Results and problems for 3-tensors

Shmuel Friedland
Univ. Illinois at Chicago

NSF TENSOR COMPUTATION WORKSHOP, Arlington, February 20-21, 2009

Overview

(1) The conjectured value of the generic rank of 3-tensor and its numerical verification over \mathbb{C}. Some results for \mathbb{R}.
(2) Best rank one approximation.
(1) ℓ_{2} case.
(2) $\ell_{p}, p \in(1, \infty)$ case.
(3) Perron-Frobenius theorem for irreducible nonnegative tensors for $p=3$.
(3) Analogs of SVD decomposition of 3-tensors.
(1) The maximal number of zero entries in 3-tensor under the orthogonal conjugation in each of 3-modes.
(2) The expected limit form of tensor under the iteration an analog of $Q R$ algorithm.
(3) An analog of Kogbetliantz's algorithm.
(4) CUR decompositions for tensors
(5) Scaling of nonnegative tensors to balanced tensors. (The analog of scaling to doubly stochastic matrices.)

Generic rank I

Generic rank I

$$
\mathbb{\mathbb { N }} m \times n \times 1:=\left\{\underset{T}{=}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l} \begin{array}{l}
i, j, k \in \mathbb{F}\}
\end{array}\right.
$$

Generic rank I

$$
\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\} .
$$

$$
\text { rank one tensor: } \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)
$$

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{\substack{m=j=k}}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{\prime}$

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{\prime}$
generic rank: $\operatorname{grank}_{\mathbb{F}}(m, n, I)$ - the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times I}$

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{\prime}$
generic rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ - the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times I}$
Thm: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$.

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{l}$
generic rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ - the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times I}$
Thm: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$.

Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{\prime}$
generic rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ - the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times I}$
Thm: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$.
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$: $f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}$

Generic rank I

$\mathbb{F}^{m \times n \times I}:=\left\{\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k}^{m, n, l}, t_{i, j, k} \in \mathbb{F}\right\}$.
rank one tensor: $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}=\left[x_{i} y_{j} z_{k}\right]=(a \mathbf{x}) \otimes(b \mathbf{y})\left((a b)^{-1} \mathbf{z}\right)$
rank \mathcal{T} minimal r :
$\mathcal{T}=f_{r}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right):=\sum_{i=1}^{r} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}$,
$\mathbf{x}_{i} \in \mathbb{F}^{m}, \mathbf{y}_{i} \in \mathbb{F}^{n}, \mathbf{z}_{i} \in \mathbb{F}^{l}$
generic rank: $\operatorname{grank}_{\mathbb{F}}(m, n, l)$ - the rank of a random tensor $\mathcal{T} \in \mathbb{F}^{m \times n \times I}$
Thm: $\operatorname{grank}_{\mathbb{C}}(m, n, I)=\min (I, m n)$ for $(m-1)(n-1) \leq I$.
Dimension count for $\mathbb{F}=\mathbb{C}$ and $2 \leq m \leq n \leq I<(m-1)(n-1)$:
$f_{r}:\left(\mathbb{C}^{m} \times \mathbb{C}^{n} \times \mathbb{C}^{\prime}\right)^{r} \rightarrow \mathbb{C}^{m \times n \times I}$
$\operatorname{grank}_{\mathbb{C}}(m, n, I)(m+n+I-2) \geq m n I \Rightarrow \operatorname{grank}_{\mathbb{C}}(m, n, I) \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$

Generic rank II

Conjecture grank $_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Generic rank II

Conjecture grank $_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$

Generic rank II

Conjecture grank $_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$
Conjecture is known in some cases

Generic rank II

Conjecture grank $_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+1-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$
Conjecture is known in some cases
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, l)$

Generic rank II

Conjecture grank ${ }_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$
Conjecture is known in some cases
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, l)$

Avoid round-off error:
$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic

Generic rank II

Conjecture grank ${ }_{\mathbb{C}}(m, n, l)=\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ for $2 \leq m \leq n \leq I<(m-1)(n-1)$ and $(3, n, I) \neq(3,2 p+1,2 p+1)$

Fact: $\operatorname{grank}_{\mathbb{C}}(3,2 p+1,2 p+1)=\left\lceil\frac{3(2 p+1)^{2}}{4 p+3}\right\rceil+1$
Conjecture is known in some cases
Easy to compute grank $_{\mathbb{C}}(m, n, l)$:
Pick at random $\mathbf{w}_{r}:=\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}, \ldots, \mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) \in\left(\mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{\prime}\right)^{r}$
The minimal $r \geq\left\lceil\frac{m n l}{(m+n+l-2)}\right\rceil$ s.t. rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)=m n l$ is $\operatorname{grank}_{\mathbb{C}}(m, n, l)$

Avoid round-off error:
$\mathbf{w}_{r} \in\left(\mathbb{Z}^{m} \times \mathbb{Z}^{n} \times \mathbb{Z}^{\prime}\right)^{r}$ find rank $J\left(f_{r}\right)\left(\mathbf{w}_{r}\right)$ exact arithmetic
I checked the conjecture up to $m, n, I \leq 14$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$
For $I=(m-1)(n-1) \exists m, n$:
$c(m, n, l)>1, \rho_{c(m, n, l)} \geq \operatorname{grank}_{\mathbb{C}}(m, n, l)+1$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$
For $I=(m-1)(n-1) \exists m, n$:
$c(m, n, l)>1, \rho_{c(m, n, l)} \geq \operatorname{grank}_{\mathbb{C}}(m, n, l)+1$
Examples [1]
$m=n \geq 2, I=(m-1)(n-1)+1$.
$m=n=4, l=11,12$

Generic rank III - the real case

For $m n \leq I \operatorname{grank}_{\mathbb{R}}(m, n, I)=m n$.
For $2 \leq m \leq n \leq I<m n-1$, there exist $V_{1}, \ldots, V_{c(m, n, l)} \subset \mathbb{R}^{m \times n \times I}$ pairwise distinct open connected semi-algebraic sets s.t.
Closure $\left(\cup_{i=1}^{c(m, n, l)}\right)=\mathbb{R}^{m \times n \times I}$
$\operatorname{rank} \mathcal{T}=\operatorname{grank}_{\mathbb{C}}(m, n, I)$ for each $\mathcal{T} \in V_{1}$
$\operatorname{rank} \mathcal{T}=\rho_{i}$ for each $\mathcal{T} \in V_{i}$
$\rho_{i} \geq \operatorname{grank}_{\mathbb{C}}(m, n, I)$ for $i=2, \ldots, c(m, n, l)$
For $I=(m-1)(n-1) \exists m, n$:
$c(m, n, l)>1, \rho_{c(m, n, l)} \geq \operatorname{grank}_{\mathbb{C}}(m, n, l)+1$
Examples [1]
$m=n \geq 2, I=(m-1)(n-1)+1$.
$m=n=4, l=11,12$

More results?

Rank one approximations

$$
\begin{aligned}
& \mathbb{R}^{m \times n \times I} \text { IPS: }\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle} \\
& \langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)
\end{aligned}
$$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
X subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X} $\mathrm{P}_{\mathbf{X}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P\mathbf {X}}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$

Rank one approximations

$\mathbb{R}^{m \times n \times I}$ IPS: $\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
X subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{X}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\operatorname{P\mathbf {X}}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :

Rank one approximations

$\mathbb{R}^{m \times n \times I} \operatorname{IPS}:\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
X subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Rank one approximations

$\mathbb{R}^{m \times n \times I}$ IPS: $\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} : $\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$

Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$ $\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$

Rank one approximations

$\mathbb{R}^{m \times n \times I}$ IPS: $\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{x}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\|\mathrm{P} \mathbf{x}(\mathcal{T})\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{x}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$
Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors

Rank one approximations

$\mathbb{R}^{m \times n \times I}$ IPS: $\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i=j=k}^{m, n, l} a_{i, j, k} b_{i, j, k},\|\mathcal{T}\|=\sqrt{\langle\mathcal{T}, \mathcal{T}\rangle}$
$\langle\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}, \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\rangle=\left(\mathbf{u}^{\top} \mathbf{x}\right)\left(\mathbf{v}^{\top} \mathbf{y}\right)\left(\mathbf{w}^{\top} \mathbf{z}\right)$
\mathbf{X} subspace of $\mathbb{R}^{m \times n \times 1}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ an orthonormal basis of \mathbf{X}
$\mathrm{P}_{\mathbf{X}}(\mathcal{T})=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle \mathcal{X}_{i}, \quad\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}=\sum_{i=1}^{d}\left\langle\mathcal{T}, \mathcal{X}_{i}\right\rangle^{2}$
$\|\mathcal{T}\|^{2}=\left\|\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}+\left\|\mathcal{T}-\mathrm{P}_{\mathbf{X}}(\mathcal{T})\right\|^{2}$
Best rank one approximation of \mathcal{T} :
$\min _{\mathbf{x}, \mathbf{y}, \mathbf{z}}\|\mathcal{T}-\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|=\min _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1, a}\|\mathcal{T}-a \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{z}\|$
Equivalent: $\max _{\|\mathbf{x}\|=\|\mathbf{y}\|=\|\mathbf{z}\|=1} \sum_{i=j=k}^{m, n, l} t_{i, j, k} x_{i} y_{j} z_{k}$
Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}$
λ singular value, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ singular vectors
How many distinct singular values are for a generic tensor

ℓ_{p} maximal problem and Perron-Frobenius

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity

ℓ_{p} maximal problem and Perron-Frobenius

$\left\|\left(x_{1}, \ldots, x_{n}\right)^{\top}\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

Lagrange multipliers: $\mathcal{T} \times \mathbf{y} \otimes \mathbf{z}:=\sum_{j=k=1} t_{i, j, k} y_{j} z_{k}=\lambda \mathbf{x}^{p-1}$
$\mathcal{T} \times \mathbf{x} \otimes \mathbf{Z}=\lambda \mathbf{y}^{p-1}, \mathcal{T} \times \mathbf{x} \otimes \mathbf{y}=\lambda \mathbf{z}^{p-1}\left(p=\frac{2 t}{2 s-1}, t, s \in \mathbb{N}\right)$
$p=3$ is most natural in view of homogeneity
Assume that $\mathcal{T} \geq 0$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \geq 0$
For which values of p we have an analog of Perron-Frobenius theorem?

Yes, for $p=3$, and probably for $p>3$
No, for $p=2$, and probably for $p<3$

Analogs of SVD decomposition: I

For a cubic tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$
do orthonormal change of coordinates in each three components \mathbb{R}^{n} :
$\mathcal{I}_{1}=\mathcal{T} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$

Analogs of SVD decomposition: I

For a cubic tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$
do orthonormal change of coordinates in each three components \mathbb{R}^{n} : $\mathcal{I}_{1}=\mathcal{T} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$

One can have at most $\frac{3 n(n-1)}{2}$ zero entries in $\mathcal{T}_{1}: t_{j, i, i}=t_{i, j, i}=_{i, i, j}$ for $i<j$.

Analogs of SVD decomposition: I

For a cubic tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$
do orthonormal change of coordinates in each three components \mathbb{R}^{n} :
$\mathcal{T}_{1}=\mathcal{T} \times_{1} Q_{1} \times_{2} Q_{2} \times_{3} Q_{3}$
One can have at most $\frac{3 n(n-1)}{2}$ zero entries in $\mathcal{T}_{1}: t_{j, i, i}=t_{i, j, i}={ }_{i, i, j}$ for $i<j$.

Apply QR algorithm to the n columns of the unfolded matrix in mode k indexed by $(j, j), j=1, \ldots, n$ for $k=1,2,3,1,2,3, \ldots$

Analogs of SVD decomposition: I

For a cubic tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$
do orthonormal change of coordinates in each three components \mathbb{R}^{n} : $\mathcal{T}_{1}=\mathcal{T} \times_{1} Q_{1} \times_{2} Q_{2} \times_{3} Q_{3}$

One can have at most $\frac{3 n(n-1)}{2}$ zero entries in $\mathcal{T}_{1}: t_{j, i, i}=t_{i, j, i}={ }_{i, i, j}$ for $i<j$.

Apply QR algorithm to the n columns of the unfolded matrix in mode k indexed by $(j, j), j=1, \ldots, n$ for $k=1,2,3,1,2,3, \ldots$

Example $2 \times 2 \times 2:\left[\begin{array}{ll}t_{1,1,1} & t_{1,2,2} \\ t_{2,1,1} & t_{2,2,2}\end{array}\right] ;\left[\begin{array}{cc}t_{1,1,1} & t_{2,1,2} \\ t_{1,2,1} & t_{2,2,2}\end{array}\right] ;\left[\begin{array}{cc}t_{1,1,1} & t_{2,2,1} \\ t_{1,1,2} & t_{2,2,2}\end{array}\right]$

Analogs of SVD decomposition: I

For a cubic tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$
do orthonormal change of coordinates in each three components \mathbb{R}^{n} : $\mathcal{T}_{1}=\mathcal{T} \times_{1} Q_{1} \times_{2} Q_{2} \times_{3} Q_{3}$

One can have at most $\frac{3 n(n-1)}{2}$ zero entries in $\mathcal{T}_{1}: t_{j, i, i}=t_{i, j, i}={ }_{i, i, j}$ for $i<j$.

Apply QR algorithm to the n columns of the unfolded matrix in mode k indexed by $(j, j), j=1, \ldots, n$ for $k=1,2,3,1,2,3, \ldots$

Example $2 \times 2 \times 2$: $\left[\begin{array}{ll}t_{1,1,1} & t_{1,2,2} \\ t_{2,1,1} & t_{2,2,2}\end{array}\right] ;\left[\begin{array}{cc}t_{1,1,1} & t_{2,1,2} \\ t_{1,2,1} & t_{2,2,2}\end{array}\right] ;\left[\begin{array}{ll}t_{1,1,1} & t_{2,2,1} \\ t_{1,1,2} & t_{2,2,2}\end{array}\right]$
Do QR on each two columns successively to obtain:
$t_{2,1,1}=t_{1,2,1}=t_{1,1,2}=0$.

An analog of Kogbetliantz's algorithm

$$
\mathcal{T} \in \mathbb{R}^{m \times n \times 1}, 2 \leq m, n, l
$$

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times 1}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times I}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$

Find best rank approximation $\mathcal{B}=\left[b_{i, j, k}\right]=\mathcal{A} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$ such that $b_{1,1,1}$ is maximal possible

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times I}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$
Find best rank approximation $\mathcal{B}=\left[b_{i, j, k}\right]=\mathcal{A} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$ such that $b_{1,1,1}$ is maximal possible

Obtain the corresponding \mathcal{T}^{\prime}

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times I}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$
Find best rank approximation $\mathcal{B}=\left[b_{i, j, k}\right]=\mathcal{A} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$ such that $b_{1,1,1}$ is maximal possible

Obtain the corresponding \mathcal{T}^{\prime}

Repeat with all choices of subtensors

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times I}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$
Find best rank approximation $\mathcal{B}=\left[b_{i, j, k}\right]=\mathcal{A} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$ such that $b_{1,1,1}$ is maximal possible

Obtain the corresponding \mathcal{T}^{\prime}

Repeat with all choices of subtensors

Can be parallelized

An analog of Kogbetliantz's algorithm

$\mathcal{T} \in \mathbb{R}^{m \times n \times I}, 2 \leq m, n, l$
Choose $2 \times 2 \times 2$ subtensor $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$
Find best rank approximation $\mathcal{B}=\left[b_{i, j, k}\right]=\mathcal{A} \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3}$ such that $b_{1,1,1}$ is maximal possible

Obtain the corresponding \mathcal{T}^{\prime}

Repeat with all choices of subtensors

Can be parallelized
Does it converge in generic case and to what

CUR approximation of matrices

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.
$C\left(C^{\dagger} A R^{\dagger}\right) R$ best rank $\leq \min (p, q)$ approximation matrix based on C, R submatrices of A.

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.
$C\left(C^{\dagger} A R^{\dagger}\right) R$ best rank $\leq \min (p, q)$ approximation matrix based on C, R submatrices of A.

Goreinov-Tyrtyshnikov-Zmarashkin 95: for $p=q$ choose $U=A[I, J]^{-1}$

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$
$\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$
CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.
$C\left(C^{\dagger} A R^{\dagger}\right) R$ best rank $\leq \min (p, q)$ approximation matrix based on C, R submatrices of A.

Goreinov-Tyrtyshnikov-Zmarashkin 95: for $p=q$ choose $U=A[I, J]^{-1}$ (corresponds to best CUR approximation on the entries read)

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.
$C\left(C^{\dagger} A R^{\dagger}\right) R$ best rank $\leq \min (p, q)$ approximation matrix based on C, R submatrices of A.

Goreinov-Tyrtyshnikov-Zmarashkin 95: for $p=q$ choose $U=A[I, J]^{-1}$ (corresponds to best CUR approximation on the entries read) good approximation when the corresponding $\operatorname{det} A[I, J]$ is maximal

CUR approximation of matrices

For given $A \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{q \times n}$ $\min _{U \in \mathbb{C}^{p \times q}}\|A-E U F\|_{F}$ achieved for $U=E^{\dagger} A F^{\dagger}$

CUR approximation $C \in \mathbb{R}^{m \times p}, R \in \mathbb{R}^{q \times n}$ some submatrices of A.
$C\left(C^{\dagger} A R^{\dagger}\right) R$ best rank $\leq \min (p, q)$ approximation matrix based on C, R submatrices of A.

Goreinov-Tyrtyshnikov-Zmarashkin 95: for $p=q$ choose $U=A[I, J]^{-1}$ (corresponds to best CUR approximation on the entries read) good approximation when the corresponding $\operatorname{det} A[I, J]$ is maximal

Friedland-Mehrmann-Miedlar-Nkengla 08 choose several random choices of I, J set of rows and columns of A such that $A[I, J]$ has maximal product of significant singular values

Extension to 3-tensors I:

Extension to 3-tensors I:

For given $\mathcal{A} \in \mathbb{R}^{m \times n \times 1}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{\prime \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle\Lambda\rangle,\langle q\rangle \subset\langle m\rangle \times\langle\Lambda\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$ $\min _{\mathcal{U} \in \mathbb{C} P \times a \times r}\|\mathcal{A}-\mathcal{U} \times F \times E \times \mathcal{G}\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times \mathcal{G}^{\dagger}$

Extension to 3-tensors I:

For given $\mathcal{A} \in \mathbb{R}^{m \times n \times I}, F \in \mathbb{R}^{m \times p}, E \in \mathbb{R}^{n \times q}, G \in \mathbb{R}^{1 \times r}$, where $\langle p\rangle \subset\langle n\rangle \times\langle I\rangle,\langle q\rangle \subset\langle m\rangle \times\langle I\rangle,\langle r\rangle \subset\langle m\rangle \times\langle I\rangle$ $\min _{\mathcal{U} \in \mathbb{C}^{p \times q \times r}}\|\mathcal{A}-\mathcal{U} \times F \times E \times G\|_{F}$ achieved for $\mathcal{U}=\mathcal{A} \times E^{\dagger} \times F^{\dagger} \times G^{\dagger}$ CUR approximation of \mathcal{A} obtained by choosing E, F, G submatrices of unfolded \mathcal{A} in the mode 1,2, 3.

Extensions to 3-tensors: II

$\mathcal{A}=\left[a_{i, j, k}\right] \in \mathbb{R}^{m \times n \times \ell}$ - 3-tensor
given $I \subset\langle m\rangle, J \subset\langle n\rangle, K \subset\langle\ell\rangle$ define
$R:=\alpha_{\langle m\rangle, J, K}=\left[a_{i, j, k}\right]_{\langle m\rangle, J, K} \in \mathbb{R}^{m \times(\# J \cdot \# K)}$,
$C:=\alpha_{l,\langle n\rangle, K} \in \mathbb{R}^{\langle n\rangle \times(\# 1 \cdot \# K)}$,
$D:=\alpha_{l, J,\langle\langle \rangle} \in \mathbb{R}^{1 \times(\# 1 \cdot \# J)}$
Problem: Find 3-tensor $\mathcal{U}=\in \mathbb{R}^{(\# J \cdot \# K) \times(\# 1 \cdot \# K) \times(\# 1 \cdot \# J)}$
such that \mathcal{A} is approximated by the Tucker tensor
$\mathcal{V}=\mathcal{U} \times{ }_{1} C \times_{2} R \times_{3} D$
where \mathcal{U} is the least squares solution

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{opt}} \in \arg \min _{\mathcal{U} \in \mathbb{R} \text { three enenoor }} \sum_{(i, j, k) \in \mathcal{S}}\left(a_{i, j, k}-\left(\mathcal{U} \times{ }_{1} C \times{ }_{2} R \times_{3} D\right)_{i, j, k}\right)^{2} \\
\mathcal{S}= & (\langle m\rangle \times J \times K) \cup(I \times\langle n\rangle \times K) \cup(I \times J \times\langle\ell\rangle)
\end{aligned}
$$

Extension to 3-tensors: III

For $\# I=\# J=p, \# K=p^{2}, I \subset\langle m\rangle, J \subset\langle n\rangle, K \subset\langle\ell\rangle$ generically there is an exact solution to $\mathcal{U}_{\mathrm{opt}} \in \mathbb{R}^{p^{3} \times p^{3} \times p^{2}}$ obtained by unfolding in third direction
View \mathcal{A} as $A \in \mathbb{R}^{(m n) \times \ell}$ by identifying
$\langle m\rangle \times\langle n\rangle \equiv\langle m n\rangle, I_{1}=I \times J, J_{1}=K$ and apply CUR again.
More generally, given $\# I=p, \# J=q, \# K=r$.
For $L=I \times J$ approximate \mathcal{A} by $\mathcal{A}_{\langle m\rangle,\langle n\rangle, K} E_{L, K}^{\dagger} \mathcal{A}_{I, J,\langle\ell\rangle}$
Then for each $k \in K$ approximate each matrix $\mathcal{A}_{\langle m\rangle,\langle n\rangle,\{k\}}$ by
$\mathcal{A}_{\langle m\rangle, J,\{k\}} E_{l, J,\{k\}}^{\dagger} \mathcal{A}_{l,\langle n\rangle,\{k\}}$

Scaling of nonnegative tensors to balanced tensors

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ balanced if each unfolding has fixed row sum:
$\sum_{j, k} t_{i, j, k}=\alpha>0, \sum_{i, k} t_{i, j, k}=\beta>0, \sum_{i, j} t_{i, j, k}=\gamma>0$

Scaling of nonnegative tensors to balanced tensors

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ balanced if each unfolding has fixed row sum:
$\sum_{j, k} t_{i, j, k}=\alpha>0, \sum_{i, k} t_{i, j, k}=\beta>0, \sum_{i, j} t_{i, j, k}=\gamma>0$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[x_{i} y_{j} z_{k} t_{i, j, k}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}>\mathbf{0}$ such that \mathcal{T}^{\prime} balanced

Scaling of nonnegative tensors to balanced tensors

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ balanced if each unfolding has fixed row sum:
$\sum_{j, k} t_{i, j, k}=\alpha>0, \sum_{i, k} t_{i, j, k}=\beta>0, \sum_{i, j} t_{i, j, k}=\gamma>0$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[x_{i} y_{j} z_{k} t_{i, j, k}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}>\mathbf{0}$ such that \mathcal{T}^{\prime} balanced
THM: $\mathcal{T} \in \mathbb{R}_{+}^{m \times n \times I}, 1<m \leq n \leq$, each $m \times m$ submatrix of the unfolded tensor $A \in \mathbb{R}^{m \times n l}$ in the first mode has positive permanent. Then there exists a "unique" scaling of \mathcal{T}^{\prime} of \mathcal{T} such that $A^{\prime} \in \mathbb{R}^{m \times n \prime}$ is stochastic.

Scaling of nonnegative tensors to balanced tensors

$0 \leq \mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{R}^{m \times n \times I}$ balanced if each unfolding has fixed row sum:
$\sum_{j, k} t_{i, j, k}=\alpha>0, \sum_{i, k} t_{i, j, k}=\beta>0, \sum_{i, j} t_{i, j, k}=\gamma>0$
Find nec. and suf. conditions for scaling:
$\mathcal{T}^{\prime}=\left[x_{i} y_{j} z_{k} t_{i, j, k}\right], \mathbf{x}, \mathbf{y}, \mathbf{z}>\mathbf{0}$ such that \mathcal{T}^{\prime} balanced
THM: $\mathcal{T} \in \mathbb{R}_{+}^{m \times n \times I}, 1<m \leq n \leq$, each $m \times m$ submatrix of the unfolded tensor $A \in \mathbb{R}^{m \times n l}$ in the first mode has positive permanent. Then there exists a "unique" scaling of \mathcal{T}^{\prime} of \mathcal{T} such that $A^{\prime} \in \mathbb{R}^{m \times n \prime}$ is stochastic.

Problem: Is Sinkhorn scaling algorithm in this case working?

References I

S. Friedland, On the generic rank of 3-tensors, arXiv: 0805.3777v2.
S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast low rank approximations of matrices and tensors, submitted, www.matheon.de/preprints/4903.
S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, Pseudo-skeleton approximations of matrices, Reports of the Russian Academy of Sciences 343(2) (1995), 151-152.
S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, A theory of pseudo-skeleton approximations of matrices, Linear Algebra Appl. 261 (1997), 1-21.
R.H. Lim, Singular values and eigenvalues of tensors: a variational approach, CAMSAP 05, 1 (2005), 129-132.

References II

M.W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, PNAS 106, (2009), 697-702.

