2



 ,




1

3



], v = [




3

4



 ,




4

5



]

Find the transition matrix from the basis w to basis u.

Solution. Introduce the standard basis v = [e1, e2] in R2.

So

u = [e1, e2]




1 1

2 3



 ,w = [e1, e2]




3 4

4 5





Hence the transition matrix is



1 1

2 3





−1 


3 4

4 5



. To find this matrix get the

RREF of




1 1 | 3 4

2 3 | 4 5



 which

is




1 0 | 5 7

0 1 | −2 −3



 Answer




5 7

−2 −3
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51 Change of the representation

matrix under the change of bases

T : V→W linear trans. T represented by A in v,w

bases: [T (v1), . . . , T (vn)] = [w1, . . . ,wm]A.

Change basis in W

[w1 w2 . . .wm]
P−→[x1 x2 . . . xm]. Then the

representation matrix of T in bases [v1 v2 . . . vn] and

[x1 x2 . . . xm] is given by the matrix PA, P invertible.

Proof. [T (v1) T (v2) . . . T (vn)] =

[w1 w2 . . .wm]A = [x1 x2 . . . xm]PA.

we change basis in V

[v1 v2 . . . vn]
Q−→[u1 u2 . . . un]. Then the

representation matrix of T in bases [u1 u2 . . . un] and

[w1 w2 . . .wm] is given by the matrix AQ−1. Proof:

[T (v1) T (v2) . . . T (vn)] =

[T (u1) T (u2) . . . T (un)]Q = [w1 w2 . . .wm]A

Hence [T (u1) T (u2) . . . T (un)] =

[w1 w2 . . .wm]AQ−1. Corollary: The representation

matrix of T in bases [u1 u2 . . . un] and

[x1 x2 . . . xm] is given by the matrix PAQ−1.
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52 Example

D : P2 → P1, D(p) = p′. Choose bases

[1, x, x2], [1, x] inP2,P1 respectively.

D(1) = 0 = 0 · 1 + 0 · x,D(x) = 1 =

1 · 1 + 0 · x,D(x2) = 2x = 0 · 1 + 2 · x.

Representation matrix of T in this basis is




0 1 0

0 0 2





Change the basis to [1 + 2x, x− x2, 1− x + x2] in

P2. One can find the new representation matrix A1 in 2

ways. First

D(1 + 2x) = 2, D(x− x2) = 1− 2x,

D(1− x + x2) = −1 + 2x

Hence

A1 =




2 1 −1
0 −2 2
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Second

[1 + 2x, x− x2, 1− x + x2] =

[1, x, x2]







1 0 −1
2 1 −1
0 −1 1







So

A1 =




2 1 −1
0 −2 2



 =




0 1 0

0 0 2











1 0 −1
2 1 −1
0 −1 1
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Now choose a new basis inP1: [1 + x, 2 + 3x]. Then

[1 + x, 2 + 3x] = [1, x]




1 2

1 3



.

Hence the representation matrix of D in bases

[1 + 2x, x− x2, 1− x+ x2] and [1 + x, 2 + 3x]

is A2 =




1 2

1 3





−1 


2 1 −1
0 −2 2



 =

1
1·3−1·2




3 −2
−1 1








2 1 −1
0 −2 2



 =




6 7 −7
−2 −3 3





So D(1 + 2x) = 2 = 6(1 + x)− 2(2 + 3x),

D(x− x2) = 1− 2x = 7(1 + x)− 3(2 + 3x),

D(1− x + x2) = −1 + 2x =

−7(1 + x) + 3(2 + 3x)
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53 Equivalence of matrices

Definition. A,B ∈ Rm×n are called equivalent if there

exist two invertible matrices P ∈ Rm×m, R ∈ Rn×n

such that B = PAR.

Claim 1. Equivalence of matrices is an equivalence relation.

Thm 13. A,B ∈ Rm×n are called equivalent if and only

if they have the same rank.

Proof. Let Ek,m,n = (eij)
m,n
i,j=1 ∈ Rm×n be a matrix

such that e11 = e22 = . . . = ekk = 1 and all other

entries of Ek,m,n are equal to zero. We claim that A is

equivalent to Ek,m,n, where rankA = k.

Let SA = C , where C is RREF of A and S invertible.

Then RREF of C⊤ is Ek,n,m! (Prove). So

UC⊤ = Ek,n,m ⇒ CU⊤ = Ek,m,n = SAU⊤,

where U is invertible.

Claim. A,B ∈ Rm×n are equivalent iff they represent

the same linear transformation

T : V→W,dimV = n,dimW = m in different

bases.
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54 Scalar Product in Rn

In R2 scalar or dot product is defined for

x = (x1, x2)
T, y = (y1, y2)

T ∈ R2:

x · y = x1y1 + x2y2 = yTx.

In R3 scalar or dot product is defined for

x = (x1, x2, x3)
T, y = (y1, y2, y3)

T ∈ R3:

x · y = x1y1 + x2y2 + x3y3 = yTx.

In Rn scalar or dot product is defined for

x = (x1, . . . , xn)
T, y = (y1, . . . , yn)

T ∈ Rn:

x · y = x1y1 + . . . + xnyn = yTx.

The length of x = (x1, . . . , xn)
T ∈ Rn is

||x|| :=
√
xTx =

√

x2
1 + x2

2 + . . . + x2
n.

x, y ∈ Rn are called orthogonal if yTx = xTy = 0.
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55 Cauchy-Schwarz inequality

|xTy| ≤ ||x|| ||y|| CSI

Equality holds iff x, y are linearly dependent, equivalently if

y 6= 0 then x = ay for some a ∈ R.

Proof If either x or y are zero vectors then equality holds in

CSI. Suppose y 6= 0. Then for t ∈ R

f(t) := (x− ty)T(x− ty) =

||y||2t2 − 2(xTy)t + ||x||2 ≥ 0 The equation

f(t) = 0 is either unsolvable, in the case f(t) is always

positive, or has one solution. Hence CSI holds. Equality

holds if x− ay = 0.

The cosine of the angle between two nonzero vectors

x, y ∈ Rn is cos θ = yTx
||x|| ||y|| : (Cosine Law)

||y − x||2 = ||y||2 + ||x||2 − 2||y|| ||x|| cos θ
Use ||z||2 = zTz to deduce the formula for cos θ.

So if x ⊥ y Pithagoras theorem holds:

||x− y||2 = ||x||2 + ||y||2 = ||x + y||2.
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56 Cauchy

Augustin Louis Cauchy Born: 21 Aug 1789 in Paris, France

Died: 23 May 1857 in Sceaux (near Paris), France

his achievement is summed as follows:- ... Cauchy’s creative

genius found broad expression not only in his work on the

foundations of real and complex analysis, areas to which his

name is inextricably linked, but also in many other fields.

Specifically, in this connection, we should mention his major

contributions to the development of mathematical physics

and to theoretical mechanics... we mention ... his two

theories of elasticity and his investigations on the theory of

light, research which required that he develop whole new

mathematical techniques such as Fourier transforms,

diagonalisation of matrices, and the calculus of residues.

Cauchy was first to state the Cauchy-Schwarz inequality,

and stated it for sums.

http://www-history.mcs.st-

and.ac.uk/Biographies/Cauchy.html
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57 Schwarz

Hermann Amandus Schwarz Born: 25 Jan 1843 in

Hermsdorf, Silesia (now Poland) Died: 30 Nov 1921 in

Berlin, Germany

His most important work is a Festschrift for Weierstrass’s

70th birthday. @articleSchwarz1885, author = ”H. A.

Schwarz”, title = ”Ueber ein die Flächen kleinsten

Flächeninhalts betreffendes Problem der

Variationsrechnung”, journal = ”Acta societatis scientiarum

Fennicae”, volume = ”XV”, year = 1885, pages = ”315–362”

Schwarz answered the question of whether a given minimal

surface really yields a minimal area. An idea from this work,

in which he constructed a function using successive

approximations, led Emile Picard to his existence proof for

solutions of differential equations. It also contains the

inequality for integrals now known as the ’Schwarz

inequality’.

Schwarz was the third person to state the Cauchy-Schwarz

inequality, stated it for integrals over surfaces
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58 Bunyakovsky

Viktor Yakovlevich Bunyakovsky Born: 16 Dec 1804 in Bar,

Podolskaya gubernia (now Vinnitsa oblast), Ukraine Died:

12 Dec 1889 in St. Petersburg, Russia

Bunyakovskii was first educated at home and then went

abroad, obtaining a doctorate from Paris in 1825 after

working under Cauchy.

Bunyakovskii published over 150 works on mathematics and

mechanics. He is best known (in Russia) for his discovery of

the Cauchy-Schwarz inequality, published in a monograph in

1859 on inequalities between integrals. This is twenty-five

years before Schwarz’s work. In the monograph

Bunyakovskii gave some results on the functional form of the

inequality.

@articleBunyakovskii1859, author = ” V. Bunyakovskiui ”, title

= ”Sur quelques inégalités concernant les intégrales

ordinaires et les intégrales aux différences finies”, journal =

”Mém. Acad. St. Petersbourg”, year = 1859, volume = 1
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59 Scalar and vector projection

The scalar projection of x ∈ Rn on nonzero y ∈ Rn is

given by xTy
||y|| = cos θ||x||.

The vector projection of x ∈ Rn on nonzero y ∈ Rn is

given by xTy
||y||2y = xTy

yTy
y.

Example. Let

x = (2, 1, 3, 4)T, y = (1,−1,−1, 1)T.

a. Find the cosine of angle between x, y.

b. Find the scalar and vector projection of x on y.

Solution

||y|| =
√

12 + (−1)2 + (−1)2 + 12 =
√
4 = 2

||x|| =
√
22 + 12 + 32 + 42 =

√
30,

xTy = 2− 1− 3+ 4 = 2, cos θ = 2

2
√

30
= 1√

30

Scalar projection 2
2
= 1,

Vector projection 2
4
y = (.5,−.5,−.5, .5)T.
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60 Orthogonal subspaces

Definitions: Two subspaces U and V in Rn are called

orthogonal if any u ∈ U is orthogonal to any v ∈ V:

vTu = 0. This is denoted by U ⊥ V.

Example in R3: U is an orthogonal line to the plane V,

which intersect at the origin.

For a subspace U of Rn U⊥ denotes all vectors in Rn

orthogonal to U.

Claim 1: Let u1, . . . , uk span U ⊆ Rn. Form a matrix

A = (u1 u2 . . . uk) ∈ Rn×k. Then

(a): N(AT) = U⊥ ,

(b): dimU⊥ = n− dimU,

(c): (U⊥)⊥ = U.

Note: (b-c) Holds for any subspace U ⊆ Rn

Proof (a) follows from definition.

(b) follows from dimU = rankA,

nulAT = n− rankAT = n− rankA.

(c) follows from the observations (U⊥)⊥ ⊇ U,
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dim(U⊥)⊥ = n− dimU⊥ =

n− (n− dimU) = dimU

Corollary: Rn = U⊕U⊥.

Proof Observe that if x ∈ U ∩U⊥ then

xTx = 0⇒ x = 0⇒ U ∩U⊥ = {0}.

(b) of Claim 1 yields dimU + dimU⊥ = n.

Claim 2: For A ∈ Rn×m:

(a): N(AT) = R(A)⊥

(b): N(AT)⊥ = R(A).

Proof. Any vector in N(AT) satisfies

ATy = 0 ⇐⇒ yTA = 0. Any vector z ∈ R(A) is

of the form z = Ax. So

yTz = yTAx = (yTA)x = 0Tx = 0. So

N(AT) ⊆ R(A)⊥. Recall

dimN(AT) = n− rankAT = n− rankA

Claim 1 yields

dimR(A)⊥ = n− dimR(A) = n− rankA.

Hence (a) follows. Apply⊥ operation to (a) and use (c) of

Claim 1 to deduce (b).
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61 Example

Let u = (1, 2, 3, 4)T, v = (2, 4, 5, 2)T,w =

(3, 6, 8, 6)T. Find a basis in span(u, v,w)⊥.

Solution: Set A = [u v w]. Then

AT =







1 2 3 4

2 4 5 2

3 6 8 6







. RREF of AT is:

B =







1 2 0 −14
0 0 1 6

0 0 0 0







Hence a basis in N(AT) = N(B) is:

(−2, 1, 0, 0, )T, (14, 0,−6, 1)T.

Note that a basis of the row space of AT is given by the

nonzero rows of B. Hence a basis of span(u, v,w) is

given by (1, 2, 0,−14)T, (0, 0, 1, 6)T.
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Fredholm alternative: Let A ∈ Rm×n and b ∈ Rm.

Then either Ax = b is solvable or there exists

y ∈ N(AT) such that yTb 6= 0.

Proof. Ax = b solvable iff b ∈ R(A). (a) of Claim 2

yields R(A)⊥ = N(AT). So Ax = b not solvable iff

N(AT) is not orthogonal to b.

62 Projection on a subspace

Let U be a subspace of Rn. Let Rm = U⊕U⊥ and

b ∈ Rm. Express b = u + v where

u ∈ U, v ∈ U⊥. Then u is called the projection of b on

U and denoted by PU(b): (b− PU(b)) ⊥ U.

Claim 1: PU : Rn → U is a linear transformation.

Claim 2: PU(b) is the unique solution of the minimal

problem: minx∈U ||b− x|| = ||b− PU||.
Least Square Theorem: Let A ∈ Rm×n, b ∈ Rm.

Then the system ATAx = ATb is always solvable. Any

solution z to this system is called the least square solution of

Ax = b. Furthermore PR(A)(b) = Az.
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Proofs

Claim 1: αb = αu+αv. As αu ∈ U and αv ∈ U⊥

it follows PU(αb) = αu = αPU(b). Let

c = x + y, x ∈ U, y ∈ U⊥. Then

b + c = (u + x) + (v + y) and

u + x ∈ U, v + y ∈ U⊥. Hence

PU(b + c) = (u + x) = PU(b) + PU(c).

Claim 2: As b− PU(b) ⊥ U for any x ∈ U:

||b− x||2 = ||(b− PU(b)) + (PU(b)− x)||2 =

||b−PU(b)||2+||PU(b)−x||2 ≥ ||b−PU(b)||2.

LST: ATAx = 0⇒ xTATAx = 0 ⇐⇒
||Ax||2 = 0⇒ x ∈ N(A)⇒ x ∈ N(ATA). Let

B := ATA and BT = B. If y ∈ N(BT) then

Ay = 0⇒ yTAT = 0⇒ yTATb = 0. Fredholm

alternative yields that ATAx = ATb is solvable.

Note ATAz = ATb ⇐⇒ ATb−ATAz =

0 ⇐⇒ AT(b−Az) ⇐⇒ (b−Az) ⊥ R(A).

As Az ∈ R(A) we deduce that PR(A)(b) = Az.

126



63 Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now

Germany)

Died: 23 Feb 1855 in Göttingen, Hanover (now Germany)

The method of least squares, established independently by

two great mathematicians, Adrien Marie Legendre (1752

1833) of Paris and Carl Friedrich Gauss

In June 1801, Zach, an astronomer whom Gauss had come

to know two or three years previously, published the orbital

positions of Ceres, a new ”small planet” which was

discovered by G Piazzi, an Italian astronomer on 1 January,

1801. Unfortunately, Piazzi had only been able to observe 9

degrees of its orbit before it disappeared behind the Sun.

Zach published several predictions of its position, including

one by Gauss which differed greatly from the others. When

Ceres was rediscovered by Zach on 7 December 1801 it

was almost exactly where Gauss had predicted. Although he

did not disclose his methods at the time, Gauss had used his

least squares approximation method.

http://www-history.mcs.st-and.ac.uk/Biographies/Gauss.html
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64 Example

Consider the system of three equations in two variables:

x1 + x2 = 3

− 2x1 + 3x2 = 1

2x1 − x2 = 2

⇒ Ax = b

A =







1 1

−2 3

2 −1







, b =







3

1

2







,

x =




x1

x2



 , Â =







1 1 | 3

−2 3 | 1

2 −1 | 2







RREF of A: B =







1 0 | 0

0 1 | 0

0 0 | 1







Hence the original system is unsolvable!
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The least square system

ATAx = ATb ⇐⇒ Cx = c:

C = ATA =



1 −2 2

1 3 −1











1 1

−2 3

2 −1







=




9 −7
−7 11



, c = ATb =




1 −2 2

1 3 −1











3

1

2







=




5

4





Since C invertible the solution of the LSP is:

x = C−1c = 1
9·11−(−7)2




11 7

7 9








5

4



 =




1.66

1.42



 Hence Ax =







3.08

0.94

1.90







Is the projection

of b on the column space of A.
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65 Finding the projection on span

Claim To find the projection of b ∈ Rm on the subspace

span(u1, . . . , un) ⊆ Rm:

a. Form the matrix A = [u1 . . . un] ∈ Rm×n.

b. Solve the system ATAx = ATb.

c. For any solution x of b. Ax is the projection.

Claim: Let A ∈ Rm×n. Then

rankA = n ⇐⇒ ATA is invertible. In that case

z = (ATA)−1ATb is the least square solution of

Ax = b. Also A(ATA)−1b is the projection of b on

the column space of A.

Proof. Ax = 0 ⇐⇒ ||Ax|| = 0 ⇐⇒
xTATAx = 0 ⇐⇒ ATAx = 0

So N(A) = N(ATA).

rankA = n ⇐⇒ N(A) = {0} =
N(ATA) ⇐⇒ ATA invertible.
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66 The best fit line

Fitting a straight line y = a + bx in the X − Y plane

through m given points

(x1, y1), (x2, y2), . . . , (xm, ym).

Solution: The line should satisfy m conditions:

1 · a + x1 · b = y1

1 · a + x2 · b = y2

...
...

...
...

...

1 · a + xm · b = ym

⇒








1 x1

...
...

1 xm











a

b



 =








y1

...

ym








.

A z = c.
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The least squares system ATAz = ATc:



m x1 + x2 + . . . + xm

x1 + x2 + . . . + xm x2
1 + x2

2 + . . . + x2
m








a

b



 =




y1 + y2 + . . . + ym

x1y1 + x2y2 + . . . + xmym



 .

det ATA =

m(x2
1+x2

2+ . . .+x2
m)− (x1+x2+ . . .+xm)2.

det ATA = 0 ⇐⇒ x1 = x2 = . . . = xm.

If det ATA 6= 0 then

a =
(
∑

m
i=1 x2

i )(
∑

m
i=1 yi)−(

∑

m
i=1 xi)(

∑

m
i=1 xiyi)

det ATA

b =
−(

∑m
i=1 xi)(

∑m
i=1 yi)+m(

∑m
i=1 xiyi)

det ATA
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67 Example

Given three points in R2: (0, 1), (3, 4), (6, 5). Find the

best least square fit by a linear function y = a + bx to

these three points.

Solution.

A =







1 0

1 3

1 6







, z =




a

b



 , c =







1

4

5







z = (ATA)−1ATc =



3 9

9 45





−1 


10

42



 =





4
3

2
3



 =




a

b





The best least square fit by a linear function is

y = 4
3
+ 2

3
x.
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68 Orthonormal sets

v1, . . . , vn ∈ Rm is called an orthogonal set (OS) if

v⊤
i vj = 0 if i 6= j, i.e. any two vectors in this set is an

orthogonal pair.

Example 1: The standard basis e1, . . . , em ∈ Rm is an

orthogonal set

Example 2: The vectors v1 = (3, 4, 1, 0)⊤, v2 =

(4,−3, 0, 2)⊤, v3 = (0, 0, 0, 0)⊤ are three

orthogonal vectors in R4.

Theorem. An orthogonal set of nonzero vectors is linearly

independent.

Proof. Suppose that

a1v1 + a2v2 + . . . + anvn = 0. Multiply by v⊤
1 :

0 = v⊤
1 0 = v⊤

1 (a1v1 + a2v2 + . . . + anvn) =

a1v
⊤
1 v1 + a2v

⊤
1 v2 + . . . + anv

⊤
1 vn Since

v⊤
1 vi = 0 for i > 1 we obtain:

0 = a1(v
⊤
1 v1) = a1||v1||2. Since ||v1|| > 0 we

deduce a1 = 0. Continue in the same manner to deduce

that all ai = 0. �
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v1, ..., vn ∈ V is called an orthonormal set (ONS) if

v1, ..., vn is an orthogonal set and each vi has length 1.

In Example 1 e1, . . . , em is an ONS.

In Example 2 the set { 1√
26

v1,
1√
29

v2} is an ONS.

Notation: Let In ∈ Rn×n be an identity matrix. Let

δij, i, j = 1, . . . , n be the entries of In. So δij = 0

for i 6= j and δii = 1 for i = 1, . . . , n.

Remark δij are called the Kronecker’s delta in honor of

Leopold Kronecker (1823-1891)

http://www-history.mcs.st-

and.ac.uk/Biographies/Kronecker.html

v1, . . . , vn ONS ⇐⇒ v⊤
i vj = δij for

i, j = 1, ..., n.
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Normalization: A nonzero OS u1, ..., un can be

normalized to an ONS by vi :=
ui

||ui|| for i = 1, . . . , n.

Theorem. Let v1, . . . , vn be ONS in Rm. Denote

U := span(v1, . . . , vn). Then

• Any vector u ∈ U can be written as a unique linear

combination of v1, . . . , vn: u =
∑n

i=1(v
⊤
i u)vi.

• For any v ∈ Rm the orthogonal projection PU(v) on

the subspace U is given by

PU(v) =
∑n

i=1(v
⊤
i v)vi. In particular

||v||2 = v⊤v ≥
∑n

i=1 |v⊤
i v|2

(Bessel’s inequality: http://www-history.mcs.st-

andrews.ac.uk/Biographies/Bessel.html)

and equality holds ⇐⇒ v ∈ U.

• If v1, . . . , vn is an orthonormal basis (OB) in V then

for any vector v ∈ V one has: v =
∑n

i=1(v
⊤
i v)vi

and ||v||2 =
∑n

i=1 |v⊤
i v|2.

(Parseval’s formula: http://www-history.mcs.st-

andrews.ac.uk/Biographies/Parseval.html)
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Example 1. Let U = span(e1, e2) ⊂ R4.

Any vector in U is

u = (u1, u2, 0, 0)
⊤ = u1e1 + u2e2.

Note that u1 = e⊤1 u, u2 = e⊤2 u.

So u = (e⊤1 u)e1 + (e⊤2 u)e2.

Note U⊥ = span(e3, e4).

For any vector v = (v1, v2, v3, v4)
⊤.

PU(v) = w := (v1, v2, 0, 0)
⊤ since w ∈ U and

v − w = (0, 0, v3, v4) ∈ U⊥. Clearly

w = (e⊤1 v)e1 + (e⊤2 v)e2.

v⊤v = v2
1 + v2

2 + v2
3 + v2

4 ≥ w⊤w = v2
1 + v2

2 .

Equality holds iff v3 = v4 = 0, i.e. v ∈ U.
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Example 2: Let v1 = 1
2
(1, 1, 1, 1)⊤,

v2 = 1
2
(1,−1, 1,−1)⊤, v3 = 1

2
(1,−1,−1, 1)⊤,

v4 = 1
2
(−1,−1, 1, 1)⊤

Check that v1, v2, v3, v4 is an OB in R4. Let

U = span(v1, v2). Show

a. u ∈ U ⇐⇒ u = (a, b, a, b)⊤.

b. U⊥ = span(v3, v4)
⊤.

c. v ∈ U⊥ ⇐⇒ v = (c, d,−c,−d)⊤.

d. PU((x1, x2, x3, x4)
⊤) =

x1+x2+x3+x4

2
v1 + x1−x2+x3−x4

2
v2 =

1
2
(x1 + x3, x2 + x4, x1 + x3, x2 + x4)

⊤

e.

x2
1+x2

2+x2
3+x2

4 ≥ 1
2
((x1+x3)

2+(x2+x4)
2)

Equality holds if and only if x1 = x3, x2 = x4, i.e.

(x1, x2, x3, x4)
⊤ ∈ U.
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Orthogonal Matrices

Q ∈ Rn×n is an orthogonal matrix if QTQ = I .

Equivalently, the columns of Q form an OB in Rn

Equivalently Q−1 = QT. Hence QQT = I .

Equivalently (Qy)T(Qx) = yTx for all x, y ∈ Rn.

I.e. Q : Rn → Rn preserves angles & lengths of vectors.

Equivalently ||Qx||2 = ||x||2 for all x ∈ Rn. I.e.

Q : Rn → Rn preserves length

Example 1: In is an orthogonal matrix since

InI
T
n = InIn = In. (Note In = [e1 e2 . . . en])

Example 2: Q =







0 1 0

0 0 1

1 0 0







.

(Note Q = [e3 e1 e2])

Example 3: Q =










1
2

1
2

1
2
−1

2

1
2
−1

2
−1

2
−1

2

1
2

1
2
−1

2
1
2

1
2
−1

2
1
2

1
2
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Example 4: Any 2× 2 orthogonal matrix is either of the

form




cos θ sin θ

− sin θ cos θ



 rotation

or




cos θ sin θ

sin θ − cos θ



 reflection

P ∈ Rn×n is called a permutation matrix if in each row

and column of P there is one nonzero entry which equals to

1.

A permutation matrix is orthogonal.

If P is a permutation matrix and

(y1, ..., yn)
T = P (x1, ..., xn)

T then the coordinates

of y a permutation of the coordinates of x, which does not

depend on the coordinates of x.

n columns of A ∈ Rm×n form an OB in the columns

space R(A) of A ⇐⇒ ATA = In. In that case the

LSS of Ax = b is z = ATb, which is the projection of b

the column space of A.
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69 Gram-Schmidt orthogon. process

Let x1, . . . , xn be linearly independent vectors in Rm.

Then the Gram-Schmidt (orthogonalization) process gives a

recursive way to generate ONS q1, . . . , qn ∈ Rm from

x1, . . . , xn, such that

span(x1, . . . , xk) = span(q1, . . . , qk) for

k = 1, . . . , n. If m = n, i.e. x1, . . . , xn is a basis of

Rn then q1, . . . , qn is an ONB of Rn.

GS-algorithm:

r11 := ||x1||, q1 := 1
r11

x1

r12 := q⊤
1 x2, p1 := r12q1, r22 :=

||x2 − p1||, q2 := 1
r22

(x2 − p1).

r13 := q⊤
1 x3, r23 := q⊤

2 x3, p2 := r13q1 +

r23q2, r33 := ||x3 − p2||, q3 := 1
r33

(x3 − p2).

Assume that q1, . . . , qk were computed. Then

r1(k+1) := q⊤
1 xk+1, . . . , r1(k+1) :=

q⊤
k xk+1, pk := r1(k+1)q1 +

. . . rk(k+1)qk, r(k+1)(k+1) := ||xk+1 − pk|| and

qk+1 := 1
r(k+1)(k+1)

(xk+1 − pk).
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70 Explanation of G-S process

ri(k+1) := q⊤
i xk+1

is the scalar projection of xk+1 on qi.

pk is the projection of xk+1 on

span(q1, . . . , qk) = span(x1, . . . , xk).

Hence xk+1 − pk ⊥ span(q1, . . . , qk).

r(k+1)(k+1) = ||xk+1 − pk|| is the distance of xk+1

to span(q1, . . . , qk) = span(x1, . . . , xk).

The assumption that x1, . . . , xn are linearly independent

yields that r(k+1)(k+1) > 0.

Hence qk+1 = r−1
(k+1)(k+1)(xk+1 − pk)

is a vector of unit length orthogonal to q1, . . . , qk
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71 Example

Let x1 = (1, 1, 1, 1)⊤, x2 = (−1, 4, 4,−1)⊤,

x3 = (4,−2, 2, 0)⊤

r11 = ||x1|| = 2, q1 = 1
r11

x1 = (1
2
, 1
2
, 1
2
, 1
2
)⊤

r12 = q⊤
1 x2 = 3,

p1 = r12q1 = 3q1 = (3
2
, 3
2
, 3
2
, 3
2
)⊤ x2 − p1 =

(−5
2
, 5
2
, 5
2
,−5

2
)⊤, r22 = ||x2 − p1|| = 5

q2 = 1
r22

(x2 − p1) = (−1
2
, 1
2
, 1
2
,−1

2
)⊤

r13 = q⊤
1 x3 = 2, r23 = q⊤

2 x3 = −2,

p2 = r13q1 + r23q2 = (2, 0, 0, 2)⊤,

x3 − p2 = (2,−2, 2,−2)⊤,

r33 = ||x3 − p2|| = 4,

q3 = 1
r33

(x3 − p2) = (1
2
,−1

2
, 1
2
,−1

2
)⊤
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72 QR Factorization

Let A = [a1 a2 . . . an] ∈ Rm×n matrix and assume

that rankA = n ⇐⇒ the columns of A are linearly

independent. Perform G-S process with the book keeping as

above:

• r11 := ||a1||, q1 := 1
r11

a1.

• Assume that q1, . . . , qk−1 were computed. Then

rik := qT
i ak for i = 1, . . . , k − 1.

pk−1 := r1kq1 + r2kq2 + . . . r(k−1)kqk−1

and

rkk := ||ak − pk−1||, qk := 1
rkk

(ak − pk−1)

for k = 2, ..., n.

Let Q = [q1 q2 . . . qn] ∈ Rm×n and

R =













r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n

0 0 r33 . . . r3n
...

...
...

...
...

0 0 0 . . . rnn
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Then A = QR, QTQ = In and ATA = RTR.

The Least Squares Solution of Ax = b is given by the

upper triangular system Rx̂ = QTb which can be solved

by back substitution.

Formally x̂ = R−1QTb.

Proof ATAx = RTQTQRx = RTRx = ATb =

RTQTb. Multiply from left by (RT)−1 to get

Rx̂ = QTb

Note: QQTb is the projection of b on the columns space

of A.

The matrix P := QQT is called an orthogonal projection.

It is symmetric and P 2 = P , as (QQT)(QQT) =

Q(QTQ)QT = Q(I)QT = QQT.

Note QQT : Rm → Rm is the orthogonal projection

Equivalently: The assumption that rankA = n is

equivalent to the assumption that ATA is invertible. So the

LSS ATAx̂ = ATb has unique solution

x̂ = (ATA)−1b. Hence the projection of b on the

column space of A is Pb = Ax̂ = A(ATA)−1ATb.

Hence P = A(ATA)−1AT.
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73 An example of QR algorithm

Let A = [x1 x2 x3] =










1 −1 4

1 4 −2
1 4 2

1 −1 0










be the

matrix corresponding to the Example of G-S Pr. above.

Then

R =







r11 r12 r13

0 r22 r23

0 0 r33







=







2 3 2

0 5 −2
0 0 4







Q = [q1 q2 q3] =










1
2
−1

2
1
2

1
2

1
2
−1

2

1
2

1
2

1
2

1
2
−1

2
1
2










Explain why in this example A = QR!

Note QQT : R4 → R4 is the projection on

span(x1, x2, x3)
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74 Gram and Schmidt

Jorgen Pedersen Gram: Born: 27 June 1850 in Nustrup (18

km W of Haderslev), Denmark Died: 29 April 1916 in

Copenhagen, Denmark Gram is best remembered for the

Gram-Schmidt orthogonalisation process which constructs

an orthogonal set of from an independent one. The process

seems to be a result of Laplace and it was essentially used

by Cauchy in 1836.

http://www-history.mcs.st-and.ac.uk/Biographies/Gram.html

Erhard Schmidt Born: 13 Jan 1876 in Dorpat, Germany

(now Tartu, Estonia) Died: 6 Dec 1959 in Berlin, Germany

Schmidt published a two part paper on integral equations in

1907 in which he reproved Hilbert’s results in a simpler

fashion, and also with less restrictions. In this paper he gave

what is now called the Gram-Schmidt orthonormalisation

process for constructing an orthonormal set of functions

from a linearly independent set.

http://www-history.mcs.st-

and.ac.uk/Biographies/Schmidt.html
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75 Inner Product Spaces

Let V be a vector space. Then the function

〈·, ·〉 : V × V→ R is called an inner product on V if

the following conditions hold:

• For each pair x, y ∈ V 〈x, y〉 is a real number.

• 〈x, y〉 = 〈y, x〉. (symmetricity.)

• 〈x + z, y〉 = 〈x, y〉+ 〈z, y〉. (linearity)

• 〈αx, y〉 = α〈x, y〉 for any scalar α ∈ R. (linearity)

• For any 0 6= x ∈ V 〈x, x〉 > 0. (positivity)

Note:

• The two linearity conditions can be put in one condition:

〈αx + βz, y〉 = α〈x, y〉+ β〈z, y〉.
• The symmetricity condition yields linearity in the second

variable: 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉.
• Each linearity condition implies

〈0, y〉 = 0⇒ 〈0, 0〉 = 0.

• 〈x, x〉 ≥ 0 For any x ∈ V.

148



Examples:

• V = Rn, 〈x, y〉 = yTx.

• V = Rn, 〈x, y〉 = yTDx,

D = diag(d1, ..., dn) is a diagonal matrix with

positive diagonal entries. Then

yTDx = d1x1y1 + . . . + dnxnyn.

• V = Rm×n, 〈A,B〉 = ∑m,n

i,j=1 aijbij .

• V = C[a, b], 〈f, g〉 =
∫ b

a
f(x)g(x)dx.

• V = C[a, b], 〈f, g〉 =
∫ b

a
f(x)g(x)p(x)dx,

where p(x) ∈ C[a, b], p(x) ≥ 0 and p(x) = 0

at most at a finite number of points.

• V = Pn: all polynomials of degree n− 1 at most.

Let t1 < t2 < . . . < tn be any n real numbers.

〈p, q〉 := ∑n

i=1 p(ti)q(ti)

= p(t1)q(t1) + . . . + p(tn)q(tn)
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The norm (length) of the vector x is ||x|| :=
√

〈x, x〉.
Cauchy-Schwarz inequality: |〈x, y〉| ≤ ||x|| ||y||.
The cosine of the angle between x 6= 0 and y 6= 0:

cos θ := 〈x,y〉
||x|| ||y|| .

x and y are orthogonal if: 〈x, y〉 = 0.

Two subspace X,Y of V are orthogonal if any x ∈ X is

orthogonal to any y ∈ Y.

The Parallelogram Law;

||u + v||2 = 〈u + v,u + v〉 =
||u||2 + ||v||2 + 2〈u, v〉.
The Pythagorean Law:

〈u, v〉 = 0⇒ ||u + v||2 = ||u||2 + ||v||2.

Scalar projection of u on v 6= 0:
〈u,v〉
||v|| .

Vector projection of u on v 6= 0:
〈u,v〉v
〈v,v〉 .

The distance between u and v is defined by ||u− v||.
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76 Orthonormal sets

Let V Inner Product Space (IPS). v1, . . . , vn ∈ V is

called an orthogonal set (OS) if 〈vi, vj〉 = 0 if i 6= j, i.e.

any two vectors in this set is an orthogonal pair.

Theorem. An orthogonal set of nonzero vectors is linearly

independent.

v1, ..., vn ∈ V is called an orthonormal set (ONS) if

v1, ..., vn is an orthogonal set and each vi has length 1,

i.e. v1, . . . , vn ONS ⇐⇒ 〈vi, vj〉 = δij for

i, j = 1, ..., n.

Example: In C[−π, π] with

〈f, g〉 =
∫ π

−π
f(x)g(x)dx the set

1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx

is a nonzero ONS.

An orthonormal basis in C[−π, π] is
1√
2π

, cosx√
π
, sinx√

π
, cos 2x√

π
, sin 2x√

π
, . . . , cosnx√

π
, sinnx√

π
, . . .
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77 Fourier series

Every f(x) ∈ C[−π, π] can be expanded in Fourier

series

f(x) ∼ 1
2
a0 +

∑∞
n=1(an cos(nx) + bn sin(nx)

an = 1
π

∫ π

−π
f(x) cos(nx) dx

are the even Fourier coefficients of f , and

bn = 1
π

∫ π

−π
f(x) sin(nx) dx

are the odd Fourier coefficients of f .

Parseval equality is
a2

0

2
+

∑∞
n=1

(
a2
n + b2n

)
= 1

π

∫ π

−π
|f(x)|2 dx.

Dirichlet’s theorem: If f ∈ C1((−∞,∞)) and

f(x + 2π) = f(x), i.e. f is differentiable and periodic,

then the Fourier series converge absolutely for each x ∈ R

to f(x).

This is an infinite version of the identity on p’131

u =
∑∞

i=1〈u, vi〉vi where v1, . . . , vn, . . . is an

orthonormal basis in a complete IPS,

Such a complete infinite dimensional IPS is called a Hilbert

space.
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78 Jean Baptiste Joseph Fourier

Born: 21 March 1768 in Auxerre, Bourgogne, France

Died: 16 May 1830 in Paris, France

It was during his time in Grenoble that Fourier did his

important mathematical work on the theory of heat. His work

on the topic began around 1804 and by 1807 he had

completed his important memoir On the Propagation of Heat

in Solid Bodies. The memoir was read to the Paris Institute

on 21 December 1807 and a committee consisting of

Lagrange, Laplace, Monge and Lacroix was set up to report

on the work. Now this memoir is very highly regarded but at

the time it caused controversy.

There were two reasons for the committee to feel unhappy

with the work. The first objection, made by Lagrange and

Laplace in 1808, was to Fourier’s expansions of functions as

trigonometrical series, what we now call Fourier series.

Further clarification by Fourier still failed to convince them.

http://www-history.mcs.st-

and.ac.uk/Biographies/Fourier.html
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79 J. Peter Gustav Lejeune Dirichlet

Born: 13 Feb 1805 in Dren, French Empire (now Germany)

Died: 5 May 1859 in Göttingen, Hanover (now Germany)

Dirichlet is also well known for his papers on conditions for

the convergence of trigonometric series and the use of the

series to represent arbitrary functions. These series had

been used previously by Fourier in solving differential

equations. Dirichlet’s work is published in Crelle’s Journal in

1828. Earlier work by Poisson on the convergence of Fourier

series was shown to be non-rigorous by Cauchy. Cauchy’s

work itself was shown to be in error by Dirichlet who wrote of

Cauchy’s paper:-

The author of this work himself admits that his proof is

defective for certain functions for which the convergence is,

however, incontestable.

Because of this work Dirichlet is considered the founder of

the theory of Fourier series.

http://www-history.mcs.st-

and.ac.uk/Biographies/Dirichlet.html
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80 David Hilbert

Born: 23 Jan 1862 in Königsberg, Prussia (now Kaliningrad,

Russia) Died: 14 Feb 1943 in Göttingen, Germany

Today Hilbert’s name is often best remembered through the

concept of Hilbert space. Irving Kaplansky, writing in [2],

explains Hilbert’s work which led to this concept:-

Hilbert’s work in integral equations in about 1909 led directly

to 20th-century research in functional analysis (the branch of

mathematics in which functions are studied collectively).

This work also established the basis for his work on

infinite-dimensional space, later called Hilbert space, a

concept that is useful in mathematical analysis and quantum

mechanics. Making use of his results on integral equations,

Hilbert contributed to the development of mathematical

physics by his important memoirs on kinetic gas theory and

the theory of radiations.

http://www-history.mcs.st-and.ac.uk/Biographies/Hilbert.html
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81 Lecture 4-2-07

DETERMINANTS

For a square matrix A ∈ Rn×n determinant of A denoted

by det A, (in Hefferon book |A| := det A), is a real

number such that det A 6= 0 ⇐⇒ A is invertible.

(a) det




a b

c d



 = ad− bc.

(b) det







a b c

d e f

g h i







=

aei + bfg + cdh− ceg− afh− bdi

A way to remember this formula:






a b c a b

d e f d e

g h i g h







The product of diagonals starting from a, b, c, going south

west have positive signs, the products of diagonals starting

from c, a, b and going south east have negative signs.
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(c) The determinant of diagonal matrix, upper triangular

matrix and lower triangular is equal to the product of the

diagonal entries.

(d) det A 6= 0 ⇐⇒ Row Echelon Form of A has the

maximal number of possible pivots⇐⇒ Reduced Row

Echelon Form of A is the identity matrix.

A Is called singular if det A = 0.

(e) The determinant of a matrix having at least one zero row

or column is 0.

(f) det A = det AT: The determinant of A is equal to

the determinant of AT.

(g) det AB = det A det B: The determinant of the

product of matrices is equal to the product of

determinants.⇒
(h) If A is invertible then det A−1 = 1

det A
.

I = A−1A⇒
1 = det I = det(A−1A) = det A−1 det A

We will demonstrate some of these properties later
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82 Determinant as multilinear functn

Prop 1:View A ∈ Rn×n as composed of n-columns

A = [c1, c2, . . . , cn]. Then det A is a multilinear

function in each column separately. Fix all columns except

the column ci. Let ci = ax + by, where x, y ∈ Rn

and a, b ∈ R. Then

det [c1, . . . , ci−1, ax + by, ci+1, . . . , cn] =

a det [c1, . . . , ci−1, x, ci+1, . . . , cn] +

b det [c1, . . . , ci−1, y, ci+1, . . . , cn] for each

i = 1, . . . , n.

Prop 2: det A is skew-symmetric, (anti-symmetric): The

exchange of any two columns of A changes the sign of

determinant. For example:

det [c2, c1, . . . , cn] = −det [c1, c2, . . . , cn].

(The skew symmetricity yields that the determinant of A is

zero if A has two identical columns)

Prop 3: det In = 1.

Claim: These three properties determine uniquely the

determinant function

Remark: Above claims hold for rows as in Hefferon.
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83 Examples

det




a b

c d



 = ad− bc. It is linear in the columns

c1 = (a, c)⊤, c2 = (b, d)⊤ and in the rows

(a, b), (c, d).

Clearly det




b a

d c



 = det




c d

a b



 =

bc− ad = −det A
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84 Permutations

Defn: A bijection, i.e. 1− 1 and onto map,

σ : {1, 2, . . . , n} → {1, 2, . . . , n}, is called a

permutation of the set {1, 2, . . . , n}. The set of all

permutations of {1, 2, . . . , n} is called the symmetric

group on n-elements, an is denoted by Sn.

σ(i) is the image of the number i for i = 1, . . . , n.

(Note that 1 ≤ σ(i) ≤ n for i = 1, . . . , n.

ι ∈ Sn is called the identity element, (or map), if ι(i) = i

for i = 1, . . . , n.

Claim The number of elements in Sn is n! = 1 · 2 · · ·n.

Proof. σ(1) can have n choices: 1, . . . , n. σ(2) can

have all choices: 1, . . . , n except σ(1), i.e. n− 1

choices. σ(3) can have all choices except σ(1), σ(2),

i.e. σ(3) has n− 3 choices. Hence total number of σ-s is

n(n− 1) . . . 1 = n!.

Defn τ ∈ Sn is transposition, if there exists

1 ≤ i < j ≤ n so that τ (i) = j, τ (j) = i, and

τ (k) = k for all k 6= i, j.
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Since σ, ω ∈ Sn is bijections, we can compose them

σ ◦ ω which is an element in Sn,

((σ ◦ ω)(i) = σ(ω(i))). we denote this composition by

σω and view this composition as a product in Sn.

Thm. Any σ ∈ Sn is a product of transpositions. There are

many different products of transpositions to obtain σ. All

these products of transpositions have the same parity of

elements. (Either all products have even number of

elements only, or have odd numbers of elements only.

Defn For σ ∈ Sn,

sgn(σ) = 1 if σ is a product of even number of

transpositions

sgn(σ) = −1 if σ is a product of odd number of

transpositions

Claim sgn(σω) = sgn(σ)sgn(ω).

Prf Express σ and ω as a product of transpositions. Then

σω is also a product of transpositions. Now count the parity.
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85 S2

S2 consists of two elements:

(a) the identity ι: ι(1) = 1, ι(2) = 2

(b) the transposition τ : τ (1) = 2, τ (2) = 1.

Note τ 2 = ττ = ι since

τ (τ (1)) = τ (2) = 1, τ (τ (2)) = τ (1) = 2.

So ι is a product of any any even number of τ , i.e.

ι = τ 2m, while τ = τ 2m+1 for m = 0, 1, . . ..

Note that this is true for any transposition τ ∈ Sn, n ≥ 2.

Thus sgn(ι) = 1, sgn(τ ) = −1 for any n ≥ 2.
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86 S3

S3 consists of 6 elements. Identity: ι.

There are three transpositions in S3:

τ1(1) = 1, τ1(2) = 3, τ1(3) = 2,

τ2(1) = 3, τ2(2) = 2, τ2(3) = 1

τ3(1) = 2, τ3(2) = 1, τ3(3) = 3.

(τj fixes j.)

There are two cyclic permutations

σ(1) = 2, σ(2) = 3, σ(3) = 1

ω(1) = 3, ω(2) = 1, ω(3) = 2

Note ωσ = σω = ι, i.e. σ−1 = ω.

Show σ = τ1τ2 = τ2τ3, ω = τ2τ1 = τ3τ2.

So sgn(ι) = sgn(σ) = sgn(ω) = 1

sgn(τ1) = sgn(τ2) = sgn(τ3) = −1.
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87 Rigorous definition of determinant

For

A =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

an1 am2 ... ann










∈ Rn×n

det A =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

Note that det A has n! summands in the above sum.

164



88 Cases n = 2, 3

det




a11 a12

a21 a22



 =

a1ι(1)a2ι(2) − a1τ(1)a2τ(2) = a11a22 − a12a21

det







a11 a12 a13

a21 a22 a23

a31 a32 a33







=

a1ι(1)a2ι(2)a3ι(3) + a1σ(1)a2σ(2)a3σ(3) +

a1ω(1)a2ω(2)a3ω(3)

−a1τ1(1)a2τ1(2)a3τ1(3) −
a1τ2(1)a2τ2(2)a3τ2(3) − a1τ3(1)a2τ3(2)a3τ3(3) =

a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a13a22a31 − a12a21a33
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89 Determinant of UT n and LT n

Thm: The determinant of upper or lower triangular matrix is

equal to the product of diagonal entries.

Prf. Let A = (aij)
n
i,j=1 and assume that A is upper

triangular A ∈ UTn. So aij = 0 for i > j. Let

σ ∈ Sn be a permutation. mcIf i > σ(i) then

aiσ(i) = 0. Hence

f(σ) := a1σ(1)a2σ(2) . . . anσ(n) = 0 if i > σ(i)

for some i. So f(σ) may not be equal to zero if i ≤ σ(i)

for i = 1, . . . , n. This statement is true if only σ = ι.

Thus

det A = sgn(ι)a1ι(1)a2ι(2) . . . anι(n) =

a11a22 . . . ann
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Determinants of Elementary Matrices

(i) det EI = −1 where EI corresponds to interchanging

two rows: Ri ↔ Rj .

det




0 1

1 0



 = 0 · 0− 1 · 1 = −1.

(Follows from sgn(τσ) = −sgn(σ).)

(j) det EII = a where EII corresponds to multiplying a

row by a: Ri → aRi. (Note that EII is diagonal.)

det




1 0

0 a



 = a. (Follows from multilinearity.)

(k) det EIII = 1 where EIII corresponds to adding to

one row a multiple of another row: Ri + aRj → Ri.

(EIII is either upper triangular or lower triangular)

det




1 0

a 1



 = 1. (R2 + aR1 → R2)

(Follows from multilinearity and the fact that the determinant

of a matrix with two identical rows is equal to zero)

Observe that for any elementary matrix E

det E−1 = (det E)−1
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Computing Determinants using Elementary Matrices

Let A ∈ Rn×n and perform k ERO:

A
ERO1→ A1

ERO2→ A2
ERO3→ . . . Ak−1

EROk→ Ak

where Ak is a Row Echelon Form of A.

(More general Ak is an upper triangular matrix if we do not

force pivots to be equal 1.)

A1 = E1A, A2 = E2A1 = E2E1A, . . .

Ak = Ek . . . E1A⇒
Ak = MB, M = EkEk−1...E2E1

M is invertible matrix since M−1 = E−1
1 E−1

2 ...E−1
k .

A = M−1Ak = E−1
1 E−1

2 ...E−1
k Ak

Since each E−1
i is elementary matrix

det E−1
i (E−1

i+1 . . .E
−1
k Ak) =

det E−1
i det E−1

i+1 . . .E
−1
k Ak =

(det Ei)
−1det E−1

i+1 . . .E
−1
k Ak

Hence

det A =

(det E1)
−1(det E2)

−1 . . . (det Ek)
−1det Ak =

det Ak

det E1·det E2·...·det Ek
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90 Example

Find the determinant of A =







−2 −1 −3
4 2 1

−6 3 −4







Perform the following ERO

R2 + 2R1 → R2, R3 − 3R1 → R3:

A2 =







−2 −1 −3
0 0 −5
0 6 5







Perform R3 ↔ R2

A3 =







−2 −1 −3
0 6 5

0 0 −5







So det A3 = (−2)(6)(−5) = 60.

Note that all the elementary matrices corresponding to the

above ERO have determinant 1 except R3 ↔ R2, with

derterminant−1. Hence det A = −60.
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Minors and Cofactors

For A ∈ Rn×n the matrix Mij ∈ R(n−1)×(n−1)

denotes the submatrix of A obtained from A by deleting

row i and column j. The determinant of Mij is called

(i, j)-minor of A. The cofactor Aij is defined to be

(−1)i+jdet Mij.

A =







a b c

d e f

g h i







,

M32 =




a c

d f



,

A32 = −af + cd.
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Expansion of the determinant by row i:

det A = ai1Ai1 + ai2Ai2 + ... + ainAin

=
∑n

j=1 aijAij

Expansion of the determinant by column p:

det A = a1pA1p + a2pA2p + ... + anpAnp

=
∑n

j=1 ajpAjp

One can compute also the determinant of A using

repeatedly the row or column expansions.

Warning: Computationally the method of using row/column

expansion is very inefficient.

Expansion of determinant by row/column is used primarily

for theoretical computations.
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91 Examples

Expand the determinant of A =







a b c

d e f

g h i







by the

second row:

det A = dA21 + eA22 + fA23 =

d(−1)det




b c

h i



 + e det




a c

g i



 +

f(−1)det




a b

g h



 =

(−d)(bi−hc)+ e(ai− cg)+ (−f)(ah− bg) =

aei + bfg + cdh− ceg− afh− bdi
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Find det










−1 1 −1 3

0 3 1 1

0 0 2 2

−1 −1 −1 2










Expand by the row or column which has the maximal

number of zeros. We expand by the first column:

det A = a11A11+a21A21+a31A31+a41A41 =

a11A11 + a41A41 since a21 = a31 = 0 Observe that

(−1)1+1 = 1, (−1)1+4 = −1. Hence

det A = (−1)det







3 1 1

0 2 2

−1 −1 2







+

(−1)(−1)det







1 −1 3

3 1 1

0 2 2







Expand the first

determinant by the second row and the second determinant

by the third row
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det A = (−1)
(
3 det




2 2

−1 2



 +

(−1)det




1 1

2 2




)
+
(
(−2)det




1 3

3 1



+

2 det




1 −1
3 1




)
= −18 + 16 + 8 = 6

Another way to find det A,

A =










−1 1 −1 3

0 3 1 1

0 0 2 2

−1 −1 −1 2
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Perform ERO: R4 −R1 → R4 to obtain

B =










−1 1 −1 3

0 3 1 1

0 0 2 2

0 −2 0 −1










. So

det A = det B. Expand det B by the first column to

obtain det B = −det C, C =







3 1 1

0 2 2

−2 0 −1







.

Perform the ERO R1 − 0.5R2 → R1 to obtain

D =







3 0 0

0 2 2

−2 0 −1







Expand det D by the first row to get

det D = (3)(2 · (−1)− 2 · 0) = −6.

Hence det A = 6.
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92 Lecture

Adjoint Matrix and Cramer’s Rule

For A =










a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
...

an1 an2 ... ann










the adjoint matrix is defined as

adj A =










A11 A21 ... An1

A12 A22 ... An2

...
...

...
...

A1n A2n ... Ann










where Aij is the (i, j) cofactor of A.

Note that the i-th row of adj A is (A1i A2i . . . Ani).
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Examples:

A =




a11 a12

a21 a22



, adj A =




A11 A21

A12 A22



 =




a22 −a12

−a21 a11



 .

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33







adj A =







A11 A21 A31

A12 A22 A32

A13 A23 A33







A33 = det




a11 a12

a21 a22



 = a11a22 − a12a21

A12 = −det




a21 a23

a31 a33



 =

−a21a33 + a23a31.
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A way to remember to get the adjoint matrix correctly:

adj A =










A11 A12 ... A1n

A21 A22 ... A2n

...
...

...
...

An1 An2 ... Ann










T

=










A11 A21 ... An1

A12 A22 ... An2

...
...

...
...

A1n A2n ... Ann
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The properties of the adjoint matrix:

A adj A = (adjA)A = (det A)I,

where I is the identity matrix of the corresponding size.

Proof. Consider the (i, j) element of the product

A adj A: ai1Aj1 + ai2Aj2 + ... + ainAjn.

Assume first that i = j. Then this sum is the expansion of

the determinant of A by i− th row. Hence it is equal to

det A, which is the (i, i) entry of the diagonal matrix

(det A)I.

Assume now that i 6= j. Then the above sum is the

expansion of the determinant of a matrix C obtained from

A by replacing row j in A by row i of A. Since C has two

identical row, hence det C = 0. This shows

A adj A = (det A)I. Similarly

(adj A)A = (det A)I.

Corollary: det A 6= 0⇒ A−1 = 1
det A

adj A.
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93 Example

Let A =







1 2 3

0 4 5

0 0 6







Find adj A and A−1.

A11 = 24, A12 = −0, A13 = 0, A21 =

−12, A22 = 6, A23 = −0, A31 = 10− 12 =

−2, A32 = −5, A33 = 4, adj A =:






24 0 0

−12 6 0

−2 −5 4







⊤

=







24 −12 −2
0 6 −5
0 0 4







Since A is upper triangular det A = 1 · 4 · 6 = 24

A−1 = 1
24







24 −12 −2
0 6 −5
0 0 4
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Cramer’s Rule

Consider the linear system of n equations with n unknowns:

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2
...

...
...

...
...

...
...

an1x1 + an2x2 + ... + annxn = bn

Let A ∈ Rn×n, b = (b1, ..., bn)
T be the coefficient

matrix and the column vector corresponding to the

right-hand side of these system. That is the above system is

Ax = b, x = (x1, ..., xn)
T. Denote by

Bj ∈ Rn×n the matrix obtained from A by replacing the

j − th column in A by: Bj =









a11 ... a1(j−1) b1 a1(j+1) . . . a1n

a21 ... a2(j−1) b2 a2(j+1) . . . a2n

...
...

...
...

...
...

...

an1 ... an(j−1) bn an(j+1) . . . ann










Then xj =
det Bj

det A
for j = 1, ..., n.
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Proof of Cramer’s Rule:

Since det A 6= 0, A−1 = 1
det A

adj A. Hence the

solution to the system Ax = b is given by:

A−1x = 1
det A

adj A b. Writing down the formula for

the matrix adj A we get:

xj =
A1jb1+A2jb2+...+Anjbn

det A
.

The numerator of this quotient is the expansion of det Bj

by the column j. �

Example: Find the value of x2 in the system

x1 + 2x2 − x3 = 0

−2x1 − 5x2 + 5x3 = 3

3x1 + 7x2 − 5x3 = 0

x2 =

det















1 0 −1
−2 3 5

3 0 −5















det















1 2 −1
−2 −5 5

3 7 −5
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Expand the determinant of the denominator by the second

column to obtain det







1 0 −1
−2 3 5

3 0 −5







=

3 det




1 −1
3 −5



 = 3(−5 + 3) = −6

on the coefficient matrix A =







1 2 −1
−2 −5 5

3 7 −5







Perform the ERO

R1 + 3R2 → R2, R2 − 3R1 → R3 to obtain

A2 =







1 2 −1
0 −1 3

0 1 −2







. Expand det A2 by the first

column to obtain

det A = det A2 = 1(2− 3) = −1. So x2 = 6.

(Note that A−1 was computed on p’ 100. Check the answer

by comparing it to A−1(0, 3, 0)⊤ = (−9, 6, 3)⊤.)
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94 History of determinants

Historically, determinants were considered before matrices.

Originally, a determinant was defined as a property of a

system of linear equations. The determinant ”determines”

whether the system has a unique solution (which occurs

precisely if the determinant is non-zero). In this sense,

two-by-two determinants were considered by Cardano at the

end of the 16th century and larger ones by Leibniz about

100 years later. Following him Cramer (1750) added to the

theory, treating the subject in relation to sets of equations.

It was Vandermonde (1771) who first recognized

determinants as independent functions. Laplace (1772)

gave the general method of expanding a determinant in

terms of its complementary minors: Vandermonde had

already given a special case. Immediately following,

Lagrange (1773) treated determinants of the second and

third order. Lagrange was the first to apply determinants to

questions outside elimination theory; he proved many

special cases of general identities.

Gauss (1801) made the next advance. Like Lagrange, he
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made much use of determinants in the theory of numbers.

He introduced the word determinants (Laplace had used

resultant), though not in the present signification, but rather

as applied to the discriminant of a quantic. Gauss also

arrived at the notion of reciprocal (inverse) determinants,

and came very near the multiplication theorem.

The next contributor of importance is Binet (1811, 1812),

who formally stated the theorem relating to the product of

two matrices of m columns and n rows, which for the special

case of m = n reduces to the multiplication theorem. On the

same day (Nov. 30, 1812) that Binet presented his paper to

the Academy, Cauchy also presented one on the subject.

(See Cauchy-Binet formula.) In this he used the word

determinant in its present sense, summarized and simplified

what was then known on the subject, improved the notation,

and gave the multiplication theorem with a proof more

satisfactory than Binet’s. With him begins the theory in its

generality.

Source:

http://en.wikipedia.org/wiki/Determinant

(See section History)
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95 Eigenvalues and Eigenvectors

Let C be the field of complex numbers. Let A ∈ Cn×n.

x ∈ Cn is called an eigenvector (characteristic vector) if

x 6= 0 and there exists λ ∈ C such that Ax = λx. λ is

called an eigenvalue (characteristic value of A.

Claim: λ is an eigenvalue of A if and only if

det (A− λI) = 0.

The polynomial p(λ) := det (A− λI) is called a

characteristic polynomial of A.

p(λ) =

(−1)n(λn−σ1λ
n−1+σ2λ

n−2+. . .+(−1)nσn)

is a polynomial of degree n. The fundamental theorem of

algebra states that p(λ) has n roots (eigenvalues)

λ1, λ2, . . . , λn and

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Given an eigenvalue λ then a basis to the null space

N(A− λI) is a basis for the eigenspace of eigenvectors

of A corresponding to λ.
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96 Example 1

Consider the Markov chain given by

A =




0.7 0.2

0.3 0.8





(%70 of Healthy remain Healthy and %20 of Sick recover.)

A− λI =




0.7− λ 0.2

0.3 0.8− λ





det (A−λI) = (0.7−λ)(0.8−λ)−0.2 ·0.3 =

λ2 − 1.5λ + 0.5 is the characteristic polynomial of A.

det (A− λI) = (λ− 1)(λ− 0.5).

Eigenvalues of A are the zeros of the characteristic

polynomial, i.e. solutions of det (A− λI) = 0:

λ1 = 1, λ2 = 0.5.
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To find a basis for the null space of A− λ1I = A− I

denoted by N(A− λ1I) we need to bring the matrix

A− I to RREF:

A− I =




−0.3 0.2

0.3 −0.2



 So

B =




1 −2

3

0 0



 is RREF of A− I .

N(B) corresponds to the system x1 − 2
3
x2 = 0. Since

x1 is a lead variable and x2 is free x1 = 2x2

3
. By

choosing x2 = 1 we get the eigenvector x1 = (2
3
, 1)⊤

which corresponds to the eigenvalue 1.

Note that the steady state of the Markov chain corresponds

to the coordinates of x1. More precisely the ratio of Heathy

to Sick is x1

x2
= 2

3
.
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To find a basis for the null space of

A− λ2I = A− 0.5I denoted by N(A− λ2I) we

need to bring the matrix A− 0.5I to RREF:

A− 0.5I =




0.2 0.2

0.3 0.3



 So C =




1 1

0 0





is RREF of A− 0.5I .

N(C) corresponds to the system x1 + x2 = 0. Since

x1 is a lead variable and x2 is free x1 = −x2. By

choosing x2 = 1 we get the eigenvector

x2 = (−1, 1)⊤ which corresponds to the eigenvalue

0.5.
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97 Example 2

Let A =







2 −3 1

1 −2 1

1 −3 2







.

SoA− λI =







2− λ −3 1

1 −2− λ 1

1 −3 2− λ







Expand det (A− λI) by the first row:

(2− λ)
(
(−2− λ)(2− λ) + 3

)
+

(−1)(−3)
(
1(2−λ)− 1

)
+1

(
− 3+ (2+λ)

)
=

(2− λ)(λ2 − 1) + 3(1− λ) + (λ− 1) =

(λ− 1)
(
(2− λ)(λ + 1)− 3 + 1

)
=

(λ− 1)(−λ2 + λ) = −λ(λ− 1)2

λ1 = 0 is a simple root and λ2 = 1 is a double root.
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A− λ1I = A =







2 −3 1

1 −2 1

1 −3 2







RREF of A is

B =







1 0 −1
0 1 −1
0 0 0







The null space N(B) given by

x1 = x3, x2 = x3, where x3 is the free variable. Set

x3 = 1 to obtain that x1 = (1, 1, 1)⊤ is an eigenvector

corresponding to λ1 = 0.
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A− λ2I =







1 −3 1

1 −3 1

1 −3 1







RREF of A− λ2I is

B =







1 −3 −1
0 0 0

0 0 0







The null space N(B) given

by x1 = 3x2 − x3, where x2, x3 are the free variable.

Set x2 = 1, x3 = 0 to obtain that x2 = (3, 1, 0)⊤.

Set x2 = 0, x3 = 1 to obtain that x3 = (−1, 0, 1)⊤.

so x2, x3 are two (linearly independent) eigenvectors

corresponding to the double zero λ2 = 1.
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98 Similarity

Definition. Let V be a vector space with a basis

[v1 v2 . . . vn]. Let T : V→ V be a linear

transformation. Then the representation matrix

A = [a1 a2 . . . an] ∈ Rn×n of T in the basis

[v1 v2 . . . vn] is given as follows: The column j of A,

denoted by aj ∈ Rn, is the coordinate vector of T (vj).

That is T (vj) = [v1 v2 . . . vn]aj for j = 1, . . . , n.

Change a basis in V:

[v1 v2 . . . vn]
Q−→[u1 u2 . . . un]. Then the

representation matrix of T in the bases [u1 u2 . . . un] is

given by the matrix QAQ−1.

Definition. A,B ∈ Rn×n are called similar if

B = QAQ−1 for some invertible matrix Q ∈ Rn×n.

Definition. For A ∈ Rn×n trace of A is the sum of the

diagonal elements of A.

Claim. Two similar matrices A and B have the same trace

and the same determinant.
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Expressing det (A− λI) as sum of n! product of

elements of A− λI (p’ 160) we get det (A− λI) =

(−1)nλn + (−1)n−1 trA λn−1 + . . . + det A.

Hence

trA := a11 + a22 + . . . + ann =

λ1 + λ2 + . . . + λn.

det A = λ1λ2 . . . λn.

Two matrices A,B in Cn×n similar if B = QAQ−1 for

some invertible Q ∈ Cn×n.

Claim: Similar matrices have the same characteristic

polynomial.

B = QAQ−1 ⇒ B − λI = Q(A− λI)Q−1 ⇒
det (B− λI) =

det Q det (A− λI) det Q−1 = det (A− λI).

Hence two similar matrices have the same trace and

determinant.

Claim: Suppose that A,B ∈Mn(C) have the same

characteristic polynomial p(λ). If p(λ) has n distinct

roots then A and B are similar.
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99 Examples

Suppose that A is upper triangular. Hence A− λI is also

upper triangular. Thus

det (A−λI) = (a11−λ)(a22−λ) . . . (ann−λ)

(See p’ 162). The eigenvalues of upper or lower triangular

matrix are given by its diagonal entries, (counted with

multiplicities!)

Example: A =







a11 a12 a13

0 a22 a23

0 0 a33







, A− λI =







a11 − λ a12 a13

0 a22 − λ a23

0 0 a33 − λ







det (A− λI) = (a11 − λ)(a22 − λ)(a33 − λ)

In particular, the eigenvalues of the diagonal matrices are

given by its diagonal entries, (counted with multiplicities!)
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Let A =




0.7 0.2

0.3 0.8



 (p’ 183) Recall

det (A− λI) = (1− λ)(0.5− λ). Let

D =




1 0

0 0.5



. So

det (A− λI) = det (D− λI)

We show that A and D are similar. Recall that

Ax1 = x1, Ax2 = 0.5x2. Let

X = (x1 x2) =





2
3
−1

1 1





So AX = XD (Check it!. This is equivalent to the fact

that x1, x2 are the corresponding eigenvectors) As

det X = 5
3
6= 0X is invertible and A = XDX−1.

So A and X are similar.

This demonstrate the claim on the bottom of page 190.
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100 Matrices nonsimilar to diagonal

m.

Let A =




0 0

0 0



 , B =




0 1

0 0





Both matrices are upper triangular so

det (A− λI) = det (B− λI) = λ2.

Since TAT−1 = 0 = A 6= B, A and B are not

similar.

Claim: B is not similar to a diagonal matrix

Proof Suppose B similar to D =




a 0

0 b



. As

det (B− λI) = λ2 = det (D− λI) =

(a− λ)(b− λ) we must have a = b = 0, i.e.

D = A. We showed above that A and B are not similar.
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101 Defective matrices

Defn λ0 is called a defective eigenvalue of B ∈ Cn×n if

the multiplicity of λ0 in det (B− λI) (= 0) is strictly

greater than dimN(B − λ0I).

B ∈ Cn×n is called defective if it has at least one

defective eigenvalue.

Note that B =




0 1

0 0



 is defective since the only

eigenvalue λ0 = 0 is defective: rank(B − 0I) =

rankB = 1, dimN(B) = 2− rankB = 1,

since the multiplicity of λ0 = 0 in det (B− λI) = λ2

is 2.

Definition A ∈ Cn×n is called diagonable if A is similar to

a diagonal matrix D ∈ Cn×n. (The diagonal entries of D

are the eigenvalues of A counted with multiplicities.)

Diagonability Thm: B ∈ Cn×n is diagonable matrix if and

only if B is not defective.

Note that A ∈ R3×3 given on p’ 186 is not defective,

hence according to the above Theorem A is diagonable.
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102 Proof of Diagonability Thm

1. Let D = diag(d1, . . . , dn) =

diag(d1, d2, ..., dn) =









d1 0 . . . 0 0

0 d2 . . . 0 0
...

...
...

...
...

0 0 . . . 0 dn










Then

det (D− λI) = (d1 − λ)(d2 − λ) . . . (dn − λ)

The eigenvalues of D are the diagonal entries. The

multiplicity m of the eigenvalue λ0 is the number of times it

appears on the diagonal entry.

The matrix D − λ0I has exactly m zero elements on the

diagonal. Each nonzero diagonal entry can be made to a

pivot in RREF of B. Hence rankB = n−m and

dimN(B) = nulB = n− rankB = m. So λ0

is non-defective.

Thus each eigenvalue of a diagonal matrix is non-defective
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103 Example

D =







0 0 0

0 1 0

0 0 1







, det (D− λI) =

−λ(1− λ)2.

λ0 = 0 is a simple eigenvalue of D. rankD = 2 since

RREF of A is







0 1 0

0 0 1

0 0 0







. So nulA = 1.

λ1 = 1 is a double eigenvalue of D.

rank(D − I) = 1 since RREF of A− I is






1 0 0

0 0 0

0 0 0







. So nul(A− I) = 2.
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2. Claim: If A,B ∈ Cn×n are similar then for each

λ ∈ C nul(A− λI) = nul(B − λI).

Proof. Assume that B = TAT−1 so

B − λI = T (A− λI)T−1. Hence

T−1N(B − λI) = N(A− λI). (Check this claim

by computation using the fact that T is invertible.)

Since similar matrices have the same characteristic

polynomial we deduce:

Corollary: Each eigenvalue of a diagonable matrix is non

defective. Hence a diagonable matrix is not defective.

3. Lemma: Let y1, y2, . . . , yp be p eigenvectors of A

corresponding to p distinct eigenvalues. Then y1, ..., yp

are linearly independent.
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Proof: By induction on p.

p = 1: By definition an eigenvector y1 6= 0. Hence y1 l.i.

p = k: Assume that Lemma holds.

p = k + 1. Assume that

Ayi = λiyi, yi 6= 0, i = 1, . . . , k + 1 and

λi 6= λj for i 6= j. Suppose that

a1y1 + . . . + akyk + ak+1yk+1 = 0. (*)

So

A0 = 0 = A(a1y1+ . . .+akyk+ak+1yk+1) =

a1Ay1 + . . . + akAyk + ak+1Ayk+1 =

a1λ1y1 + . . . + akλkyk + ak+1λk+1yk+1

Mulitply (*) by λk+1 and subtract it from the last equality

above to get

a1(λ1−λk+1)y1 + . . .+ak(λk−λk+1)yk = 0

The induction hypothesis implies that

ai(λi − λk+1) = 0 for i = 1, . . . , k. Since

λi − λk+1 6= 0 for i < k + 1 we get

ai = 0, i = 1, . . . , k. Use these equalities in (*) to

obtain ak+1yk+1 = 0⇒ ak+1 = 0. So

y1, . . . , yk+1 are linearly independent. �
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104 Diagonalization Thm

4. Theorem Let A ∈ Cn×n and assume that

det (A− λI) =

(λ1 − λ)m1(λ2 − λ)m2 . . . (λk − λ)mk , where

λi 6= λj for i 6= j and 1 ≤ mi (the multiplicity of λi).

Assume that dimN(A− λiI) = mi and

N(A− λiI) = span(xi1, . . . , ximi
) for

i = 1, . . . , k.

(This is equivalent to the assumption that A is not defective.)

Form the matrix whose columns are the vectors which span

the null spaces X =

(x11 . . . x1m1 x21 . . . x2m2 . . . xkmk
) ∈ Cn×n

and the diagonal matrix whose entries are the eigenvalues

of A: D = diag(λ1 . . . λk), where the diagonal entry

λi repeats mi times for i = 1, ..., k.

Then X is an invertible matrix and A = XDX−1, i.e.

A is similar to D.
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105 Proof

We claim that columns of X are l.i. Assume to the contrary

that
∑k

i=1

∑mi

j=1 bijxij = 0 (*)

and not all bij = 0. Let 1 ≤ i1 < . . . < ip ≤ k be

the set of all i such that yi :=
∑mi

j=1 bijxij 6= 0. Since

xi1, . . . , ximi
are l.i. this assumption equivalent to the

assumption that the equality bi1 = . . . = bimi
= 0

does not hold. (So p ≥ 1.) Hence (*) is equivalent to

yi1 + yi1 + . . .+ yip = 0. Note that our assumptions

imply that yil is an eigenvector corresponding to λil . Since

λil 6= λim for l 6= m we ge a contradiction to Lemma on

p’ 197. Hence all the columns of X are l.i.. So X is

invertible.

A straightforward calculation shows AX = XD. As X is

invertible A = XDX−1. �
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106 Corollaries

Corollary 1: Let A ∈ Cn×n and assume that the

characteristic polynomial of A has only simple roots. Then

A is diagonable

Proof. So

det (A− λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ),

where λi 6= λj for i 6= j. Since det (A− λiI) = 0

let Ayi = λiyi, yi 6= 0. Lemma on p’ 197 yields that

y1, . . . , yn l.i.. Let X = (y1 y2 . . . yn) ∈ Cn×n.

So X is invertible. As above AX = XD where

D = diag(λ1, . . . , λn). So A = XDX−1. �

Corollary Assume that A,B ∈ Cn×n and suppose that

p(λ) = det (A− λI) = det (B− λI), (i.e. A

and B have the same characteristic polynomial. If p(λ)

have simple roots then A and B are similar.

Proof Let D be the diagonal matrix as in Corollary 1. So

A = XDX−1, B = Y DY −1 ⇒
A = (XY −1)B(XY −1)−1.
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107 Examples

1. See example on page 192

2. Let A =







2 −3 1

1 −2 1

1 −3 2







. (p’ 186)

det (A− λI) = −λ(λ− 1)2.

X = (x1 x2 x3) =







1 3 −1
1 1 0

1 0 1







, D =







0 0 0

0 1 0

0 0 1







A = XDX−1 =






1 3 −1
1 1 0

1 0 1













0 0 0

0 1 0

0 0 1













−1 3 −1
1 −2 1

1 −3 2
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Powers of diagonable matrices

A = XDX−1 ⇒ Am = XDmX−1,

Dm = diag(λm
1 . . . λm

n ), m = 1, . . .

Iteration process:

xm = Axm−1, m = 1, . . .⇒ xm = Amx0.

Under what conditions xm converges to x := x(x0)?

If A is diagonable then xm converges to x for all x0 if and

only if each eigenvalue of A either |λ| < 1 or λ = 1.

Markov Chains: A ∈ Rn×n is called column (row)

stochastic if all entries of A are nonnegative and the sum of

each column (row) is 1. That is ATe = e, (Ae = e),

where e = (1, 1, . . . , 1)T. Under mild assumptions, e.g.

all entries of A are positive limm→∞ Amx0 = x. If A

is column stochastic and eTx0 = 1 then the limit vector is

a unique probability eigenvector of A:

Ax = x, x = (x1, . . . , xn)
T,

0 < x1, . . . , xn, x1 + x2 + . . . xn = 1.
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108 Examples

1. See example on page 192: A =




0.7 0.2

0.3 0.8



 =





2
3
−1

1 1








1 0

0 0.5









3
5

3
5

−3
5

2
5





Ak =




0.7 0.2

0.3 0.8





k

=





2
3
−1

1 1








1k 0

0 (0.5)k









3
5

3
5

−3
5

2
5





limk→∞ Ak =




0.7 0.2

0.3 0.8



 =





2
3
−1

1 1








1 0

0 0









3
5

3
5

−3
5

2
5



 =





2
5

2
5

3
5

3
5



 (columns give proportions of healthy and sick)
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2. From page 202Ak = A since diag(0, 1, 1)k =

diag(0k, 1k, 1k) = diag(0, 1, 1).

(This follows also from the straightforward computation

A2 = A .

A is called projection, or involution if A2 = A.

For projection limk→∞ Ak = A.
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Systems of linear ordinary differential equations (SOLODE)

y′
1 = a11y1 + a12y2 + . . .+ a1nyn

y′
2 = a21y1 + a22y2 + . . .+ a2nyn

...
...

...
...

...
...
...

y′
n = an1y1 + an2y2 + . . .+ a1nyn

In matrix terms we write: y′ = Ay, where

y = y(t) = (y1(t), y2(t), ..., yn(t))
T and

A ∈ Cn×n a constant matrix.

We guess a solution of the form y(t) = eλtx, where

x = (x1, . . . , xn)
⊤ ∈ Cn is a constant vector. we

assume that x 6= 0, otherwise we have a constant

non-interesting solution x = 0. Then

y′ = (eλt)′x = λeλtx. The system y′ = Ay is

equivalent to λeλtx = A(eλtx). Since eλt = 6= 0

divide by eλt to get Ax = λx.

Corollary: If x( 6= 0) is an eigenvector of A corresponding

to the eigenvalue λ then y(t) = eλtx is a nontrivial

solution of the given SOLODE.
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Theorem Assume that A ∈ Cn×n is diagonable:

det (A− λI) =

(λ1 − λ)m1(λ2 − λ)m2 . . . (λk − λ)mk , where

λi 6= λj for i 6= j, 1 ≤ mi (the multiplicity of λi), and

dimN(A− λiI) = mi,

N(A− λi) = span(xi1, . . . , ximi
) for

i = 1, . . . , k. Then the general solution of SOLODE is:

y(t) =
∑k,mi

i=1,j=1 Cije
λi(t−t0)xij .

y(t) is determined by the initial condition y(t0) = c.
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109 Examples

1.

y′
1 = 0.7y1 + 0.2y2

y′
2 = 0.3y1 + 0.8y2

The right-hand side is given by A =




0.7 0.2

0.3 0.8





which was studies on p’ 183.

det (A− λI) = (λ− 1)(λ− 0.5).

Ax1 = x1, Ax2 = 0.5x2,

x1 = (2
3
, 1)⊤, x2 = (−1, 1)⊤.

The general solution of the system

y(t) = c1e
tx1 + c2e

0.5tx2:



y1(t)

y2(t)



 = c1e
t





2
3

1



 + c2e
0.5t




−1
1





y1(t) = 2c1e
t

3
− c2e

0.5t

y2(t) = c1e
t + c2e

0.5t
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2.

y′
1 = 2y1 −3y2 +y3

y′
2 = y1 −2y2 +y3

y′
3 = y1 −3y2 +2y3

A =







2 −3 1

1 −2 1

1 −3 2







as on p’ 202

det (A− λI) = −λ(λ− 1)2

λ1 = 0, λ2 = λ3 = 1

X = (x1 x2 x3) =







1 3 −1
1 1 0

1 0 1







General solution y(t) = c1e
0x1 + c2e

tx2 + c3e
tx3:

y1(t) = c1 + 3c2e
t − c3e

t

y2(t) = c1 + c2e
t

y3(t) = c1 + c3e
t
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110 Initial conditions

y(0) = y⊤
0 are equivalent always to Xc = y0.

Solve this system either by Gauss elimination or

c = X−1y0.

Example 1: In the system of ODE on page 208 find the

solution satisfying IC y(0) = (1, 2)⊤.

Solution This condition is equivalent to




2
3
−1

1 1








c1

c2



 =




1

2








c1

c2



 =





2
3
−1

1 1





−1 


1

2



 =





3
5

3
5

−3
5

2
5








1

2



 =





9
5

1
5





(The inverse is taken from page 204)

Now substitute these values of c1, c2 in the formulas on p’

208.
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Complex eigenvalues of real matrices

Claim: Let A ∈ Rn×n and assume

λ := α + iβ, α, β ∈ R is non-real eigenvalue

(β 6= 0). Then the corresponding eigenvector

x = u + iv, u, v ∈ Rn (Au = λu) is non-real

(v 6= 0). Furthermore λ = α− iβ 6= λ is another

eigenvalue of A with the corresponding eigenvector

x = u− iv.

The corresponding contributions of the above two complex

eigenvectors to the solution of y′ = Ay is

eαtC1(cos(βt)u− sin(βt)v) +

eαtC2(sin(βt)u + cos(βt)v).

These two solutions can be obtained by considering the real

linear combination of the real and the imaginary part of the

complex solution eλtx.

Recall the Euler’s formula for ez where

z = a + ib, a, b ∈ R:

ez = ea+ib = eaeib = ea(cos b + i sin b).
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Second Order Linear Differential Systems

y′′ = A1y + A2y
′,

A1, A2 ∈ Cn×n, y = (y1, . . . , yn)
T.

Let z = (y1, . . . , yn, y
′
1, . . . , y

′
n)

T. Then

z′ = Az, where A =




0n In

A1 A2



 ∈ C2n×2n.

Here 0n is n× n zero matrix and In is n× n identity

matrix.

The initial conditions are

y(t0) = a ∈ Cn, y′(t0) = b ∈ Cn which are

equivalent to the initial conditions z(t0) = c ∈ C2n.

The solution of the second order differential system with n

unknown functions can be solved by converting this system

to the first order system with 2n unknown functions.

216



111 Exponential of a Matrix

For A ∈ Cn×n let

eA = I + A + 1
2!
A2 + 1

3!
A3 + . . .

If D = diag(λ1, λ2, . . . , λn) then

eD = diag(eλ1 , eλ2 , . . . , eλn).

If A is diagonable, i.e. A = XDX−1 then

eA = XeDX−1.

etA = I + tA + 1
2!
t2A2 + 1

3!
t3A3 + . . .

(etA)′ = 0+A+ 1
2!
2tA2+ 1

3!
3t2A3+. . . = AeAt

If A is diagonable A = XDX−1 then

tA = X(tD)X−1 ⇒
eAt = X diag(eλ1t, . . . , eλnt)X−1.

The matrix Y (t) := e(t−t0)A satisfies the matrix

differential equation Y ′(t) = AY (t) = Y (t)A with

the initial condition Y (t0) = I .

(As in the scalar case, i.e. A is 1× 1 matrix.)

The solution of y′ = Ay with the initial condition

y(t0) = a is given by y(t) = e(t−t0)Aa.
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112 Examples

1.

A =




0.7 0.2

0.3 0.8



 =





2
3
−1

1 1








1 0

0 0.5









3
5

3
5

−3
5

2
5





eA =



2
3
−1

1 1








e1 0

0 e0.5









3
5

3
5

−3
5

2
5



 =





2e−3e0.5

5
2e−2e0.5

5

3e−3e0.5

5
3e+2e0.5

5
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etA =



2
3
−1

1 1








et 0

0 e0.5t









3
5

3
5

−3
5

2
5



 =





2et−3e0.5t

5
2et−2e0.5t

5

3et−3e0.5t

5
3et+2e0.5t

5





In the system of ODE on page 208 the solution satisfying IC

y(0) = (1, 2)⊤ is given as.

y(t) = eAty(0) =




2et−3e0.5t

5
2et−2e0.5t

5

3et−3e0.5t

5
3et+2e0.5t

5








1

2



 =





6et−7e0.5t

5

9et+e0.5t

5





Compare this solution with the solution given on page 211
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2.

B =




0 1

0 0



 is defective.

Compute eB, etB using power series (p’ 213). Note

B2 = 0. Hence Bk = 0 for k ≥ 2. So

eB = I + B + 1
2!
B2 + 1

3!
B3 + . . . = I + B =




1 1

0 1





etB = I + tB + 1
2!
t2B2 + 1

3!
t3B3 + . . . =

I + tB =




1 t

0 1





Hence the system of ODLE
y′
1 = y2

y′
2 = 0

Has the

general solution



y1(t)

y2(t)



 = etB




c1

c2



 =




c1 + c2t

c2
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113 Spectral Theory of Real

Symmetric Matrices

Theorem Let A = AT ∈ Rn×n be a real symmetric

matrix. Then all eigenvalues of A are real. A is

orthogonally similar to a real diagonal matrix

D = diag(λ1, . . . , λn):

A = QDQ−1 = QDQT , where Q is an orthogonal

matrix QT = Q−1. The columns of Q is an orthonormal

basis of Rn consisting of eigenvectors of A.

Procedure: Find the characteristic polynomial of A and

compute its eigenvalues: det (A− λI) =

(λ1 − λ)m1(λ2 − λ)m2 . . . (λk − λ)mk , where

λi 6= λj for i 6= j and 1 ≤ mi (the multiplicity of λi).

Then dimN(A− λiI) = mi and

N(A− λiI) = span(xi1, . . . , ximi
). (This is done

by solving the homogeneous system (A− λi)x = 0

which has mi free variables.) Perform Gram-Schmidt

process on xi1, . . . , ximi
to obtain yi1, . . . , yimi

for

i = 1, . . . , k. Form the orthogonal matrix Q =

(y11 . . . y1m1 y21 . . . y2m2 . . . ykmk
) ∈ Rn×n.
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114 Examples

1.

A =




2 1

1 2



 , det (A− λI) =

det




2− λ 1

1 2− λ



 = (2− λ)2 − 12 =

(1− λ)(3− λ), λ1 = 3, λ2 = 1.

RREF of A− λ1I = A− 3I =




−1 1

1 −1



 is




1 −1
0 0



 A basis of N(A− 3I) is

x1 = (1, 1)⊤. Perform Gram-Schmidt on x1:

r11 = ||x1|| =
√
12 + 12 =

√
2, q1 =

1
||x1||x1 = 1√

2
(1, 1)⊤ = ( 1√

2
, 1√

2
)⊤
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RREF of A− λ2I = A− I =




1 1

1 1



 is




1 1

0 0



 A basis of N(A− I) is x2 = (−1, 1)⊤.

Note that

x1 ⊥ x2 ⇐⇒ x⊤
1 x2 = (1)(−1) + (1)(1) = 0.

Perform Gram-Schmidt on x2:

r11 = ||x2|| =
√

(−1)2 + 12 =
√
2, q2 =

1
||x2||x2 = 1√

2
(−1, 1)⊤ = (−1√

2
, 1√

2
)⊤.

Q =





1√
2
− 1√

2
1√
2

1√
2



,

A = QDQ−1 = QDQ⊤ =




1√
2
− 1√

2
1√
2

1√
2








3 0

0 1









1√
2

1√
2

− 1√
2

1√
2
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2. A =







1 2 1

2 4 2

1 2 1







, A− λI =







1− λ 2 1

2 4− λ 2

1 2 1− λ







Expand det (A− λI) by the first row and use the

formula for 2× 2 determinant to obtain:

(1−λ)
(
(4−λ)(1−λ)−22

)
+(−2)

(
2(1−λ)−

2
)
+ 1

(
22 − 1(4− λ)

)
= (1− λ)(λ2 − 5λ) +

4λ + λ = λ
(
(1− λ)(λ− 5) + 5

)
= λ2(6− λ)

λ1 = 6, λ2 = λ3 = 0.
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RREF of

A− λ1I = A− 6I =







−5 2 1

2 −2 2

1 2 −5







is

B =







1 0 −1
0 1 −2
0 0 0







A basis of N(B) is

x1 = (1, 2, 1)⊤ (Set the free variable x3 = 1.)

Perform GS on x1:

r11 = ||x1|| =
√
12 + 22 + 12 =

√
6,

q1 = 1
||x1||x1 = ( 1√

6
, 2√

6
, 1√

6
)⊤.
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RREF of A− λ2I = A =







1 2 1

2 4 2

1 2 1







is

C =







1 2 1

0 0 0

0 0 0







(Note x2, x3 are free variables) A

basis of N(C) are x2, x3 where

x2 = (−2, 1, 0)⊤ (x2 = 1, x3 = 0)

x3 = (−1, 0, 1)⊤ (x2 = 0, x3 = 1)

So x2, x3 are two linearly independent eigenvectors

corresponding to a double eigenvalue λ2 = λ3 = 0.

Note that x1 ⊥ span(x2, x3) as

x⊤
1 x2 = 1(−2) + 2(1) + 1(0) = 0 = x⊤

1 x3 =

1(−1) + 2(0) + 1(1).

Since λ1 = 6 6= λ2 = λ3 = 0

So x1 is orthogonal to any eigenvector corresponding to

λ = 0.
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Gram-Schmidt process on

x2 = (−2, 1, 0)⊤, x3 = (−1, 0, 1)⊤:

r11 = ||x2|| =
√

(−2)2 + 12 + 02 =
√
5, q2 =

1
||x2||x2 = (− 2√

5
, 1√

5
, 0)⊤.

r12 = q⊤
2 x3 = 2√

5
,

p1 = r12q2 = (−4
5
, 2
5
, 0)⊤

x3 − p1 = (−1
5
,−2

5
, 1)⊤

r22 = ||x3 − p1|| =
√

30
5

,

q3 = 1
r22

(x3 − p1) = (− 1√
30

,− 2√
30

, 5√
30

)⊤

Q =







1√
6
− 2√

5
− 1√

30
2√
6

1√
5
− 2√

30
1√
6

0 5√
30







, A = QDQ⊤ =







1√
6
− 2√

5
− 1√

30
2√
6

1√
5
− 2√

30
1√
6

0 5√
30













6 0 0

0 0 0

0 0 0
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1√
6

2√
6

1√
6

− 2√
5

1√
5

0

− 1√
30
− 2√

30

5√
30
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115 Prf spectral theorem for sym. mat

1. Assume λ is a complex eigenvalue of a real symmetric A

with the corresponding eigenvalue x = (x1, . . . , xn)
T:

Ax = λx. Let xH := xT = (x1, . . . , xn). Then

xHx = |x1|2 + . . . + |xn|2 > 0. Thus

xHAx = λxHx. So

λxHx = xHAx = xTAx = (xTAx)T =

xHATx = xHAx = λxHx⇒ λ = λ. Thus λ is a

real number.

Every eigenvalue of A is real

2. We show by induction that A can be diagonalized by an

orthogonal matrix, i.e. A = QDQ−1 =

QDA⊤, Q⊤Q = I,D = diag(λ1, . . . , λn).

a. n = 1. Then a = 1a1−1. Any 1× 1 matrix is

symmetric and diagonal Q = 1 is 1× 1 is an orthogonal

matrix.
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b. n = m Assume that any m×m real symmetric

matrix is orthogonally similar to a diagonal matrix.

c. n = m + 1. Since λ is real the eigenvector x

corresponding to λ can be chosen real and ||x|| = 1.

Choose an orthonormal basis y1, . . . , yn−1 in the

orthogonal complement of span(x) ⊂ Rn. Then

O = (y1 . . . yn−1 x) ∈ Rn×n is an orthogonal

matrix. Now B = OTAO is symmetric

BT = (OTATO)T = OTATO = B and

B =










c11 . . . c1(n−1) 0
...

...
...

...

c(n−1)1 . . . c(n−1)(n−1) 0

0 . . . 0 λ
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Note that

B = OTAO = OT(Ay1 . . . Ayn−1 Ax) =

OT(Ay1 . . . Ayn−1 λx), which explains the n− 1

zeros on the last column of B. Since B is symmetric B

also have n− 1 zeros on the last row. Also the matrix

C = (cij)
n−1
1 ∈ R(n−1)×(n−1) is symmetric. Use

the induction) to deduce that

Q⊤
1 CQ1 = D1, Q1Q

⊤
1 = In−1. Define

Q2 =




Q1 0n−1

0⊤
n−1 1



 , 0⊤
n−1 = (0, . . . , 0

︸ ︷︷ ︸

n−1

Then Q2 is orthogonal and

D =




D1 0n−1

0⊤
n−1 λ



 =




Q⊤

1 CQ1 0n−1

0⊤
n−1 λ



 =

Q⊤
2




C 0n−1

0⊤
n−1 λ



Q2 = Q⊤
2 O⊤AQ2O =

(OQ2)
⊤A(OQ2)
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Since the product of two orthogonal matrices

OQ2(OQ2)
⊤ = OQ2Q

⊤
2 O⊤ = OO⊤ = I we

obtain that A = OQ2D(OQ2)
⊤, i.e. A is orthogonally

similar to a diagonal matrix �

3. Claim: Let A be real symmetric and x, y be two

eigenvectors corresponding to two different eigenvalues

λ, µ. Then x is orthogonal to y.

Proof: yTAx = (yTAx)T = xTAy⇒ λyTx =

µxTy⇒ (λ− µ)yTx = 0⇒ yTx = 0.

Hence in the procedure for finding the orthonormal matrix Q

it is enough to perform the Gram-Schmidt process on a

basis of each null space of A− λiI .
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116 Quadratic forms

For x = (x1, . . . , xn)
⊤ ∈ Rn

Q(x) = a11x
2
1 + a22x

2
2 + . . . + annx

2
n +

2a12x1x2 + . . . + 2a(n−1)nxn−1xn =
∑n

i=1 aiix
2
i + 2

∑

1≤i<j≤n aijxixj

is called the quadratic form in n variables.

Example 1: Q(x1, x2) = 2x2
1 + 2x2

2 + 2x1x2

Observe

(x1, x2)




2 1

1 2








x1

x2



 =

(x1, x2)




2x1 + x2

x1 + 2x2



 = x1(2x1 + x2) +

x2(x1 + 2x2) = Q(x1, x2) = Q(x)
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Example 2: Q(x1, x2, x3) =

x2
1 + 4x2

2 + x2
3 + 4x1x2 + 2x1x3 + 4x2x3

Observe (x1, x2, x3)







1 2 1

2 4 2

1 2 1













x1

x2

x3







=

(x1, x2, x3)







x1 + 2x2 + x3

2x1 + 4x2 + 2x3

x1 + 2x2 + x3







=

x1(x1 + 2x2 + x3) + x2(2x1 + 4x2 + 2x3) +

x3(x1 + 2x2 + x3) = Q(x1, x2, x3)

Claim: To each quadratic form Q(x), x ∈ Rn given on

previous page corresponds a unique symmetric matrix

A = (aij)
n
i,j=1R

n×n =









a11 a12 ... a1n

a12 a22 ... a2n

...
...

...
...

a1n a2n ... ann










such that

Q(x) = x⊤Ax. (Proof straightforward!)
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Note that Q(x) = x⊤Ax =
∑n

i,j=1 aijxixj . Indeed

the term aiix
2
i comes from i = j. The term

2aijxixj, i < j in the above sum comes from aijxixj

and ajixjxi (Recall aij = aji!)

Note that if D = diag(d1, . . . , dn) is a diagonal matrix

then

x⊤Dx = d1x
2
1 + d2x

2
2 + . . . + dnx

2
n =

∑n

i=1 d1x
2
i .
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117 Rayleigh quotient

Let A ∈ Rn×n be symmetric. Then x⊤Ax
xTx

for

0 6= x ∈ Rn is called the Rayleigh quotient. Equivalently

consider the quadratic form xTAx with the normalization

||x|| = 1(= xTx).

Arrange eigenvalues of A in a decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λn, where each eigenvalue is

repeated with its multiplicities. Then

λ1 = max0 6=x∈Rn
xTAx
xTx

= max||x||=1 x
TAx.

Equality achieved only for eigenvector of A corresponding

to λ1.

λn = min0 6=x∈Rn
xTAx
xTx

= min||x||=1 x
TAx.

Equality achieved only for eigenvector of A corresponding

to λn.

Proof. A = QDQT, D = diag(λ1, . . . , λn). Let

y := QTx⇒ xTx = yTy = y2
1 + . . . + y2

n,

xTAx = yTDy = λ1y
2
1+ . . .+λny

2
n ≤ λ2

1y
Ty.

This implies the maximal characterization. Similarly:

yTDy ≥ λny
Ty which implies the minimal

characterization.
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118 Examples

1.

A =




2 1

1 2



 , det (A− λI) =

(1− λ)(3− λ), λ1 = 3, λ2 = 1. (See page 218).

So

1 ≤ x⊤Ax
x⊤x

=
2x2

1+2x1x2+2x2
2

x2
1+x2

2
≤ 3

The maximum achieved if and only if

x = ax1 = (a, a)⊤.

The minimum is achieved if and only if

x = bx2 = (−b, b)⊤
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119 LU factorization

Def: A square matrix A ∈ Rn×n has an LU factorization

if A = LU where L ∈ Rn×n is a lower triangular matrix

with all diagonal entries equal to 1 and U ∈ Rn×n is an

upper triangular matrix with nonzero diagonal entries:

L =










1 0 . . . 0 0

l21 1 . . . 0 0
...

...
...

...
...

ln1 ln2 . . . ln(n−1) 1










U =










u11 u12 . . . u1(n−1) u1n

0 u22 . . . u2(n−1) u2n

...
...

...
...

...

0 0 . . . 0 unn
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Thm: A = (aij)
n
i,j=1 ∈ Rn×n has LU factorization if

and if all the n leading principal minors of A are nonzero:

a11 6= 0, det




a11 a12

a21 a22



 6= 0, . . .

det








a11 . . . a1n

...
...

...

an1 . . . ann







6= 0.

Moreover U is obtained by Gauss elimination without

making the pivots equal to 1 and no permutation of rows.

Further L−1 is the product of elementary matrices

corresponding to Gauss eliminations.

In particular the LU factorization is unique.
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120 Example

A =







2 4 2

1 5 2

4 −1 9







Perform the elementary row

operations R2 − 0.5R1 → R2, R3 − 2R1 → R3

to obtain B1 =







2 4 2

0 3 1

0 −9 5







= L1A where

L1 =







1 0 0

−0.5 1 0

−2 0 1







Perform the elementary row

operation R3 + 3R2 → R3 to obtain

U =







2 4 2

0 3 1

0 0 8







= L2B1 where
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L2 =







1 0 0

0 1 0

0 3 1







So U = (L2L1)A⇒ A = LU,L = L−1
1 L−1

2 =






1 0 0

0.5 1 0

2 0 1













1 0 0

0 1 0

0 −3 1







=







1 0 0

0.5 1 0

2 −3 1
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121 Proof of LU factorization Thm

Let Ak = (aij)
k
i,j=1R

k×k, k = 1, . . . , n Suppose

first that A has LU factorization. Let

Lk = (lij)
k
i,j=1, Uk = (uij)

k
i,j=1 ∈ Rk×k be the

k leading submatrices of order k of A,L,U respectively.

A straightforward calculation shows:

Ak = LkUk (∗)
Hence det Ak = det Lkdet Uk. Since Lk is upper

triangular with one on the diagonal det Lk = 1. Since

Uk is upper triangular det Uk = u11 . . . ukk. So

det Ak = det Uk. Since all diagonal elements of U

different from zero det Ak 6= 0 for k = 1, . . . , n. In

particular

a11 = u11, uii =
det Ai

det Ai−1
, i = 2, . . . , n
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Assume now that det Ai 6= 0, i = 1, . . . , n. We prove

that we can do Gauss elimination without making the pivots

equal to 1 and no permutation of rows. Since

det A1 = a11 we perform the elementary row

operations of the third kind: Ri − ai1

a11
R1, i = 2, . . . , n

to obtain B1 = (bij,1)
n
i,j=1 = L1A, where B1 has

the first column (a11, 0, . . . , 0)
⊤, and L1 is a product of

lower triangular elementary matrices with 1 on the main

diagonal. So

A = M1B1,M1 = (mij,1)
n
i,j=1 = L−1

1 . M1 is a

lower triangular matrix with ones on the main diagonal. Let

M1,2 = (mij,1)
2
i,j=1, B1, 2 = (bij,1)

2
i,j=1. Then

M1,2 is lower triangular with ones on the diagonal, B1,2 is

upper triangular and A2 = M1,2B1,2. Thus 0 6=
det A2 = det M1,2det B1,2 = 1(b11,1b22,1).

So b22,1 6= 0. Apply the elementary row operations

Ri − bi2,1

b22,1
R2, i = 3, . . . , n To obtain the matrix

B2 = (bij,2)
n
i,j=1 whose first and the second columns

are (a11, 0, . . . , 0)
⊤, (b12,1, b22,1, 0, . . . , 0)

⊤.
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So B2 = L2B1, L2 is a product of lower triangular

elementary matrices with 1 on the main diagonal. So

A = M1B1 = M1M2B2,M2 =

(mij,2)
n
i,j=1 = L−1

2 . M2 is a lower triangular matrix

with ones on the main diagonal. We proceed as above to

show that the condition det A3 6= 0 implies b33,1 6= 0.

Continue in this manner to obtain

U = Bn−1 = Ln−1Ln−2 . . . L1A, is upper

triangular with nonzero entries on the diagonal, and

L1, . . . , Ln−1 are lower triangular with ones on the

diagonal. Then Mi = L−1
i is lower triangular with ones

on the diagonal for i = 1, . . . , n− 1. Then

A = M1 . . .Mn−1U . So L = M1M2 . . .Mn−1

is a lower diagonal matrix with one on the diagonal.

�
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122 LDL⊤ factorization

Definition. A symmetric matrix A ∈ Rn×n has LDL⊤

factorization if A = LDL⊤, where L is a lower triangular

matrix with one on the diagonal and D is a diagonal matrix

with nonzero diagonal entries.

Thm. A symmetric matrix has LDL⊤ factorization if and

only if A has LU factorization, i.e. all leading minors of A

are different from 0.

The LDL⊤ factorization obtained from the LU

factorization by letting the diagonal entries of D to be the

diagonal entries of U .

After finding U determine D from the diagonal entries of

U . Then L⊤ = D−1U,L = (L⊤)⊤.
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123 Example

A =







2 −2 4

−2 −1 5

4 5 −18







Perform the following ERO

R2 + R1 → R2, R3 − 2R1 → R3 to obtain

B1 =







2 −2 4

0 −3 9

0 9 −26







Perform the ERO

R3 + 3R2 → R3 on B1 to obtain

B2 =







2 −2 4

0 −3 9

0 0 1







So U = B2,

D =







2 0 0

0 −3 0

0 0 1







,
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D−1 =







1
2

0 0

0 −1
3

0

0 0 1







, L⊤ = D−1U =







1 −1 2

0 1 −3
0 0 1







, L = (L⊤)⊤ =







1 0 0

−1 1 0

2 −3 1







Check that A = LDL⊤!
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124 Proof of LDL⊤ factorization

Suppose first that a symmetric A = LDL⊤, where L is

lower triangular with ones on the diagonal and D is a

diagonal matrix with nonzero entries. Observe that

U = DL⊤ is an upper diagonal matrix whose diagonal

entries are the diagonal entries of D, which are different

from zero. Hence A has an LU factorization.

Suppose a symmetric A has LU factorization. Let the

diagonal entries of D to be the diagonal entries of U . Then

M = D−1U is an upper triangular matrix with ones on

the main diagonal. So A = LDM . Since A symmetric

A = A⊤ = (LDM)⊤ = M⊤(D⊤)L⊤ =

M⊤(DL⊤). Since V = DL⊤ is upper triangular with

the diagonal entries equal to the diagonal entries of D it

follows that A = M⊤V is another LU decomposition of

A. Since the LU decomposition is unique it follows that

L = M⊤ ⇒M = L⊤ ⇒ A = LDM =

LDL⊤.

�
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125 Positive Definite Matrices

A = AT ∈ Rn×n is called positive definite, denoted by

A ≻ 0, if xTAx > 0 for any 0 6= x ∈ Rn.

From the minimal characterization of the smallest

eigenvalues of A it follows A ≻ 0 if and only if all the

eigenvalues of A are positive: λi > 0, i = 1, . . . , n.

Thm A = (aij)
n
i,j=1 = AT ∈ Rn×n is positive

definite if and only if the n leading principal minors of A are

positive: a11 > 0, det




a11 a12

a21 a22



 > 0, . . .

det








a11 . . . a1n

...
...

...

an1 . . . ann








> 0.

(such an i× i determinant is called the i− th principal

minor of A.)
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Proof: Assume that A = (aij)
n
i,j=1 ≻ 0. Then A has

positive eigenvalues λ1 ≥ . . . ≥ λn > 0. Hence

det A = λ1 . . . λn > 0. Let

Ak = (aij)
k
i,j ∈ Rk×k. Let x =

(x1, . . . , xk, 0, . . . , 0)
⊤, xk = (x1, . . . , xk)

⊤.

Note that x⊤Ax = x⊤
k Akxk. Since A ≻ 0 we get that

x⊤Ax = x⊤
k Akxk > 0 if xk 6= 0. Hence

Ak ≻ 0⇒ det Ak > 0, k = 1, . . . , n.

Assume now that all the leading principle minors of A are

positive. Then A = LU = LDL⊤ where L is lower

diagonal D = diag(u11, . . . , unn, and

u11, . . . , unn are the diagonal entries of the upper

triangular matrix U . Recall the formulas from page 237

a11 = u11, uii =
det Ai

det Ai−1
, i = 2, . . . , n

So uii > 0, i = 1, . . . , n⇒ D ≻ 0. Observe

x⊤Ax = x⊤LDL⊤x = y⊤Dy, where y = L⊤x.

So y⊤Dy > 0 if y 6= 0. Since det L⊤ = 1

y = 0 ⇐⇒ x = 0, hence A ≻ 0. �

250



126 Cholesky decomposition

Thm: A ≻ 0 if and only if A = MM⊤, where M is a

lower triangular with positive entries on the diagonal

Proof 1. Assume A ≻ 0. So A = LDL⊤

decomposition, where D = diag(d1, . . . , dn) ≻ 0.

Define D1 = diag(
√
d1, . . . ,

√
dn). Then

A = MM⊤, where M = LD1.

2. Suppose that A = MM⊤, where M is a lower

triangular with positive entries on the diagonal. So M is

invertible. Note x⊤Ax = x⊤MM⊤x =

(M⊤x)⊤(M⊤x) = ||M⊤x||2 ≥ 0. Since

M⊤x = 0 ⇐⇒ x = 0. Hence A ≻ 0. �
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127 Andre-Louis Cholesky

Born: 15 Oct 1875 in Montguyon, Charentes Maritime,

France Died: 31 Aug 1918 in North France.

Cholesky entered l’cole Polytechnique on 15 October 1895

He then joined the army becoming a second lieutenant, and

went to study at the school d’Application de l’Artillerie et du

Gnie starting in October 1897. He completed his course in

1899 and he maintained his steady improvement for now he

was placed 5th out of 86 students who qualified in that year.

Cholesky died from wounds received on the battle field on

31 August 1918 at 5 o’clock in the morning in the North of

France. After his death one of his fellow officers,

Commandant Benoit, published Cholesky’s method of

computing solutions to the normal equations for some least

squares data fitting problems in Note sur une methode de

resolution des equation normales provenant de l’application

de la methode des moindres carrs a un systeme d’equations

lineaires en nombre inferieure a celui des inconnues.

Application de la methode a la resolution d’un systeme defini

d’equations lineaires (Procede du Commandant Cholesky),
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published in the Bulletin geodesique in 1924.

The Cholesky Factorization (or Cholesky Decomposition)

takes a symmetric positive definite matrix A and writes it as

A = LL’ where L is a lower triangular matrix with positive

diagonal entries (sometimes called the Cholesky triangle),

and L’ is the transpose of L. To solve Ax = b one now needs

to solve LL’x = b so put y = L’x which gives Ly = b which is

solved for y, then y = L’x is solved for x to obtain the solution.

The beauty of the method is that it is trivial to solve

equations of the type Mx = b when M is a triangular matrix.

The method received little attention after its publication in

1924 but Jack Todd included it in his analysis courses in

King’s College, London, during World War II. In 1948 the

method was analysed in a paper by Fox, Huskey and

Wilkinson while in the same year Turing published a paper

on the stability of the method.
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Def.: A symmetric A ∈ Rn×n is called

1. Nonnegative definite , denoted by A � 0 if

x⊤Ax ≥ 0 for any x ∈ Rn.

2. Negative definite , denoted by A ≺ 0 if x⊤Ax < 0 for

any 0 6= x ∈ Rn.

3. Nonpositive definite , denoted by A � 0 if x⊤Ax ≤ 0

for any x ∈ Rn.

4. Indefinite if A has at least one positive and one negative

eigenvalue.

Clearly

a. A ≻ 0 ⇐⇒ −A ≺ 0

b. A � 0 ⇐⇒ −A � 0.

The maximum and minimum characterization of the

eigenvalues of A yield

Cor. A � 0 ⇐⇒ λ1 ≥ . . . ≥ λn ≥ 0,

A � 0 ⇐⇒ 0 ≥ λ1 ≥ . . . ≥ λn.
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Corollary: A symmetric A ∈ Rn×n is negative definite if

the leading prinipal minors have alternating sums:

a11 < 0, det




a11 a12

a21 a22



 > 0, . . .

(−1)ndet








a11 . . . a1n

...
...

...

an1 . . . ann








> 0

It is more difficult to characterize nonnegative definite or

nonpositive definite symmetric matrices in terms of principal

minors

Def. A principle minor of a square matrix A is obtained by

erasing the same rows and columns of A and taking the

determinant of the remaining square matrix

Thm. A symmetric A is nonnegative definite if and only if its

all principle minors are nonnegative

Note that A � 0⇒ det A = λ1 . . . λn ≥ 0. It is

not difficult to show that A � 0 implies the nonnegativity of

all principle minors. The sufficiency is more involved.
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128 Examples

1. A =




a b

b c



.

a. A ≻ 0 ⇐⇒ a > 0, ac− b2 > 0

b. A � 0 ⇐⇒ a ≥ 0, c ≥ 0, ac− b2 ≥ 0

c. A ≺ 0 ⇐⇒ a < 0, ac− b2 > 0

d. A � 0 ⇐⇒ a ≤ 0, c ≤ 0, ac− b2 ≥ 0

f. A is indefinite iff ac− b2 < 0, since

ac− b2 = det A = λ1λ2.

2. A =







1 2 1

2 4 2

1 2 1







, page 220.

λ1 = 6, λ2 = λ3 = 0 So A � 0. Principal minors of

order one are the diagonal elements 1, 4, 1. All other

principle minors are equal to zero.
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3. Let A =







2 −4 6

−4 12 −4
6 −4 35







.

a. Find LDL⊤ factorization of A:

Perform the following row operations on A:

R2 + 2R1 → R2, R3 − 3R1 → R1 to obtain

B1 =







2 −4 6

0 4 8

0 8 17







Perform the following row

operation on B1: R3 − 2R2 → R3 to obtain

B2 =







2 −4 6

0 4 8

0 0 1







So

U = B2, D =







2 0 0

0 4 0

0 0 1
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L⊤ =







1
2

0 0

0 1
4

0

0 0 1













2 −4 6

0 4 8

0 0 1







=







1 −2 3

0 1 2

0 0 1







, LDL⊤ factorization of A is A =







1 0 0

−2 1 0

3 2 1













2 0 0

0 4 0

0 0 1













1 −2 3

0 1 2

0 0 1







.

b. Show that A is positive definite.

Since A has LDL⊤ factorization and all diagonal entries

of D are positive A ≻ 0.
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c. Find the Cholesky factorization of A:

Let D1 =
√
D =







√
2 0 0

0
√
4 0

0 0
√
1







=







√
2 0 0

0 2 0

0 0 1







Then M = LD1 =







1 0 0

−2 1 0

3 2 1













√
2 0 0

0 2 0

0 0 1







=







√
2 0 0

−2
√
2 2 0

3
√
2 4 1







and A = MM⊤.
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129 LDL⊤ for negative definite

Since A = A⊤ is negative definite if and only if−A is

positive definite we deduce

Thm: A symmetric matrix is negative definite if and only if it

has LDL⊤ factorization, where all diagonal entries of D

are negative.
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130 Classification of critical points

1. One variable: Let f(t) be a continuous function with a

continuous derivative on the open interval a < t < b.

c ∈ (a, b) is called critical if f ′(c) = 0. Recall the well

known fact that if f(c), c ∈ (a, b) is a local minimum or

maximum then c is a critical point.

Problem: Given a critical point c ∈ (a, b) of f when c is a

local minimum or maximum?

Second order criteria for critical points Let f ∈ C2(a, b),

i.e. f has two continuous derivatives in (a, b). Assume

that f ′(c) = 0, c ∈ (a, b). Then

(a) If f ′′(c) > 0 then c is a local minimum. More

precisely, there exists ε > 0 so that f(c) < f(t) for any

t such that 0 < |t− c| < ε.

(b) If f ′′(c) < 0 then c is a local maximum. More

precisely, there exists ε > 0 so that f(c) > f(t) for any

t such that 0 < |t− c| < ε.

(c) If f(c) is a local minimum f ′′(c) ≥ 0.

(d) If f(c) is a local maximum f ′′(c) ≤ 0.
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Proof. Recall the Taylor formula with the remainder

f(t) = f(c)+f ′(c)(t−a)+1
2
f ′′(s(t))(t−a)2 =

f(c) + 1
2
f ′′(s(t))(t− a)2, |s(t)− c| ≤ |t− c|.

Now use continuity of the second derivative at c to deduce

the conditions (a) and (b).

Suppose that f(c) is a local minimum. Then the condition

(b) Can not hold. Hence (c) holds.

Similarly, if f(c) is a local maximum then (d) holds.
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1. Many variables: Let D ⊂ Rn, n ≥ 2 be an open set

and f : D → R be a function. Recall that Ck(D) is the

set of all function with continuous partial derivatives up to

order k. Assume that f ∈ C1(D), i.e. f is continuous

and it has continuous first order partial derivatives. Then

c ∈ D is called a critical point if

∇f(c) := ( ∂f

∂x1
(c), . . . , ∂f

∂xn
(c)) = 0.

Definition Assume that f ∈ C2(D). For x ∈ D define

the symmetric matrix H(f)(x) :=










∂2f

∂x2
1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f

∂x2∂x1
(x) ∂2f

∂x2
2
(x) . . . ∂2f

∂x2∂xn
(x)

...
...

...
...

∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) . . . ∂2f

∂x2
n

(x)











If c ∈ D is a critical point of f then H(f)(c) is called

the Hessian matrix of f at c.
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Second order criteria for critical points:

Let f ∈ C2(D). Assume that∇f(c) = 0, c ∈ D.

Then

(a) If H(f)(c) ≻ 0 then c is a local minimum. More

precisely, there exists ε > 0 so that f(c) < f(x) for

any x such that 0 < ||x− c|| < ε.

(b) If H(f)(c) ≺ 0 then c is a local maximum. More

precisely, there exists ε > 0 so that f(c) > f(x) for

any x such that 0 < ||x− c|| < ε.

(c) If f(c) is a local minimum H(f)(c) � 0.

(d) If f(c) is a local maximum H(f)(c) � 0.

Proof The proof follows from the following formula. Fix the

direction y ∈ Rn, ||y|| = 1 and let

g(t, y) = f(c + ty). Then g(t, y) ∈ C2(−ε, ε)
and g′(0, y) = ∇f(c)y = 0. The Taylor formula with

remainder using chain rule is f(c + ty) = g(t, y) =

f(c) + y⊤H(f)(c + s(t, y)y)y Use continuity of

the second derivatives of f at c to obtain the conditions (a)

and (b). (c), (d) obtained similarly to one variable case.
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3. Indefinite case

Assume that we are in the several variable case,

∇f(c) = 0 and H(f)(c) an indefinite symmetric

matrix. By linear change of coordinates x = c + Qz,

where Q is orthogonal matrix, we may assume that c = 0

and H(f)(0) = diag(λ1, . . . , λn). Assume that

f ∈ C3(D). Then the Taylor expansion of f is

f(x) = f(0) + x⊤Dx+ higher order term.

Since H(f)(0) has at least one positive and one negative

eigenvalue the quadratic form

x⊤Dx = λ1x
2
1 + λ2x

2
2 + . . . + λnx

2
n

is indefinite, i.e. it takes positive and negative values.

Hence c is a saddle point.

Recall that A =




a b

b c



 is indefinite iff

det A = ac− b2 < 0.
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131 Singular Value Decomposition

Let A ∈ Rm×n. Then there exist orthogonal matrices

U ∈ Rm×m, V ∈ Rn×n and generalized diagonal

matrix Σ = diag(σ1, . . . , σmin(m,n)) ∈ Rm×n,

with the diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0, such that

A = UΣV T. (SVD)

If m = n then Σ ∈ Rn×n is a diagonal matrix.

If m > n then Σ =

















σ1 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 σn

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

















If n > m then ΣT is as above.

σ1, ..., σn are called the singular values of A.

The number of positive singular values of A is equal to

rankA.
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Finding SVD

Assume that m ≥ n. Form the symmetric matrix

B = ATA ∈ Rn×n. Then B is nonnegative definite:

0 ≤ xTBx for any x ∈ Rn since xTBx = ||Ax||2.

Hence all the eigenvalues of B are nonnegative. As

Bx = 0 ⇐⇒ Ax = 0 it follows

rankB = rankA = r. Then the eigenvalues of B

are σ2
1, σ

2
2, . . . , σ

2
n arranged in a decreasing order with

the corresponding multiplicities. Let

v1, v2, . . . , vn ∈ Rn be an orthonormal set of

eigenvectors of B: Bvi = σ2
i vi for i = 1, . . . , n.

Form the orthogonal matrix

V := (v1, v2, . . . , vn) ∈ Rn×n. Then

B = V diag(σ2
1, . . . , σ

2
n)V

T. The vectors

ui :=
1
σi

Avi ∈ Rm is an orthonormal set of vectors for

i = 1, . . . , r. Let ur+1, . . . , um be an orthonormal

basis for span(u1, . . . , ur)
⊥. Then

U = (u1, . . . , um) ∈ Rm×m and UTU = Im.

Thus A = U diag(σ1, . . . , σn)V
T.
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If m < n form the symmetric nonnegative definite matrix

C = AAT ∈ Rm×m and

rankA = rankAT = rankC = r. Then the

eigenvalues of C are σ2
1, . . . , σ

2
m arranged in a

decreasing order with their multiplicities. Let

u1, u2, . . . , um ∈ Rm be an orthonormal set of

eigenvectors of C : Cui = σ2
i ui for i = 1, . . . , n.

Form the orthogonal matrix

U := (u1, u2, . . . , um) ∈ Rm×m. Then

C = U diag(σ2
1, . . . , σ

2
m)UT. The vectors

vi :=
1
σi

ATui ∈ Rn is an orthonormal set of vectors

for i = 1, . . . , r. Let vr+1, . . . , vn be an orthonormal

basis for span(v1, . . . , vr)
⊥. Then

V = (v1, . . . , vn) ∈ Rn×n and V TV = In. Thus

A = U diag(σ1, . . . , σn)V
T.
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132 Example

Let A =







6 −2
−3 5

0 −4







Since m = 3 > n = 2 it is

advisable to compute B = A⊤A =



6 −3 0

−2 5 −4











6 −2
−3 5

0 −4







=




45 −27
−27 45





det (B− λI) = det




45− λ −27
−27 45− λ



 =

(45− λ)2 − (−27)2 = (45− λ + 27)((45−
λ− 27) = (72− λ)(27− λ), λ1 = 72, λ2 = 18

The two positive singular values of A are

σ1 =
√
72 = 6

√
2, σ2 =

√
18 = 3

√
2
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To find the orthogonal matrix V = (v1 v2 . . . vn) in

SVD decomposition of A = UΣV ⊤, we need to

diagonalize the matrix

B = A⊤A = V DV ⊤, D = diag(σ2
1, σ

2
2, . . .).

The RREF of

B − λ1I =




−27 −27
−27 −27



 =




1 1

0 0



 x2

is a free variable. Set x2 = 1 to see that the eigenvector

x1 = (−1, 1)⊤ is a basis in N(B − λ1I). The

Gram-Schmidt process on x1 gives

v1 = 1
||x1||x1 = (− 1√

2
, 1√

2
)⊤

The RREF of

B − λ2I =




27 −27
−27 27



 =




1 −1
0 0





x2 is a free variable. Set x2 = 1 to see that the

eigenvector x2 = (1, 1)⊤ is a basis in N(B − λ2I).

The Gram-Schmidt process on x1 gives

v2 = 1
||x2||x2 = ( 1√

2
, 1√

2
)⊤
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Hence V =





1

−
√

2

1√
2

1√
2

1√
2





Recall that U = (u1 u2 . . . um) is an orthogonal

matrix. The first r-columns of U , where r = rankA,

which is also the number of positive singular values of A is

determined by the formula ui =
1
σi

Avi, i = 1, . . . , r:

u1 = 1

6
√

2







6 −2
−3 5

0 −4










− 1√

2
1√
2



 =

1
6·2







6 −2
−3 5

0 −4










−1
1



 =







−2
3

2
3

−1
3
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u2 = 1

3
√

2







6 −2
−3 5

0 −4











1√
2

1√
2



 =

1
3·2







6 −2
−3 5

0 −4










1

1



 =







2
3

1
3

−2
3







Note that u1, u2 is an orthonormal set of two vectors

To find u3 we observe that u⊤
1 u3 = 0, u⊤

2 u3 = 0,

which is equivalent to the fact that u3 is in the null space of

C = (u1 u2)
⊤ =




−2

3
2
3
−1

3

2
3

1
3
−2

3



 The RREF of

C is




1 −1 1

2

0 1 −1



. w = (1
2
, 1, 1)⊤ is a basis

in N(C). Perform GS process on w to obtain

u3 = (1
3
, 2
3
, 2
3
)⊤.
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So U = (u1 u2 u3) =







−2
3

2
3

1
3

2
3

1
3

2
3

−1
3
−2

3
2
3







Hence

A = UΣV ⊤ =






−2
3

2
3

1
3

2
3

1
3

2
3

−1
3
−2

3
2
3













6
√
2 0

0 3
√
2

0 0











1

−
√

2

1√
2

1√
2

1√
2





(Note that in this example we have a very special case

V ⊤ = V . One has to pay attention to the formula

A = UΣV ⊤
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Let U2 = (u1 u2) =







−2
3

2
3

2
3

1
3

−1
3
−2

3







,Σ2 =




6
√
2 0

0 3
√
2



 Since the last row of Σ is zero row

we deduce

UΣ =







−2
3

2
3

1
3

2
3

1
3

2
3

−1
3
−2

3
2
3













6
√
2 0

0 3
√
2

0 0







=







−2
3

2
3

2
3

1
3

−1
3
−2

3










6
√
2 0

0 3
√
2



 = U2Σ2

The reduced SVD of A is A = U2Σ2V
⊤
2 =







−2
3

2
3

2
3

1
3

−1
3
−2

3










6
√
2 0

0 3
√
2









1

−
√

2

1√
2

1√
2

1√
2





(where V2 = V )
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133 Basic properties of A⊤A,AA⊤

Lemma: For any A ∈ Rm×n

rankA = rankA⊤A = rankAA⊤.

Proof. From page 122 Ax = 0 ⇐⇒ A⊤Ax = 0 So

nulA = nulA⊤A⇒ rankA = n− nulA =

n− nulA⊤A = rankA⊤A

Hence rankA = rankA⊤ = rank(A⊤)⊤A⊤ =

rankAA⊤

Lemma: Let A = A⊤ ∈ Rn×n. Then nulA is the

number of zero eigenvalues of A, and rankA is the

number of nonzero eigenvalues of A

Proof. N(A) is the subspace of all x ∈ Rn such that

Ax = 0. This subspace is nontrivial, i.e.

nulA = dimN(A) > 0. nulA = 0 iff and only if

A has no zero eigenvalues. So rankA = n iff al the

eigenvalues of A are nonzero.

Assume that nulA > 0. Since A is diagonable

dimN(A) is equal to the number of zero eigenvalues of

A.
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Lemma: A⊤A and A⊤A are nonnegative definite, and

the number of positive eigenvalues of A⊤A and A⊤A is

equal to the rank of A.

Proof. x⊤A⊤Ax = (Ax)⊤(Ax) = ||Ax||2 ≥ 0

hence A⊤A � 0. Similarly AA⊤ � 0.

134 The Reduced SVD of A

Let A ∈ Rm×n and A = UΣV ⊤

U = (u1 u2 . . . um) ∈ Rm×m, V =

(v1 v2 . . . vn) are orthogonal matrices. Σ ∈ Rm×n is

”diagonal” matrix with the singular values on the diagonal,

see p’261. Moreover σ1 ≥ σ2 ≥ . . . σr > 0, while

other singular values equal to zero. (This follows from the

fact that σ2
1 ≥ σ

≥
2 σ2

n ≥ 0 are the eigenvalues of A⊤A,

which have exactly r = rankA positive eigenvalues.

Recall that A⊤Avi = σivi, i =

1, . . . , n, A⊤uj = σjuj, j = 1, . . . ,m

(See pages 261-263) vi, uj are called the right and the left

singular vectors of A
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For p ≤ r = rankA let Up := (u1, . . . , up) ∈
Rm×p, Vp := (v1, . . . , vp) ∈ Rn×p be the matrices

obtained from U, V by retaining their first p columns

respectively. Let Σp = diag(σ1, . . . , σp) ∈ Rp×p

and r = rankA.

Claim A = UrΣrV
T
r =

σ1u1v
⊤
1 + σ2u2v

⊤
2 + . . . + σrurv

⊤
r (∗)

(Reduced Singular Value Decomposition (RSVD)).

Proof. Let Σr,1 ∈ Rr×n be the matrix obtained from

Σ ∈ Rm×n by deleting the last m− r zero rows of Σ.

As in the example on p’ 269 UΣ = UrΣr,1. So

A = UΣV = UrΣr,1V
⊤. Since Σr is obtained by

deleting the last n− r columns it follows that

Σr,1V
⊤ = (V Σ⊤

r,1)
⊤ = (VrΣr)

⊤ = Σ⊤
r V ⊤

r =

ΣrV
⊤
r .

Hence A = UrΣr,1V
⊤ = UrΣrV

⊤
r

The last equality in (*) is obtained by straightforward

computation
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Advantages of RSVD: First, the computation of Ur, Vr are

faster than the computation of U, V . Second the storage

memory forUr, Vr, Σr is r(m + n + 1) may be may

be much less than the storage memory for U, V,Σ, which

is m2 + n2 + r if r << min(m,n).

For p < r let

Ap := UpΣpV
T
p = σ1u1v

⊤
1 + . . . + σpupv

⊤
p =

U diag(σ1, . . . , σp, 0, . . . , 0)V
T.

Then rankAp = p and Ap is the best l2 approximation

among all matrices E ∈ Rm×n, rankE ≤ p:

||A− E||2F ≥ ||A−Ap||2F = σ2
p+1 + . . . + σ2

r .

Note that the storage memory for Ap is p(m + n + 1)
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135 Example

Find the best rank one approximation to

A =







6 −2
−3 5

0 −4







Answer: The best rank one approximation is

A1 = U1Σ1V
⊤
1 = σ1u1v

⊤
1 . Using the results from

the example on p 264 we obtain

A1 = 6
√
2







−2
3

2
3

−1
3







(− 1√
2
, 1√

2
) =

2







−2
2

−1







(−1, 1) =







4 −4
−4 4

2 −2
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Applications to Digital Image Processing

In digital image processing a big matrix

A = (aij) ∈ Rm×n is generated by recording aij : the

information on the nature of the light at the place (i, j) on

the grid. There are two major problems.

1. There are errors in some entries aij that should be

corrected to improve the picture.

2. Can one condense the information stored in A such that

it storage will be much smaller than mn?

Usually any picture has a lot of redundant information. That

is the effective rank of A: the number eigenvalues that are

not equal to zero numerically, denoted by p is relatively

small. By considering Ap one filters a lot of noise and

decreases the storage memory.

280


