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1 Linear equations and matrices

The object of this section is to study a set of m linear equations in n real
variables x1, . . . , xn. It is convenient to group n variable in one quantity:
(x1, x2, . . . , xn), which is called a row vector. For reasons that will be seen
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later we will consider a column vector denoted by x, for which we either the
round brackets ( ) or the straight brackets [ ]:

x := (x1, x2, . . . , xn)> =


x1
x2
...
xn

 =


x1
x2
...
xn

 . (1.1)

We will denote by x> the row vector (x1, x2, . . . , xn). We denote the set of
all column vectors x by Rn. So R1 = R all the points on the real line; R2

are all points in the plane; R3 all points in 3-dimensional space. Rn is called
n-dimensional space. It is hard to visualize Rn for n ≥ 4, but we ca study it
efficiently using mathematical tools.

We will learn how to determine when a given system is linear equations in
Rn is unsolvable or solvable, when the solution is unique or not unique, and
how to express compactly all the solutions of the given system.

1.1 System of Linear Equation

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
...

...
...

...
...

...
am1x1 + am2x2 + ... + amnxn = bm

(1.2)

1.1.1 Examples

A trivial equation in n variables is

0x1 + 0x2 + . . .+ 0xn = 0. (1.3)

Clearly, every vector x ∈ Rn satisfies this equation. Sometimes, when we see
such an equation in our system of equations, we delete this equations from the
given system. This will not change the form of the solutions.

The following system of n equations in n unknowns

x1 = b1, x2 = b2, xn = bn. (1.4)

clearly has a unique solution x = (b1, . . . , bn)>.
Next consider the equation

0x1 + 0x2 + . . .+ 0xn = 1. (1.5)

Clearly, this equation does not have any solution, i.e. none.
Consider m linear equations in n = 2 unknowns we assume that none of

this equations is a trivial equation, i.e. of the form (1.3) for n = 2. Assume
first that m = 1, i.e. we have one equation in two variables. Then the set of
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solutions is a line in R2. So the number of solutions is infinite, many, and can
be parametrized by one real parameter.

Suppose next that m = 2. Then if the two lines are not parallel the system
of two equations in two unknowns has a unique solution. This is the generic
case, i.e. if we let the coefficients a11, a12, a21, a22 to be chosen at random by
computer. (The values of b1, b2 are not relevant.) If the two lines are parallel
but not the identical we do not have a solution. If the two lines are identical,
the system of solutions is a line.

If m ≥ 3, then in general, (generically), we would not have a solution, since
usually three pairwise distinct lines would not intersect in one point. However,
if all the lines chosen were passing through a given point then this system is
solvable.

For more specific examples see [1, Chapter One, Section I]

1.1.2 Equivalent systems of equations

Suppose we have two systems of linear equation in the same number of vari-
ables, say n, but perhaps a different numbers of equations say m and m′

respectively. Then these two systems are called equivalent if the two systems
have the same set of solutions. I.e. a vector x ∈ Rn is a solution to one system
if and only if it is a solution to the second system.

Our solution of a given system boils down to find an equivalent system for
which we can easy determine if the system is solvable or not, and if solvable
we can describe easily the set of all solutions of this system.

A trivial example of two equivalent systems is as follows.

Example 1.1 Consider the system (1.2). Then the following new system
is equivalent to (1.2):

1. Add to the system (1.2) a finite number of trivial equations of the form
(1.3).

2. Assume that the system (1.2) has a finite number of trivial equations of
the form (1.3). Delete some of these trivial equations

The main result of this Chapter is that two systems of linear equations
are equivalent if and and only if each of the system is equivalent to another
system, where the final two systems are related by Example 1.1.

1.1.3 Elementary operations

Definition 1.2 The following three operations on the given system of lin-
ear equations are called elementary.

1. Change the order of the equations.

2. Multiply an equation by a nonzero number.
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3. Add (subtract) from one equation a multiple of another equation.

Lemma 1.3 Suppose that a system of linear equations, named system II,
was obtained from a system of linear equations, named system I, by using a
sequence of elementary operations. Then we can perform a sequence of ele-
mentary operations on system II to obtain system I. In particular, the systems
I and II are equivalent.

Proof. It is enough to show the lemma when perform. We now observe that
all elementary operations are reversible. Namely performing one elementary
operation and then the second one of the same type will give back the original
system: change twice the order of the equations i and j;, multiply equation i
by a 6= 0 and then multiply equation i by 1

a
; add equation j times a to equation

i 6= j and subtract equation j times a to equation i 6= j.
Hence if x satisfies system I it satisfies system II and vice versa. 2

1.1.4 Triangular systems

An example
x1 + 2x2 = 5

2x1 + 3x2 = 8

Subtract 2 times row 1 from row 2. Hefferon notation: ρ2 − 2ρ1 → ρ2. My
notations: R2 − 2R1 → R2, or R2 ← R2 − 2R1, or R2 → R2 − 2R1. Obtain a
new system

x1 + 2x2 = 5
− x2 = −2

Find first the solution of the second equation: x2 = 2. Substitute x2 to the first
equation: x1 + 2× 2 = 5⇒ x1 = 5− 4 = 1. Unique solution (x1, x2) = (1, 2).

A general triangular system of linear equations is the following system of
n equations in n unknowns:

a11x1 + a12x2 + ... + a1nxn = b1
+ a22x2 + ... + a2nxn = b2

...
...

...
...

...
...

...
... annxn = bn

(1.6)

with n pivots: a11 6= 0, a22 6= 0, . . . ann 6= 0.
Solve the system by back substitution from down to up:

xn =
bn
ann

,

xn−1 =
−a(n−1)nxn + bn−1

a(n−1)(n−1)
, (1.7)

xi =
−ai(i+1)xi+1 − ...− ainxn + bi

aii
,

i = n− 2, ..., 1.
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1.2 Matrix formalism for solving systems of linear equa-
tions

In this subsection we introduce matrix formalism which allows us to find an
equivalent form of the system (1.2) from which we can find if the system is
solvable or not, and if solvable, to find a compact way to describe the sets of
its solution. The main advantage of this notation is that it does not uses the
variables x1, . . . , xn and easily adopted for programming on a computer.

1.2.1 The Coefficient Matrix of the system

Consider the system (1.2). The information given in the left-hand side of this
system can be neatly written in terms on m× n coefficient matrix

A =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
am1 am2 ... amn

 (1.8)

We denote the set of all m×n matrices with real entries as Rm×n. Note that
the right-hand side of (1.2) is given by a column vector b := (b1, b2, . . . , bm)>.
Hence the matrix that describes completely the system (1.2) is called the
augmented matrix and denoted by [A|b], and sometimes (A|b).

[A|b] =


a11 a12 ... a1n | b1
a21 a22 ... a2n | b2
...

...
...

... | ...
am1 am2 ... amn | bm

 (1.9)

One can view an augmented matrix [A|b] as an m × (n + 1) matrix C.
Sometimes we will use the notation A for any m×p matrix. So in this context
A can be either a coefficient matrix or an augmented matrix, and no ambiguity
should arise.

1.2.2 Elementary row operations

It is easy to see that elementary operations on a system of linear equations
discussed in §1.1.3 are equivalent to the following elementary row operations
on the augmented matrix corresponding to the system (1.2).

Definition 1.4 (Elementary Row Operations-ERO) Let C be given m× p
matrix. Then the following three operations are called ERO and denoted as
follows.

1. Interchange the rows i and j, where i 6= j

Ri ←→ Rj, (ρi ←→ ρj).
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2. Multiply the row i by a nonzero number a 6= 0

a×Ri −→ Ri, (Ri −→ a×Ri, aρi −→ ρj).

3. Replace the row i by its sum with a multiple the row j 6= i

Ri + a×Rj −→ Ri, (Ri −→ Ri + a×Rj, ρi + aρj −→ ρi).

The following lemma is the analog of Lemma 1.3 and its proof is similar.

Lemma 1.5 The elementary row operations are reversible. More precisely

1. Ri ←→ Rj is the inverse of Ri ←→ Rj,

2. 1
a
×Ri −→ Ri is the inverse of a×Ri −→ Ri

3. Ri − a×Rj −→ Ri is the inverse of Ri + a×Rj −→ Ri.

1.2.3 Row Echelon Form

Definition 1.6 A matrix C is in a row echelon form (REF) if it satisfies
the following conditions

1. The first nonzero entry in each row is 1. This entry is called a pivot.

2. If row k does not consists entirely of zeros, then the number of leading
zero entries in row k + 1 is greater than the number of leading zeros in
row k.

3. Zero rows appear below the rows having nonzero entries.

Lemma 1.7 Every matrix can be brought to a REF using ERO.

Constructive proof of existence of REF. Let C = [cij]
m,p
i=j=1.

When we modify the entries of C by ERO we rename call this matrix C!

0. Set `1 = 1 and i = 1.
1. If ci`i = 0 GOTO 3.
2. Divide row i by ci`i :

1
ci`i
Ri → Ri, (Note: ci`i = 1.)

a. Subtract cj`i times row i from row j > i: −cj`iRi +Rj → Rj for
j = i+ 1, . . . , p.
c. If `i = p or i = m GOTO END
d. Set i = i+ 1, i.e. i+ 1→ i and `i = `i−1 + 1.
f. GOTO 1.
3. If ci`i = . . . = c(k−1)`i = 0, and ck`i 6= 0 for some k, i < k ≤ m: Ri ↔ Rk

GOTO 2.
4. `i + 1→ `i. GOTO 1.
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END
2

The steps in the constructive proof of Lemma 1.7 is called Gauss Elimina-
tion

Here are a few examples of REF. 1 a b c
0 1 d e
0 0 0 1

 (1.10)

Note the REF of a matrix is not unique in general. For example by using
elementary row operation of the form Ri − tijRj for 1 ≤ i < j one can always
bring the above matrix in the row echelon form to the following matrix in a
row echelon form.  1 0 f 0

0 1 g 0
0 0 0 1

 . (1.11)

 0 1 a b
0 0 1 c
0 0 0 0

 (1.12)

Five possible REF of (a b c d) (1× 4 matrix):

(1 u v w) if a 6= 0,

(0 1 p q) if a = 0, b 6= 0,

(0 0 1 r) if a = b = 0, c 6= 0,

(0 0 0 1) if a = b = c = 0, d 6= 0,

(0 0 0 0) if a = b = c = d = 0.

Definition 1.8 Let U = [uij] be an m × p matrix in a REF. Then the
number of pivots is called the rank of U , and denoted by rankU .

Lemma 1.9 Let U = [uij] be an m× p matrix in a REF. Then

1. rankU = 0 if and only if U = 0.

2. rankU ≤ min(m, p).

3. If m > rankU then the last m− rankU rows of U are zero rows.

Proof. Clearly, U does not have pivots if and only if U = 0. There are no
two pivots on the same row or column. Hence rankU ≤ m and rankU ≤ p.

Assume that r := rankU ≥ 1. Then the pivot number j is located on the
row j in the column `j. So

1 ≤ `1 < . . . < `r ≤ p is the column location of pivots, r = rankU. (1.13)

Hence the last m− rankU rows of U are zero rows. 2
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Lemma 1.10 Let B be an m×p matrix and assume that B can be brought
to a row echelon matrix U . Then rankU and the location of the pivots in (1.13)
do not depend on a particular choice of U .

Proof. We prove the lemma by induction on p where m is fixed. For
p = 1 we have two choices. If A = 0 then U = 0 and r = 0. If A 6= 0 then
U = (1, 0, . . . , 0︸ ︷︷ ︸

m

)>, r = 1, `1 = 1. So the lemma hods for p = 1. Suppose that

the lemma holds for p = q and let p = q + 1. So B = [C|c] where B is m× p
matrix and c ∈ Rm. Let U = [V |v] be a REF of B. Hence V is a row echelon
form of C. By the induction assumption, the number of pivots r′ of V and
their column location depend only on C, hence on B. If the last m− r′ rows
of U are zero, i.e. rankU = rankV = r′ then U has r′ pivots located in the
columns {1, . . . , p− 1} and the induction hypothesis implies that the location
of the pivots and their number depends only on B. Otherwise C must have
an additional pivot on the column p located at the row r′+ 1 = rankU . Again
the number of the pivots of U and their location depends only on C. 2

Definition 1.11 Let B be an m× p matrix. Then the rank of B, denoted
by rankB, is the number of pivots of a REF of B.

1.2.4 Solution of linear systems

Definition 1.12 Let Â := [A|b] be the augmented m × (n + 1) matrix
representing the system (1.2). Suppose that Ĉ = [C|c] is a REF of Â. Assume
that C has k-pivots in the columns 1 ≤ `1 < . . . < `k ≤ n. Then the variable
x`1 , . . . , x`k corresponding to these pivots are called the lead variables. The
other variables are called free variables.

Recall that f : Rn → R is called an affine function if f(x) = a1x1+. . .+anxn+b.
f is called a linear function if b = 0. The following theorem describes exactly
the set of all solutions of (1.2).

Theorem 1.13 Let Â := [A|b] be the augmented m× (n+ 1) matrix rep-
resenting the system (1.2). Suppose that Ĉ = [C|c] be a REF of Â. Then
the system (1.2) is solvable if and only if Ĉ does not have a pivot in the last
column n+ 1.

Assume that (1.2) is solvable. Then each lead variable is a unique affine
function in free variables. These affine functions can be determined as follows.

1. Consider the linear system corresponding to Ĉ. Move all the free vari-
ables to the right-hand side of the system. Then one obtains a triangular
system in lead variables, where the right-had side are affine functions in
free variables.

2. Solve this triangular system by back substitution.
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In particular, for the solvable system we have the following alternative.

1. The system has a unique solution if and only if there are no free variables.

2. The system has many solutions, (infinite number), if and only if there is
at least one free variable.

Proof. We consider the linear system equations corresponding to Ĉ. As
ERO on Â correspond to EO on the system (1.2) it follows that the system
represented by Ĉ is equivalent to (1.2). Suppose first that Ĉ has a pivot in the
last column. So the corresponding row of Ĉ which contains the pivot on the
column n + 1 is (0, 1 . . . , 0, 1)>. The corresponding linear equation is of the
form (1.5). This equation is unsolvable, hence the whole system corresponding
to Ĉ is unsolvable. Therefore the system (1.2) is unsolvable.

Assume now that Ĉ does not have a pivot in the last column. Move all the
free variables to the right-hand side of the system given by Ĉ. It is a triangular
system in the lead variables where the right-hand side of each equation is an
affine function in the free variables. Now use back substitution to express each
lead variable as an affine function of the free variables.

Each solution of the system is determined by the value of the free variables
which can be chosen arbitrary. Hence, the system has a unique solution if and
only if it has no free variables. The system has many solutions if and only if
it has at least one free variable. 2

Consider the following example of Ĉ: 1 −2 3 −1 | 0
0 1 3 1 | 4
0 0 0 1 | 5

 (1.14)

x1, x2, x4 are lead variables, x3 is a free variable.

x4 = 5,

x2 + 3x3 + x4 = 4⇒ x2 = −3x3 − x4 + 4⇒
x2 = −3x3 − 1,

x1 − 2x2 + 3x3 +−x4 = 0⇒ x1 = 2x2 − 3x3 + x4 = 2(−3x3 − 1)− 3x3 + 5⇒
x1 = −9x3 + 3.

1.2.5 Reduced row echelon form

Among all row echelon forms U of a given matrix C there is one special REF
which is called reduced row echelon form denoted by RREF.

Definition 1.14 Let U be a matrix in a row echelon form. Then U is an
RREF if 1 is a pivot on the column k of U then all other elements on the
column k of U are zero.
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Here are two examples of 3× 4 matrices in RREF 1 0 b 0
0 1 d 0
0 0 0 1

 ,
 0 1 0 b

0 0 1 c
0 0 0 0


Bringing a matrix to RREF is called Gauss-Jordan reduction.

Here is a constructive algorithm to find a RREF of C.

Gauss-Jordan algorithm for RREF.

Let C = [cij]
m,p
i=j=1.

When we modify the entries of C by ERO we rename call this matrix C!

0. Set `1 = 1 and i = 1.
1. If ci`i = 0 GOTO 3.
2. Divide row i by ci`i :

1
ci`i
Ri → Ri, (Note: ci`i = 1.)

a. Subtract cj`i times row i from row j 6= i: −cj`iRi +Rj → Rj for
j = 1, . . . , i− 1, i+ 1, . . . , p.
c. If `i = p or i = m GOTO END
d. Set i = i+ 1, i.e. i+ 1→ i and `i = `i−1 + 1.
f. GOTO 1.
3. If ci`i = . . . = c(k−1)`i = 0, and ck`i 6= 0 for some k, i < k ≤ m: Ri ↔ Rk

GOTO 2.
4. `i + 1→ `i. GOTO 1.
END

The advantage in bringing the augmented matrix Â = [A|b] to RREF Ĉ
is that if (1.2) is solvable then its solution is given quite straightforward using
Ĉ. We need to use the following notation.

Notation 1.15 Let S and T be a subsets of a set X. Then the set T \ S
is the set of elements of T which are not S. (T \ S may be empty set.)

Theorem 1.16 Let Â := [A|b] be the augmented m× (n+ 1) matrix rep-
resenting the system (1.2). Suppose that Ĉ = [C|c] be a RREF of Â. Then
the system (1.2) is solvable if and only if Ĉ does not have a pivot in the last
column n+ 1.

Assume that (1.2) is solvable. Then each lead variable is a unique affine
function in free variables determined as follows. The leading variable x`i ap-
pears only in the equation i, for 1 ≤ i ≤ r = rankA. Shift all other variables
in the equation, (which are free variables), to the other side of equation to
obtain x`i as an affine function in free variables.

Proof. Since RREF is a row echelon form, Theorem 1.13 yields that (1.2)
is solvable if and only if Ĉ does not have a pivot in the last column n + 1.

13



Assume that Ĉ does not have a pivot in the last column n + 1. So all the
pivots of Ĉ appear in C. Hence rankÂ = rank Ĉ = rankC = rankA(= r).
The pivots of C = [cij] ∈ Rm×n are located at row i and the column `i, denote
as (i, `i), for i = 1, . . . , r. Since C is also in RREF, in the column `i there is
only one nonzero element which is equal 1 and is located in the row i.

Consider the system of linear equations corresponding to Ĉ, which is equiv-
alent to (1.2). Hence the lead variable `i appears only in the i− th equation.
Left hand-side of this equation is of the form x`i plus an linear function in
free variables whose indices are greater than x`i . The right-hand is ci, where
c = (c1, . . . , cm)>. Hence by moving the free variables to the right-hand side
we obtain the exact form of x`i .

x`i = ci −
∑

j∈{`i,`i+1,...,m}\{j`1 ,j`2 ,...,j`r}

cijxj, for i = 1, . . . , r. (1.15)

(So {`i, `i + 1, . . . ,m} consist of m − `i + 1 integers from j`i to m, while
{j`1 , j`2 , . . . , j`r} consist of the columns of the pivots in C.) 2

Example  1 0 b 0 | u
0 1 d 0 | v
0 0 0 1 | w


x1, x2, x4 lead variables x3 free variable

x1 + bx3 = u⇒ x1 = −bx3 + u,

x2 + dx3 = v ⇒ x2 = −dx3 + v,

x4 = w.

Definition 1.17 The system (1.2) is called homogeneous if b = 0, i.e.
b1 = . . . = bm = 0. A homogeneous system of linear equations has a solution
x = 0, which is called a trivial solution.

Let A be a square n × n. A is called nonsingular if the corresponding
homogeneous system of n equations in n unknowns has only solution x = 0.
Otherwise A is called singular.

Theorem 1.18 Let A be an m× n matrix. Then it RREF is unique.

Proof. Let U be a RRREF of A. Consider the augmented matrix Â :=
[A|0] corresponding to the homogeneous system of equations. Clearly Û =
[U |0] is a RREF of Â. Put the free variables on the other side of the homo-
geneous system corresponding to Û to find the solution of the homogeneous
system corresponding to Â, where each lead variable is a linear function of the
free variables. Note that the exact formulas for the lead variables determine
uniquely the columns of the RREF which correspond to the free variables.

14



Assume that U1 is another RREF of A. Lemma 1.10 yields that U and U1

have the same pivots. Hence U and U1 have the same columns which corre-
spond to pivots. By considering the homogeneous system of linear equations
corresponding to Û1 = [U1|0] we find also the solution of the homogeneous sys-
tem Â, by writing down the lead variables as linear functions in free variables.
Since Û and Û1 give rise to the same lead and free variables, we deduce that
the each linear function in free variables corresponding to a lead variable x`i
corresponding to Û and Û1 are equal. That is the matrices U and U1 have the
same row i for i = 1, . . . , rankA. All other rows of U and U1 are zero rows.
Hence U = U1. 2

Corollary 1.19 A ∈ Rn×n is nonsingular if and only if rankA = n, i.e.
the RREF of A is the identity matrix

In =


1 0 ... 0 0
0 1 ... 0 0
...

...
...

...
0 0 ... 0 1

 ∈ Rn×n. (1.16)

Proof. A is nonsingular if and only if no free variables. So rankA = n and
the RREF is In. 2

1.3 Operations on vectors and matrices

1.3.1 Operations on vectors

Vectors: Row Vector (x1, x2, ..., xn) is 1 × n matrix. Column Vector u =
u1
u2
...
um

 is m × 1 matrix. For convenience of notation we denote column

vector u as u = (u1, u2, . . . , um)>.
The coordinates of a vector and real numbers are called scalars. In these

notes scalars are denoted by small Latin letters, while vector are in a differ-
ent font: a,b, c,d,x,y, z,u,v,w are vectors, while a, b, c, d, x, y, z, u, v, w are
scalars.

The rules for multiplications of vector by scalars and additions of vectors
are:

a(x1, ..., xn) := (ax1, ..., axn),

(x1, ..., xn) + (y1, ..., yn) :=

(x1 + y1, ..., xn + yn).
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The set of all vectors with n coordinates is denoted by Rn, usually we will view
the vectors in Rn as column vectors. The operations with column vectors are
similar as with the row vectors.

au = a


u1
u2
...
um

 ,

u + v =


u1
u2
...
um

+


v1
v2
...
vm

 :=


u1 + v1
u2 + v2

...
um + vm


The zero vector 0 has all its coordinate 0. −x := (−1)x := (−x1, ...,−xn),
x + (−x) = x− x = 0.

1.3.2 Application to solutions of linear systems

Theorem 1.20 Consider the system (1.2) of m equations with n unknowns.
Then the following hold.

1. Assume that (1.2) is homogeneous, i.e. b = 0. If x and y are solutions
of a homogeneous system then sx,x + y, sx + ty are solutions of this ho-
mogeneous system for any scalars s, t. Suppose furthermore that n > m.
Then this homogeneous system has a nontrivial solution, i.e. a solution
x 6= 0.

2. Assume that (1.2) is solvable. Let x0 is a solution of nonhomogeneous
(1.2). Then all solutions of (1.2) are of the form x0 + x where x is the
general solution of the homogeneous system corresponding to (1.2) with
b = 0.

In particular the general solution of (1.2) obtained by reducing Â to a
REF is always of the following form

x0 +
n−rankA∑
j=1

tjcj. (1.17)

q := n − rankA is the number of free variables. (So q ≥ 0.) Here x0

is obtained by letting all free variables to be zero, (if q > 0). Rename
the free variables of (1.2) as t1, . . . , tq. Then cj is the solution of (1.2)
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obtained by solving the homogeneous system corresponding to [A|0], by
setting the free variable tj to be 1 and all other free variables be 0 for
j = 1, . . . , q.

Hence (1.2) has a unique solution if and only if q = 0, which implies
that m ≤ n.

Proof. Consider the homogeneous system corresponding to [A|0]. Assume
that x,y are solutions. Then it is straightforward to see that sx and x + y
are also solutions. Hence sx + ty is also a solution.

Suppose now that (1.2) is solvable and x0 is it solution. Assume that
y is a solution of (1.2). Then it is straightforward to show that x := y −
x0 is a solution to homogeneous system corresponding to [A|0]. Vice versa
if x is a solution to homogeneous system corresponding to [A|0] then it is
straightforward to see that x0 + x is a solution to (1.2).

To find a general solution of (1.2) bring the augmented matrix [Ab] to a
REF [U |d]. The assumption that the system is solvable means that d does not
have a pivot. Set all free variables to be 0. Solve the triangular system in lead
variables to obtain the solution x0. The general solution of the homogeneous
system corresponding to [A|0] is the general solution of the homogeneous sys-
tem corresponding to [U |0]. Now find the general solution by shifting all free
variables to the right hand-side and solve the lead variables as linear func-
tions in free variables t1, . . . , tq. This solution is of the form

∑q
j=1 tjcj. It is

straightforward to see that cj can be obtained by finding the unique values of
lead variables when we let tj = 1 and all other free variables are set to 0.

Finally, x0 is a unique solution if and only if there are no free variables. So
we must have that m ≥ n. 2

1.3.3 Products of matrices with vectors

Recall the definition of the scalar product in R3:

(u1, u2, u3) · (x1, x2, x3) = u1x1 + u2x2 + u3x3.

We now define the product of a row vector with a column vector with the same
number of coordinates:

u>x = (u1 u2...un)


x1
x2
...
xn

 = u1x1 + u2x2 + ...+ unxn.
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Next we define the product of m× n A and column vector x ∈ Rn:

Ax =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
am1 am2 ... amn



x1
x2
...
xn

 =


a11x1 + a12x2 + ...+ a1nxn
a21x1 + a22x2 + ...+ a2nxn

...
am1x1 + am2x2 + ...+ annxn

 ∈ Rm.

The system of m equations in n unknowns (1.2)

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
...

...
...

...
...

...
am1x1 + am2x2 + ... + amnxn = bm

can be compactly written as
Ax = b. (1.18)

A is an m × n coefficient matrix, x ∈ Rn is the columns vector of unknowns
and b ∈ Rm is the given column vector.

It is straightforward to see that for A ∈ Rm×n,x,y ∈ Rn, s, t ∈ R we have

A(x + y) = Ax + Ay, (1.19)

A(sx) = s(Ax), (1.20)

A(sx + ty) = s(Ax) + t(Ay). (1.21)

With these notations it is straightforward to see that any solution of (1.18) is
of the form x = x0 + y where Ax0 = b and Ay = 0. Moreover if y, z satisfy
the homogeneous system Ay = Az = 0 then

A(sy + tz) = s(Ay) + t(Az) = s0 + t0 = 0.

This observation gives a simple proof of Theorem 1.20.

1.3.4 Row equivalence of matrices

Definition 1.21 Let A,B ∈ Rm×n. B iss called row equivalent to A,
denoted by B ∼ A, if B can be obtained from A using ERO.

Theorem 1.22 Let A,B ∈ Rm×n. Then

1. B ∼ A ⇐⇒ A ∼ B.

2. B ∼ A if and only if A and B have the same RREF.
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Proof. Since ERO are reversible we deduce 1. Suppose that B ∼ A. Use
ERO to bring B to A. Now use ERO to bring A to RREF, which is a matrix
C. Since RREF is unique it follows that B has C as is RREF.

Vice versa suppose that A and B have the same RREF C. First use ERO
on B to bring it to C. Now bring C using ERO to A. So we obtained A from
B using ERO. 2

2 Vector Spaces

2.1 Definition of a vector space

A set V is called a vector space if:
I. For each x,y ∈ V, x + y is an element of V. (Addition)
II. For each x ∈ V and a ∈ R, ax is an element of V. (Multiplication by
scalar)

The two operations satisfy the following laws:
1. x + y = y + x, commutative law.
2. (x + y) + z = x + (y + z), associative law.
3. x + 0 = x for each x, neutral element 0.
4. x + (−x) = 0, unique anti element.
5. a(x + y) = ax + ay for each x,y, distributive law.
6. (a+ b)x = ax + bx, distributive law.
7. (ab)x = a(bx), distributive law.
8. 1x = x.

Lemma 2.1 Let V be a vector space. Then 0x = 0.

Proof. 0x = (0 + 0)x = 0x + 0x⇒ 0 = 0x− 0x = 0x. 2

2.2 Examples of vector spaces

1. R - Real Line.

2. R2 = Plane.

3. R3 - Three dimensional space.

4. Rn - n-dimensional space.

5. Rm×n - The space of m× n matrices.
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Here we add two matrices A = [aij], B = [bij] ∈ Rm×n coordinatewise.

A+B =


a11 + b11 a12 + b12 ... a1n + b1n
a21 + b21 a22 + b22 ... a2n + b2n

...
...

...
...

am1 + bm1 am2 + bm2 ... amn + bmn


Also bA := [baij]. The zero matrix 0m×n, also simply denoted as 0, is an m×n
matrix whose all entries are equal to 0:

0m×n = 0 =


0 0 ... 0
0 0 ... 0
...

...
...

...
0 0 ... 0


So −A = −(aij) := (−aij) = (−1)A and A + (−A) = A − A = 0, A − B =
A+ (−B).

6. Pn - Space of polynomials of degree at most n: Pn := {p(x) = anx
n +

an−2x
n−2 + ...+ a1x+ a0}. The neutral element is the zero polynomial.

7. C[a, b] - Space of continuous functions on the interval [a, b]. The neutral
function is the zero function.

Note. The examples 1 - 6 are finite dimensional vector spaces. 7 - is
infinite dimensional vector space.

2.3 Subspaces

Let V be a vector space. A subset W of V is called a subspace of V if the
following two conditions hold:

a. For any x,y ∈W⇒ x + y ∈W,

b. For any x ∈W, a ∈ R⇒ ax ∈W.

Note: The zero vector 0 ∈W since by the condition a: for any x ∈W one
has 0 = 0x ∈W.

Equivalently: W ⊆ V is a subspace ⇐⇒ W is a vector space with respect
to the addition and the multiplication by a scalar defined in. V. The following
result is strightforward.

Proposition 2.2 The above conditions a. and b. are equivalent to one
condition: If x,y ∈ U then ax + by ∈ U for any scalars a, b.
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Every vector space V has the following two subspaces:

1. V.

2. The trivial subspace consisting of the zero element: W = {0}.

2.4 Examples of subspaces

1. R2 - Plane: the whole space, lines through the origin, the trivial subspace.

2. R3 3-dimensional space: the whole space, planes through the origin, lines
through the origin, the trivial subspace.

3. For A ∈ Rm×n the null space of A, denoted by N(A), is a subspace of Rn

consisting of all vectors x ∈ Rn such that Ax = 0.
Note: N(A) is also called the kernel of A, and denoted by kerA. (See below
the explanation for this term.)

4. For A ∈ Rm×n the range of A, denoted by R(A), is a subspace of Rm con-
sisting of all vectors y ∈ Rm such that y = Ax for some x ∈ Rn. Equivalently
R(A) = ARn.

Note: In 3. and 4. A is viewed as a transformation A : Rn → Rm: The
vector x ∈ Rn is mapped to the vector Ax ∈ Rm (x 7→ Ax.) So R(A) is
the range of the transformation induced by A and N(A) is the set of vectors
mapped to zero vector in Rm.

2.5 Linear combination & span

For v1, ...,vk ∈ V and a1, ..., ak ∈ R the vector a1v1 + a2v2 + ... + akvk is
called a linear combination of v1, ...,vk. The set of all linear combinations of
v1, ...,vk is called the span of v1, ...,vk and denoted by span(v1, ...,vk).

Proposition 2.3 span(v1, ...,vk) is a linear subspace of V.

Proof. Assume that x,y ∈ span(v1, ...,vk). Then

x = a1v1 + . . .+ akxk, y = b1v1 + . . .+ bkvk.

Hence sx + ty = (sa1 + tb1)v1 + . . . + (sak + tbk)vk. Thus sx + ty ∈
span(v1, ...,vk). 2

We will show that all subspaces in a finite dimensional vector spaces are
always given as span(v1, ...,vk) for some corresponding vectors v1, ...,vk.
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Examples.

1. Any line through the origin in 1, 2, 3 dimensional space is spanned by any
nonzero vector on the line.

2. Any plane through the origin in 2, 3 dimensional space is spanned by any
two nonzero vectors not lying on a line, i.e. non collinear vectors.
3. R3 spanned by any 3 non planar vectors.

In the following examples A ∈ Rm×n.

4. Consider the null space N(A). Let B ∈ Rm×n be the RREF of A. B has p
pivots and k := n− p free variables. Let vi ∈ Rn be the following solution of
Ax = 0. Let the i− th free variable be equal to 1 while all other free variables
are equal to 0. Then N(A) = span(v1, ...,vk).

5. Consider the range R(A), which is a subspace of Rm. View A = [c1...cn] as a
matrix composed of n columns c1, ..., cn ∈ Rm. Then R(A) = span(c1, ..., cn).

Proof. . Observe that for x = (x1, ..., xn)T one has Ax = x1c1 +x2c2 +
...+ xncn. 2

Corollary 2.4 The system Ax = b is solvable ⇐⇒ b is a linear combi-
nation of the columns of A.

Problem. Let v1, ...,vk ∈ Rn. When b ∈ Rn is a linear combination of
v1, ...,vk?

Answer. Let C := [v1 v2... vk] ∈ Rn×k. Then b ∈ span(v1, ...,vk) ⇐⇒ the
system Ay = b is solvable.

Example. v1 = (1, 1, 0)T,v2 = (2, 3,−1)T,v3 = (3, 1, 2)T,x = (2, 1, 1)T,y =
(2, 1, 0)T ∈ R3. Show x ∈W := span(v1,v2,v3),y 6∈W.

2.6 Spanning sets of vector spaces

v1, ...,vk is called a spanning set of V ⇐⇒ V = span(v1, ...,vk).

Example: Let Veven,Vodd ⊂ P4 be the subspaces of even and odd polynomi-
als of degree 4 at most. Then Veven = span(1, x2, x4), Vodd = span(x, x3).

Example: Which of these sets is a spanning set of R3?
a. [(1, 1, 0)T, (1, 0, 1)T],
b. [(1, 1, 0)T, (1, 0, 1)T, (0, 1,−1)T],
c. [(1, 1, 0)T, (1, 0, 1)T, (0, 1,−1)T, (0, 1, 0)T].
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Theorem 2.5 v1, ...,vk is a spanning set of Rn ⇐⇒ k ≥ n and REF of
A = [v1 v2...vk] ∈ Rn×k has n pivots.

Proof. Suppose that U is REF of A. If U has n pivots than REF of [A|b]
is [U |c]. Since U has n pivots, one in each row, [U |c] does not have a pivot in
the last column. So the system Ax = b is solvable for each b. Hence each b
is a linear combination of the columns of A, i.e. span(v1, . . . ,vk) = Rn. Vice
versa, suppose U does not have n pivots. So there exists c ∈ Rn such that
[U |c] has a pivot in the last column. Hence the system Ux = c is not solvable.
Since U is row equivalent to A, we can use ERO to bring U to A. Use these
elementary operations to bring [U |c] to [A|b]. Hence the system Ax = b is
not solvable, i.e. b is not a linear combination of v1, . . . ,vk.

Finally observe that if U has n pivots than k ≥ n. So necessary condition
that span(v1, . . . ,vk) = Rn is k ≥ n. 2

Lemma 2.6 Let v1, ...,vk ∈ V and assume vi ∈ W := span(v1, ...,vi−1,vi+1, ...,vk).
Then span(v1, ...,vk) = W .

Proof. Assume for simplicity that i = k. Suppose that vk = a1v1 + . . .+
akvk−1 Then

b1v1 + . . .+ bk−1vk−1 + bkvk = (b1 + bka1)v1 + . . . (bk−1 + bkak−1)vk−1.

2

Corollary 2.7 Let v1, ...,vn ∈ Rm. Form A = [v1 v2...vn] ∈ Rm×n.
Let B ∈ Rm×n be REF of A. Then span(v1, ...,vn) is spanned by vj1 , ...,vjr
corresponding to the columns of B at which the pivots are located.

Proof. Assume that xi is a free variable. Set xi = 1 and all other free
variables are zero. We obtain a nontrivial solution a = (a1, . . . , an)> such
that ai = 1 and ak = 0 if xk is another free variable. Aa = 0 implies that
vi ∈ span(vj1 , . . . ,vjr). 2

Corollary 2.8 Let A ∈ Rm×n and assume that B ∈ Rm×n be REF of A.
Then R(A), the column space of A, is spanned by the columns of A correspond-
ing to the columns of B at which the pivots are located.

2.7 Linear Independence

v1, ...,vn ∈ V are linearly independent ⇐⇒ the equality a1v1 + a2v2 + ... +
anvn0 implies that a1 = a2 = ... = an = 0.

Equivalently v1, ...,vn ∈ V are linearly independent ⇐⇒ every vector in
span(v1, ...,vn) can be written as a linear combination of v1, ...,vn in a unique
(one) way.
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v1, ...,vn ∈ V are linearly dependent ⇐⇒ v1, ...,vn ∈ V are not linearly
independent.

Equivalently v1, ...,vn ∈ V are linearly dependent ⇐⇒ there exists a
nontrivial linear combination of v1, ...,vn which equals to zero vector: a1v1 +
...+ anvn = 0 and |a1|+ ...+ |an| > 0.

Lemma 2.9 The following statements are equivalent

1. v1, . . . ,vn lin.dep.

2. vi ∈ W := span(v1, ...,vi−1,vi+1, ...,vn) for some i.

Proof. , 1. ⇒(ii). a1v1 + . . .+anvn = 0 for some (a1, . . . , an)> 6= 0. Hence
ai 6= 0 for some i. So vi = −1

ai
(a1v1 + ...+ ai−1vi−1 + ai+1vi+1 + . . .+ anvn).

2. ⇒(i) vi = a1v1 + ...+ ai−1vi−1 + ai+1vi+1 + . . .+ anvn. So a1v1 + ...+
ai−1vi−1 + (−1)vi + ai+1vi+1 + . . .+ anvn = 0 2

Proposition 2.10 Let v1, ...,vn ∈ Rm. Form A = [v1...vn] ∈ Rm×n.
Then v1, ...,vn are linearly independent. (I.e ⇐⇒ Ax = 0 has only the
trivial solution. ⇐⇒ REF of A has n pivots).

Proof. Observe that x1v1 + . . . + xnvn = 0 ⇐⇒ Ax = 0, where
x = (x1, . . . , xn)>. The second part of the proposition follows from the theo-
rem on solution of the homogeneous system of equations. 2

2.8 Basis and dimension

Definition 2.11 v1, ...,vn form a basis in V if v1, ...,vn are linearly in-
dependent and span V.

Equivalently: v1, ...,vn form a basis in V if and only if ny vector in V can
be expressed as a linear combination of v1, ...,vn in a unique way.

Theorem 2.12 Assume that v1, ...,vn spans V. Then any collection of m
vectors u1, . . . ,um ∈ V, such that m > n is linearly dependent.

Proof. Let uj = a1jv1 + . . . + anjvn, j = 1, . . . ,m Let A = (aij) ∈ Rn×m.
Homogeneous system Ax = 0 has more variables than equations. It has a
free variable, hence a nontrivial solution x = (x1, . . . , xm)> 6= 0. It follows
x1u1 + ...+ xmum = 0. 2

Corollary 2.13 If [v1, ...,vn] and [u1, ...,um] are bases in V then m = n.

Definition 2.14 V is called n-dimensional, if V has a basis consisting of
n -elements. The dimension of V is n, which is denoted by dim V.

The dimension of the trivial space {0} is 0.
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Theorem 2.15 Let dim V = n. Then

1. Any set of n linearly independent vectors v1, . . . ,vn is a basis in V.

2. Any set of n vectors v1, . . . ,vn that span V is a basis in V.

Proof. 1. Let v ∈ V. Theorem 2.12 implies v1, . . . ,vn,v lin.dep.: a1v1 +
. . . + anvn + av = 0, (a1, . . . , an, a)> 6= 0. If a = 0 it follows v1, . . . ,vn are
lin.dep. Contradiction! So v = −1

a
(a1v1 + ...+ anvn).

2. Need to show v1, . . . ,vn lin.ind. If not Lemmas 2.9 and 2.6 imply that
V spanned by n− 1 vectors. Theorem 2.12 yields that v1, . . . ,vn are linearly
dependent. This contradicts that V has n lin. ind. vectors. 2

Lemma 2.16 (Prunning Lemma). Let v1, . . . ,vn be vectors in a vector
space V. Let W = span(v1, . . . ,vn). If v1 = . . . = vn = 0 then W = {0} and
dim W = 0. Otherwise there exists k ∈ [n] and integers 1 ≤ j1 < . . . < jk ≤ n
such that vj1 , . . . ,vjk is a basis in W.

Proof. It is enough to consider the case where not all vi = 0. If v1, . . . ,vn
are linearly independent then v1, . . . ,vn is a basis in W. So k = n and ji = i
for i ∈ [n].

Suppose that v1, . . . ,vn are linearly dependent. by Lemma 2.9 there exists
i ∈ [n] such that vi ∈ U := span(v1, . . . ,vi−1,vi+1, . . . ,vn). Hence U = W.
Continue this process to conclude the lemma. 2

Lemma 2.17 (Completion lemma) Let V be a vector space of dimen-
sion m. Let v1, . . . ,vn ∈ V be n linearly independent vectors. (Hence m ≥ n.)
Then there exist m− n vectors vn+1, . . . ,vm such that v1, . . . ,vm is a basis in
V.

Proof. If m = n then by Theorem 2.15 v1, . . . ,vn is a basis. Assume that
m > n. Hence by Thm 2.15 W := span(v1, . . . ,vn) 6= V. Let vn+1 ∈ V and
vn+1 6∈W. We claim that v1, . . . ,vn+1 are linearly independent. Suppose that
a1v1 + . . .+ an+1vn+1 = 0. If an+1 6= 0 then v+1 = − 1

an+1
(a1v1 + . . .+ anvn) ∈

W, which contradicts our assumption. So an+1 = 0. Hence a1v1+. . .+anvn =
0. As v1, . . . ,vn are linearly independent a1 = . . . = an = 0. So v1, . . . ,vn+1

are l.i. Continue in this manner to deduce the lemma. 2

Theorem 2.18 Let dim V = n. Then:

1. No set of less than n vectors can span V.

2. Any spanning set of more than n vectors can be paired down to form a
basis for V.
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3. Any subset of less than n linearly independent vectors can be extended to
basis of V.

Proof.
1. If less than n vectors span V, V can not have n lin. ind. vectors.
2. See Pruning Lemma.
3. See Completion Lemma. 2

2.9 Row and column spaces of matrices

Definition 2.19 Let A ∈ Rm×n.

1. Let r1, . . . , rm ∈ R1×n be the m rows of A. Then the row space of A is
span(r1, . . . , rm), which is a subspace of R1×n.

2. Let c1, . . . , cn ∈ Rm be the n columns of A. Then the column space of A
is span(c1, . . . , cm), which is a subspace of Rm = Rm×1.

Proposition 2.20 Let A,B ∈ Rm×n and assume that A ∼ B. Then A
and B have the same row spaces.

Proof. We can obtain B from A

A
ERO1→ A1

ERO2→ A2
ERO3→ . . . Ak−1

EROk→ B

using a sequence of ERO. It is left to show that each elementary row operation
doe not change the row space. Clearly, as each row of C := EROA is a linear
combination of the rows of A. Hence the row space of C is contained in the
row space of A. On the other hand since A = ERO−1C, where ERO−1 is the
elementary row operation which is the inverse to ERO, it follows that the row
space of C contains the row space of A. Hence C and A have the same row
space. Therefore A and B have the same row space. 2

Recall that the column space of A can be identified with the range of A,
denoted by R(A). The row space of A can be identified with R(A>).

Let A ∈ Rm×n and let B be its REF. Recall that the rank of A, denoted
by rankA is the number of pivots in B, which is the number of nonzero rows
in B.

Theorem 2.21 Let A ∈ Rm×n. Then

1. A basis of the row space of A, which is a basis for R(AT), consists of
nonzero rows in B. dim R(AT) = rankA is number of lead variables.

2. A basis of column space of A consists of the columns of A in which the
pivots of B are located. Hence dim R(A) = rankA.
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3. A basis of the null space of A is obtained by letting each free variable
to be equal 1 and all the other free variable equal to 0, and then finding
the corresponding solution of Ax = 0. The dimension of N(A), called
the nullity of A, is the number of free variables: nulA := dim N(A) =
n− rankA.

Proof. 1. Two row equivalent matrices A and C have the same row space.
(But not the same column space!)

2. Assume that the lead variables are xj1 , . . . , xjk where 1 ≤ j1 < . . . <
jk ≤ n and k = rankA. From Corollary 2.7 if follows the the column space
of A is spanned by cj1 , . . . , cjk . Suppose that a

∑k
i=1 xjicji = 0. This means

that we have a solution to Ax = 0 where all free variables are 0. Hence x = 0,
i.e. cj1 , . . . , cjk are linearly independent. Hence cj1 , . . . , cjk is a basis in the
column space of A.

3. Let xi1 , . . . , xin−k
, where 1 ≤ i1 < . . . < in−k ≤ n, be all the free vari-

ables of the system Ax = 0. For each xij let xj be the solution of Ax = 0
where we let xij = 1 and all other free variables be zero. Then the general

solution of Ax = 0 is of the form
∑n−k

i=1 xijxj. So N(A) = span(x1, . . . ,xn−k).
It is left to show that x1, . . . ,xn−k are linearly independent. Suppose that
y = (y1, . . . , yn)> =

∑n−k
i=1 xijxj = 0. Note that in the ij coordinate of y is

xij . Since y = 0 we deduce that xij = 0. Hence each free variable is zero, i.e.
x1, . . . ,xn−k are linearly independent. 2

2.10 An example for a basis of N(A)

Consider the homogeneous system Ax = 0 and assume that the RREF of A is

given by B =

[
1 2 0 3
0 0 1 −5

]
Bx = 0 is the system

x1 + 2x2 + 3x4 = 0
x3 − 5x4 = 0

Note that x1, x3 are lead variables and x2, x3 are free variables. Express
lead variables as functions of free variables: x1 = −2x2 − 3x4, x3 = 5x4

First set x2 = 1, x4 = 0 to obtain x1 = −2, x3 = 0. So the whole solution
is u = (−2, 1, 0, 0)> Second set x2 = 0, x4 = 1 to obtain x1 = −3, x4 = 5. So
the whole solution is v = (−3, 0, 5, 1)>. Hence u,v is a basis in N(A).

2.11 Useful facts

a. The column and the row space of A have the same dimension. Hence
rankA> = rankA.

b. Standard basis in Rn are given by the n columns of n×n identity matrix
In.
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e1 = (1, 0)>, e2 = (0, 1)> is a standard basis in R2. e1 = (1, 0, 0)>, e2 =
(0, 1, 0)>, e3 = (0, 0, 1)> is a standard basis in R3.

c. v1,v2, ...,vn ∈ Rn form a basis in Rn ⇐⇒ A := [v1 v2...vn] has n
pivots.

d. v1, ...,vk ∈ Rn.
Question: Find the dimension and a basis of V := span(v1,v2, ...,vk).
Answer: Form a matrix A = [v1 v2...vk] ∈ Rn×k. Then dim V = rankA.

Let B be a REF of A. Then the vectors vj corresponding to the columns of
B, where the pivots are located form a basis in V.

2.12 The space Pn

To find the dimension and a basis of a subspace in Pn One corresponds to each
polynomial p(x) = a0 + a1x+ ...+ anx

n the vector (a0, a1, . . . , an) ∈ Rn+1 and
treats these problems as corresponding problems in Rn+1

2.13 Sum of two subspaces

Definition 2.22 For any two subspaces U,W ⊆ V denote U + W :=
{v := u + w, u ∈ U,w ∈W}, where we take all possible vectors u ∈ U,w ∈
W}.

Theorem 2.23 Let V be a vector space and U,W be subspaces in V.
Then
(a) U + W and U ∩W are subspace of V.
(b) Assume that V is finite dimensional. Then

1. U,W,U ∩ W are finite dimensional Let l = dim U ∩ W ≥ 0, p =
dim U ≥ 1, q = dim W ≥ 1

2. There exists a basis in v1, . . . ,vm in U + W such that v1, . . . ,vl is a
basis in U ∩W, v1, . . . ,vp a basis in U and v1, . . . ,vl,vp+1, . . . ,vp+q−l
is a basis in W.

3. dim(U + W) = dim U + dim W − dim U ∩W

Identity #(A∪B) = #A+#B−#(A∩B) for finite sets A,B is analogous
to 3. Proof.
(a) 1. Let u,w ∈ U ∩W. Since u,w ∈ U it follows au + bw ∈ U. Similarly
au + bw ∈W. Hence au + bw ∈ U ∩W and U ∩W is a subspace.
(a) 2. Assume that u1,u2 ∈ U,w1,w2 ∈W. Then a(u1 + w1) + b(u2 + w2) =
(au1 + bu2) + (aw1 + bw2) ∈ U + W. Hence U + W is a subspace.
(b) 1. Any subspace of an m-dimensional space has dimension m at most.
(b) 2. Let v1, . . . ,vl be a basis in U∩W. Complete this linearly independent
set in U and W to a basis v1, . . . ,vp in U and a basis v1, . . . ,vl,vp+1, . . . ,vp+q−l

28



in W. Hence any for any u ∈ U,w ∈W u+w ∈ span(v1, . . . ,vp+q−l). Hence
U + W = span(v1, . . . ,vp+q−l).

We show that v1, . . . ,vp+q−l lin.ind. . Suppose that a1v1+. . .+ap+q−lvp+q−l =
0. So u := a1v1 + . . . apvp = −ap+1vp+1 + . . . − ap+q−lvp+q−l := w. Note
u ∈ U,w ∈ W. So w ∈ U ∩W. Hence w = b1v1 + . . . + blvl. Since
v1, . . . ,vl,vp+1, . . . ,vp+q−l lin.ind. ap+1 = . . . ap+q−l = b1 = . . . = bl = 0. So
w = 0 = u. Since v1, . . . ,vp l.i. a1 = . . . = ap = 0. Hence v1, . . . ,vp+q−l
lin.ind.
(b) 3. Note that from (b) 2 dim(U + W) = p+ q − l. 2

Observe U + W = W + U.

Definition 2.24 . The subspace X := U + W is called a direct sum of
U and W, if any vector v ∈ U + W has a unique representation of the form
v = u + w, where u ∈ U,w ∈W. Equivalently, if u1 + w1 = u2 + w2, where
u1,u2 ∈ U,w1,w2 ∈W, then u1 = u2,v1 = v2.

A direct sum of U and W is denoted by U⊕W

Proposition 2.25 For two finite dimensional vectors subspaces U,W ⊆
V TFAE (the following are equivalent):
(a) U + W = U⊕W
(b) U ∩W = {0}
(c) dim U ∩W = 0
(d) dim(U + W) = dim U + dim W
(e) For any bases u1, . . . ,up, w1, . . . ,wq in U,W respectively u1, . . . ,up,w1, . . . ,wq

is a basis in U + W.

Proof. Straightforward. 2

Example 1. Let A ∈ Rm×n, B ∈ Rl×n. Then N(A) ∩N(B) = N(

(
A
B

)
)

Note x ∈ N(A) ∩N(B) ⇐⇒ Ax = 0 = Bx.

Example 2. Let A ∈ Rm×n, B ∈ Rm×l. Then R(A) +R(B) = R((A B)).

Note R(A) +R(B) is the span of the columns of A and B

2.14 Sums of many subspaces

Definition 2.26 Let U1, . . . ,Uk be k subspaces of V. Then X := U1 +
. . .+ Uk is the subspace consisting all vectors of the form u1 + u2 + . . .+ uk,
where ui ∈ Ui, i = 1, . . . , k. U1+ . . .+Uk is called a direct sum of U1, . . . ,Uk,
and denoted by ⊕ki=1Ui := U1⊕ . . .⊕Uk if any vector in X can be represented
in a unique way as u1 + u2 + . . .+ uk, where ui ∈ Ui, i = 1, . . . , k.
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Proposition 2.27 For finite dimensional vectors subspaces Ui ⊆ V, i =
1, . . . , k TFAE (the following are equivalent):
(a) U1 + . . .+ Uk = ⊕ki=1Ui,
(b) dim(U1 + . . .+ Uk) =

∑k
i=1 dim Ui

(c) For any bases u1,i, . . . ,upi,i in Ui, i = 1, . . . , k, the vectors uj,i, j = 1, . . . , pi, i =
1, . . . , k form a basis in U1 + . . .+ Uk.

Proof. (a) ⇒ (c). Choose a basis u1,i, . . . ,upi,i in Ui, i = 1, . . . , k. Since
every vector in ⊕ki=1Ui has a unique representation as u1 + . . . + uk, where
ui ∈ Ui for i = 1, . . . , k it follows that 0 be written in the unique form as a
trivial linear combination of all u1,i, . . . ,upi,i for i ∈ [k]. So all these vectors
are linearly independent and span ⊕ki=1Ui. Hence.

Similarly, (c) ⇒ (a).
Clearly (c) ⇒ (b).
(b)⇒ (c). As u1,i, . . . ,upi,i for i ∈ [k] we deduce that dim(U1+. . .+Uk) ≤∑k
i=1 dim Ui. Equality holds if and only if (c) holds. 2

2.15 Fields

Definition 2.28 A set F is called a field if for any two elements a, b ∈ F
one has two operations a+b, ab, such that a+b, ab ∈ F and these two operations
satisfy the following properties.
A. The addition operation has the same properties as the addition operation
of vector spaces
1. a+ b = b+ a, commutative law;
2. (a+ b) + c = a+ (b+ c), associative law;
3. There exists unique neutral element 0 such that
a+ 0 = a for each a,
4. For each a there exists a unique anti element a+ (−a) = 0.
B. The multiplication operation has similar properties as the addition opera-
tion.
5. ab = ba, commutative law;
6. (ab)c = a(bc), associative law;
7. There exists unique identity element 1 such that
a1 = a for each a;
8. For each a 6= 0 there exists a unique inverse aa−1 = 1;
C. The distributive law:
9. a(b+c)=ab+ac
Note: The commutativity implies (b+ c)a = ba+ ca.
0a = a0 = 0 for all a ∈ F:
0a = (0 + 0)a = 0a+ 0a⇒ 0a = 0.

Examples of Fields
1. Real numbers R
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2. Rational numbers Q
3. Complex numbers C

2.16 Finite Fields

Definition 2.29 Denote by N = {1, 2, . . .}, Z = {0, 1,−1, 2,−2, . . .} the
set of positive integers and the set of whole integers respectively. Let m ∈
N. i, j ∈ Z are called equivalent modulo m, denoted as i ≡ j mod m, if
i − j is divisible by m. mod m is an equivalence relation. (Easy to show.)
Denote by Zm = Z/mZ the set of equivalence classes, usually identified with
{0, . . . ,m− 1}.

(Any integer i ∈ Z induces a unique element a ∈ {0, . . . ,m− 1} such that
i− a is divisible by m.)

In Zm define a+ b, ab by taking representatives i, j ∈ Z.

Proposition 2.30 For any m ∈ N, Zm satisfies all the properties of the
field 2.28, except 8 for some m. Property 8 holds, i.e. Zm is a field, if and
only if m is a prime number. (p ∈ N is a prime number if p is divisible by 1
and p only.)

Proof. . Note that Z satisfies all the properties of the field, except 8.
(0, 1 are the zero and the identity element of Z.) Hence Zm satisfies all the
properties of the field except 8.

Suppose m is composite m = ln, l, n ∈ N, l, n > 1. Then l, n ∈ 2, . . . ,m− 2
and ln is zero element in Zm. So l and n can not have inverses.

Supposem = p prime. Take i ∈ {1, . . . ,m−1}. Look at S := {i, 2i, . . . , (m−
1)i} ⊂ Zm. Consider ki − ji = (k − j)i for 1 ≤ j < k ≤ m − 1. So (k − j)i
is not divisible by p. Hence S = {1, . . . ,m − 1} as a subset of Zm. So there
is exactly one integer j ∈ [1,m − 1] such that ji = 1. i.e. j is the inverse of
i ∈ Zm. 2

Theorem 2.31 The number of elements in a finite field F is pk, where p
is prime and k ∈ N. For each prime p > 1 and k ∈ N there exists a finite field
F with pk elements. Such F is unique up to an isomorphism, and denoted by
Fpk .

2.17 Vector spaces over fields

Definition 2.32 Let F be a field. Then V is called vector field over F if V
satisfies all the properties stated on in §2.1, where the scalars are the elements
of F.

Example For any n ∈ N Fn := {x = (x1, . . . , xn)> : x1, . . . , xn ∈ F} is a
vector space over F.
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We can repeat all the notions that we developed for vector spaces over R
for a general field F.

For example dimFn = n
If F is a finite field with #F elements, then Fn is a finite vector space with

(#F)n elements.
Finite vector spaces are very useful in coding theory.

3 Linear transformations

3.1 One-to-one and onto maps

Definition 3.1 T is called a transformation, or map, from the source
space V to the target space W , if to each element v ∈ V the transformation T
corresponds an element w ∈ W . We denote w = T (v), and T : V → W . (In
other books T is called a map.)

Example 1: A function f(x) on the real line R can be regarded as a trans-
formation f : R→ R.
Example 2: A function f(x, y) on the plane R2 can be regarded as a trans-
formation f : R2 → R.
Example 3: A transformation f : V → R is called a real valued function on
V.
Example 4: Let V be a map of USA, where at each point we plot the vector
of the wind blowing at this point. Then we get a transformation T : V → R2.

Definition 3.2 T : X → Y is called one-to-one, or injective, denoted by
1 − 1, if for any x, y ∈ X, x 6= y one has Tx 6= Ty. I.e. the image of two
different elements of X by T are different.

T is called onto, or surjective if TX = Y ⇐⇒ Range (T ) = Y , i.e, for
each y ∈ Y there exists x ∈ X so that Tx = y.

Example 1. X = N, T : N→ N given by T (i) = 2i. T is 1− 1 but not onto.
However T : N→ Range T is one-to-one and onto.
Example 2. Id : X → X is defined as Id(x) = x for all x ∈ X is one-to-one
and onto map of X onto itself. The following Proposition is demonstrated
straightforward.

Proposition 3.3 Let X, Y be two sets. Assume that F : X → Y is one-
to-one and onto. Then there exists a one-to-one and onto map G : Y → X
such that F ◦ G = IdY , G ◦ F = IdX . G is the inverse of F denoted by F−1.
(Note (F−1)−1 = F .)
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3.2 Isomorphism of vector spaces

Definition 3.4 . Two vector spaces U,V over a field F(= R) are called
isomorphic if there exists one-to-one and onto map L : U → V, which pre-
serves the linear structure on U,V:
1. L(u1 +u2) = L(u1)+L(u2) for all u1,u2 ∈ U. (Note that the first addition
is in U, and the second addition is in V.)
2. L(au) = aL(u) for all u ∈ U, a ∈ F(= R).

Note that the above two conditions are equivalent to one condition.
3. L(a1u1 + a2u2) = a1L(u1) + a2L(u2) for all u1,u2 ∈ U, a1, a2 ∈ F(=

R). Intuitively U and V are isomorphic if they are the same spaces modulo
renaming, where L is the renaming function.

If L : U→ V is an isomorphism then L(0U) = 0V:
0V = 0L(0U) = L(0 0U) = L(0U).
It is straightfoward to show that.

Proposition 3.5 The inverse of isomorphism is an isomorphism

3.3 Iso. of fin. dim. vector spaces

Theorem 3.6 Two finite dimensional vector spaces U,V over F (= R)
are isomorphic if and only if they have the same dimension.

Proof. . (a) dim U = dim V = n. Let {u1, . . . ,un}, {v1, . . . ,vn} be
bases in U,V respectively. Define T : U → V by T (a1u1 + . . . + anun) =
a1v1 + . . . anvn. Since any u ∈ U is of the form u = a1u1 + . . . anun T is
a mapping from U to V. It is straightforward to check that T is linear. As
v1, . . . ,vn is a basis in V, it follows that T is onto. Furthermore Tu = 0 implies
a1, . . . , an = 0. Hence u = 0, i.e. T−10 = 0. Suppose that T (x) = T (y). Hence
0V = T (x)− T (y) = T (x− y). Since T−10V = 0U ⇒ x− y = 0, i.e. T is 1-1.
(b) Assume that T : U → V is an isomorphism. Let {u1, . . . ,un} be a
basis in U. Denote T (ui) = vi, i = 1, . . . , n. The linearity of T yields
T (a1u1 + . . . + anun) = a1v1 + . . . anvn. Assume that a1v1 + . . . anvn = 0.
Then a1u1 + . . . + anun = 0. Since u1, . . . ,un lin.ind. a1 = . . . = an = 0, i.e.
v1, . . . ,vn lin.ind.. For an v ∈ V, there exists u = a1v1 + . . .+ anvn ∈ U s.t.
v = Tu = T (a1u1 + . . . + anun) = a1v1 + . . . anvn. So V = span(v1, . . . ,vn)
and v1, . . . ,vn is a basis. So dim U = dim V = n. 2

Corollary 3.7 . Any finite dimensional vector space is isomorphic to
Rn (Fn).

Example. Pn- the set of polynomials of degree n at most isomorphic to
Rn+1: T ((a0, . . . , an)>) = a0 + a1x+ . . .+ anx

n.
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3.4 Isomorphisms of Rn

Recall that A ∈ Rn×n is called nonsingular if any REF of A has n pivots, i.e.
RREF of A is In, the n × n diagonal matrix which has all 1′s on the main
diagonal.

Note that the columns of In: e1, . . . , en form a standard basis of Rn.

Theorem 3.8 T : Rn → Rn is an isomorphism if and only if there exists
a nonsingular matrix A ∈ Rn×n such that T (x) = Ax for any x ∈ Rn.

Proof. . (a) Suppose A ∈ Rn×n is nonsingular. Let T (x) = Ax. Clearly
T linear. Since any system Ax = b has a unique solution T is onto and 1− 1.
(b) Assume T : Rn → Rn isomorphism. Let Tei = ci, i = 1, . . . , n. Since
e1, . . . , en are linearly independent and T is an isomorphism it follows that
c1, . . . , cn are linearly independent. Let A = [c1 c2 . . . cn]. rankA = n so
A is nonsingular. Note T ((a1, . . . , an)>) = T (

∑n
i=1 aiei) =

∑
i=1 aiT (ei) =∑n

i=1 aici = A(a1, . . . , an)>. 2

3.5 Examples

Definition 3.9 The matrix A corresponding to the isomorphism T : Rn →
Rn in Theorem (3.8) is called the representation matrix of T .

Examples: (a) The identity isomorphism Id : Rn → Rn, i.e. Id(x) = x,
is represented by In, as Inx = x. Hence In is called the identity matrix.
(b) The dilatation isomorphism T (x) = ax, a 6= 0 is represented by aIn.

(c) The reflection of R2: R((a, b)>) = (a,−b)> is represented by

(
1 0
0 −1

)
.

(d) A rotation by an angle θ in R2: (a, b)> 7→ (cos θa+sin θb,− sin θa+cos θb)>

is represented by

[
cos θ sin θ
− sin θ cos θ

]
.

3.6 Linear Transformations (Homomorphisms)

T is called a transformation or map from the source space V to the target
space W, if to each element v ∈ V the transformation T corresponds an
element w ∈W. We denote w = T (v), and T : V →W. (In other books T
is called a map.)

Definition 3.10 Let V and W be two vector spaces. A transformation
T : V→W is called linear if
1. T (u + v) = T (u) + T (v).
2. T (av) = aT (v) for any scalar a ∈ R.

The conditions 1. and 2. are equivalent to one condition T (au + bv) =
aT (u) + bT (v) for all u,v ∈ V and a, b ∈ R.
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Corollary 3.11 If T : V→W is linear then T (0V) = 0W.

Proof. 0W = 0T (v) = T (0v) = T (0V). 2

Linear transformation is also called linear operator.

Example: Let A ∈ Rm×n and define T : Rn → Rm as T (v) = Av. Then T is
a linear transformation:

A(u + v) = Au + Av, A(av) = a(Av).

R(T ) - the range of T . R(T ) is a subspace of W. dim R(T ) = rankT is
called the rank of T .

kerT - the kernel of T , or the null space of T , is the set of all vec-
tors in V mapped by T to a zero vector in W. kerT is a subspace of V.
dim kerT = nulT is called the nullity of T .

Indeed aT (u) + bT (v) = T (au + bv).
T (u) = T (v) = 0⇒ T (au + bv) = aT (u) + bT (v) = a0 + b0 = 0.

Theorem 3.12 Any linear transformation T : Rn → Rm is given by some
A ∈ Rm×n: Tx = Ax for each x ∈ Rn.

Proof. Let T (ei) = ci ∈ Rm, i = 1, . . . , n. Then A = [c1 . . . cn]. 2

Examples: (a) Ck(a, b) all continuous functions on the interval (a, b) with
k continuous derivatives. C0(a, b) = C(a, b) the set of continuous functions
in (a, b). Let p(x), q(x) ∈ C(a, b). Then L : C2(a, b) → C(a, b) given by
L(f)(x) = f ′′(x) + p(x)f ′(x) + q(x)f(x) is a linear operator. kerL is the sub-
space of all functions f satisfying the second order linear differential equation:
y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

It is known that the above ODE has a unique solution satisfies the ini-
tial conditions, IC: y(x0) = a1, y

′(x0) = a2 for any fixed x0 ∈ (a, b). Hence
dim kerL = 2. Using the theory of ODE one can show that R(L) = C(a, b).

(b) L : Pn → Pn−2 given by L(f) = f ′′ is a linear operator. L is onto and
dim kerL = 2 if n ≥ 2.

3.7 Rank-nullity theorem

Theorem 3.13 For linear T : V→W rankT + nulT = dim V.

Remark. If V = Rn,W = Rm then by Theorem (3.12) Tx = Ax. for some
A ∈ Rm×n. rankT = rankA is the number of lead variables, nulT = nulA =
dimN(A) is the number of free variables, so the total number of variables is
n = dimRn.
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Proof. (a) Suppose that nulT = 0. Then T is 1−1. So T : V→ R(T )
is isomorphism. dim V = rankT .
(b) If kerT = V then R(T ) = {0} so nulT = dim V, rankT = 0.
(c) 0 < m := nulT < n := dim V. Let v1, . . . ,vm be a basis in kerT .
Complete these set of lin.ind. vectors to a basis of V: v1, . . . , vn. Hence
T (vm+1), . . . , T (vn) is a basis in R(T ). Thus n − m = rankT . So rankT +
nulT = m+ (n−m) = dim V. 2

3.8 Matrix representations of linear transformations

Let V and W be finite dimensional vector spaces with the bases [v1 v2 . . .vn]
and [w1 w2 . . .wm]. Let T : V → W be a linear transformation. Then T
induces the representation matrix A ∈ Rm×n as follows. The column j of A is
the coordinate vector of T (vj) in the basis [w1 w2 . . .wm].

The definition of A can be formally stated as

[T (v1) T (v2) . . . T (vn)] = [w1 w2 . . .wm]A. (3.22)

A is called the representation matrix of T in the bases [v1 v2 . . .vn] and
[w1 w2 . . .wm].

Theorem 3.14 Assume the above assumptions. Assume that a ∈ Rn is
the coordinate vector of v ∈ V in the basis [v1 v2 . . .vn] and b ∈ Rm is the
coordinate vector of T (v) ∈W in the basis [w1 w2 . . .wm]. Then b = Aa.

3.9 Composition of maps

Definition 3.15 Let U,V,W be three sets. Assume that we have two
maps S : U → V, T : V → W. T ◦ S : U → W is defined by T ◦ S(u) =
T (S(u)), called the composition map, and denoted TS.

Example 1: f : R → R, g : R → R. Then (f ◦ g)(x) = f(g(x)), (g ◦ f)(x) =
g(f(x)).
Example 2: f : R2 → R, i.e. f = f(x, y), g : R → R. Then (g ◦ f)(x, y) =
g(f(x, y)), while f ◦ g is not defined

Proposition 3.16 Let U,V,W be vector spaces. Assume that the maps
S : U→ V, T : V→W are linear. Then T ◦ S : U→W is linear.

Proof. T (S(au1+bu2)) = T (aS(u1)+bS(u2)) = aT (S(u1))+bT (S(u2)) =
a(T ◦ S)(u1) + b(T ◦ S)(u2). 2
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3.10 Product of matrices

We can multiply matrix A times B if the number of columns in the matrix A
is equal to the number of rows in B.

Equivalently, we can multiply A times B if A is an m× n matrix and B is
an n × p matrix. The resulting matrix C = AB is m × p matrix. The (i, k)
entry of AB is obtained by multiplying i− th row of A and k − th column of
B.

A = [aij]
i=m,j=n
i=j=1 , B = [bjk]

j=n,k=p
j=k=1 ,

C = (cik)
i=m,k=p
i=k=1 ,

cik = ai1b1k + ai2b2k + ...+ ainbnk =
n∑
j=1

aijbjk.

So A,B can be viewed as linear transformations B : Rp → Rn, B(u) = Bu,
A : Rn → Rm, A(v) = Bv Thus AB represents the composition map AB :
Rp → Rm.
Example 

1 −2
−3 4

0 2
−7 −1

[ a b c
d e f

]
=


a− 2d b− 2e c− 2f

−3a+ 4d −3b+ 4e −3c+ 4f
2d 2e 2f

−7a− d −7b− e −7c− f


Note that in general AB 6= BA for several reasons.
1. AB may be defined but not BA, (as in the above example), or the other
way around.
2. AB and BA defined ⇐⇒ A ∈ Rm×n, B ∈ Rn×m ⇒ AB ∈ Rm×m, BA ∈
Rn×n

3. For A,B ∈ Rn×n and n > 1, usually AB 6= BA.

Example A =

[
0 1
0 0

]
, B =

[
0 0
1 0

]
Rules involving products and additions of matrices. (Note: whenever
we write additions and products of matrices we assume that they are all de-
fined, i.e. the dimensions of corresponding matrices match.)
1. (AB)C = A(BC), associative law.
2. A(B + C) = AB + AC, distributive law.
3. (A+B)C = AC +BC, distributive law.
4. a(AB) = (aA)B = A(aB), algebra rule.
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3.11 Transpose of a matrix A>

Let A =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
am1 am2 ... amn



Then A> =


a11 a21 ... am1

a12 a22 ... am2
...

...
...

...
a1n a2n ... amn


(A+B)> = A> +B>

(AB)> = B>A>

Examples  −1 2
a b

e10 π

> =

[
−1 a e10

2 b π

]
.

[ 2 3 −4
5 −1 0

] −1 2
3 −4

10 1

> =

[
−33 −12
−8 14

]>
=

[
−33 −8
−12 14

]
 −1 2

3 −4
10 1

> [ 2 3 −4
5 −1 0

]>
=

[
−1 3 10

2 −4 1

] 2 5
3 −1
−4 0

 =

[
−33 −8
−12 14

]
Let A ∈ Rm×n. Then A> ∈ Rn×m and (A>)> = A.

 −1 2
a b

e10 π

T


T

=

[
−1 a e10

2 b π

]T
=

 −1 2
a b

e10 π

 .
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3.12 Symmetric Matrices

A ∈ Rm×m is called symmetric if A> = A. The i − th row of a symmetric
matrix is equal to its i− th column for i = 1, ...,m.

Equivalently: A = [aij]
m
i,j=1 is symmetric ⇐⇒ aij = aji for all i, j =

1, ...,m.
Examples of 2× 2 and 3× 3 symmetric matrices:

[
a b
b c

]
,

 a b c
b d e
c e f


Note: the symmetricity is with respect to the main diagonal.

Assume that A ∈ Rn×n ⇒. Then A>A ∈ Rn×n and AA> ∈ Rm×m are
symmetric.

Indeed (AA>)> = (A>)>A> = AA>, (A>A)> = A>(A>)> = A>A
Identity Matrix

In =


1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1

 ∈ Rn×n.

In is in RREF with no zero rows. Clearly, In is a symmetric matrix.

Example I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 Property of the identity matrix:

ImA = AIn = A, for all A ∈ Rm×n.
Example: I2A, where A ∈ R2×3:[

1 0
0 1

] [
a b c
d e f

]
=

[
a b c
d e f

]

3.13 Powers of square matrices and Markov chains

Let A ∈ Rm×m. Define
I. Positive Powers of Square Matrices: A2 := AA, A3 := A(AA) = (AA)A =
A2A = AA2. For a positive integer k Ak := A...A is product of A k times. For
k, q positive integers Ak+q = AkAq = AqAk. Also we let A0 := Im.

Markov chains:
In one town people catch cold and recover every day at the following rate:

90% of healthy stay in the morning healthy the next morning; 60% of sick in
the morning recover the next morning.
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Find the transition matrix of this phenomenon after one day, two days,
and after many days.

aHH = 0.9, aSH = 0.1, aHS = 0.6, aSS = 0.4,

A =

[
0.9 0.6
0.1 0.4

]
,x =

[
xH
xS

]
.

Note that if xT = (xH , xS) represents the number of healthy and sick in a given
day, then the situation in the next day is given by (0.9xH + 0.6xS, 0.1xH +
0.4xS)T = Ax Hence the number of healthy and sick after two days are given
by A(Ax) = A2x, i.e. the transition matrix given by A2:[

0.9 0.6
0.1 0.4

] [
0.9 0.6
0.1 0.4

]
=

[
0.87 0.78
0.13 0.22

]
The transition matrix after k days is given by Ak. It can be shown that

lim
k→∞

Ak =

[
6
7

6
7

1
7

1
7

]
∼
[

0.857 0.857
0.143 0.143

]
.

The reason for these numbers is the equilibrium state for which we have the
equations

Ax = x = I2x⇒ (A− I2)x = 0⇒ 0.1xH = 0.6xS ⇒ xH = 6xS.

If xH +xS = 1⇒ xH = 6
7
, xS = 1

7
. In the equilibrium stage 6

7
of all population:

xH + xS are healthy and 1
7

of all population is sick.

3.14 Inverses of square matrices

II. Positive Powers of Square Matrices: A invertible if there exists A−1 such
that AA−1 = A−1A = Im. For a positive integer k A−k := (A−1)k.

Theorem 3.17 Let A ∈ Rm×m. View A : Rm → Rm as a linear transfor-
mation. Then the following are equivalent.
a. A 1-1.
b. A onto.
c. A : Rm → Rm is isomorphism.
d. A is invertible.

Proof. a ⇒ b. Clearly A0 = 0. Since A 1-1 Ax = 0 ⇒ x = 0. Hence
Ax = 0 has nor free variable. So the number of lead variables is m, i.e. rank
A = m. Since the RREF of A is Im. Hence the RREF of the augmented
matirx [A|b] = [In|c]. That is, the system Ax = b has a unique solution (c)
for any b. Therefore A is onto.

b ⇒ c. A is onto, which implies that for any b the system Ax = b is
solvable. Hence rankA = m. So A is also 1−1. Therefore A is an isomorphism.
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c ⇒ d. Since x 7→ Ax is an isomorphism, then the inverse map y → By
implies that AB = BA = Im, i.e. B is the inverse matrix of A.

d ⇒ a. Suppose that Ax = b. Then A−1b = A−1(Ax) = (A−1A)x =
Inx = x. Hence A is 1− 1. 2

Suppose A ∈ Rn×n is invertible. Then the system Ax = b, where x =
(x1 x2...xn)T, b = (b1 b2...bn)T ∈ Rn, i.e. the system of n equations and
n unknowns has a unique solution: x = A−1b. (See the proof of the above
Theorem.)

Observe that if ad− bc 6= 0 then the inverse of 2× 2 matrix:[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
On other hand if ad− bc = 0 then[

a b
c d

] [
d
−c

]
=

[
a b
c d

] [
−b
a

]
= 0

So A is not invertible.
Observe next that if A1, ..., Ak ∈ Rn×n are invertible then A1...Ak are in-

vertible and (A1...Ak)
−1 = A−1k ...A−11 .

3.15 Elementary Matrices

Definition 3.18 Elementary Matrix is a square matrix of order m which
is obtained by applying one of the three Elementary Row Operations to the
identity matrix Im.

• Interchange two rows Ri ←→ Rj.

Example: Apply R1 ←→ R3 to I3: 1 0 0
0 1 0
0 0 1

→ EI =

 0 0 1
0 1 0
1 0 0


• Multiply i-th row by a 6= 0: aRi −→ Ri

Example: Apply aR2 −→ R2 to I3: 1 0 0
0 1 0
0 0 1

→ EII =

 1 0 0
0 a 0
0 0 1


• Replace a row by its sum with a multiple of another row Ri+a×Rj −→ Ri

Example: Apply R1 + a×R3 −→ R1: 1 0 0
0 1 0
0 0 1

→ EIII =

 1 0 a
0 1 0
0 0 1


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Proposition 3.19 All elementary matrices are invertible. More precisely,
The inverse of an elementary matrix is given by another elementary matrix of
the same kind corresponding to reversing the first elementary operation:

• The inverse of EI is EI : EIEI = E2
I = Im.

Example:  0 0 1
0 1 0
1 0 0

 0 0 1
0 1 0
1 0 0

 =

 1 0 0
0 1 0
0 0 1


• The inverse of EII corresponding to aRi −→ Ri is E−1II corresponding to

1
a
Ri −→ Ri

Example:  1 0 0
0 a 0
0 0 1

 1 0 0
0 1

a
0

0 0 1

 =

 1 0 0
0 1 0
0 0 1


• The inverse of EIII corresponds to Ri + aRj −→ Ri is E−1III corresponds

to Ri − aRj −→ Ri

Example:  1 0 a
0 1 0
0 0 1

 1 0 −a
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1


Let A ∈ Rm×n. Then performing an elementary row operation on A

is equivalent to multiplying A by the corresponding elementary matrix E:
A→ EA.

Example I: Apply R1 ↔ R3 to A ∈ R3×2: u v
w x
y z

→
 y z
w x
u v

 =

 0 0 1
0 1 0
1 0 0

 u v
w x
y z


Example II: Apply aR2 → R2 to A ∈ R3×2: u v

w x
y z

→
 u v
aw ax
y z

 =

 1 0 0
0 a 0
0 0 1

 u v
w x
y z


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Example III: Apply R1 + a×R3 −→ R1: to A ∈ R3×2: u v
w x
y z

→
 u+ ay v + az

w x
y z

 =

 1 0 a
0 1 0
0 0 1

 u v
w x
y z


3.16 ERO in terms of Elementary Matrices

Let B ∈ Rm×p and perform k ERO:

B
ERO1→ B1

ERO2→ B2
ERO3→ . . . Bk−1

EROk→ Bk,

B1 = E1B, B2 = E2B1 = E2E1B, . . . Bk = Ek . . . E1B ⇒
Bk = MB, M = EkEk−1...E2E1

M is invertible matrix since M−1 = E−11 E−12 ...E−1k .
The system Ax = b, represented by the augmented matrix B := [A|b],

after k ERO is given by Bk = [Ak|bk] = MB = M [A|b] = [MA,Mb] and
represents the system MAx = Mb. As M invertible M−1(MAx) = Ax =
M−1(Mb) = b. Thus performing elementary row operations on a system
results in equivalent system, i.e. the original and the new system of equations
have the same solutions.

3.17 Matrix inverse as products of elementary matrices

Let Ak be the reduced row echelon form of A. Then Ak = MA. Assume that
A ∈ Rn×n. As M invertible A invertible ⇐⇒ Ak invertible: A = M−1Ak ⇒
A−1 = A−1k M .

If A invertible Ax = 0 has only the trivial solution, hence Ak has n pivots
(no free variables). Thus Ak = In and A−1 = M !

Proposition 3.20 A ∈ Rn×n is invertible ⇐⇒ its reduced row echelon
form is the identity matrix. If A is invertible its inverse is given by the product
of the elementary matrices: A−1 = M = Ek . . . E1.

Proof. Straightforward. 2

3.18 Gauss-Jordan algorithm for A−1

• Form the matrix B = [A|In].

• Perform the ERO to obtain RREF of B: C = [D|F ].
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• A is invertible ⇐⇒ D = In.

• If D = In then A−1 = F .

Numerical Example: Let A =

 1 2 −1
−2 −5 5

3 7 −5

. Write B = [A|I3] and

observe that the (1, 1) entry in B is a pivot:

B =

 1 2 −1 | 1 0 0
−2 −5 5 | 0 1 0

3 7 −5 | 0 0 1


Perform ERO: R2 + 2R1 → R2, R3 − 3R1 → R3:

B1 =

 1 2 −1 | 1 0 0
0 −1 3 | 2 1 0
0 1 −2 | −3 0 1

 .
To make (2, 2) entry pivot do: −R2 → R2:

B2 =

 1 2 −1 1 0 0
0 1 −3 | −2 −1 0
0 1 −2 | −3 0 1

 .
To eliminate (1, 2), (1, 3) entries do R1 − 2R2 → R1, R3 −R2 → R3

B3 =

 1 0 5 | 5 2 0
0 1 −3 | −2 −1 0
0 0 1 | −1 1 1

 .
(3, 3) is a pivot. To eliminate (1, 3), (2, 3) entries do: R1 − 5R3 → R1, R2 +
3R3 → R2

B4 =

 1 0 0 | 10 −3 −5
0 1 0 | −5 2 3
0 0 1 | −1 1 1

 .
So B4 = [I3|F ] is RREF of B. Thus A has the inverse:

A−1 =

 10 −3 −5
−5 2 3
−1 1 1

 .
Why Gauss-Jordan algorithm works: Perform ERO operations on B =
[A|In] to obtain RREF of B, which is given by

Bk = MB = M [A|In] = [MA|MIn] = [MA|M ].

M ∈ Rn×n is an invertible matrix, which is a product of elementary matrices.
A is invertible ⇐⇒ RREF of A is In ⇐⇒ the first n columns of B have n
pivots ⇐⇒ MA = In ⇐⇒ M = A−1 ⇐⇒ Bk = [In|A−1].
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Proposition 3.21 A ∈ Rn×n is invertible if and only if A> is invertible.
Furthermore (A>)−1 = (A−1)>.

Proof. The first part of the Proposititon follows from rankA = rankA>.
(Recall A invertible ⇐⇒ rankA = n.) The second part follows from the
identity In = I>n = (AA−1)> = (A−1)>A>. 2

3.19 Change of basis

Assume that V is an n-dimensional vector space. Let v = v1, ...,vn be a basis
in V. Notation: [v1 v2 . . .vn]. Then any vector x ∈ V can be uniquely
presented as x = a1v1 + a2v2 + . . .+ anvn.

There is one to one correspondence between x ∈ V and the coordinate
vector of x in the basis [v1 v2 . . .vn]: a = (a1, a2, . . . , an)> ∈ Rn. Thus if
y = b1v1 + b2v2 + . . . bnvn, so y↔ b = (b1, b2, ..., bn)T ∈ Rn then rx↔ ra and
x + y↔ a + b. Thus V is isomorphic Rn.

Denote: x = [v1 v2 . . .vn]


a1
a2
...
an


Let u1 u2 . . .un be n vectors in V. Write

uj = u1jv1 + u2jv2 + . . .+ unjvj, j = 1, ..., n. (3.23)

Define U =


u11 u12 ... u1n
u21 u22 ... u2n
...

...
...

...
un1 un2 ... unn

. In short we write (3.23) as

[u1 u2 . . .un] = [v1 v2 . . .vn]U (3.24)

Proposition 3.22 u1,u2, ...,un is a basis in V ⇐⇒ U is invertible.

Proof. Let u1,u2, ...,un be is a basis in V. Then

[v1 v2 . . .vn] = [u1 u2 . . .un]V. (3.25)

Substituting this expression to (3.24) we deduce that [u1 u2 . . .un] = [u1 u2 . . .un](V U).
Since [u1 u2 . . .un] is a basis ui can be expressed only in a unique combination
of u1 . . . ,un, namely ui = 1ui. Hence V U = In, so U is invertible. Vice versa,
if U is invertible, and V = U−1 a straightforward calculation shows that (3.25)
hold. 2

If [u1 u2 . . .un] and [v1 v2 . . .vn] are bases in V then the matrix U U is
called the transition matrix from basis [u1 u2 . . .un] to basis [v1 v2 . . .vn]. De-

noted as [u1 u2 . . .un]
U−→[v1 v2 . . .vn]. The proof of Proposition 3.22 yields.
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Corollary 3.23 Let [u1 u2 . . .un] and [v1 v2 . . .vn] be two bases in V.
Assume that (3.24) holds. Then U−1 is the transition matrix from basis

[v1 v2 . . .vn] to basis [u1 u2 . . .un]: [u1 u2 . . .un]
U−1

←−[v1 v2 . . .vn].

Let x = [u1 u2 . . .un](b1, b2, ..., bn)> ⇐⇒ x = b1u1 + . . . bnun , i.e. the
vector coordinates of x in the basis [u1 u2 . . .un] is b := (b1, b2, ..., bn)>. Then
the coordinate vector of x in the basis [v1 v2 . . .vn] is a = Ub.

Indeed, let x = [u1 u2 . . .un]b = [v1 v2 . . .vn]Ua. If a ∈ Rn is the
coordinate vector of x in the basis [v1 v2 . . .vn] then U−1a is the coordinate
vector of x in the basis [u1 u2 . . .un].

Theorem 3.24 Let [u1 u2 . . .un]
U−→[v1 v2 . . .vn] and [w1 w2 . . .wn]

W−→[v1 v2 . . .vn].

Then [w1 w2 . . .wn]
U−1W−→ [u1 u2 . . .un].

Proof. [w1 w2 . . .wn] = [v1 v2 . . .vn]W = ([u1 u2 . . .un]U−1)W . 2

Note: To obtain U−1W take A := [U W ] ∈ Rn×(2n) and bring it to RREF
B = [I C]. Then C = U−1W .

3.20 An example

Let u = [

[
1
2

]
,

[
1
3

]
],w = [

[
3
4

]
,

[
4
5

]
]

Find the transition matrix from the basis w to basis u.
Solution: Introduce the standard basis v = [e1, e2] in R2. So u =

[e1, e2]

[
1 1
2 3

]
,w = [e1, e2]

[
3 4
4 5

]
Hence the transition matrix is

[
1 1
2 3

]−1(
3 4
4 5

)
.

To find this matrix get the RREF of

[
1 1 | 3 4
2 3 | 4 5

]
which is

[
1 0 | 5 7
0 1 | −2 −3

]
Answer

[
5 7
−2 −3

]

3.21 Change of the representation matrix under the
change of bases

Proposition 3.25 T : V → W linear transformation. T is represented
by A in v,w bases: [T (v1), . . . , T (vn)] = [w1, . . . ,wm]A. Change basis in W

[w1 w2 . . .wm]
P−→[x1 x2 . . .xm] and in V [v1 v2 . . .vn]

Q−→[u1 u2 . . .un]. Then

1. The representation matrix of T in bases [v1 v2 . . .vn] and [x1 x2 . . .xm]
is given by the matrix PA, where P invertible.

2. The representation matrix of T in bases [u1 u2 . . .un] and [w1 w2 . . .wm]
is given by the matrix AQ−1.
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3. The representation matrix of T in bases [u1 u2 . . .un] and [x1 x2 . . .xm]
is given by the matrix PAQ−1.

Proof. 1. [T (v1) T (v2) . . . T (vn)] = [w1 w2 . . .wm]A = [x1 x2 . . .xm]PA.
2. [T (v1) T (v2) . . . T (vn)] = [T (u1) T (u2) . . . T (un)]Q = [w1 w2 . . .wm]A

Hence [T (u1) T (u2) . . . T (un)] = [w1 w2 . . .wm]AQ−1.
3. Combine 1. and 2.. 2

3.22 Example

D : P2 → P1, D(p) = p′. Choose bases [1, x, x2], [1, x] in P2,P1 respectively.
D(1) = 0 = 0 · 1 + 0 · x,D(x) = 1 = 1 · 1 + 0 · x,D(x2) = 2x = 0 · 1 + 2 · x.

Representation matrix of T in this basis is

[
0 1 0
0 0 2

]
Change the basis to

[1 + 2x, x− x2, 1− x+ x2] in P2. One can find the new representation matrix
A1 in 2 ways. First

D(1 + 2x) = 2, D(x− x2) = 1− 2x, D(1− x+ x2) = −1 + 2x,

Hence A1 =

[
2 1 −1
0 −2 2

]
Second way

[1 + 2x, x− x2, 1− x+ x2] = [1, x, x2]

 1 0 −1
2 1 −1
0 −1 1


So

A1 =

[
2 1 −1
0 −2 2

]
=

[
0 1 0
0 0 2

] 1 0 −1
2 1 −1
0 −1 1


Now choose a new basis in P1: [1 + x, 2 + 3x]. Then

[1 + x, 2 + 3x] = [1, x]

[
1 2
1 3

]
.

Hence the representation matrix of D in bases [1 + 2x, x− x2, 1− x + x2]
and [1 + x, 2 + 3x] is

A2 =

[
1 2
1 3

]−1 [
2 1 −1
0 −2 2

]
=

1

1 · 3− 1 · 2

[
3 −2
−1 1

] [
2 1 −1
0 −2 2

]
=

[
6 7 −7
−2 −3 3

]
.

So

D(1 + 2x) = 2 = 6(1 + x)− 2(2 + 3x), D(x− x2) = 1− 2x = 7(1 + x)− 3(2 + 3x),

D(1− x+ x2) = −1 + 2x = −7(1 + x) + 3(2 + 3x).
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3.23 Equivalence of matrices

Definition: A,B ∈ Rm×n are called equivalent if there exist two invertible
matrices P ∈ Rm×m, R ∈ Rn×n such that B = PAR.

It is straightforward to show.

Proposition 3.26 Equivalence of matrices is an equivalence relation.

Theorem 3.27 A,B ∈ Rm×n are equivalent if and only if they have the
same rank.

Proof. Let Ek,m,n = [eij]
m,n
i,j=1 ∈ Rm×n be a matrix such that e11 = e22 =

. . . = ekk = 1 and all other entries of Ek,m,n are equal to zero. We claim that
A is equivalent to Ek,m,n, where rankA = k.

Let SA = C, where C is RREF of A and S invertible. Then RREF of C>

is Ek,n,m! (Prove it!). So UC> = Ek,n,m ⇒ CU> = Ek,m,n = SAU>, where U
is invertible. 2

Corollary 3.28 A,B ∈ Rm×n are equivalent iff they represent the same
linear transformation T : V→W, dim V = n, dim W = m in different bases.

We now give an alternative proof of Theorem 3.27 using a particular choice
of bases in the vector spaces V,W for a given linear transformation T : V→
W.

Theorem 3.29 Let V,W be two vector spaces of dimensions n and m
respectively. Let T : V→W be a linear transformation of rank k = dimT (V).
Then there exists bases [v1, . . . ,vn], [w1, . . . ,wm] in V,W respectively with the
following properties.

T (vi) = wi for i = 1, . . . , k, T (vi) = 0 for i = k + 1, . . . ,m. (3.26)

In particular, T is represented in these bases as the matrix Ek,m,n.

Proof. If k = 0 then T = 0 and any choice of bases in V and W is fine.
Assume that k ≥ 1. Choose a basis w1, . . . ,wk in the range of T (T (V)).
Complete these k linearly independent vectors to a basis [w1, . . . ,wm] in W.
Let vi be a T preimage of wi, i.e. T (vi) = wi for i = 1, . . . , k. Suppose
that

∑k
i=1 aivi = 0. Apply T to both sides to deduce that 0 =

∑k
i=1 T (vi) =∑k

i=1 aiwi. Since w1, . . . ,wk are linearly independent it follows that a1 = . . . =
ak = 0. So v1, . . . ,vk are linearly independent. Let U = span(v1, . . . ,vk). Let
N(T ) = {v ∈ V, T (v) = 0} be the null space of T . The previous argument
shows that U∩N(T ) = {0}. Recall that dimN(T ), the nullity of T , is n− k.
So

dim(U +N(T )) = dim U + dimN(T )− dim(U ∩N(T )) = k + n− k − 0 = n.

Hence V = U⊕N(T ). Let vk+1, . . . ,vn be a basis in N(T ). Then [v1, . . . ,vn]
is a basis of V. Clearly, (3.26) holds. Hence T is represented in these bases
by Ek,m,n. 2
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4 Inner product spaces

4.1 Scalar Product in Rn

In R2 a scalar or dot product is defined for x = (x1, x2)
>,y = (y1, y2)

> ∈ R2

as: x · y = x1y1 + x2y2 = y>x.
In R3 a scalar or dot product is defined for x = (x1, x2, x3)

>,y = (y1, y2, y3)
> ∈

R3 as: x·y = x1y1+x2y2+x3y3 = y>x. In Rn a scalar or dot product is defined
for x = (x1, . . . , xn)>,y = (y1, . . . , yn)> ∈ Rn as: x · y = x1y1 + . . . + xnyn =
yTx. Note that x · y is bilinear and symmetric

(ax + bz) · y = a(x · y) + b(z · y), x · (ay + bz) = a(x · y) + b(x · z), (4.27)

x · y = y · x for all x,y ∈ Rn. (4.28)

The above equalities hold for any x,y, z ∈ Rn and a, b ∈ R. Recall that (4.27)
is the bilinearity condition and (4.28) is called the symmetricity condition.

The length of x = (x1, . . . , xn)> ∈ Rn is ||x|| :=
√

x>x =
√
x21 + x22 + . . .+ x2n.

x,y ∈ Rn are called orthogonal if y>x = x>y = 0.

4.2 Cauchy-Schwarz inequality

Proposition 4.1 For x,y ∈ Rn the following inequality holds: |x>y| ≤
||x|| ||y||. (This is the Cauchy-Schwarz inequality, abbreviated as CSI.) Equal-
ity holds iff x,y are linearly dependent, equivalently if y 6= 0 then x = ay for
some a ∈ R.

Proof. If either x or y are zero vectors then equality holds in CSI. Suppose
that y 6= 0. Then for t ∈ R define

f(t) := (x− ty)>(x− ty) = ||y||2t2 − 2(xTy)t+ ||x||2 ≥ 0.

The equation f(t) = 0 is either unsolvable, in the case f(t) is always positive,
or has one solution. Hence CSI holds. Equality holds if x− ay = 0. 2

The cosine of the angle between two nonzero vectors x,y ∈ Rn is defined

as cos θ = y>x
||x|| ||y|| . Note that cos θ ∈ [−1, 1] in view of the CSI.

By expanding ‖y − x‖2 = (y − x) · (y − x) using (4.27)-(4.28) and using
the definition of the cosine of the angle between nonzero x and y we deduce
the Cosine Law:

||y − x||2 = ||y||2 + ||x||2 − 2||y|| ||x|| cos θ (4.29)

The above formula still holds if either x or y are zero vectors, since the value
of θ does not matter in this case. So if x ⊥ y Pithagoras theorem holds:
||x− y||2 = ||x||2 + ||y||2 = ||x + y||2.
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4.3 Scalar and vector projection

The scalar projection of x ∈ Rn on nonzero y ∈ Rn is given by x>y
||y|| = cos θ||x||.

The vector projection of x ∈ Rn on nonzero y ∈ Rn is given by x>y
||y||2 y = x>y

y>y
y.

Example. Let x = (2, 1, 3, 4)>,y = (1,−1,−1, 1)>.
a. Find the cosine of angle between x,y.
b. Find the scalar and vector projection of x on y.

Solution: ||y|| =
√

12 + (−1)2 + (−1)2 + 12 =
√

4 = 2, ||x|| =
√

22 + 12 + 32 + 42 =√
30, x>y = 2−1−3 + 4 = 2, cos θ = 2

2
√
30

= 1√
30

. Scalar projection: 2
2

= 1.

Vector projection: 2
4
y = (.5,−.5,−.5, .5)>.

4.4 Orthogonal subspaces

Definitions: Two subspaces U and V in Rn are called orthogonal if any
u ∈ U is orthogonal to any v ∈ V: v>u = 0. This is denoted by U ⊥ V.

For a subspace U of Rn U⊥ denotes all vectors in Rn orthogonal to U.

Example: In R3: V⊥ is an orthogonal line to the plane V, which intersect at
the origin.

Proposition 4.2 Let u1, . . . ,uk span U ⊆ Rn. Form a matrix A =
[u1 u2 . . .uk] ∈ Rn×k. Then
(a): N(A>) = U⊥.
(b): dim U⊥ = n− dim U.
(c): (U⊥)⊥ = U.
(Note: (b-c) holds for any subspace U ⊆ Rn.)

Proof. . (a) Follows from definition of U⊥.
(b) Follows from dim U = rankA, and nulA> = n− rankA> = n− rankA.
(c) Follows from the observations (U⊥)⊥ ⊇ U, dim(U⊥)⊥ = n − dim U⊥ =
n− (n− dim U) = dim U. 2

Corollary 4.3 Rn = U⊕U⊥.

Proof. Observe that if x ∈ U ∩U⊥ then x>x = 0⇒ x = 0⇒ U ∩U⊥ =
{0}. 2

Observe that part (b) of Proposition 4.2 yields dim U + dim U⊥ = n.

Proposition 4.4 For A ∈ Rn×m:
(a): N(A>) = R(A)⊥.
(b): N(A>)⊥ = R(A).
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Proof. Any vector in N(A>) satisfies A>y = 0 ⇐⇒ y>A = 0. Any vec-
tor z ∈ R(A) is of the form z = Ax. So y>z = y>Ax = (y>A)x = 0>x = 0.
Hence N(A>) ⊆ R(A)⊥. Recall dim N(A>) = n−rankA> = n−rankA Propo-
sition 4.2 yields dim R(A)⊥ = n− dim R(A) = n− rankA. Hence (a) follows.
Apply ⊥ operation to (a) and use part (c) of Proposition 4.2 to deduce (b). 2

Proposition 4.5 Let A ∈ Rm×n and b ∈ Rm. Then either Ax = b is
solvable or there exists y ∈ N(A>) such that y>b 6= 0.

Proof. Ax = b solvable iff b ∈ R(A). (a) of Proposition 4.4 yields
R(A)⊥ = N(A>). So Ax = b is not solvable iff N(A>) is not orthogonal
to b.

4.5 Example

Let u = (1, 2, 3, 4)>,v = (2, 4, 5, 2)>,w = (3, 6, 8, 6)>. Find a basis in
span(u,v,w)⊥.
Solution: Set A = [u v w]. Then

A> =

 1 2 3 4
2 4 5 2
3 6 8 6

 .
RREF of A> is:

B =

 1 2 0 −14
0 0 1 6
0 0 0 0

 .
Hence a basis in N(A>) = N(B) is (−2, 1, 0, 0, )>, (14, 0,−6, 1)>.

Note that a basis of the row space of A> is given by the nonzero rows of
B. Hence a basis of span(u,v,w) is given by (1, 2, 0,−14)>, (0, 0, 1, 6)>.

4.6 Projection on a subspace

Let U be a subspace of Rn. Let Rm = U⊕U⊥ and b ∈ Rm. Express b = u+v
where u ∈ U,v ∈ U⊥. Then u is called the projection of b on U and denoted
by PU(b): (b− PU(b)) ⊥ U.

Proposition 4.6 PU : Rn → U is a linear transformation.

Proof. Let x,y ∈ Rn. Then PU(x), PU(y) ∈ U and x−PU(x),y−PU(y) ∈
U⊥. So aPU(x) + bPU(y) ∈ U and a(x−PU(x)) + b(y−PU(y)) ∈ U⊥. Hence
PU(ax + by) = aPU(x) + bPU(y). 2

Proposition 4.7 PU(b) is the unique solution of the minimal problem
minx∈U ||b− x|| = ||b− PU(b)||.
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Proof. Since b− PU(b) ∈ U⊥ the Pithagoras theorem yields

‖b−x‖2 = ‖(b−PU(b))+(PU(b)−x)‖2 = ‖b−PU(b)‖2+‖PU(b)−x)‖2 ≥ ‖b−PU(b)‖2.
Equality holds if and only if x = PU(b). 2

Theorem 4.8 (Least Square Theorem) Let A ∈ Rm×n, b ∈ Rm. Then the
system

A>Ax = A>b (4.30)

is always solvable. Any solution z to this system is called the least square
solution of Ax = b. Furthermore PR(A)(b) = Az.

Proof.

A>Ax = 0⇒ x>A>Ax = 0 ⇐⇒ ||Ax||2 = 0⇒ x ∈ N(A)⇒ x ∈ N(A>A).

Let B := A>A and B> = B. If y ∈ N(B>) then Ay = 0 ⇒ y>A> = 0 ⇒
y>A>b = 0. Proposition 4.5 yields that ATAx = ATb is solvable.

Observe finally that

A>Az = A>b ⇐⇒ A>b−A>Az = 0 ⇐⇒ A>(b−Az) ⇐⇒ (b−Az) ⊥ R(A).

As Az ∈ R(A) we deduce that PR(A)(b) = Az. 2

4.7 Example

Consider the system of three equations in two variables.

x1 + x2 = 3
− 2x1 + 3x2 = 1

2x1 − x2 = 2
⇒ Ax = b

A =

 1 1
−2 3

2 −1

 ,b =

 3
1
2

 ,
x =

[
x1
x2

]
, Â =

 1 1 | 3
−2 3 | 1

2 −1 | 2

 .
The RREF of A: B =

 1 0 | 0
0 1 | 0
0 0 | 1

 Hence the original system is unsolvable!

The least square system A>Ax = A>b ⇐⇒ Cx = c:

C = A>A =

[
1 −2 2
1 3 −1

] 1 1
−2 3

2 −1

 =

[
9 −7
−7 11

]
,

c = ATb =

[
1 −2 2
1 3 −1

] 3
1
2

 =

[
5
4

]
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Since C is invertible the solution of the LSP is:

x = C−1c =
1

9 · 11− (−7)2

[
11 7
7 9

] [
5
4

]
=

[
1.66
1.42

]

Hence Ax =

 3.08
0.94
1.90

 is the projection of b on the column space of A.

4.8 Finding the projection on span

Proposition 4.9 To find the projection of b ∈ Rm on the subspace span(u1, . . . ,un) ⊆
Rm do the following:
a. Form the matrix A = [u1 . . . un] ∈ Rm×n.
b. Solve the system A>Ax = A>b.
c. For any solution x of b. Ax is the required projection.

Proof. Since R(A) = span(u1, . . . ,un) the above proposition follows straight-
forward from the Least Squares Theorem. 2

Proposition 4.10 Let A ∈ Rm×n. Then rankA = n ⇐⇒ A>A is
invertible. In that case z = (A>A)−1A>b is the least square solution of Ax =
b. Also A(A>A)−1b is the projection of b on the column space of A.

Proof.

Ax = 0 ⇐⇒ ||Ax|| = 0 ⇐⇒ x>ATAx = 0 ⇐⇒ ATAx = 0.

So N(A) = N(ATA). Hence rankA = n ⇐⇒ N(A) = {0} = N(ATA) ⇐⇒
ATA invertible. 2

4.9 The best fit line

Problem: Fit a straight line y = a+ bx in the X − Y plane through m given
points (x1, y1), (x2, y2), . . . , (xm, ym).
Solution: The line should satisfy m conditions:

1 · a + x1 · b = y1
1 · a + x2 · b = y2

...
...

...
...

...
1 · a + xm · b = ym

⇒

 1 x1
...

...
1 xm

[ a
b

]
=

 y1
...
ym

 = y = c.

A z = c.
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The least squares system A>Az = A>c:[
m x1 + x2 + . . .+ xm

x1 + x2 + . . .+ xm x21 + x22 + . . .+ x2m

]
,

[
a
b

]
=

[
y1 + y2 + . . .+ ym

x1y1 + x2y2 + . . .+ xmym

]
,

det A>A = m(x2
1 + x2

2 + . . .+ x2
m)− (x1 + x2 + . . .+ xm)2,

det ATA = 0 ⇐⇒ x1 = x2 = . . . = xm.

If det A>A 6= 0 then

a? =
(
∑m

i=1 x
2
i )(
∑m

i=1 yi)− (
∑m

i=1 xi)(
∑m

i=1 xiyi)

det ATA
,

b? =
−(
∑m

i=1 xi)(
∑m

i=1 yi) +m(
∑m

i=1 xiyi)

det ATA
.

We now explain the solution for the best fit line. We are given m points in
the plane (x1, y1), . . . , (xm, ym). We are trying to fit a line y = bx+ a through
these m points. Suppose we chose the parameters a, b ∈ R. Then this line
passes through the point (xi, bxi + a) for i = 1, . . . ,m. The square of the
distance between the point (xi, yi) and (xi, bxi + a) is (yi − (1 · a+ xi · · · b))2.
The sum of the squares of distances is

∑m
i=1(yi − (1 · a + xi · b))2. Note that

this sum is ‖y − Az‖2 where A, z,y are as above. So Az ∈ R(A). Hence
minz∈R2 ‖y−Az‖2 is achieved for the least square solution z? = (a?, b?) given
as above, (if not all xi are equal.) So the line y = a? + b?x is the best fit line.

4.10 Example

Given three points in R2: (0, 1), (3, 4), (6, 5). Find the best least square fit by
a linear function y = a+ bx to these three points.
Solution.

A =

 1 0
1 3
1 6

 , z =

[
a
b

]
, c =

 1
4
5

 ,
z = (A>A)−1A>c =

[
3 9
9 45

]−1 [
10
42

]
=

[
4
3
2
3

]
=

[
a
b

]
The best least square fit by a linear function is y = 4

3
+ 2

3
x.

4.11 Orthonormal sets

v1, . . . ,vn ∈ Rm is called an orthogonal set (OS) if v>i vj = 0 if i 6= j, i.e. any
two vectors in this set is an orthogonal pair.
Example 1: The standard basis e1, . . . , em ∈ Rm is an orthogonal set.
Example 2: The vectors v1 = (3, 4, 1, 0)>,v2 = (4,−3, 0, 2)>,v3 = (0, 0, 0, 0)>

are three orthogonal vectors in R4.
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Theorem 4.11 An orthogonal set of nonzero vectors is linearly indepen-
dent.

Proof. Suppose that a1v1 + a2v2 + . . .+ anvn = 0. Multiply by v>1 :

0 = v>1 0 = v>1 (a1v1 + a2v2 + . . .+ anvn) = a1v
>
1 v1 + a2v

>
1 v2 + . . .+ anv

>
1 vn.

Since v>1 vi = 0 for i > 1 we obtain: 0 = a1(v
>
1 v1) = a1||v1||2. Since ||v1|| > 0

we deduce a1 = 0. Continue in the same manner to deduce that all ai = 0. 2

v1, ...,vn ∈ V is called an orthonormal set (ONS) if v1, ...,vn is an orthog-
onal set and each vi has length 1. In Example 1 e1, . . . , em is an ONS. In
Example 2 the set { 1√

26
v1,

1√
29

v2} is an ONS.

Notation: Let In ∈ Rn×n be an identity matrix. Let δij, i, j = 1, . . . , n be
the entries of In. So δij = 0 for i 6= j and δii = 1 for i = 1, . . . , n.
Remark δij are called the Kronecker’s delta, in honor of Leopold Kronecker
(1823-1891).

Normalization: A nonzero OS u1, ...,un can be normalized to an ONS by
vi := ui

||ui|| for i = 1, . . . , n.

Theorem 4.12 Let v1, . . . ,vn be ONS in Rm. Denote U := span(v1, . . . ,vn).
Then

1. Any vector u ∈ U can be written as a unique linear combination of
v1, . . . ,vn: u =

∑n
i=1(v

>
i u)vi.

2. For any v ∈ Rm the orthogonal projection PU(v) on the subspace U is
given by

PU(v) =
n∑
i=1

(v>i v)vi. (4.31)

In particular

||v||2 = v>v ≥
n∑
i=1

|v>i v|2. (4.32)

(This inequality is called Bessel’s inequality.) Equality holds ⇐⇒ v ∈
U.

3. If v1, . . . ,vn is an orthonormal basis (ONB) in V then for any vector
v ∈ V one has:

v =
n∑
i=1

(v>i v)vi, ||v||2 =
n∑
i=1

|v>i v|2. (4.33)

(The last equality is called Parseval’s formula.)
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Proof. Let v ∈ V. Define w :=
∑n

j=1(v
>
j v)vj. Clearly, w ∈ U. Observe

next that

(v>i (v −w) = v>i v −
n∑
j=1

(v>i v)(v>i vj) = v>i v − v>i v = 0

So v − w ∈ U⊥. Hence w = PU(v). As v = w + (v − w). The Pithagoras
identity implies that

‖v‖2 = ‖w‖2 + ‖v −w‖2 ≥ ‖w‖2.

Equality holds if and only if v = w. Since v1, . . . ,vn is ONS the equality
(4.31) yields the equality

‖w‖2 =
n∑
i=1

|v>i v|2.

This implies part 2. Clearly, if v ∈ U then PU(v) = v, which yields 1. If
n = m then w = v and we must have always equality (4.33). 2

4.12 Orthogonal Matrices

Q ∈ Rn×n is called an orthogonal matrix if Q>Q = In. The following proposi-
tion is deduced strightforward.

Proposition 4.13 Let Q ∈ Rn×n. TFAE

1. The columns of Q form an ONB in Rn.

2. Q−1 = Q>, i.e. QQ> = In.

3. (Qy)>(Qx) = y>x for all x,y ∈ Rn. I.e. Q : Rn → Rn preserves angles
& lengths of vectors.

4. ||Qx||2 = ||x||2 for all x ∈ Rn. I.e. Q : Rn → Rn preserves length.

Example 1: In is an orthogonal matrix since InI
>
n = InIn = In. (Note

In = [e1 e2 . . . en])

Example 2: Q =

 0 1 0
0 0 1
1 0 0

. (Note Q = [e3 e1 e2])

Example 3: Q =


1
2

1
2

1
2
−1

2
1
2
−1

2
−1

2
−1

2
1
2

1
2
−1

2
1
2

1
2
−1

2
1
2

1
2


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Example 4: Any 2×2 orthogonal matrix is either of the form

[
cos θ sin θ
− sin θ cos θ

]
,

which is a rotation, or

[
cos θ sin θ
sin θ − cos θ

]
which is a reflection around the line

forming an angle θ with the X axis which passes through the origin.

Definition P ∈ Rn×n is called a permutation matrix if in each row and col-
umn of P there is one nonzero entry which equals to 1.

It is straightforward to see that the set of the columns of an permutation
matrix consists of the standard basis vectors in Rn in some order. Hence a
permutation matrix is orthogonal.

If P is a permutation matrix and (y1, ..., yn)> = P (x1, ..., xn)> then the
coordinates of y are permutation of the coordinates of x, and this permutation
does not depend on the coordinates of x.

n columns of A ∈ Rm×n form an ONB in the columns space R(A) of
A ⇐⇒ A>A = In. In that case the Least Square Solution of Ax = b is
z = A>b, which is the projection of b the column space of A.

4.13 Gram-Schmidt orthogonolization process

Let x1, . . . ,xn be linearly independent vectors in Rm. Then the Gram-Schmidt
(orthogonalization) process gives a recursive way to generate ONS q1, . . . ,qn ∈
Rm from x1, . . . ,xn, such that span(x1, . . . ,xk) = span(q1, . . . ,qk) for k =
1, . . . , n. If m = n, i.e. x1, . . . ,xn is a basis of Rn then q1, . . . ,qn is an ONB
of Rn.

GS-algorithm:

r11 := ||x1||, q1 :=
1

r11
x1,

r12 := q>1 x2, p1 := r12q1, r22 := ||x2 − p1||, q2 :=
1

r22
(x2 − p1),

r13 := q>1 x3, r23 := q>2 x3, p2 := r13q1 + r23q2,

r33 := ||x3 − p2||, q3 :=
1

r33
(x3 − p2).

Assume that q1, . . . ,qk were computed. Then

r1(k+1) := q>1 xk+1, . . . , r1(k+1) := q>k xk+1, pk := r1(k+1)q1 + . . . rk(k+1)qk,

r(k+1)(k+1) := ||xk+1 − pk||, qk+1 :=
1

r(k+1)(k+1)

(xk+1 − pk).

4.14 Explanation of G-S process

First observe that ri(k+1) := q>i xk+1 is the scalar projection of xk+1 on qi. Next
observe that pk is the projection of xk+1 on span(q1, . . . ,qk) = span(x1, . . . ,xk).
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Hence xk+1 − pk ⊥ span(q1, . . . ,qk). Thus r(k+1)(k+1) = ||xk+1 − pk|| is
the distance of xk+1 to span(q1, . . . ,qk) = span(x1, . . . ,xk). The assump-
tion that x1, . . . ,xn are linearly independent yields that r(k+1)(k+1) > 0. Hence
qk+1 = r−1(k+1)(k+1)(xk+1−pk) is a vector of unit length orthogonal to q1, . . . ,qk.

4.15 An example of G-S process

Let x1 = (1, 1, 1, 1)>,x2 = (−1, 4, 4,−1)>, x3 = (4,−2, 2, 0)>. Then

r11 = ||x1|| = 2,q1 =
1

r11
x1 = (

1

2
,
1

2
,
1

2
,
1

2
)>,

r12 = q>1 x2 = 3,p1 = r12q1 = 3q1 = (
3

2
,
3

2
,
3

2
,
3

2
)>,

x2 − p1 = (−5

2
,
5

2
,
5

2
,−5

2
)>, r22 = ||x2 − p1|| = 5,

q2 =
1

r22
(x2 − p1) = (−1

2
,
1

2
,
1

2
,−1

2
)>,

r13 = q>1 x3 = 2, r23 = q>2 x3 = −2,

p2 = r13q1 + r23q2 = (2, 0, 0, 2)>,

x3 − p2 = (2,−2, 2,−2)>, r33 = ||x3 − p2|| = 4,

q3 =
1

r33
(x3 − p2) = (

1

2
,−1

2
,
1

2
,−1

2
)>.

4.16 QR Factorization

Let A = [a1 a2 . . . an] ∈ Rm×n and assume that rankA = n. (I.e. the columns
of A are linearly independent.) Perform G-S process with the book keeping as
above:

• r11 := ||a1||, q1 := 1
r11

a1.

• Assume that q1, . . . ,qk−1 were computed. Then rik := qT
i ak for i =

1, . . . , k − 1. pk−1 := r1kq1 + r2kq2 + . . . r(k−1)kqk−1 and rkk := ||ak −
pk−1||, qk := 1

rkk
(ak − pk−1) for k = 2, ..., n.

Let Q = [q1 q2 . . .qn] ∈ Rm×n and R =


r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
...

...
...

...
...

0 0 0 . . . rnn


Then A = QR, QTQ = In and A>A = R>R. The Least Squares Solution

of Ax = b is given by the upper triangular system Rx̂ = Q>b which can be
solved by back substitution. Formally x̂ = R−1Q>b.

Proof A>Ax = R>Q>QRx = R>Rx = A>b = R>Q>b. Multiply from
left by (R>)−1 to get Rx̂ = Q>b
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Note: QQ>b is the projection of b on the columns space of A. The matrix
P := QQ> is called an orthogonal projection. It is symmetric and P 2 = P ,
as (QQ>)(QQ>) = Q(Q>Q)Q> = Q(I)Q> = QQ>. Note QQ> : Rm → Rm is
the orthogonal projection.

Equivalently: The assumption that rankA = n is equivalent to the as-
sumption that A>A is invertible. So the LSS A>Ax̂ = A>b has unique solu-
tion x̂ = (A>A)−1b. Hence the projection of b on the column space of A is
Pb = Ax̂ = A(A>A)−1A>b. Hence P = A(A>A)−1A>.

4.17 An example of QR algorithm

Let A = [x1 x2 x3] =


1 −1 4
1 4 −2
1 4 2
1 −1 0

 be the matrix corresponding to the

Example of G-S algorithm §4.15. Then

R =

 r11 r12 r13
0 r22 r23
0 0 r33

 =

 2 3 2
0 5 −2
0 0 4

 ,
Q = [q1 q2 q3] =


1
2
−1

2
1
2

1
2

1
2
−1

2
1
2

1
2

1
2

1
2
−1

2
1
2

 .
(Explain why in this example A = QR!) Note QQ> : R4 → R4 is the projec-
tion on span(x1,x2,x3).

4.18 Inner Product Spaces

Let V be a vector space over R. Then the function 〈·, ·〉 : V×V→ R is called
an inner product on V if the following conditions hold:

• For each pair x,y ∈ V 〈x,y〉 is a real number.

• 〈x,y〉 = 〈y,x〉. (symmetricity.)

• 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉. (linearity I )

• 〈αx,y〉 = α〈x,y〉 for any scalar α ∈ R. (linearity II )

• For any 0 6= x ∈ V 〈x,x〉 > 0. (positivity)

Note:

• The two linearity conditions can be put in one condition: 〈αx+βz,y〉 =
α〈x,y〉+ β〈z,y〉.
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• The symmetricity condition yields linearity in the second variable: 〈x, αy+
βz〉 = α〈x,y〉+ β〈x, z〉.

• Each linearity condition implies 〈0,y〉 = 0⇒ 〈0,0〉 = 0.

• 〈x,x〉 ≥ 0 For any x ∈ V.

4.19 Examples of IPS

• V = Rn, 〈x,y〉 = y>x.

• V = Rn, 〈x,y〉 = y>Dx, D = diag(d1, ..., dn) is a diagonal matrix with
positive diagonal entries. Then yTDx = d1x1y1 + . . .+ dnxnyn.

• V = Rm×n, 〈A,B〉 =
∑m,n

i,j=1 aijbij.

• V = C[a, b], 〈f, g〉 =
∫ b
a
f(x)g(x)dx.

• V = C[a, b], 〈f, g〉 =
∫ b
a
f(x)g(x)p(x)dx, where p(x) ∈ C[a, b], p(x) ≥ 0

and p(x) = 0 at most at a finite number of points.

• V = Pn: All polynomials of degree n− 1 at most. Let t1 < t2 < . . . < tn
be any n real numbers. 〈p, q〉 :=

∑n
i=1 p(ti)q(ti) = p(t1)q(t1) + . . . +

p(tn)q(tn)

4.20 Length and angle in IPS

• The norm (length) of the vector x is ||x|| :=
√
〈x,x〉.

• Cauchy-Schwarz inequality: |〈x,y〉| ≤ ||x|| ||y||.

• The cosine of the angle between x 6= 0 and y 6= 0: cos θ := 〈x,y〉
||x|| ||y|| .

• x and y are orthogonal if: 〈x,y〉 = 0.

• Two subspace X,Y of V are orthogonal if any x ∈ X is orthogonal to
any y ∈ Y.

• The Parallelogram Law ||u+v||2 = 〈u+v,u+v〉 = ||u||2+||v||2+2〈u,v〉.

• The Pythagorean Law: 〈u,v〉 = 0⇒ ||u + v||2 = ||u||2 + ||v||2.

• Scalar projection of u on v 6= 0: 〈u,v〉||v|| . Vector projection of u on v 6= 0:
〈u,v〉v
〈v,v〉 .

• The distance between u and v is defined by ||u− v||.
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4.21 Orthonormal sets in IPS

Let V be an inner product space (IPS ). v1, . . . ,vn ∈ V is called an orthogonal
set (OS) if 〈vi,vj〉 = 0 if i 6= j, i.e. any two vectors in this set is an orthogonal
pair. As in the case of dot product in Rn we have.
Theorem. An orthogonal set of nonzero vectors is linearly independent.

v1, ...,vn ∈ V is called an orthonormal set (ONS) if v1, ...,vn is an orthogonal
set and each vi has length 1, i.e. v1, . . . ,vn ONS ⇐⇒ 〈vi,vj〉 = δij for
i, j = 1, ..., n.
Example: In C[−π, π] with 〈f, g〉 =

∫ π
−π f(x)g(x)dx the set

1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx

is a nonzero ONS.
An orthonormal basis in C[−π, π] is

1√
2π
,
cosx√
π
,
sinx√
π
,
cos 2x√

π
,
sin 2x√

π
, . . . ,

cosnx√
π

,
sinnx√

π
, . . . .

4.22 Fourier series

Every f(x) ∈ C[−π, π] can be expanded in Fourier series

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx),

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

an, bn are called the even and the odd Fourier coefficients of f respectively.
Parseval equality is

a20
2

+
∞∑
n=1

(
a2n + b2n

)
=

1

π

∫ π

−π
|f(x)|2 dx.

Dirichlet’s theorem: If f ∈ C1((−∞,∞)) and f(x + 2π) = f(x), i.e. f is
differentiable and periodic, then the Fourier series converge absolutely for each
x ∈ R to f(x).

This is an infinite version of the identity Theorem 4.12, part 1, u =∑∞
i=1〈u,vi〉vi where v1, . . . ,vn, . . . is an orthonormal basis in a complete IPS.

Such a complete infinite dimensional IPS is called a Hilbert space.

4.23 Short biographies of related mathematcians

4.23.1 Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany). Died:
23 Feb 1855 in Göttingen, Hanover (now Germany).
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The method of least squares, established independently by two great math-
ematicians, Adrien Marie Legendre (1752 – 1833) of Paris and Carl Friedrich
Gauss.

In June 1801, Zach, an astronomer whom Gauss had come to know two or
three years previously, published the orbital positions of Ceres, a new ”small
planet” which was discovered by G Piazzi, an Italian astronomer on 1 January,
1801. Unfortunately, Piazzi had only been able to observe 9 degrees of its orbit
before it disappeared behind the Sun. Zach published several predictions of
its position, including one by Gauss which differed greatly from the others.
When Ceres was rediscovered by Zach on 7 December 1801 it was almost
exactly where Gauss had predicted. Although he did not disclose his methods
at the time, Gauss had used his least squares approximation method.

http://www-history.mcs.st-and.ac.uk/Biographies/Gauss.html

4.23.2 Augustin Louis Cauchy

Born: 21 Aug 1789 in Paris, France. Died: 23 May 1857 in Sceaux (near Paris),
France. His achievement is summed as follows:- “... Cauchy’s creative genius
found broad expression not only in his work on the foundations of real and
complex analysis, areas to which his name is inextricably linked, but also in
many other fields. Specifically, in this connection, we should mention his major
contributions to the development of mathematical physics and to theoretical
mechanics... we mention ... his two theories of elasticity and his investiga-
tions on the theory of light, research which required that he develop whole
new mathematical techniques such as Fourier transforms, diagonalisation of
matrices, and the calculus of residues.”

Cauchy was first to state the Cauchy-Schwarz inequality, and stated it for
sums.

http://www-history.mcs.st-and.ac.uk/Biographies/Cauchy.html

4.23.3 Hermann Amandus Schwarz

Born: 25 January 1843 in Hermsdorf, Silesia (now Poland). Died: 30 Novem-
ber 1921 in Berlin, Germany

His most important work is a Festschrift for Weierstrass’s 70th birth-
day. @articleSchwarz1885, author = ”H. A. Schwarz”, title = ”Ueber ein
die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrech-
nung”, journal = ”Acta societatis scientiarum Fennicae”, volume = ”XV”,
year = 1885, pages = ”315–362” Schwarz answered the question of whether a
given minimal surface really yields a minimal area. An idea from this work,
in which he constructed a function using successive approximations, led Emile
Picard to his existence proof for solutions of differential equations. It also
contains the inequality for integrals now known as the “Schwarz inequality”.
Schwarz was the third person to state the Cauchy-Schwarz inequality, stated
it for integrals over surfaces.
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4.23.4 Viktor Yakovlevich Bunyakovsky

Born: 16 December 1804 in Bar, Podolskaya gubernia, (now Vinnitsa oblast),
Ukraine. Died: 12 December 1889 in St. Petersburg, Russia. Bunyakovskii
was first educated at home and then went abroad, obtaining a doctorate from
Paris in 1825 after working under Cauchy.

Bunyakovskii published over 150 works on mathematics and mechanics.
He is best known in Russia for his discovery of the Cauchy-Schwarz inequality,
published in a monograph in 1859 on inequalities between integrals. This is
twenty-five years before Schwarz’s work. In the monograph Bunyakovskii gave
some results on the functional form of the inequality.

@articleBunyakovskii1859, author = ” V. Bunyakovskiui”, title = ”Sur
quelques inégalités concernant les intégrales ordinaires et les intégrales aux
différences finies”, journal = ”Mém. Acad. St. Petersbourg”, year = 1859,
volume = 1

4.23.5 Gram and Schmidt

Jorgen Pedersen Gram. Born: 27 June 1850 in Nustrup (18 km W of Hader-
slev), Denmark. Died: 29 April 1916 in Copenhagen, Denmark. Gram is best
remembered for the Gram-Schmidt orthogonalization process which constructs
an orthogonal set of from an independent one. The process seems to be a result
of Laplace and it was essentially used by Cauchy in 1836.

http://www-history.mcs.st-and.ac.uk/Biographies/Gram.html

Erhard Schmidt. Born: 13 Jan 1876 in Dorpat, Germany, (now Tartu, Esto-
nia). Died: 6 Dec 1959 in Berlin, Germany. Schmidt published a two part
paper on integral equations in 1907 in which he reproved Hilbert’s results in a
simpler fashion, and also with less restrictions. In this paper he gave what is
now called the Gram-Schmidt orthonormalisation process for constructing an
orthonormal set of functions from a linearly independent set.

http://www-history.mcs.st-and.ac.uk/Biographies/Schmidt.html

4.23.6 Jean Baptiste Joseph Fourier

Born: 21 March 1768 in Auxerre, Bourgogne, France. Died: 16 May 1830 in
Paris, France. It was during his time in Grenoble that Fourier did his impor-
tant mathematical work on the theory of heat. His work on the topic began
around 1804 and by 1807 he had completed his important memoir “On the
Propagation of Heat in Solid Bodies”. The memoir was read to the Paris Insti-
tute on 21 December 1807 and a committee consisting of Lagrange, Laplace,
Monge and Lacroix was set up to report on the work. Now this memoir is very
highly regarded but at the time it caused controversy.

There were two reasons for the committee to feel unhappy with the work.
The first objection, made by Lagrange and Laplace in 1808, was to Fourier’s
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expansions of functions as trigonometrical series, what we now call Fourier
series. Further clarification by Fourier still failed to convince them.

http://www-history.mcs.st-and.ac.uk/Biographies/Fourier.html

4.23.7 J. Peter Gustav Lejeune Dirichlet

Born: 13 Feb 1805 in Düren, French Empire, (now Germany). Died: 5 May
1859 in Göttingen, Hanover (now Germany). Dirichlet is also well known for
his papers on conditions for the convergence of trigonometric series and the
use of the series to represent arbitrary functions. These series had been used
previously by Fourier in solving differential equations. Dirichlet’s work is pub-
lished in Crelle’s Journal in 1828. Earlier work by Poisson on the convergence
of Fourier series was shown to be non-rigorous by Cauchy. Cauchy’s work
itself was shown to be in error by Dirichlet who wrote of Cauchy’s paper:-
“The author of this work himself admits that his proof is defective for certain
functions for which the convergence is, however, incontestable”. Because of
this work Dirichlet is considered the founder of the theory of Fourier series.

http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.htm

4.23.8 David Hilbert

Born: 23 Jan 1862 in Königsberg, Prussia, (now Kaliningrad, Russia). Died:
14 Feb 1943 in Göttingen, Germany.

Today Hilbert’s name is often best remembered through the concept of
Hilbert space. Irving Kaplansky, writing in [2], explains Hilbert’s work which
led to this concept: “Hilbert’s work in integral equations in about 1909 led
directly to 20th-century research in functional analysis (the branch of mathe-
matics in which functions are studied collectively). This work also established
the basis for his work on infinite-dimensional space, later called Hilbert space,
a concept that is useful in mathematical analysis and quantum mechanics.
Making use of his results on integral equations, Hilbert contributed to the de-
velopment of mathematical physics by his important memoirs on kinetic gas
theory and the theory of radiations.”

http://www-history.mcs.st-and.ac.uk/Biographies/Hilbert.html

5 DETERMINANTS

5.1 Introduction to determinant

For a square matrix A ∈ Rn×n the determinant of A, denoted by det A, (in
Hefferon book |A| := det A), is a real number such that det A 6= 0 ⇐⇒ A is
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invertible.

det

[
a b
c d

]
= ad− bc, (5.34)

det

[
2 −7
3 −1

]
− 19

det

 a b c
d e f
g h i

 = aei + bfg + cdh− ceg − afh− bdi. (5.35)

A way to remember the formula for the determinant of a matrix of order
3 is  a b c a b

d e f d e
g h i g h

 .
The product of diagonals starting from a, b, c, going south west have positive
signs, the products of diagonals starting from c, a, b and going south east have
negative signs.

The next rules are
I. The determinant of diagonal matrix, upper triangular matrix and lower
triangular is equal to the product of the diagonal entries.
II. det A 6= 0 ⇐⇒ The Row Echelon Form of A has the maximal number
of possible pivots ⇐⇒ The Reduced Row Echelon Form of A is the identity
matrix.
A is called singular if det A = 0.
III. The determinant of a matrix having at least one zero row or column is 0.
IV. det A = det A>: The determinant of A is equal to the determinant of A>.
V. det AB = det A det B: The determinant of the product of matrices is equal
to the product of determinants.
VI. If A is invertible then det A−1 = 1

det A
.

I = A−1A⇒ 1 = det I = det(A−1A) = det A−1 det A

(We will demonstrate some of these properties later.)

5.2 Determinant as a multilinear function

Claim 1: View A ∈ Rn×n as composed of n-columns A = [c1, c2, . . . , cn].
Then det A is a multilinear function in each column separately. Thar is, fix
all columns except the column ci. Let ci = ax + by, where x,y ∈ Rn and
a, b ∈ R. Then

det [c1, . . . , ci−1, ax + by, ci+1, . . . , cn] =

a det [c1, . . . , ci−1,x, ci+1, . . . , cn] + b det [c1, . . . , ci−1,y, ci+1, . . . , cn]

for each i = 1, . . . , n.

65



Claim 2: det A is a skew-symmetric, (anti-symmetric): The exchange of any
two columns ofA changes the sign of determinant. For example: det [c2, c1, . . . , cn] =
−det [c1, c2, . . . , cn]. (The skew symmetricity yields that the determinant of
A is zero if A has two identical columns.)

Claim 3: det In = 1.

Claim 4: These three properties determine uniquely the determinant function.

Remark: The above claims hold for rows as in Hefferon.

Clearly, these properties hold for the determinant of matrices of order 2:

det

[
a b
c d

]
= ad − bc. It is linear in the columns c1 = (a, c)>, c2 = (b, d)>

and in the rows (a, b), (c, d). Also det

[
b a
d c

]
= det

[
c d
a b

]
= bc − ad =

−det A

Proposition 5.1 Let A ∈ Rn×n then det A = 0 if one of the following
conditions hold.

1. A has a zero column.

2. A has two identical columns.

3. A has two linearly dependent columns.

4. A has a zero row.

5. A has two identical rows.

6. A has two linearly dependent rows.

Proof.

1. Fix all columns except the zero one, which is column i. Since the deter-
minant is a linear function in the column i its value for the zero vector
must be zero.

2. Assume that ci = cj for some i 6= j. If we interchange this two
columns we still have the same matrix A. One the other hand the skew-
symmetricity property of det A implies that det A = −det A. Hence
2det A = 0⇒ det A = 0.

3. Suppose that ci, cj linearly dependent. So without loss of generality we
ay assume that cj = aci. Let B be the matrix where we replace the
column cj in A by ci. Fix all columns of A except the column j. The
multilinearity of det A implies that det A = adet B. By the previous
result det B = 0 since B has two identical columns. Hence det A = 0.
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The other claims of the proposition follows from the above vanishing proper-
ties of the determinant by considering A> and recalling that det A> = det A.

2

5.3 Computing determinants using elementary row or
columns operations

Proposition 5.2 Let A ∈ Rn×n. Let B and C be the matrix obtained from
A using an elementary row and column operations respectively denoted by E.
So B = EA,C = AE. Then.

1. det B = det C = −det A if B is obtained from A by interchanging two
different rows, and C is obtained from A by interchanging two different
columns. (Elementary row or column operation of type I.)

2. det B = det C = a det A if B is obtained from A by multiplying one row
of A by a, and C is obtained from A by multiplying one column of A by
a. (Elementary row or column operation of type II.)

3. det B = det C = det A if B is obtained from A by adding to one row a
multiple of another row, and C is obtained from A by adding one column
a multiple of another column. (Elementary row or column operation of
type III.)

Proof. We prove the statements of the Proposition for the columns. The
statements for the rows follows from the statement for the columns and the
equality det A> = det A.

1. Follows from the skew-symmetricity of the determinant function as a
function on columns.

2. Follows from the multilinearity of the determinant as a function in columns.
Let F be obtained from A by adding aci to the column cj. Denote by B
the obtained by replacing the column cj in A by the column aci. The lin-
earity of the determinant in the j column implies det F = det A+det B.
Part 3 of Proposition 5.1 yields that det B = 0. Hence det F = det A.

2

Recall that any elementary matrix E can be obtained form the identity matrix
using the elementary row operation represented by E, i.e. E = EI. Hence we
deduce from the above Proposition.

Corollary 5.3 1. det EI = −1 where EI corresponds to interchanging

two rows: Ri ↔ Rj. (Example: R1 ↔ R1 corresponds to det

[
0 1
1 0

]
=

0 · 0− 1 · 1 = −1.)
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2. det EII = a where EII corresponds to multiplying a row by a: Ri → aRi.

(Example: R2 → aR2 corresponds to det

[
1 0
0 a

]
= a.)

3. det EIII = 1 where EIII corresponds to adding to one row a multiple of
another row: Ri + aRj → Ri. (Example: R2 + aR1 → R2 corresponds to

det

[
1 0
a 1

]
= 1.

Theorem 5.4 Let A ∈ Rn×n and perform k ERO:

A
ERO1→ A1

ERO2→ A2
ERO3→ . . . Ak−1

EROk→ Ak (5.36)

Assume that the elementary row operation number i, denoted as EROi is given
by the elementary matrix Ei. Then

det Ak = (det Ek)(det Ek−1) . . . (det E1)det A. (5.37)

Proof. Clearly Ai = EiAi−1 where A0 = A. Combine Proposition 5.2 with
Corollary 5.3 to deduce that det Ai = (det Ei)det Ai−1 for i = 1, . . . , k. This
implies (5.37). 2

Theorem 5.5 Let A ∈ Rn×n. Then the following conditions hold.

1. Assume that A is invertible, i.e. there exists as sequence of elementary
row operations such that (5.36) holds, where Ak = In is the RREF of A.
Then

A−1 = EkEk−1 . . . E1, A = E−11 E−12 . . . E−1k (5.38)

det A = (det E1)
−1 . . . (det Ek)

−1 6= 0. (5.39)

2. det A = 0 if and only if rankA < n, i.e. A is singular.

3. The determinant of an upper or lower triangular matrix is a product of
its diagonal entries.

Proof. Use elementary row operations as (5.36) to bring A to its RREF,
which is Ak. If rankA = n then Ak = In and we have equality (5.38). Use
Theorem 5.4 and the assumption that det In = 1 to deduce 1. (Observe that
Corollary 5.3 yields that the determnant of an elementary matrix is nonzero.)

Assume now that rankA < n. Then the last row of Ak is zero. Use
Proposition 5.1 to deduce that det Ak = 0. Combine (5.37) with the fact
that the determinant of an elementary matrix is nonzero to deduce 2 that
det A = 0.

Assume that A is a lower triangular with the diagonal entries a11, . . . , ann
if aii = 0 for some i, then A has at most n − 1 pivots in its REF. Hence
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rankA < n and det A = 0 =
∏n

i=1 aii. Suppose that all diagonal entries of
A are different from zero. First divide row i by aii to obtain the lower tri-
anguar matrix B with 1 on the diagonal. Use Theorem 5.4 to deduce that
det A = (

∏n
i=1 aii)det B. Now bring B to its RREF In by ding Gauss elim-

ination, which consists of adding to row j a multiple of row i, where i < j.
According to Proposition (5.2) such elementary row operations do not change
the value of the determinant. Hence det B = det In = 1. Similar arguments
apply if A is an upper triangular matri. This proves 3. 2

Proposition 5.6 Let A ∈ Rn×n be an invertible matrix such that A =
F1F2 . . . Fk, where F1, . . . , Fk are elementary matrices. Then

det A = (det F1)(det F2) . . . (det Fk). (5.40)

Proof. Let Ei = F−1i . Note that Ei is also an elementary matrix. Fur-
thermore , Corollary 5.3 yields that det Ei = (det Fi)

−1. Clearly (5.38) holds.
Apply Part 1 of Theorem 5.5 to deduce (5.40). 2

Theorem 5.7 Let A,B ∈ Rn×n. Then det (AB) = (det A)(det B).

Proof. Assume first that B is singular, i.e. det B = 0. So rankB < n and
there exists a nonzero x ∈ Rn such that Bx = 0. Then (AB)x = A(Bx) =
A0 = 0. So AB is singular, i.e. rank(AB) < n. Hence = 0det (AB) =
(det A)0 = (det A)(det B).

Assume next that B is invertible and A is singular. So Ay = 0 for some
nonzero y. Then (AB)(B−1y) = Ay = 0. As B−1y 6= 0 it follows that AB
singular. So = det (AB) = 0(det B) = (det A)(det B).

It is left to prove the theorem when A and B are invertible. Then

A = F1F2 . . . Fk, G1G2 . . . Gl,

where each Fi and Gj is elementary. So AB = F1 . . . FkG1 . . . Gl. By Proposi-
tion 5.6

det (AB) = (
k∏

i=1

det Fi)(
k∏

j=1

ldet Gj) = (det A)(det B).

2

5.4 Permutations

Definition: A bijection, i.e. 1 − 1 and onto map, σ : {1, 2, . . . , n} →
{1, 2, . . . , n}, is called a permutation of the set {1, 2, . . . , n}. The set of all
permutations of {1, 2, . . . , n} is called the symmetric group on n-elements,
and is denoted by Sn.

69



σ(i) is the image of the number i for i = 1, . . . , n. (Note that 1 ≤ σ(i) ≤ n
for i = 1, . . . , n. ι ∈ Sn is called the identity element, (or map), if ι(i) = i for
i = 1, . . . , n.

Proposition 5.8 The number of elements in Sn is n! = 1 · 2 · · ·n.

Proof. σ(1) can have n choices: 1, . . . , n. σ(2) can have all choices: 1, . . . , n
except σ(1), i.e. n− 1 choices. σ(3) can have all choices except σ(1), σ(2), i.e.
σ(3) has n− 3 choices. Hence total number of σ-s is n(n− 1) . . . 1 = n!. 2

Definition. τ ∈ Sn is a transposition, if there exists 1 ≤ i < j ≤ n so that
τ(i) = j, τ(j) = i, and τ(k) = k for all k 6= i, j.

Since σ, ω ∈ Sn are bijections, we can compose them σ ◦ ω, which is an
element in Sn, ((σ ◦ ω)(i) = σ(ω(i))). We denote this composition by σω and
view this composition as a product in Sn.

Claim. Any σ ∈ Sn is a product of transpositions. There are many different
products of transpositions to obtain σ. All these products of transpositions
have the same parity of elements. (Either all products have even number of
elements only, or have odd numbers of elements only.)

Definiiton. For σ ∈ Sn, sgn(σ) = 1 if σ is a product of even number of
transpositions. sgn(σ) = −1 if σ is a product of odd number of transpositions.

Proposition 5.9 sgn(σω) = sgn(σ)sgn(ω).

Proof. Express σ and ω is a product of transpositions. Then σω is also a
product of transpositions. Now count the parity. 2

5.5 S2

S2 consists of two element: the identity ι: ι(1) = 1, ι(2) = 2 and the trans-
position τ : τ(1) = 2, τ(2) = 1. Note τ 2 = ττ = ι since τ(τ(1)) = τ(2) =
1, τ(τ(2)) = τ(1) = 2. So ι is a product of any any even number of τ , i.e.
ι = τ 2m, while τ = τ 2m+1 for m = 0, 1, . . ..

Note that this is true for any transposition τ ∈ Sn, n ≥ 2. Thus sgn(ι) =
1, sgn(τ) = −1 for any n ≥ 2.
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5.6 S3

S3 consists of 6 elements. Identity: ι. There are three transpositions in S3:

τ1(1) = 1, τ1(2) = 3, τ1(3) = 2,

τ2(1) = 3, τ2(2) = 2, τ2(3) = 1,

τ3(1) = 2, τ3(2) = 1, τ3(3) = 3.

(τj fixes j.)
There are two cyclic permutations

σ(1) = 2, σ(2) = 3, σ(3) = 1,

ω(1) = 3, ω(2) = 1, ω(3) = 2.

Note ωσ = σω = ι, i.e. σ−1 = ω. It is straightforward to show

σ = τ1τ2 = τ2τ3, ω = τ2τ1 = τ3τ2.

So

sgn(ι) = sgn(σ) = sgn(ω) = 1, sgn(τ1) = sgn(τ2) = sgn(τ3) = −1.

5.7 Rigorous definition of determinant

For

A =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
an1 am2 ... ann

 ∈ Rn×n

define
det A =

∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n). (5.41)

Note that det A has n! summands in the above sum.

5.8 Cases n = 2, 3

det

[
a11 a12
a21 a22

]
= a1ι(1)a2ι(2) − a1τ(1)a2τ(2) = a11a22 − a12a21,

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a1ι(1)a2ι(2)a3ι(3) + a1σ(1)a2σ(2)a3σ(3) + a1ω(1)a2ω(2)a3ω(3)

−a1τ1(1)a2τ1(2)a3τ1(3) − a1τ2(1)a2τ2(2)a3τ2(3) − a1τ3(1)a2τ3(2)a3τ3(3) =

a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a13a22a31 − a12a21a33.
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5.9 Minors and Cofactors

For A ∈ Rn×n the matrix Mij ∈ R(n−1)×(n−1) denotes the submatrix of A
obtained from A by deleting row i and column j. The determinant of Mij is
called (i, j)-minor of A. The cofactor Aij is defined to be (−1)i+jdet Mij.

A =

 a b c
d e f
g h i

 ,M32 =

[
a c
d f

]
, A32 = −af + cd.

Expansion of the determinant by row i, (Laplace expansion)

det A = ai1Ai1 + ai2Ai2 + ...+ ainAin =
n∑

j=1

aijAij.

Expansion of the determinant by column p:

det A = a1pA1p + a2pA2p + ...+ anpAnp =
n∑

j=1

ajpAjp.

One can compute also the determinant of A using repeatedly the row or column
expansions

Warning: Computationally the method of using row/column expansion
is very inefficient. Expansion of determinant by row/column is used primarily
for theoretical computations.

5.10 Examples of Laplace expansions

Expand the determinant of A =

 a b c
d e f
g h i

 by the second row:

det A = dA21 + eA22 + fA23 =

d(−1)det

[
b c
h i

]
+ e det

[
a c
g i

]
+ f(−1)det

[
a b
g h

]
=

(−d)(bi− hc) + e(ai− cg) + (−f)(ah− bg) = aei+ bfg + cdh− ceg − afh− bdi.

Find det


−1 1 −1 3

0 3 1 1
0 0 2 2
−1 −1 −1 2

. Expand by the row or column which has

the maximal number of zeros. We expand by the first column: det A =
a11A11 + a21A21 + a31A31 + a41A41 = a11A11 + a41A41 since a21 = a31 = 0.
Observe that (−1)1+1 = 1, (−1)1+4 = −1. Hence

det A = (−1)det

 3 1 1
0 2 2
−1 −1 2

+ (−1)(−1)det

 1 −1 3
3 1 1
0 2 2

 .
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Expand the first determinant by the second row and the second determinant
by the third row.

det A = (−1)
(
3 det

[
2 2
−1 2

]
+ (−1)det

[
1 1
2 2

] )
+

(
(−2)det

[
1 3
3 1

]
+ 2 det

[
1 −1
3 1

] )
= −18 + 16 + 8 = 6.

Another way to find det A, A =


−1 1 −1 3

0 3 1 1
0 0 2 2
−1 −1 −1 2

.

Perform ERO: R4 − R1 → R4 to obtain B =


−1 1 −1 3

0 3 1 1
0 0 2 2
0 −2 0 −1

. So

det A = det B. Expand det B by the first column to obtain det B = −det C,

C =

 3 1 1
0 2 2
−2 0 −1

. Perform the ERO R1 − 0.5R2 → R1 to obtain D = 3 0 0
0 2 2
−2 0 −1

. Expand det D by the first row to get det D = (3)(2 · (−1)−

2 · 0) = −6. Hence det A = 6.

5.11 Adjoint Matrix

For A =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
an1 an2 ... ann

 the adjoint matrix is defined as

adj A =


A11 A21 ... An1
A12 A22 ... An2

...
...

...
...

A1n A2n ... Ann

 ,
where Aij is the (i, j) cofactor of A. Note that the i-th row of adj A is
(A1i A2i . . . Ani).
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Examples:

A =

[
a11 a12
a21 a22

]
, adj A =

[
A11 A21

A12 A22

]
=

[
a22 −a12
−a21 a11

]
,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , adj A =

 A11 A21 A31

A12 A22 A32

A13 A23 A33

 ,
A33 = det

[
a11 a12
a21 a22

]
= a11a22 − a12a21,

A12 = −det

[
a21 a23
a31 a33

]
= −a21a33 + a23a31.

A way to remember to get the adjoint matrix correctly:

adj A =


A11 A12 ... A1n

A21 A22 ... A2n
...

...
...

...
An1 An2 ... Ann


>

=


A11 A21 ... An1
A12 A22 ... An2

...
...

...
...

A1n A2n ... Ann


5.12 The properties of the adjoint matrix

Proposition 5.10 Let A ∈ Rn×n. Then A adj A = (adjA)A = (det A)In,

Proof. Consider the (i, j) element of the product A adj A: ai1Aj1+ai2Aj2+
... + ainAjn. Assume first that i = j. Then this sum is the expansion of the
determinant of A by i− th row. Hence it is equal to det A, which is the (i, i)
entry of the diagonal matrix (det A)I.

Assume now that i 6= j. Then the above sum is the expansion of the de-
terminant of a matrix C obtained from A by replacing the row j in A by the
row i of A. Since C has two identical row, it follows that det C = 0. This
shows A adj A = (det A)I. Similarly (adj A)A = (det A)I. 2

Corollary 5.11 det A 6= 0⇒ A−1 = 1
det A

adj A.

74



Example: Let A =

 1 2 3
0 4 5
0 0 6

. Find adj A and A−1.

A11 = 24, A12 = −0, A13 = 0, A21 = −12, A22 = 6,

A23 = −0, A31 = 10− 12 = −2, A32 = −5, A33 = 4,

adj A =

 24 0 0
−12 6 0
−2 −5 4

> =

 24 −12 −2
0 6 −5
0 0 4

 .
Since A is upper triangular det A = 1 · 4 · 6 = 24 and

A−1 =
1

24

 24 −12 −2
0 6 −5
0 0 4

 .
5.13 Cramer’s Rule

Theorem 5.12 Consider the linear system of n equations with n unknowns:

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
...

...
...

...
...

...
an1x1 + an2x2 + ... + annxn = bn

Let A ∈ Rn×n,b = (b1, ..., bn)> be the coefficient matrix and the column vector
corresponding to the right-hand side of these system. That is the above system
is Ax = b, x = (x1, ..., xn)>. Denote by Bj ∈ Rn×n the matrix obtained from
A by replacing the j − th column in A by: Bj =

a11 ... a1(j−1) b1 a1(j+1) . . . a1n
a21 ... a2(j−1) b2 a2(j+1) . . . a2n

...
...

...
...

...
...

...
an1 ... an(j−1) bn an(j+1) . . . ann

 .
Then xj =

det Bj

det A
for j = 1, ..., n.

Proof. Since det A 6= 0, A−1 = 1
det A

adj A. Hence the solution to the
system Ax = b is given by: A−1x = 1

det A
adj A b. Writing down the formula

for the matrix adj A we get: xj =
A1jb1+A2jb2+...+Anjbn

det A
. The numerator of this

quotient is the expansion of det Bj by the column j. 2

Example: Find the value of x2 in the system

x1 + 2x2 − x3 = 0
−2x1 − 5x2 + 5x3 = 3

3x1 + 7x2 − 5x3 = 0
.
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x2 =

det

 1 0 −1
−2 3 5

3 0 −5


det

 1 2 −1
−2 −5 5

3 7 −5

 .

Expand the determinant of the denominator by the second column to obtain

det

 1 0 −1
−2 3 5

3 0 −5

 = 3 det

[
1 −1
3 −5

]
= 3(−5 + 3) = −6. On the coefficient

matrix A =

 1 2 −1
−2 −5 5

3 7 −5

 perform the ERO R1 + 3R2 → R2, R2− 3R1 →

R3 to obtain A2 =

 1 2 −1
0 −1 3
0 1 −2

. Expand det A2 by the first column to

obtain det A = det A2 = 1(2 − 3) = −1. So x2 = 6. (Note that A−1

was computed before in the notes. Check the answer by comparing it to
A−1(0, 3, 0)> = (−9, 6, 3)>.)

5.14 History of determinants

Historically, determinants were considered before matrices. Originally, a de-
terminant was defined as a property of a system of linear equations. The
determinant ”determines” whether the system has a unique solution (which
occurs precisely if the determinant is non-zero). In this sense, two-by-two de-
terminants were considered by Cardano at the end of the 16th century and
larger ones by Leibniz about 100 years later. Following him Cramer (1750)
added to the theory, treating the subject in relation to sets of equations.

It was Vandermonde (1771) who first recognized determinants as indepen-
dent functions. Laplace (1772) gave the general method of expanding a deter-
minant in terms of its complementary minors: Vandermonde had already given
a special case. Immediately following, Lagrange (1773) treated determinants
of the second and third order. Lagrange was the first to apply determinants to
questions outside elimination theory; he proved many special cases of general
identities.

Gauss (1801) made the next advance. Like Lagrange, he made much use
of determinants in the theory of numbers. He introduced the word determi-
nants (Laplace had used resultant), though not in the present signification,
but rather as applied to the discriminant of a quantic. Gauss also arrived
at the notion of reciprocal (inverse) determinants, and came very near the
multiplication theorem.

The next contributor of importance is Binet (1811, 1812), who formally
stated the theorem relating to the product of two matrices of m columns and

76



n rows, which for the special case of m = n reduces to the multiplication
theorem. On the same day (Nov. 30, 1812) that Binet presented his paper
to the Academy, Cauchy also presented one on the subject. (See Cauchy-
Binet formula.) In this he used the word determinant in its present sense,
summarized and simplified what was then known on the subject, improved the
notation, and gave the multiplication theorem with a proof more satisfactory
than Binet’s. With him begins the theory in its generality.

Source: http://en.wikipedia.org/wiki/Determinant
(See section History)

6 Eigenvalues and Eigenvectors

6.1 Definition of eigenvalues and eigenvectors

Let F be the field, and C be the filed of complex numbers. Let A ∈ Fn×n.
x ∈ Fn is called an eigenvector (characteristic vector) if x 6= 0 and there exists
λ ∈ C such that Ax = λx. λ is called an eigenvalue (characteristic value of
A). In this Chapter we will deal mostly with the two fields F = R,C. For the
sake of generality we will state some results fr general fields F.

Proposition 6.1 λ is an eigenvalue of A if and only if det (A− λI) = 0.

Proof. Let B(λ) := A− λI. Then x is an eigenvector of A iff and only iff
x ∈ N(B(λ)), i.e. x is in the null space of B(λ). Suppose first that B(λ)x = 0.
Since x 6= 0, B(λ) is singular, hence det B(λ) = 0. Vice versa suppose that
det B(λ) = 0 for some λ. Then there exists a nonzero x such that B(λ)x = 0
i.e. x is an eigenvector of A. 2

The polynomial p(λ) := det (A − λI) is called a characteristic polynomial
of A.

p(λ) = (−1)n(λn − σ1λn−1 + σ2λ
n−2 + . . .+ (−1)nσn)

is a polynomial of degree n. The fundamental theorem of algebra states that
p(λ) has n roots (eigenvalues) λ1, λ2, . . . , λn and

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Given an eigenvalue λ then a basis to the null space N(A− λI) is a basis for
the eigenspace of eigenvectors of A corresponding to λ.
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6.2 Examples of eigenvalues and eigenvectors

Example 1. Consider the Markov chain given by A =

[
0.7 0.2
0.3 0.8

]
. (%70 of

healthy remain healthy and %20 of sick recover.)

A− λI =

[
0.7− λ 0.2

0.3 0.8− λ

]
,

det (A− λI) = (0.7− λ)(0.8− λ)− 0.2 · 0.3 = λ2 − 1.5λ+ 0.5

is the characteristic polynomial of A. So det (A − λI) = (λ − 1)(λ − 0.5).
Eigenvalues of A are the zeros of the characteristic polynomial, i.e. solutions
of det (A− λI) = 0: λ1 = 1, λ2 = 0.5.

To find a basis for the null space of A−λ1I = A−I, denoted by N(A−λ1I),
we need to bring the matrix A− I to RREF:

A− I =

[
−0.3 0.2

0.3 −0.2

]
. So B =

[
1 −2

3

0 0

]
is RREF of A− I.

N(B) corresponds to the system x1 − 2
3
x2 = 0. Since x1 is a lead variable

and x2 is free x1 = 2x2
3

. By choosing x2 = 1 we get the eigenvector x1 = (2
3
, 1)>

which corresponds to the eigenvalue 1.
Note that the steady state of the Markov chain corresponds o the coordi-

nates of x1. More precisely the ratio of heathy to sick is x1
x2

= 2
3
.

To find a basis for the null space of A − λ2I = A − 0.5I , denoted by
N(A − λ2I) we need to bring the matrix A − 0.5I to RREF: A − 0.5I =[

0.2 0.2
0.3 0.3

]
. So C =

[
1 1
0 0

]
is RREF of A− 0.5I.

N(C) corresponds to the system x1+x2 = 0. Since x1 is a lead variable and
x2 is free x1 = −x2. By choosing x2 = 1 we get the eigenvector x2 = (−1, 1)>

which corresponds to the eigenvalue 0.5.

Example 2: LetA =

 2 −3 1
1 −2 1
1 −3 2

. SoA−λI =

 2− λ −3 1
1 −2− λ 1
1 −3 2− λ

.

Expand det (A− λI) by the first row:

(2− λ)
(
(−2− λ)(2− λ) + 3

)
+ (−1)(−3)

(
1(2− λ)− 1

)
+ 1
(
− 3 + (2 + λ)

)
=

(2− λ)(λ2 − 1) + 3(1− λ) + (λ− 1) =

(λ− 1)
(
(2− λ)(λ+ 1)− 3 + 1

)
= (λ− 1)(−λ2 + λ) = −λ(λ− 1)2.

So λ1 = 0 is a simple root and λ2 = 1 is a double root.

A− λ1I = A =

 2 −3 1
1 −2 1
1 −3 2

 .
RREF of A is

B =

 1 0 −1
0 1 −1
0 0 0

 .
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The null space N(B) is given by x1 = x3, x2 = x3, where x3 is the free variable.
Set x3 = 1 to obtain that x1 = (1, 1, 1)> is an eigenvector corresponding to
λ1 = 0.

A− λ2I =

 1 −3 1
1 −3 1
1 −3 1

 .
RREF of A− λ2I is

B =

 1 −3 −1
0 0 0
0 0 0

 .
The null space N(B) given by x1 = 3x2−x3, where x2, x3 are the free variable.
Set x2 = 1, x3 = 0 to obtain that x2 = (3, 1, 0)>. Set x2 = 0, x3 = 1 to obtain
that x3 = (−1, 0, 1)>. So x2,x3 are two linearly independent eigenvectors
corresponding to the double zero λ2 = 1.

6.3 Similarity

Definition. Let V be a vector space with a basis [v1 v2 . . .vn] over a field F.
Let T : V → V be a linear transformation. Then the representation matrix
A = [a1 a2 . . . an] ∈ Fn×n of T in the basis [v1 v2 . . .vn] is given as follows.
The column j of A, denoted by aj ∈ Rn, is the coordinate vector of T (vj).
That is, T (vj) = [v1 v2 . . .vn]aj for j = 1, . . . , n.

Change a basis in V: [v1 v2 . . .vn]
Q−→[u1 u2 . . .un]. Then the representation

matrix of T in the bases [u1 u2 . . .un] is given by the matrix QAQ−1.

Definition. A,B ∈ Fn×n are called similar if B = QAQ−1 for some invertible
matrix Q ∈ Fn×n.

Definition. For A ∈ Fn×n the trace of A is the sum of the diagonal elements
of A.

Proposition 6.2 Two similar matrices A and B have the same charac-
teristic polynomial. In particular A and B have the same trace and the same
determinant.

Proof. Fix λ ∈ F. Clearly

det (B− λI) = det (QAQ−1 − λI) = det (Q(A− λI)Q−1) = (6.42)

det Q(det (A− λI))det Q−1 = det Q(det (A− λI))(det Q)−1 = det (A− λI).

Express det (A − λI) as a sum of n! product of elements of A − λI (§6.1)
we get det (A − λI) = (−1)nλn + (−1)n−1 tr A λn−1 + . . . + det A. Hence
trA := a11 + a22 + . . .+ ann. In view of (6.42) we deduce that A and B have
the same trace and the same determinant. 2
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Theorem 6.3 Suppose that A,B ∈ Fn×n have the same characteristic
polynomial p(λ). If p(λ) has n distinct roots then A and B are similar.

We will prove this result later. However if p(λ) has multiple roots than it is
possible that A and B have the same characteristic polynomial but A and B
are not similar.

6.4 Characteristic polynomials of upper triangular ma-
trices

Suppose that A is upper triangular. Hence A − λI is also upper triangular.
Thus det (A− λI) = (a11 − λ)(a22 − λ) . . . (ann − λ) So the eigenvalues of up-
per or lower triangular matrix are given by its diagonal entries, (counted with
multiplicities!)

Example 1:

A =

 a11 a12 a13
0 a22 a23
0 0 a33

 , A− λI =

 a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ


det (A− λI) = (a11 − λ)(a22 − λ)(a33 − λ).

Let A =

[
0.7 0.2
0.3 0.8

]
. (See §??.) Recall det (A−λI) = (1−λ)(0.5−λ). Let

D =

[
1 0
0 0.5

]
. So det (A− λI) = det (D− λI). We show that A and D are

similar. Recall that Ax1 = x1, Ax2 = 0.5x2. Let X = (x1 x2) =

[
2
3
−1

1 1

]
.

So AX = XD (Check it!). This is equivalent to the fact that x1,x2 are the cor-
responding eigenvectors). As det X = 5

3
6= 0 X is invertible and A = XDX−1.

So A and D are similar.

Example 2:: Matrices nonsimilar to diagonal mattrices.
Let

A =

[
0 0
0 0

]
, B =

[
0 1
0 0

]
.

Both matrices are upper triangular so det (A−λI) = det (B−λI) = λ2. Since
TAT−1 = 0 = A 6= B, A and B are not similar.

Proposition 6.4 : B is not similar to a diagonal matrix.

Proof. Suppose that B is similar to D =

[
a 0
0 b

]
. As det (B − λI) =

λ2 = det (D− λI) = (a− λ)(b− λ) we must have a = b = 0, i.e. D = A. We
showed above that A and B are not similar.

80



6.5 Defective matrices

Defininiton λ0 is called a defective eigenvalue of A ∈ Fn×n if the multiplicity
of λ0 in det (B− λI) (= 0) is strictly greater than dimN(B − λ0I). B ∈ Fn×n
is called defective if and only if one of the following conditions hold.

1. det (B− λI) is not of the form
∏n

i=1(λi − λ), for some λ1, . . . , λn ∈ F.

2. det (B− λI) =
∏n

i=1(λi − λ), for λ1, . . . , λn ∈ F, and B has at least one
defective eigenvalue.

Note that B =

[
0 1
0 0

]
is defective since the only eigenvalue λ0 = 0 is

defective: rank(B − 0I) = rankB = 1, dimN(B) = 2 − rankB = 1, and the
multiplicity of λ0 = 0 in det (B− λI) = λ2 is 2.

Definition: A ∈ Fn×n is called diagonable if A is similar to a diagonal matrix
D ∈ Fn×n. (The diagonal entries of D are the eigenvalues of A counted with
multiplicities.)

Theorem 6.5 : B ∈ Fn×n is a diagonable matrix if and only if B is not
defective.

(Note that A ∈ R3×3 given in Example 2 of §6.2 is not defective, hence ac-
cording to the above Theorem A is diagonable.)

To prove Theorems 6.5 and 6.3 we need the following lemma.

Lemma 6.6 : Let y1,y2, . . . ,yp be p eigenvectors of AFn×n corresponding
to p distinct eigenvalues. Then y1, ...,yp are linearly independent.

Proof. The proof is by induction on p. Let p = 1. By the definition an
eigenvector y1 6= 0. Hence y1 is lin.ind. . Assume that the lemma holds for
p = k. Let p = k + 1. Assume that Ayi = λiyi,yi 6= 0, i = 1, . . . , k + 1 and
λi 6= λj for i 6= j. Suppose that

a1y1 + . . .+ akyk + ak+1yk+1 = 0. (6.43)

So

0 = A0 = A(a1y1 + . . .+ akyk + ak+1yk+1) =

a1Ay1 + . . .+ akAyk + ak+1Ayk+1 = a1λ1y1 + . . .+ akλkyk + ak+1λk+1yk+1.

Multiply (6.43) by λk+1 and subtract it from the last equality above to get

a1(λ1 − λk+1)y1 + . . .+ ak(λk − λk+1)yk = 0.

The induction hypothesis implies that ai(λi−λk+1) = 0 for i = 1, . . . , k. Since
λi − λk+1 6= 0 for i < k + 1 we get ai = 0, i = 1, . . . , k. Use these equalities
in (6.43) to obtain ak+1yk+1 = 0 ⇒ ak+1 = 0. So y1, . . . ,yk+1 are linearly

81



independent. 2

Proof of Theorem 6.3. Suppose that the characteristic polynomial of
A ∈ Fn×n has n distinct eigenvalues λ1, . . . , λn. To each eigenvalue λi we
have an eigenvector yi for i = 1, . . . , n. Since λi 6= λj for i 6= j Lemma 6.6
yields that y1, . . . ,yn are linearly independent. Let Y ∈ Fn×n such that the
columns of Y are y1, . . . ,yn. Since y1, . . . ,yn are linearly independent then
rankY = n and Y is invertible. Let Λ = diag(λ1, . . . , λn) be the diagonal
matrix whose diagonal entries are λ1, . . . , λn. A straightforward calculation
shows that AY = Y Λ. So A = Y ΛY −1, i.e. A is similar to Λ. Similarly B is
similar to Λ. Hence A is similar to B. 2

Proof of Theorem 6.5. Consider first a diagonal matrixD = diag(d1, . . . , dn) ∈
Fn×n. Clearly, det (D − λI) =

∏n
i=1(di − λ). Let ei = (δ1i, . . . , δni)

>. Clearly
Dei = diei for i = 1, . . . , n. So if a diagonal element λ in D appears k times,
the k corresponding columns of the identity matrix In are the eigenvectors
corresponding to λ. Clearly these vectors are linearly independent. Also λ is
a root of the characteristic polynomial of multiplicity k. Suppose that A is
similar to D, i.e. A = Y DY −1. So det (A−λI) = det (D−λI) =

∏n
i=1(di−λ).

Then a straightforward calculation shows that i-th column of Y is an eigen-
vector of A corresponding to di. That is, if A is similar to a diagonal matrix
it is not defective.

Assume now that A ∈ Fn×n is not defective. First det (A − λI) =
prodn

i=1(λi−λ). Let µ1, . . . , µk be the distinct roots of the characteristic polyno-
mial of A. Assume that the multiplicity of µi is ni ≥ 1. So A has ni linearly in-
dependent eigenvectors yi,1, . . . ,yi,ni

such that Ayi,j = µiyi,j for j = 1, . . . , ni.
We claim that the n eigenvectors y1,1, . . . ,yi,n1 , . . . ,yk,1, . . . ,yk,nk

are linearly
independent. Indeed suppose that

k∑
i=1

ni∑
j=1

ai,jyi,j = 0.

We claim that all ai,j = 0. Suppose not. If
∑ni

j=1 ai,jyi,j = 0, since yi,1, . . . ,yi,ni

are linearly independent, it follows that ai,j = 0 for j = 1, . . . , ni. Let I be the
set of all indices i such that

∑ni

j=1 ai,jyi,j 6= 0. Then xi :=
∑ni

j=1 ai,jyi,j = 0 is
an eigenvector of A corresponding to µi. Our assumption is that

∑
i∈I xi = 0.

But each eigenvector xi, i ∈ I correspond to a different eigenvalue µi of A.
Lemma 6.6 yields that the set of eigenvectors xi, i ∈ I are linear independent.
So we can not have that

∑
i∈I xi = 0. Hence y1,1, . . . ,yi,n1 , . . . ,yk,1, . . . ,yk,nk

are linearly independent. Let Y be the matrix with the columns
y1,1, . . . ,yi,n1 , . . . ,yk,1, . . . ,yk,nk

. So Y is invertible. Since each column of Y
is an eigenvector a straight computation implies that AY = Y Λ, where Λ is a
diagonal matrix, whose entries are µi repeating ni times for i = 1, . . . , k. So
A = Y ΛY −1. 2
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6.6 An examples of a diagonable matrix

Example: See Example 2 in §6.2. Let A =

 2 −3 1
1 −2 1
1 −3 2

. det (A −

λI) = −λ(λ − 1)2. X = [x1 x2 x3] =

 1 3 −1
1 1 0
1 0 1

 , D =

 0 0 0
0 1 0
0 0 1


A = XDX−1 =

 1 3 −1
1 1 0
1 0 1

 0 0 0
0 1 0
0 0 1

 −1 3 −1
1 −2 1
1 −3 2


6.7 Powers of diagonable matrices

A = XDX−1 ⇒ Am = XDmX−1, Dm = diag(λm1 . . . λ
m
n ), m = 1, . . ..

Iteration process:

xm = Axm−1, m = 1, . . .⇒ xm = Amx0. (6.44)

Problem: Under what conditions xm converges to x := x(x0)?

Proposition 6.7 Assume that A ∈ Cn×n is diagonable. Then xm con-
verges to x for all x0 if and only if each eigenvalue of A satisfies either |λ| < 1
or λ = 1.

Proof. Let A = Y DY −1, where D = diag(λ1, . . . , λn) is a diagonal matrix.
In (6.44) replace xm = Y ym. Then the system (6.44) becomes ym = Dym−1.
So ym = Dmy0 = diag(λm1 , . . . , λ

m
n )y0. Assume that y0 = (a1, . . . , an)>. Then

the i coordinate of ym is λmi ai. If ai 6= 0 then the sequence λmi ai, i = 0, 1, . . . ,
converges if and only if either |λi| < 1 or λi = 1. 2

Markov Chains: A ∈ Rn×n is called column (row) stochastic if all entries of
A are nonnegative and the sum of each column (row) is 1. That is A>e = e,
(Ae = e), where e = (1, 1, . . . , 1)>. Under mild assumptions, e.g. all entries
of A are positive limm→∞A

mx0 = x. If A is column stochastic and e>x0 = 1
then the limit vector is a unique probability eigenvector of A:

Ax = x, x = (x1, . . . , xn)>, 0 < x1, . . . , xn, x1 + x2 + . . . xn = 1.

Examples:
1. See Example 1 in §6.2:

A =

[
0.7 0.2
0.3 0.8

]
=

[
2
3
−1

1 1

] [
1 0
0 0.5

] [
3
5

3
5

−3
5

2
5

]
. (6.45)

Ak =

[
0.7 0.2
0.3 0.8

]k
=

[
2
3
−1

1 1

] [
1k 0
0 (0.5)k

] [
3
5

3
5

−3
5

2
5

]
,
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lim
k→∞

Ak =

[
0.7 0.2
0.3 0.8

]
=

[
2
3
−1

1 1

] [
1 0
0 0

] [
3
5

3
5

−3
5

2
5

]
=

[
2
5

2
5

3
5

3
5

]
.

(The columns give proportions of healthy and sick.)

2. See Example 2 in §6.2. Ak = A since diag(0, 1, 1)k = diag(0k, 1k, 1k) =
diag(0, 1, 1). (This follows also from the straightforward computation A2 = A.)

A is called projection, or involution if A2 = A. For projection limk→∞A
k =

A.

6.8 Systems of linear ordinary differential equations

A system of linear ordinary differential equations with constant coefficients,
abbreviated as SOLODEWCC, is given as.

y′1 = a11y1 + a12y2 + . . .+ a1nyn
y′2 = a21y1 + a22y2 + . . .+ a2nyn
...

...
...

...
...

...
...

y′n = an1y1 + an2y2 + . . .+ a1nyn

. (6.46)

In matrix terms we write: y′ = Ay, where y = y(t) = (y1(t), y2(t), ..., yn(t))T

and A ∈ Cn×n is a constant matrix.
We guess a solution of the form y(t) = eλtx, where x = (x1, . . . , xn)> ∈ Cn

is a constant vector. We assume that x 6= 0, otherwise we have a constant non-
interesting solution x = 0. Then y′ = (eλt)′x = λeλtx. The system y′ = Ay is
equivalent to λeλtx = A(eλtx). Since eλt =6= 0, divide by eλt to get Ax = λx.

Corollary 6.8 If x(6= 0) is an eigenvector of A corresponding to the eigen-
value λ then y(t) = eλtx is a nontrivial solution of the given SOLODEWCC.

Theorem 6.9 Assume that A ∈ Cn×n is diagonable. Let det (A − λI) =
(λ1 − λ)m1(λ2 − λ)m2 . . . (λk − λ)mk, where λi 6= λj for i 6= j, 1 ≤ mi. (The
multiplicity of λi), and dim N(A− λiI) = mi, N(A− λi) = span(xi1, . . . ,ximi

)
for i = 1, . . . , k. Then the general solution of SOLODEWCC is:

y(t) =

k,mi∑
i=1,j=1

cije
λi(t−t0)xij. (6.47)

The constants cij, i = 1, . . . , k, j = 1, . . . ,mi are determined uniquely by the
initial condition y(t0) = y0.

Proof. Since each xij is an eigenvector of A corresponding the eigen-
value λi it follows from Corollary 6.8 that any y given by (6.47) is a solu-
tion of (6.46). From the proof of Theorem 6.5 it follows that the eigenvectors
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xij, i = 1, . . . , k, j = 1, . . . ,mi form a basis in Cn. Hence there exists a unique

linear combination of the eigenvectors of A satisfying
∑k,mi

i=1,j=1 cijxij = c. 2

Example 1:
y′1 = 0.7y1 + 0.2y2
y′2 = 0.3y1 + 0.8y2

. (6.48)

The right-hand side is given by A =

[
0.7 0.2
0.3 0.8

]
which was studied in §6.2.

So det (A− λI) = (λ− 1)(λ− 0.5).

Ax1 = x1, Ax2 = 0.5x2, x1 = (
2

3
, 1)>, x2 = (−1, 1)>.

The general solution of the system is y(t) = c1e
tx1 + c2e

0.5tx2:[
y1(t)
y2(t)

]
= c1e

t

[
2
3

1

]
+ c2e

0.5t

[
−1

1

]
,

y1(t) =
2c1e

t

3
− c2e0.5t, y2(t) = c1e

t + c2e
0.5t.

Example 2:
y′1 = 2y1 −3y2 +y3
y′2 = y1 −2y2 +y3
y′3 = y1 −3y2 +2y3

.

So A =

 2 −3 1
1 −2 1
1 −3 2

 as in Example 2 in §6.2. Hence

det (A− λI) = −λ(λ− 1)2, λ1 = 0, λ2 = λ3 = 1,

X = [x1 x2 x3] =

 1 3 −1
1 1 0
1 0 1

 .
The general solution is y(t) = c1e

0x1 + c2e
tx2 + c3e

tx3, where

y1(t) = c1 + 3c2e
t − c3et, y2(t) = c1 + c2e

t, y3(t) = c1 + c3e
t.

6.9 Initial conditions

Assume that the initial conditions of the system (6.46) are given at the time
t0 = 0: y(0) = y0. On the assumption that A is diagonable, i.e. XΛX−1 it
follows that the unknown vector c appearing in (6.47) satisfies Xc = y0. We
solve this system either by Gauss elimination or by inverting X: c = X−1y0.

Example 1: In the system of ODE given in (6.48) find the solution satisfying
IC y(0) = (1, 2)>.

85



Solution. This condition is equivalent to

[
2
3
−1

1 1

] [
c1
c2

]
=

[
1
2

]
[
c1
c2

]
=

[
2
3
−1

1 1

]−1 [
1
2

]
=

[
3
5

3
5

−3
5

2
5

] [
1
2

]
=

[
9
5
1
5

]
(The inverse is taken from (6.45).) Now substitute these values of c1, c2 in

(6.47).

6.10 Complex eigenvalues of real matrices

Proposition 6.10 Let A ∈ Rn×n and assume that λ := α + iβ, α, β ∈ R
is non-real eigenvalue (β 6= 0). Then the corresponding eigenvector x = u +
iv, u,v ∈ Rn (Au = λu) is non-real (v 6= 0). Furthermore λ = α − iβ 6= λ
is another eigenvalue of A with the corresponding eigenvector x = u − iv.
The corresponding contributions of the above two complex eigenvectors to the
solution of y′ = Ay is

eαtC1(cos(βt)u− sin(βt)v) + eαtC2(sin(βt)u + cos(βt)v). (6.49)

These two solutions can be obtained by considering the real linear combination
of the real and the imaginary part of the complex solution eλtx.

Proof. Recall the Euler’s formula for ez where z = a+ ib, a, b ∈ R:

ez = ea+ib = eaeib = ea(cos b+ i sin b)

Now find the real part of the complex solution (C1 + iC2)e
(α+iβ)t(u + iv) to

deduce (6.49). 2

6.11 Second Order Linear Differential Systems

Let A1, A2 ∈ Cn×n and y = (y1(t), . . . , yn(t))>. Then the second order differ-
ential system of linear equations is given as

y′′ = A1y + A2y
′. (6.50)

It is possible to translate this system to a system of the first order involving
matrices and vectors of the double size. Let z = (y1, . . . , yn, y

′
1, . . . , y

′
n)>. Then

z′ = Az, A =

[
0n In
A1 A2

]
∈ C2n×2n. (6.51)

Here 0n is n × n zero matrix and In is n × n identity matrix. The initial
conditions are y(t0) = a ∈ Cn, y′(t0) = b ∈ Cn which are equivalent to the
initial conditions z(t0) = c ∈ C2n.

Thus the solution of the second order differential system with n unknown
functions can be solved by converting this system to the first order system
with 2n unknown functions.
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6.12 Exponential of a Matrix

For A ∈ Cn×n let

eA =
∞∑
k=0

1

k!
Ak = I + A+

1

2!
A2 +

1

3!
A3 + . . . . (6.52)

If D = diag(λ1, λ2, . . . , λn) it is straightforward to show that

eD = diag(eλ1 , eλ2 , . . . , eλn). (6.53)

Hence for a diagonable matrix A we get the indentity

eA = XeDX−1, A = XDX−1. (6.54)

Similarly, we define

etA =
∞∑
k=0

tk

k!
Ak = I + tA+

1

2!
t2A2 +

1

3!
t3A3 + . . . . (6.55)

So taking the derivative with respect to t we obtain

(etA)′ =
∞∑
k=1

ktk−1

k!
Ak = 0 + A+

1

2!
2tA2 +

1

3!
3t2A3 + . . . = AeAt.

IfA is diagonableA = XDX−1 then tA = X(tD)X−1 ⇒. So eAt = X diag(eλ1t, . . . , eλnt)X−1.
The matrix Y (t) := e(t−t0)A satisfies the matrix differential equation

Y ′(t) = AY (t) = Y (t)Awith the initial conditionY (t0) = I. (6.56)

(As in the scalar case, i.e. A is 1× 1 matrix.)
The solution of y′ = Ay with the initial condition y(t0) = a is given by

y(t) = e(t−t0)Aa.

6.13 Examples of exponential of matrices

Example 1

A =

[
0.7 0.2
0.3 0.8

]
=

[
2
3
−1

1 1

] [
1 0
0 0.5

] [
3
5

3
5

−3
5

2
5

]
,

eA =

[
2
3
−1

1 1

] [
e1 0
0 e0.5

] [
3
5

3
5

−3
5

2
5

]
=

[
2e−3e0.5

5
2e−2e0.5

5
3e−3e0.5

5
3e+2e0.5

5

]
,

etA =

[
2
3
−1

1 1

] [
et 0
0 e0.5t

] [
3
5

3
5

−3
5

2
5

]
=

[
2et−3e0.5t

5
2et−2e0.5t

5
3et−3e0.5t

5
3et+2e0.5t

5

]
.

In the system of ODE (6.48) the solution satisfying IC y(0) = (1, 2)> is given
as

y(t) = eAty(0) =

[
2et−3e0.5t

5
2et−2e0.5t

5
3et−3e0.5t

5
3et+2e0.5t

5

] [
1
2

]
=

[
6et−7e0.5t

5
9et+e0.5t

5

]
.
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Compare this solution with the solution given in §6.9 in Example 1.

Example 2. B =

(
0 1
0 0

)
is defective. We compute eB, etB using power

series (6.55). Note B2 = 0. Hence Bk = 0 for k ≥ 2. So

eB = I +B +
1

2!
B2 +

1

3!
B3 + . . . = I +B =

[
1 1
0 1

]
,

etB = I + tB +
1

2!
t2B2 +

1

3!
t3B3 + . . . = I + tB =

[
1 t
0 1

]
.

Hence the system of ODLE

y′1 = y2
y′2 = 0

Has the general solution[
y1(t)
y2(t)

]
= etB

[
c1
c2

]
=

[
c1 + c2t

c2

]
.
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