
Pressure and phase transition in

Potts models in Statistical Mechanics

Shmuel Friedland
University of Illinois at Chicago

Seminar in Hebrew University,

December 26, 2006

Last version December 14, 2006

1



1 Outline of the talk

• Motivation: Ising model

• Subshifts of Finite Type

• Pressure PΓ

• Density points and density entropy

• Convex functions

• P ∗
Γ and color density entropy

• First order phase transition

• The maximum principle

• d-Dimensional Monomer-Dimers

• Friendly colorings

• Computation of pressure
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2 Motivation: Ising model - 1925

On lattice Zd two kinds of particles: spin up 1 and spin

down 2. Each neighboring particles located on (i, i + ej)

interact with energy −J if both locations are occupied by

the same particles, and with energy J if the two sites are

occupied by two different particles. In addition each particle

has a magnetization due to the external magnetic field. The

energy of the particle of type 1 is H while the energy of the

particle of type 2 is −H . The energy of E(φ) of a given

finite configuration of particles in Z
d is the sum of the

energies of the above type.

Ferromagnetism J > 0: all spins are up or down.

Antiferromagnetism J < 0 half spins up and down

(Lowest free energy)

Phase transition:

from one state to another as the temperature varies

Energy: k
T

E(φ)
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3 Subshifts of Finite Type-SOFT

< n >:= {1, 2, 3, ..., n}
ALPHABET ON n LETTERS - COLORS.

• • • . . . • • •︸ ︷︷ ︸
m times

Coloring of Z
d in n coloring =

Full Zd shift on n symbols

Example of SOFT: (0 − 1) LIMITED CHANNEL

HARD CORE LATTICE or NEAR NEIGHBOR EXCLUSION

n = 2, < 2 >= {1, 2} = {1, 0} (2 ≡ 0).

NO TWO 1′s ARE NEIGHBORS.
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4 One dimensional SOFT

Γ ⊆< n > × < n > directed graph on n vertices

CΓ(< m >)-all Γ allowable configurations of length m:

{a = a1...am = (ai)
m
1 :< m >→< n >

(ai, ai+1) ∈ Γ}
CΓ(Z)-all Γ allowable configurations (tilings) on Z:

{a = (ai)i∈Z : Z →< n >, (ai, ai+1) ∈ Γ}
Hard core model:

n = 2, Γ = {••, ••, ••}
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5 MD SOFT=Potts Models

Dimension d ≥ 2. For m ∈ Nd

< m >:=< m1 > × . . . × < md >

vol(m) := |m1| × . . . × |md|
Γ := (Γ1, . . . , Γd), Γi ⊂ 〈n〉 × 〈n〉
CΓ(< m >)-all Γ allowable configurations of m:

a = (ai)i∈〈m〉 :< m >→< n >

s.t. (ai, ai+ej
) ∈ Γj if i, i + ej ∈ 〈m〉

ej = (δ1j, . . . , δdj), j = 1, . . . , d.

Example:

< (4, 3) >:=

• • • •
• • • •
• • • •

Γ1 Γ2

6



For φ ∈ CΓ(〈m〉) - c(φ) := (c1(φ), . . . , cn(φ))

denotes coloring distribution of configuration φ

ci(φ)-the number of times the particle i appears in φ

1
vol(m)

c(φ) ∈ Πn - coloring frequency of φ

Πn(vol(m)) all c ∈ Z
n
+ s.t. 1

vol(m)
c ∈ Πn

CΓ(〈m〉, c) denotes all φ ∈ CΓ(〈m〉) with

c(φ) = c.

CΓ,per(〈m〉) ⊆ CΓ(〈m〉)-m-periodic configurations

CΓ(Zd)-are-Γ allowable configurations of Zd

Assumption: CΓ(Zd) 6= ∅
ui ∈ R energy of particle i ∈ 〈n〉
u := (u1, . . . , un) ∈ Rn energy vector

E(φ) = c(φ) · u Energy of configuration φ

Near neighbor interaction model, can be fit to the above

noninteraction model by considering the coloring of the cube

〈(3, . . . , 3)〉 as one particle

Similarly short range interaction model
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6 Pressure

Grand partition function

ZΓ(m, u) :=
∑

φ∈CΓ(〈m〉) ec(φ)·u

log ZΓ(m, u) subadditive in each component of m and

convex in u

1
vol(m)

log ZΓ(m, u) - average energy or pressure

PΓ(u) := limm→∞
1

vol(m)
log ZΓ(m, u)

Pressure of Γ-SOFT, (Pressure of the Potts model)

hΓ := PΓ(0)-ENTROPY of Γ-SOFT

PΓ(u) is a convex Lipschitz function on Rn

|PΓ(u) − PΓ(v)| ≤ ||u − v||∞ := max |ui − vi|
PΓ(u + t1) = PΓ(u) + t

PΓ has the following properties:

Has subdifferential ∂PΓ(u) for each u

∂PΓ(u) ⊆ Πn for each u

Has differentiable ∇PΓ(u) a.e.
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7 Density points and density entropy

p ∈ Πn density point of CΓ(Zd) when there exist

sequences of boxes 〈mq〉 ⊆ N
d and color distribution

vectors cq ∈ Πn(vol(mq))

mq → ∞, CΓ(〈mq〉, cq) 6= ∅ ∀q ∈
N, and limq→∞

cq

vol(mq)
= p

ΠΓ the set of all density points of CΓ(Zd)

ΠΓ is a closed set

For p ∈ ΠΓ the color density entropy

hΓ(p) :=

supmq,cq
lim supq→∞

log #CΓ(〈mq〉,cq)

vol(mq)
≥ 0

where the supremum is taken over all sequences satisfying

the above conditions

hΓ is upper semi-continuous on ΠΓ
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8 Convex functions

f : R
n → [−∞, ∞] convex.

dom f := {x ∈ R
m : f(x) < ∞}

f proper if f : Rn → R := (−∞, ∞] and f 6≡ ∞
f closed if f is lower semi-continuous.

q subgradient: f(x) ≥ f(u) + q⊤(x − u) ∀x

∂f(u) ⊂ R
n the subset of subgradients of f at u

ASSUMPTION: f is proper and closed

∂f(u) is a closed nonempty set for each u ∈ ri dom f

f is differentiable at u ⇐⇒ ∂f(u) = {∇f(u)}
diff f - the set of differentiability points of f

∇f continuous on diff f and diff f ⊇ dom f

The conjugate, (Legendre transform) f∗ defined:

f∗(y) := supx∈Rn x⊤y − f(x) for each y ∈ R
m

f∗ is a proper closed function and f∗∗ = f
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9 P ∗
Γ and color density entropy

Thm 1: hΓ(p) 6 −P ∗
Γ(p) ∀p ∈ ΠΓ.

PΓ(u) = maxp∈ΠΓ
(p⊤u + hΓ(p)), u ∈ R

n

ΠΓ(u) := arg maxp∈ΠΓ
(p⊤u + hΓ(p)) =

{p ∈ ΠΓ : PΓ(u) = p⊤u + hΓ(p)}
For each p ∈ ΠΓ(u), hΓ(p) = −P ∗

Γ(p).

ΠΓ(u) ⊆ ∂PΓ(u).

u ∈ diff PΓ ⇒ ΠΓ(u) = {∇PΓ(u)}.

Therefore ∂PΓ(diff PΓ) ⊆ ΠΓ.

S(u), u ∈ R
n \ diff PΓ-

are all the limits of sequences

∇PΓ(ui), ui ∈ diff PΓ and ui → u.

Then S(u) ⊆ ΠΓ(u).

conv ΠΓ(u) = conv S(u) = ∂PΓ(u).

∂PΓ(Rn) ⊆ conv ΠΓ ⊆ Πn.

conv ΠΓ = dom P ∗
Γ .
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10 Outline of proof

From the definitions of PΓ(u), p, hΓ(p) :=

supmq,cq
lim supq→∞

log #CΓ(〈mq〉,cq)

vol(mq)
≥ 0

PΓ(u) > p⊤u + hΓ(p) ⇒
PΓ(u) > supp∈ΠΓ

p⊤u + hΓ(p) ⇒
− hΓ(p) > P ∗

Γ(p) ⇒ ΠΓ ⊆ dom P ∗
Γ

C(m, u) :=

arg maxc∈Πn(vol(m)) #CΓ(〈m〉, c)ec⊤u

ZΓ(m, u) =

O(vol(m)n−1)#CΓ(〈m〉, c(m, u))ec(m,u)⊤u

Let mq → ∞ s.t.
c(mq,u)

vol(mq)
→ p(u) ⇒ PΓ(u) 6

p(u)⊤u + lim supq→∞
log #CΓ(〈mq〉,c(mq,u))

vol(mq)
6

p(u)⊤u + hΓ(p(u)

For p ∈ ΠΓ(u) use maximal characterization

PΓ(u+v) > p⊤(u+v)+hΓ(p) = p⊤v+PΓ(u)

So p ∈ ∂PΓ(u) ⇒ ΠΓ(u) ⊆ ∂PΓ(u) ⇒
u ∈ diff PΓ ⇒ ΠΓ(u) = {∇PΓ(u)}
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11 First order phase transition

Claim: For u ∈ R
n each p ∈ ΠΓ(u) is the set of

possible density of n colors in an allowable configurations

from CΓ(Zd) with the potential u.

For u ∈ diff PΓ p(u) = ∇PΓ(u) is a unique density.

Claim: Any point of nondifferentiabity of PΓ is a point of the

phase transition.

Proof Let u ∈ R
n \ diff PΓ Then ∂PΓ consists of more

than one point. Thm 1 yields that

∂PΓ(u) = conv S(u) ⊆ ΠΓ(u). S(u) consists of

more than one point. Hence ΠΓ(u) consists of more than

one density for u.

u ∈ R
n \ diff PΓ is called a point of phase transition, or

a phase transition point of the first order.

13



12 Ergodic Notions

CΓ(Zd)-a compact metric space.

It is invariant under the shifts

σi : CΓ(Zd) → CΓ(Zd), i = 1, . . . , d

σi(φ) is obtained by shifting the allowable configuration

φ ∈ CΓ(Zd) using the transformation x 7→ x − ei.

Let MΓ be the compact set of invariant measures on

CΓ(Zd) with respect to σi, i = 1, . . . , d.

hΓ(µ) -Kolmogorov-Sinai entropy for µ ∈ MΓ

hΓ(µ) = limm→∞
1

(2m+1)d

Hµ(∨−m≤i1,...,id≤mσi1
1 . . . σid

d A)

where A = {A1, . . . , An}
a cylinder partition of CΓ(Zd).

Ai - the set of all configurations φ ∈ CΓ(Zd) s.t.

0 ∈ Z
d colored by color i in φ.
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13 The maximum principle

fu : CΓ → R be given by

fu(φ) = ui for φ ∈ Ai, u = (u1, . . . , un).

PΓ(u) = maxµ∈MΓ
hΓ(µ) +

∫
fu(x)dµ(x)

µu ∈ MΓ is maximal if

PΓ(u) = hΓ(µ) +
∫

fu(x)dµ(x)

u -ergodic phase transition

if there are at least two maximal µu measures

Conjecture If u ∈ R
n \ diff PΓ then u is an ergodic

phase transition

Special case studied case in the literature u = 0:

The entropy

hΓ = PΓ(0) =

maxp∈ΠΓ
hΓ(p) =

maxµ∈MΓ
hΓ(µ)
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14 d-Dimensional Monomer-Dimers

Dimer: (i, j), j = i + ek ∈ Zd.

any partition of Zd to dimers (1-factor).

Monomer: occupies i ∈ Z
d.

any partition of Zd to monomer-dimers

is 1-factor of a subset of Zd.

Dimer and Monomer-Dimer are SOFT

0 = h̃1 ≤ h̃2 ≤ ... ≤ h̃d ≤ ...(dimers)

log
1 +

√
5

2
= h1 ≤ h2 ≤ ... ≤ hd ≤ ...

(monomer − dimer)

Fisher, Kasteleyn and Tempreley 61

h̃2 =
1

π

∞∑

i=0

(−1)i

(2i + 1)2
= 0.29156090...

16



15 Hammersley’s results

Hammersley in 60’s studied extensively the monomer-dimer

model. He showed ΠΓ = Πd+1 for d-dimensional model

p = (p1, . . . , pd, pd+1)

pi-the dimer density in ei-direction i = 1, . . . , d

pd+1-the monomer density Hammersley studied

p := p1 + . . . + pd-the total dimer density

hd(p)-the p-dimer density in Z
d, p ∈ [0, 1]

He showed hd(p)-concave continuous function on [0, 1]

Heilman and Lieb 72: hd(p) analytic on (0, 1)

No phase transition in parameter p ∈ (0, 1)
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16 The Graphs for h2(p)

B

h2

FP

BW

HM

MC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

p

Figure 1: HM is the lower bound of Hammersley-Menon,

BW is the lower bound of Bondy-Welsh, FP is the lower

bound of Friedland-Peled, MC is the Monte Carlo estimate

of Hammersley-Menon, B are Baxter’s estimates, and h2 is

the true value of h2 = max h2(p).
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17 Graph estimates for h2(p)

B

FT

h2

AUMC

ALMC

0.6 0.80.40

0.5

p

10.2
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0
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Figure 2: Monomer-dimer tiling of the 2-dimensional grid:

entropy as a function of dimer density. FT is the Friedland-

Tverberg lower bound, h2 is the true monomer-dimer entropy.

B are Baxter’s computed values. ALMC is the Asymptotic

Lower Matching Conjecture. AUMC is the entropy of a count-

able union of K4,4, conjectured to be an upper bound by the

Asymptotic Upper Matching Conjecture.
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18 Friendly colorings

Thm 1 implies:

For any Potts model hΓ(·) : ΠΓ → R+ is concave on

every convex subset of ΠΓ(Rn).

To get the exact analog of Hammersley’s result

Γ = (Γ1, . . . , Γd) on 〈n〉
F = ∪m∈NdC̃Γ(〈m〉), where

C̃Γ(〈m〉) ⊆ CΓ(〈m〉) for each m ∈ Nd, friendly: if

whenever a box 〈m〉 is cut in two and each part is colored

by a coloring in F , the combined coloring is in F .

Γ friendly if there exist a friendly set

F = ∪m∈NdC̃Γ(〈m〉) and a constant vector b ∈ Nd

such that if any box 〈m〉 is padded with an envelope of

width bi in the direction of ei, then each Γ-allowed coloring

of 〈m〉 can be extended in the padded part to a coloring in

F .
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19 Examples of friendly colorings

Γ has a friendly color f ∈ 〈n〉, i.e., for each i ∈ 〈d〉
(f, j), (j, f) ∈ Γi for all j ∈ 〈n〉
Then C̃Γ(m) are Γ-allowed colorings of 〈m〉 whose

boundary points are colored with f

Hard-core model: Γi = {(1, 1), (1, 2), (2, 1)}, has

friendly color f = 1.

Γ associated with the monomer-dimer covering

C̃Γ(〈m〉) the set of tilings of 〈m〉 by monomers and

dimers, i.e., the coverings in which no dimer protrudes out of

〈m〉, as in Hammersley
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20 P ∗
Γ for friendly colorings

Thm 2: Let Γ = (Γ1, . . . , Γd) be a friendly coloring

digraph. Then

(a) ΠΓ is convex. Hence ΠΓ = dom P ∗
Γ .

(b) hΓ(·) : ΠΓ → R+ is concave.

(c) For each u ∈ R
n, ΠΓ(u) = ∂PΓ(u).

(d) For each u ∈ Rn, hΓ(·) is an affine function on

∂PΓ(u).

(e) hΓ(p) = −P ∗
Γ(p) for each p ∈ ΠΓ.
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21 Outline of proof

(a). Let α ∈ C̃Γ(〈m〉),

c(α) = (c1, . . . , cn) ∈ Πn(vol(m)) color

frequency vector of α, and p := 1
vol(m)

c(α).

For k = (k1, . . . , kd) ∈ Nd let

k · m := (k1m1, . . . , kdmd). View 〈k · m〉 as a box

composed of vol(k) boxes isomorphic to 〈m〉 color each

box by α obtaining a coloring α(k · m) ∈ C̃Γ(k · m).

Clearly p = 1
vol(k·m)

c(α(k · m)). Choose kq → ∞
to deduce p ∈ ΠΓ.

Let β ∈ C̃Γ(〈n〉). So q := 1
vol(n)

c(β) ∈ ΠΓ.

Claim: For i, j ∈ N
i

i+j
p + j

i+j
q ∈ ΠΓ.

Let α(n · m), β(m · n) ∈ C̃Γ(n · m) defined as

above. Let

k := (m1n1, . . . , md−1nd−1, (i + j)mdnd)

view box 〈k〉 composed of i + j boxes isomorphic to

〈m · n〉 aligned side-by-side along the direction of ed.

Color the first i of these boxes by α(m · n) and the last j

by β(n · m), to get γ ∈ C̃Γ(〈k〉) with
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1
vol(k)

c(γ) = i
i+j

p + j

i+j
q. Hence

i
i+j

p + j

i+j
q ∈ ΠΓ. Since ΠΓ is closed

ap + (1 − a)q ∈ ΠΓ for all a ∈ [0, 1].

Let Π̃Γ be the convex hull of 1
vol(m)

c(α) for some m and

some α ∈ C̃Γ(〈m〉). So Π̃Γ ⊆ ΠΓ.

The padding part of definition of Γ friendly implies

Π̃Γ ⊆ ΠΓ ⊆ cl Π̃Γ ⇒ ΠΓ = cl Π̃Γ

Equality ΠΓ = dom P ∗
Γ follows from last part of Thm 1.

(b) The padding part of definition of Γ friendly implies

For p, q ∈ ΠΓ, ε > 0 ∃
mq := (m1,q, . . . , md,q), nq :=

(n1,q, . . . , nd,q) ∈ N
d, q ∈ N, mq, nq → ∞ s.t.

C̃Γ(〈mq〉, cq), C̃Γ(〈nq〉, dq) 6= ∅, q ∈ N,

lim
mq→∞

1

vol(mq)
cq = p, lim

nq→∞

1

vol(nq)
dq = q,

lim
q→∞

log #C̃Γ(〈mq〉, cq)

vol(mq)
≥ hΓ(p) − ε,

lim
q→∞

log #C̃Γ(〈nq〉, dq)

vol(nq)
≥ hΓ(q) − ε.
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Observation that for any

m, n ∈ N
d, c ∈ Πn(vol(m)):

#C̃Γ(〈n · m〉, vol(n)c) ≥ (#C̃Γ(〈m〉, c))vol(n)

yields: For i, j ∈ N

hΓ( i

i+j
p + j

i+j
q) ≥ i

i+j
hΓ(p) + j

i+j
hΓ(q) − ε

which proves the concavity of hΓ.

(c-d): Let u ∈ diff PΓ. Then

ΠΓ(u) = {∇PΓ(u)} = ∂PΓ(u) and (c-d) trivially

hold.

Recall S(u) ⊆ ΠΓ(u),

conv S(u) = ∂PΓ(u) ⊇ ΠΓ(u)

Let pi ∈ S(u), i = 1, . . . , j. So

PΓ(u) = p⊤
i u + hΓ(pi), i = 1, . . . , j

Since ΠΓ convex, for a = (a1, . . . , aj) ∈ Πj

p :=
∑j

i=1 aipi ∈ ΠΓ. As hΓ concave

PΓ(u) =
∑j

i=1 aip
⊤
i u+hΓ(pi) ≤ p⊤u+hΓ(p)

The maximal characterization of PΓ(u) implies

PΓ(u) = p⊤u + hΓ(p). So p ∈ ΠΓ(u) and

hΓ(p) =
∑j

i=1 aihΓ(pi).

(e) Follows from Thm 1 and extra arguments using convexity

of P ∗
Γ
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22 Reduction of one parameter

PΓ(u) = t + PΓ(u − t1) ⇒ ∂PΓ(u) ∈ Πn

It is enough to compute

P̂Γ(û) := PΓ(û), û = (u1, . . . , un−1, 0)

Hard core model: P̂Γ(t) depends on the energy t ∈ R.

(It is known that for d ≥ 2 hard core model has phase

transition)

For the dimer problem the pressure Pd(v) depends on

v = (v1, . . . , vd), where vi is the energy of the dimer in

the direction ei, i = 1, . . .. (Non-isotropic model)

Dimer isotropic model in Zd: pressure Pd(v), where v is

the energy of the dimer in any direction.

(Standard model-No phase transition for v ∈ R)
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23 Computation of pressure

Using the scaled transfer matrices on the torus

T (m′), m′ = (m1, . . . , md−1) as in Friedland-Peled

2005 [6].

Assume for simplicity d = 2,Γ = (Γ1, Γ2), where Γ1

symmetric digraph. Let ∆ transfer digraph induced by Γ2

between the allowable Γ1 coloring of the circle T (m).

Then V := CΓ1,per(m) are the set of vertices of

∆(m). For α, β ∈ CΓ1,per(m) the directed edge

(α, β) is in ∆(m) iff the configuration [(α, β)] is an

allowable configuration on CΓ((m, 2)). Adjacency matrix

D(∆(m)) = (dαβ)α,β∈CΓ1,per(m) is N × N

matrix, where N := #CΓ1,per(m). One dimensional

SOFT is CΓ(T (m) × Z): all Γ allowable coloring of the

infinite torus in the direction e2 with the basis T (m). The

pressure corresponding to this one dimensional SOFT is

denoted by P̃∆(m)(u). Its formula:
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Let D̃(∆(m), u) = (d̃αβ(u))α,β∈CΓ1,per(m)

d̃αβ(u) = dαβe
1
2
(c(α)+c(β))⊤u

Then P̃∆(u) := θ(u,m)
m

,

θ(u, m) := log ρ(D̃(∆(m), u))

(We divide log ρ(D̃(∆, u)) by m, to have

P̃∆(u + t1) = P̃∆(u) + t for any t ∈ R

Main inequalities

1
p
(θ(u, p + 2q) − θ(u, 2q)) ≤ PΓ(u)

≤ 1
2m

(θ(u, 2m))

for any m, p ≥ 1 and q ≥ 0.
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24 Automorphism Subgroups

A = (aij)
N
1 nonnegative matrix A(A) :=

{π ∈ SN : aπ(i)π(j) = aij, i, j ∈< N >}
Let G ≤ A(A),

O(G) :=< N > /G,

M = #O(G)

Â = (âαβ)α,β∈O(G), âαβ =:
∑

j∈β aij, i ∈ α,

ρ(A) = ρ(Â),

If A = AT then Â symmetric for

< x, y >=
∑

α∈O(G)(#α)xαyα.

M ≥ N/#G,

In our computations M ∼ N/#G

Using these tools we confirmed Baxter’s computations with

nine digits of precision of P2(v) and of h2(p).

We also computed the non-isotropic P2((v1, v2)).
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