Pressure and phase transition in Potts models in Statistical Mechanics

Shmuel Friedland

University of Illinois at Chicago

Seminar in Hebrew University,

December 26, 2006

Last version December 14, 2006

1 Outline of the talk

- Motivation: Ising model
- Subshifts of Finite Type
- Pressure P_{Γ}
- Density points and density entropy
- Convex functions
- P^*_{Γ} and color density entropy
- First order phase transition
- The maximum principle
- *d*-Dimensional Monomer-Dimers
- Friendly colorings
- Computation of pressure

2 Motivation: Ising model - 1925

On lattice \mathbb{Z}^d two kinds of particles: spin up 1 and spin down 2. Each neighboring particles located on $(\mathbf{i}, \mathbf{i} + \mathbf{e}_j)$ interact with energy -J if both locations are occupied by the same particles, and with energy J if the two sites are occupied by two different particles. In addition each particle has a magnetization due to the external magnetic field. The energy of the particle of type 1 is H while the energy of the particle of type 2 is -H. The energy of $E(\phi)$ of a given finite configuration of particles in \mathbb{Z}^d is the sum of the energies of the above type.

Ferromagnetism J > 0: all spins are up or down.

Antiferromagnetism J < 0 half spins up and down

(Lowest free energy)

Phase transition:

from one state to another as the temperature varies

Energy: $rac{k}{T}E(\phi)$

3 Subshifts of Finite Type-SOFT

 $< n >:= \{1, 2, 3, ..., n\}$

ALPHABET ON *n* LETTERS - COLORS.

Coloring of \mathbb{Z}^d in n coloring =

Full \mathbb{Z}^d shift on n symbols

Example of SOFT: (0-1) LIMITED CHANNEL

HARD CORE LATTICE or NEAR NEIGHBOR EXCLUSION

 $n = 2, < 2 > = \{1, 2\} = \{1, 0\} \ (2 \equiv 0).$

NO TWO 1's ARE NEIGHBORS.

4 One dimensional SOFT

 $\Gamma \subseteq < n > \times < n > directed graph on <math>n$ vertices $C_{\Gamma}(< m >)$ -all Γ allowable configurations of length m: $\{a = a_1...a_m = (a_i)_1^m : < m > \rightarrow < n >$ $(a_i, a_{i+1}) \in \Gamma\}$

 $C_{\Gamma}(\mathbb{Z})$ -all Γ allowable configurations (tilings) on \mathbb{Z} : $\{a = (a_i)_{i \in \mathbb{Z}} : \mathbb{Z} \to < n >, (a_i, a_{i+1}) \in \Gamma\}$

Hard core model:

 $n=2, \Gamma=\{ulletullet,ulletullet,ulletullet,ulletulletullet$

5 MD SOFT=Potts Models

Dimension
$$d \ge 2$$
. For $m \in \mathbb{N}^d$
 $< m > := < m_1 > \times \ldots \times < m_d >$
 $\operatorname{vol}(m) := |m_1| \times \ldots \times |m_d|$
 $\Gamma := (\Gamma_1, \ldots, \Gamma_d), \Gamma_i \subset \langle n \rangle \times \langle n \rangle$
 $C_{\Gamma}(< m >)$ -all Γ allowable configurations of m :
 $a = (a_i)_{i \in \langle m \rangle} :< m > \rightarrow < n >$
s.t. $(a_i, a_{i+e_j}) \in \Gamma_j$ if $i, i + e_j \in \langle m \rangle$
 $e_j = (\delta_{1j}, \ldots, \delta_{dj}), j = 1, \ldots, d$.
Example:
 $< (4, 3) > := \bullet \bullet \bullet$

6

 Γ_1

 Γ_2

For $\phi \in C_{\Gamma}(\langle \mathrm{m} \rangle)$ - $\mathrm{c}(\phi) := (c_1(\phi), \ldots, c_n(\phi))$ denotes coloring distribution of configuration ϕ $c_i(\phi)$ -the number of times the particle i appears in ϕ $rac{1}{\mathrm{vol}(\mathrm{m})}\mathrm{c}(\phi)\in \Pi_n$ - coloring frequency of ϕ $\Pi_n(\mathrm{vol}(\mathrm{m}))$ all $\mathrm{c} \in \mathbb{Z}^n_+$ s.t. $rac{1}{\mathrm{vol}(\mathrm{m})}\mathrm{c} \in \Pi_n$ $C_{\Gamma}(\langle \mathrm{m}
angle,\mathrm{c})$ denotes all $\phi \in C_{\Gamma}(\langle \mathrm{m}
angle)$ with $\mathbf{c}(\phi) = \mathbf{c}$. $C_{\Gamma, \text{per}}(\langle \mathbf{m} \rangle) \subseteq C_{\Gamma}(\langle \mathbf{m} \rangle)$ -m-periodic configurations $C_{\Gamma}(\mathbb{Z}^d)$ -are- Γ allowable configurations of \mathbb{Z}^d Assumption: $C_{\Gamma}(\mathbb{Z}^d) \neq \emptyset$ $u_i \in \mathbb{R}$ energy of particle $i \in \langle n
angle$ $\mathbf{u} := (u_1, \ldots, u_n) \in \mathbb{R}^n$ energy vector $E(\phi) = \mathrm{c}(\phi) \cdot \mathrm{u}$ Energy of configuration ϕ Near neighbor interaction model, can be fit to the above noninteraction model by considering the coloring of the cube $\langle (3,\ldots,3)
angle$ as one particle Similarly short range interaction model

6 Pressure

Grand partition function

$$Z_{\Gamma}(\mathrm{m},\mathrm{u}):=\sum_{\phi\in C_{\Gamma}(\langle\mathrm{m}
angle)}e^{\mathrm{c}(\phi)\cdot\mathrm{u}}$$

 $\log Z_{\Gamma}({
m m},{
m u})$ subadditive in each component of ${
m m}$ and convex in ${
m u}$

 $rac{1}{\mathrm{vol}(\mathrm{m})}\log Z_{\Gamma}(\mathrm{m},\mathrm{u})$ - average energy or pressure $P_{\Gamma}(\mathbf{u}) := \lim_{m \to \infty} \frac{1}{\operatorname{vol}(m)} \log Z_{\Gamma}(m, \mathbf{u})$ Pressure of Γ -SOFT, (Pressure of the Potts model) $h_\Gamma:=P_\Gamma(0) ext{-}\mathsf{ENTROPY}$ of $\Gamma ext{-}\mathsf{SOFT}$ $P_{\Gamma}(\mathbf{u})$ is a convex Lipschitz function on \mathbb{R}^n $|P_{\Gamma}(\mathbf{u}) - P_{\Gamma}(\mathbf{v})| \leq ||\mathbf{u} - \mathbf{v}||_{\infty} := \max |u_i - v_i|$ $P_{\Gamma}(\mathbf{u}+t\mathbf{1})=P_{\Gamma}(\mathbf{u})+t$ P_{Γ} has the following properties: Has subdifferential $\partial P_{\Gamma}(\mathbf{u})$ for each \mathbf{u} $\partial P_{\Gamma}(\mathrm{u})\subseteq \Pi_n$ for each u Has differentiable $\nabla P_{\Gamma}(\mathbf{u})$ a.e.

7 Density points and density entropy

 $\mathbf{p}\in \Pi_n$ density point of $C_\Gamma(\mathbb{Z}^d)$ when there exist sequences of boxes $\langle \mathbf{m}_q
angle \subseteq \mathbb{N}^d$ and color distribution vectors $\mathbf{c}_q \in \Pi_n(\mathrm{vol}(\mathbf{m}_q))$ $\mathrm{m}_q
ightarrow \infty, \ \ C_{\Gamma}(\langle \mathrm{m}_q
angle, \mathrm{c}_q)
eq \emptyset \ \ \forall q \in Q$ \mathbb{N} , and $\lim_{q\to\infty} \frac{\mathbf{c}_q}{\mathrm{vol}(\mathbf{m}_q)} = \mathbf{p}$ Π_{Γ} the set of all density points of $C_{\Gamma}(\mathbb{Z}^d)$ Π_{Γ} is a closed set For $\mathbf{p} \in \Pi_{\Gamma}$ the color density entropy $h_{\Gamma}(\mathbf{p}) :=$ $\sup_{\mathrm{m}_q,\mathrm{c}_q}\limsup_{q o\infty}rac{\log\#C_\Gamma(\langle\mathrm{m}_q
angle,\mathrm{c}_q)}{\mathrm{vol}(\mathrm{m}_q)}\geq 0$ where the supremum is taken over all sequences satisfying the above conditions h_{Γ} is upper semi-continuous on Π_{Γ}

8 Convex functions

 $f:\mathbb{R}^n
ightarrow [-\infty,\infty]$ convex. dom $f := \{ \mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) < \infty \}$ f proper if $f:\mathbb{R}^n o\overline{\mathbb{R}}:=(-\infty,\infty]$ and $f
ot\equiv\infty$ f closed if f is lower semi-continuous. \mathbf{q} subgradient: $f(\mathbf{x}) \geq f(\mathbf{u}) + \mathbf{q}^{ op}(\mathbf{x} - \mathbf{u}) \ \forall \mathbf{x}$ $\partial f(\mathrm{u}) \subset \mathbb{R}^n$ the subset of subgradients of f at u ASSUMPTION: f is proper and closed $\partial f(\mathrm{u})$ is a closed nonempty set for each $\mathrm{u} \in \mathrm{ri} \, \mathrm{dom} \, f$ f is differentiable at $\mathbf{u} \iff \partial f(\mathbf{u}) = \{ \nabla f(\mathbf{u}) \}$ diff f - the set of differentiability points of fabla f continuous on diff f and $\overline{\mathrm{diff}\ f} \supseteq \mathrm{dom}\ f$ The conjugate, (Legendre transform) f^* defined: $f^*(\mathrm{y}) := \sup_{\mathrm{x} \in \mathbb{R}^n} \mathrm{x}^ op \mathrm{y} - f(\mathrm{x})$ for each $\mathrm{y} \in \mathbb{R}^m$ f^st is a proper closed function and $f^{stst}=f$

9 P_{Γ}^* and color density entropy

```
Thm 1: h_{\Gamma}(\mathbf{p}) \leqslant -P_{\Gamma}^{*}(\mathbf{p}) \ \forall \mathbf{p} \in \Pi_{\Gamma}.
P_{\Gamma}(\mathbf{u}) = \max_{\mathbf{p}\in\Pi_{\Gamma}}(\mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p})), \mathbf{u} \in \mathbb{R}^{n}
\Pi_{\Gamma}(\mathbf{u}) := \arg \max_{\mathbf{p} \in \Pi_{\Gamma}} (\mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p})) =
\{\mathbf{p} \in \Pi_{\Gamma} : P_{\Gamma}(\mathbf{u}) = \mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p})\}
For each \mathbf{p} \in \Pi_{\Gamma}(\mathbf{u}), h_{\Gamma}(\mathbf{p}) = -P_{\Gamma}^{*}(\mathbf{p}).
\Pi_{\Gamma}(\mathbf{u}) \subset \partial P_{\Gamma}(\mathbf{u}).
\mathbf{u} \in \operatorname{diff} P_{\Gamma} \Rightarrow \Pi_{\Gamma}(\mathbf{u}) = \{ \nabla P_{\Gamma}(\mathbf{u}) \}.
Therefore \partial P_{\Gamma}(\operatorname{diff} P_{\Gamma}) \subseteq \Pi_{\Gamma}.
S(\mathrm{u}),\mathrm{u}\in\mathbb{R}^n\setminus\mathrm{diff}\,P_{\Gamma}-
are all the limits of sequences
\nabla P_{\Gamma}(\mathbf{u}_i), \mathbf{u}_i \in \operatorname{diff} P_{\Gamma} \text{ and } \mathbf{u}_i \to \mathbf{u}.
Then S(\mathbf{u}) \subseteq \Pi_{\Gamma}(\mathbf{u}).
conv \Pi_{\Gamma}(\mathbf{u}) = \operatorname{conv} S(\mathbf{u}) = \partial P_{\Gamma}(\mathbf{u}).
\partial P_{\Gamma}(\mathbb{R}^n) \subset \operatorname{conv} \Pi_{\Gamma} \subset \Pi_n.
\operatorname{conv} \Pi_{\Gamma} = \operatorname{dom} P_{\Gamma}^*.
```

10 Outline of proof

From the definitions of
$$P_{\Gamma}(\mathbf{u}), \mathbf{p}, h_{\Gamma}(\mathbf{p}) :=$$

 $\sup_{\mathbf{m}_{q}, \mathbf{c}_{q}} \limsup_{\mathbf{q} \to \infty} \frac{\log \# C_{\Gamma}(\langle \mathbf{m}_{q} \rangle, \mathbf{c}_{q})}{\operatorname{vol}(\mathbf{m}_{q})} \ge 0$
 $P_{\Gamma}(\mathbf{u}) \ge \mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p}) \Rightarrow$
 $P_{\Gamma}(\mathbf{u}) \ge \sup_{\mathbf{p} \in \Pi_{\Gamma}} \mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p}) \Rightarrow$
 $-h_{\Gamma}(\mathbf{p}) \ge P_{\Gamma}^{*}(\mathbf{p}) \Rightarrow \Pi_{\Gamma} \subseteq \operatorname{dom} P_{\Gamma}^{*}$
 $C(\mathbf{m}, \mathbf{u}) :=$
 $\arg \max_{\mathbf{c} \in \Pi_{n}(\operatorname{vol}(\mathbf{m}))} \# C_{\Gamma}(\langle \mathbf{m} \rangle, \mathbf{c}) e^{\mathbf{c}^{\top}\mathbf{u}}$
 $Z_{\Gamma}(\mathbf{m}, \mathbf{u}) =$
 $O(\operatorname{vol}(\mathbf{m})^{n-1}) \# C_{\Gamma}(\langle \mathbf{m} \rangle, \mathbf{c}(\mathbf{m}, \mathbf{u})) e^{\mathbf{c}(\mathbf{m}, \mathbf{u})^{\top}\mathbf{u}}$
Let $\mathbf{m}_{q} \to \infty$ s.t. $\frac{\operatorname{c}(\mathbf{m}_{q}, \mathbf{u})}{\operatorname{vol}(\mathbf{m}_{q})} \to \mathbf{p}(\mathbf{u}) \Rightarrow P_{\Gamma}(\mathbf{u}) \leqslant$
 $\mathbf{p}(\mathbf{u})^{\top}\mathbf{u} + \limsup_{q \to \infty} \frac{\log \# C_{\Gamma}(\langle \mathbf{m}_{q} \rangle, \mathbf{c}(\mathbf{m}_{q}, \mathbf{u}))}{\operatorname{vol}(\mathbf{m}_{q})} \leqslant$
 $\mathbf{p}(\mathbf{u})^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p}(\mathbf{u})$
For $p \in \Pi_{\Gamma}(\mathbf{u})$ use maximal characterization
 $P_{\Gamma}(\mathbf{u}+\mathbf{v}) \ge \mathbf{p}^{\top}(\mathbf{u}+\mathbf{v}) + h_{\Gamma}(\mathbf{p}) = \mathbf{p}^{\top}\mathbf{v} + P_{\Gamma}(\mathbf{u})$
So $\mathbf{p} \in \partial P_{\Gamma}(\mathbf{u}) \Rightarrow \Pi_{\Gamma}(\mathbf{u}) \subseteq \partial P_{\Gamma}(\mathbf{u}) \Rightarrow$

$$\mathrm{u}\in\mathrm{diff}\,P_{\Gamma}\Rightarrow\Pi_{\Gamma}(\mathrm{u})=\{
abla P_{\Gamma}(\mathrm{u})\}$$

11 First order phase transition

Claim: For $\mathbf{u} \in \mathbb{R}^n$ each $\mathbf{p} \in \Pi_{\Gamma}(\mathbf{u})$ is the set of possible density of n colors in an allowable configurations from $C_{\Gamma}(\mathbb{Z}^d)$ with the potential \mathbf{u} .

For $\mathbf{u} \in \operatorname{diff} P_{\Gamma} \operatorname{p}(\mathbf{u}) = \nabla P_{\Gamma}(\mathbf{u})$ is a unique density.

Claim: Any point of nondifferentiabity of P_{Γ} is a point of the phase transition.

Proof Let $\mathbf{u} \in \mathbb{R}^n \setminus \operatorname{diff} P_{\Gamma}$ Then ∂P_{Γ} consists of more than one point. Thm 1 yields that $\partial P_{\Gamma}(\mathbf{u}) = \operatorname{conv} S(\mathbf{u}) \subseteq \Pi_{\Gamma}(\mathbf{u})$. $S(\mathbf{u})$ consists of more than one point. Hence $\Pi_{\Gamma}(\mathbf{u})$ consists of more than one density for \mathbf{u} .

 $\mathbf{u} \in \mathbb{R}^n \setminus \operatorname{diff} P_{\Gamma}$ is called a point of phase transition, or a phase transition point of the first order.

12 Ergodic Notions

 $C_{\Gamma}(\mathbb{Z}^d)$ -a compact metric space. It is invariant under the shifts $\sigma_i: C_{\Gamma}(\mathbb{Z}^d) \to C_{\Gamma}(\mathbb{Z}^d), i = 1, \dots, d$ $\sigma_i(\phi)$ is obtained by shifting the allowable configuration $\phi \in C_{\Gamma}(\mathbb{Z}^d)$ using the transformation $\mathbf{x} \mapsto \mathbf{x} - \mathbf{e}_i$. Let \mathcal{M}_{Γ} be the compact set of invariant measures on $C_{\Gamma}(\mathbb{Z}^d)$ with respect to $\sigma_i, i=1,\ldots,d$. $h_{\Gamma}(\mu)$ -Kolmogorov-Sinai entropy for $\mu \in \mathcal{M}_{\Gamma}$ $h_{\Gamma}(\mu) = \lim_{m \to \infty} \frac{1}{(2m+1)^d}$ $H_{\mu}(ee_{-m < i_1, ..., i_d < m} \sigma_1^{i_1} \dots \sigma_d^{i_d} \mathcal{A})$ where $\mathcal{A} = \{A_1, \ldots, A_n\}$ a cylinder partition of $\mathbb{C}_{\Gamma}(\mathbb{Z}^d)$. A_i - the set of all configurations $\phi \in C_{\Gamma}(\mathbb{Z}^d)$ s.t. $0\in\mathbb{Z}^d$ colored by color i in ϕ .

13 The maximum principle

 $f_{u}: C_{\Gamma} \to \mathbb{R}$ be given by $f_{u}(\phi) = u_{i} \text{ for } \phi \in A_{i}, u = (u_{1}, \dots, u_{n}).$ $P_{\Gamma}(u) = \max_{\mu \in \mathcal{M}_{\Gamma}} h_{\Gamma}(\mu) + \int f_{u}(x)d\mu(x)$ $\mu_{u} \in \mathcal{M}_{\Gamma}$ is maximal if $P_{\Gamma}(u) = h_{\Gamma}(\mu) + \int f_{u}(x)d\mu(x)$ u -ergodic phase transition if there are at least two maximal μ_{u} measures Conjecture If $u \in \mathbb{R}^{n} \setminus \text{diff } P_{\Gamma}$ then u is an ergodic phase transition Special case studied case in the literature u = 0:

The entropy

 $egin{aligned} &h_{\Gamma}=P_{\Gamma}(0)=\ &\max_{\mathbf{p}\in\Pi_{\Gamma}}h_{\Gamma}(\mathbf{p})=\ &\max_{\mu\in\mathcal{M}_{\Gamma}}h_{\Gamma}(\mu) \end{aligned}$

14 *d*-Dimensional Monomer-Dimers

Dimer: (i, j), $j = i + e_k \in \mathbb{Z}^d$. any partition of \mathbb{Z}^d to dimers (1-factor). Monomer: occupies $i \in \mathbb{Z}^d$. any partition of \mathbb{Z}^d to monomer-dimers is 1-factor of a subset of \mathbb{Z}^d .

Dimer and Monomer-Dimer are SOFT

$$0 = \tilde{h}_1 \leq \tilde{h}_2 \leq ... \leq \tilde{h}_d \leq ... (ext{dimension})$$

$$\log \frac{1+\sqrt{5}}{2} = h_1 \le h_2 \le \dots \le h_d \le \dots$$
(monomer - dimer)

Fisher, Kasteleyn and Tempreley 61

$$ilde{h}_2 = rac{1}{\pi} \sum_{i=0}^\infty rac{(-1)^i}{(2i+1)^2} = 0.29156090...$$

15 Hammersley's results

Hammersley in 60's studied extensively the monomer-dimer model. He showed $\Pi_{\Gamma} = \Pi_{d+1}$ for d-dimensional model $p = (p_1, \ldots, p_d, p_{d+1})$ p_i -the dimer density in e_i -direction $i = 1, \ldots, d$ p_{d+1} -the monomer density Hammersley studied $p := p_1 + \ldots + p_d$ -the total dimer density $h_d(p)$ -the p-dimer density in \mathbb{Z}^d , $p \in [0, 1]$ He showed $h_d(p)$ -concave continuous function on [0, 1]Heilman and Lieb 72: $h_d(p)$ analytic on (0, 1)No phase transition in parameter $p \in (0, 1)$

Figure 1: HM is the lower bound of Hammersley-Menon, BW is the lower bound of Bondy-Welsh, FP is the lower bound of Friedland-Peled, MC is the Monte Carlo estimate of Hammersley-Menon, B are Baxter's estimates, and h2 is the true value of $h_2 = \max h_2(p)$.

Figure 2: Monomer-dimer tiling of the 2-dimensional grid: entropy as a function of dimer density. FT is the Friedland-Tverberg lower bound, h2 is the true monomer-dimer entropy. B are Baxter's computed values. ALMC is the Asymptotic Lower Matching Conjecture. AUMC is the entropy of a countable union of $K_{4,4}$, conjectured to be an upper bound by the Asymptotic Upper Matching Conjecture.

18 Friendly colorings

Thm 1 implies:

For any Potts model $h_{\Gamma}(\cdot): \Pi_{\Gamma} \to \mathbb{R}_+$ is concave on every convex subset of $\Pi_{\Gamma}(\mathbb{R}^n)$.

To get the exact analog of Hammersley's result

 $\Gamma = (\Gamma_1, \dots, \Gamma_d)$ on $\langle n \rangle$ $\mathcal{F} = \cup_{\mathbf{m} \in \mathbb{N}^d} \widetilde{C}_{\Gamma}(\langle \mathbf{m} \rangle)$, where $\widetilde{C}_{\Gamma}(\langle \mathbf{m} \rangle) \subseteq C_{\Gamma}(\langle \mathbf{m} \rangle)$ for each $\mathbf{m} \in \mathbb{N}^d$, friendly: if whenever a box $\langle \mathbf{m} \rangle$ is cut in two and each part is colored by a coloring in \mathcal{F} , the combined coloring is in \mathcal{F} .

 Γ friendly if there exist a friendly set $\mathcal{F} = \bigcup_{m \in \mathbb{N}^d} \widetilde{C}_{\Gamma}(\langle m \rangle)$ and a constant vector $\mathbf{b} \in \mathbb{N}^d$ such that if any box $\langle m \rangle$ is padded with an envelope of width b_i in the direction of \mathbf{e}_i , then each Γ -allowed coloring of $\langle m \rangle$ can be extended in the padded part to a coloring in \mathcal{F} .

19 Examples of friendly colorings

 Γ has a friendly color $f \in \langle n
angle$, i.e., for each $i \in \langle d
angle$ $(f,j), (j,f) \in \Gamma_i$ for all $j \in \langle n
angle$

Then $C_{\Gamma}({
m m})$ are Γ -allowed colorings of $\langle {
m m}
angle$ whose boundary points are colored with f

Hard-core model: $\Gamma_i = \{(1,1),(1,2),(2,1)\}$, has friendly color f=1.

 Γ associated with the monomer-dimer covering

 $C_{\Gamma}(\langle \mathbf{m} \rangle)$ the set of tilings of $\langle \mathbf{m} \rangle$ by monomers and dimers, i.e., the coverings in which no dimer protrudes out of $\langle \mathbf{m} \rangle$, as in Hammersley

20 P^*_{Γ} for friendly colorings

Thm 2: Let $\Gamma = (\Gamma_1, \ldots, \Gamma_d)$ be a friendly coloring digraph. Then

- (a) Π_{Γ} is convex. Hence $\Pi_{\Gamma} = \operatorname{dom} P_{\Gamma}^*$.
- (b) $h_{\Gamma}(\cdot): \Pi_{\Gamma} \to \mathbb{R}_+$ is concave.
- (c) For each $\mathrm{u}\in\mathbb{R}^n$, $\Pi_\Gamma(\mathrm{u})=\partial P_\Gamma(\mathrm{u}).$
- (d) For each $\mathrm{u}\in\mathbb{R}^n$, $h_\Gamma(\cdot)$ is an affine function on $\partial P_\Gamma(\mathrm{u}).$
- (e) $h_{\Gamma}(\mathbf{p}) = -P^*_{\Gamma}(\mathbf{p})$ for each $\mathbf{p} \in \Pi_{\Gamma}$.

21 Outline of proof

(a). Let $\alpha \in C_{\Gamma}(\langle \mathbf{m} \rangle)$, $\mathbf{c}(\alpha) = (c_1, \ldots, c_n) \in \Pi_n(\mathrm{vol}(\mathbf{m}))$ color frequency vector of α , and $\mathbf{p} := \frac{1}{\mathrm{vol}(\mathrm{m})} \mathbf{c}(\alpha)$. For $\mathbf{k} = (k_1, \ldots, k_d) \in \mathbb{N}^d$ let $\mathbf{k}\cdot\mathbf{m}:=(k_1m_1,\ldots,k_dm_d)$. View $\langle\mathbf{k}\cdot\mathbf{m}
angle$ as a box composed of vol(k) boxes isomorphic to $\langle m \rangle$ color each box by lpha obtaining a coloring $lpha({
m k}\cdot{
m m})\in C_{\Gamma}({
m k}\cdot{
m m}).$ Clearly $\mathbf{p} = \frac{1}{\mathrm{vol}(\mathbf{k} \cdot \mathbf{m})} c(\alpha(\mathbf{k} \cdot \mathbf{m}))$. Choose $\mathbf{k}_q \to \infty$ to deduce $\mathbf{p} \in \Pi_{\Gamma}$. Let $\beta \in \widetilde{C}_{\Gamma}(\langle n \rangle)$. So $q := \frac{1}{\operatorname{vol}(n)} c(\beta) \in \Pi_{\Gamma}$. Claim: For $i,j\in\mathbb{N}$ $rac{i}{i+i}\mathrm{p}+rac{j}{i+j}\mathrm{q}\in\Pi_{\Gamma}.$ Let $\alpha(\mathbf{n} \cdot \mathbf{m}), \beta(\mathbf{m} \cdot \mathbf{n}) \in C_{\Gamma}(\mathbf{n} \cdot \mathbf{m})$ defined as above. Let $\mathbf{k} := (m_1 n_1, \dots, m_{d-1} n_{d-1}, (i+j) m_d n_d)$ view box $\langle {
m k}
angle$ composed of i+j boxes isomorphic to $\langle {\bf m} \cdot {\bf n} \rangle$ aligned side-by-side along the direction of ${\bf e}_d$. Color the first i of these boxes by $lpha(\mathbf{m}\cdot\mathbf{n})$ and the last jby $eta({
m n}\cdot{
m m})$, to get $\gamma\in C_{\Gamma}(\langle{
m k}
angle)$ with

$$\begin{split} \frac{1}{\operatorname{vol}(\mathbf{k})} \mathbf{c}(\gamma) &= \frac{i}{i+j} \mathbf{p} + \frac{j}{i+j} \mathbf{q}. \text{ Hence} \\ \frac{i}{i+j} \mathbf{p} + \frac{j}{i+j} \mathbf{q} \in \Pi_{\Gamma}. \text{ Since } \Pi_{\Gamma} \text{ is closed} \\ a\mathbf{p} + (1-a)\mathbf{q} \in \Pi_{\Gamma} \text{ for all } a \in [0,1]. \\ \text{Let } \widetilde{\Pi}_{\Gamma} \text{ be the convex hull of } \frac{1}{\operatorname{vol}(\mathbf{m})} \mathbf{c}(\alpha) \text{ for some } \mathbf{m} \text{ and} \\ \text{some } \alpha \in \widetilde{C}_{\Gamma}(\langle \mathbf{m} \rangle). \text{ So } \widetilde{\Pi}_{\Gamma} \subseteq \Pi_{\Gamma}. \\ \text{The padding part of definition of } \Gamma \text{ friendly implies} \\ \widetilde{\Pi}_{\Gamma} \subseteq \Pi_{\Gamma} \subseteq \mathbf{cl} \ \widetilde{\Pi}_{\Gamma} \Rightarrow \Pi_{\Gamma} = \mathbf{cl} \ \widetilde{\Pi}_{\Gamma} \\ \text{Equality } \Pi_{\Gamma} = \operatorname{dom} P_{\Gamma}^{*} \text{ follows from last part of Thm 1.} \\ \text{(b) The padding part of definition of } \Gamma \text{ friendly implies} \\ \text{For } \mathbf{p}, \mathbf{q} \in \Pi_{\Gamma}, \varepsilon > \mathbf{0} \exists \\ \mathbf{m}_{q} := (m_{1,q}, \dots, m_{d,q}), \mathbf{n}_{q} := \\ (n_{1,q}, \dots, n_{d,q}) \in \mathbb{N}^{d}, q \in \mathbb{N}, \ \mathbf{m}_{q}, \mathbf{n}_{q} \to \infty \text{ s.t.} \\ \widetilde{C}_{\Gamma}(\langle \mathbf{m}_{q} \rangle, \mathbf{c}_{q}), \widetilde{C}_{\Gamma}(\langle \mathbf{n}_{q} \rangle, \mathbf{d}_{q}) \neq \emptyset, q \in \mathbb{N}, \\ \\ \lim_{q \to \infty} \frac{1}{\operatorname{vol}(\mathbf{m}_{q})} \mathbf{c}_{q} = \mathbf{p}, \lim_{\mathbf{n}_{q} \to \infty} \frac{1}{\operatorname{vol}(\mathbf{n}_{q})} \mathbf{d}_{q} = \mathbf{q} \\ \\ \lim_{q \to \infty} \frac{\log \# \widetilde{C}_{\Gamma}(\langle \mathbf{m}_{q} \rangle, \mathbf{d}_{q})}{\operatorname{vol}(\mathbf{m}_{q})} \geq h_{\Gamma}(\mathbf{p}) - \varepsilon, \\ \\ \lim_{q \to \infty} \frac{\log \# \widetilde{C}_{\Gamma}(\langle \mathbf{n}_{q} \rangle, \mathbf{d}_{q})}{\operatorname{vol}(\mathbf{n}_{q})} \geq h_{\Gamma}(\mathbf{q}) - \varepsilon. \end{split}$$

Observation that for any

$$\begin{split} & \text{m}, \text{n} \in \mathbb{N}^{d}, \text{c} \in \Pi_{n}(\text{vol}(\text{m})): \\ & \# \widetilde{C}_{\Gamma}(\langle \text{n} \cdot \text{m} \rangle, \text{vol}(\text{n})\text{c}) \geq (\# \widetilde{C}_{\Gamma}(\langle \text{m} \rangle, \text{c}))^{\text{vol}(\text{n})} \\ & \text{yields: For } i, j \in \mathbb{N} \\ & h_{\Gamma}(\frac{i}{i+j}\text{p} + \frac{j}{i+j}\text{q}) \geq \frac{i}{i+j}h_{\Gamma}(\text{p}) + \frac{j}{i+j}h_{\Gamma}(\text{q}) - \varepsilon \\ & \text{which proves the concavity of } h_{\Gamma}. \end{split}$$

(c-d): Let $\mathbf{u} \in \operatorname{diff} P_{\Gamma}$. Then $\Pi_{\Gamma}(\mathbf{u}) = \{ \nabla P_{\Gamma}(\mathbf{u}) \} = \partial P_{\Gamma}(\mathbf{u}) \text{ and (c-d) trivially}$ hold.

Recall $S(\mathbf{u}) \subseteq \Pi_{\Gamma}(\mathbf{u})$, conv $S(\mathbf{u}) = \partial P_{\Gamma}(\mathbf{u}) \supseteq \Pi_{\Gamma}(\mathbf{u})$ Let $\mathbf{p}_i \in S(\mathbf{u}), i = 1, \dots, j$. So $P_{\Gamma}(\mathbf{u}) = \mathbf{p}_i^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p}_i), i = 1, \dots, j$ Since Π_{Γ} convex, for $\mathbf{a} = (a_1, \dots, a_j) \in \Pi_j$ $\mathbf{p} := \sum_{i=1}^j a_i \mathbf{p}_i \in \Pi_{\Gamma}$. As h_{Γ} concave $P_{\Gamma}(\mathbf{u}) = \sum_{i=1}^j a_i \mathbf{p}_i^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p}_i) \leq \mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p})$ The maximal characterization of $P_{\Gamma}(\mathbf{u})$ implies $P_{\Gamma}(\mathbf{u}) = \mathbf{p}^{\top}\mathbf{u} + h_{\Gamma}(\mathbf{p})$. So $\mathbf{p} \in \Pi_{\Gamma}(\mathbf{u})$ and $h_{\Gamma}(\mathbf{p}) = \sum_{i=1}^j a_i h_{\Gamma}(\mathbf{p}_i)$. (e) Follows from Thm 1 and extra arguments using convexity of P_{Γ}^*

22 Reduction of one parameter

 $P_{\Gamma}(\mathbf{u}) = t + P_{\Gamma}(\mathbf{u} - t\mathbf{1}) \Rightarrow \partial P_{\Gamma}(\mathbf{u}) \in \Pi_n$ It is enough to compute $\hat{P}_{\Gamma}(\hat{\mathbf{u}}) := P_{\Gamma}(\hat{\mathbf{u}}), \hat{\mathbf{u}} = (u_1, \dots, u_{n-1}, 0)$ Hard core model: $\hat{P}_{\Gamma}(t)$ depends on the energy $t \in \mathbb{R}$. (It is known that for $d \geq 2$ hard core model has phase transition) For the dimer problem the pressure $P_d(\mathbf{v})$ depends on $\mathbf{v} = (v_1, \dots, v_d)$, where v_i is the energy of the dimer in the direction $\mathbf{e}_i, i = 1, \dots$ (Non-isotropic model)

Dimer isotropic model in \mathbb{Z}^d : pressure $P_d(v)$, where v is the energy of the dimer in any direction.

(Standard model-No phase transition for $v \in \mathbb{R}$)

23 Computation of pressure

Using the scaled transfer matrices on the torus $T(\mathbf{m}'), \mathbf{m}' = (m_1, \dots, m_{d-1})$ as in Friedland-Peled 2005 [6].

Assume for simplicity $d = 2, \Gamma = (\Gamma_1, \Gamma_2)$, where Γ_1 symmetric digraph. Let Δ transfer digraph induced by Γ_2 between the allowable Γ_1 coloring of the circle T(m). Then $V := C_{\Gamma_1, \text{per}}(m)$ are the set of vertices of $\Delta(m)$. For $\alpha, \beta \in C_{\Gamma_1, \text{per}}(m)$ the directed edge (α, β) is in $\Delta(m)$ iff the configuration $[(\alpha, \beta)]$ is an allowable configuration on $C_{\Gamma}((m, 2))$. Adjacency matrix $D(\Delta(m)) = (d_{\alpha\beta})_{\alpha,\beta\in C_{\Gamma_1,\text{per}}(m)}$ is $N \times N$ matrix, where $N := \#C_{\Gamma_1,\text{per}}(m)$. One dimensional SOFT is $C_{\Gamma}(T(m) \times \mathbb{Z})$: all Γ allowable coloring of the infinite torus in the direction \mathbf{e}_2 with the basis T(m). The pressure corresponding to this one dimensional SOFT is denoted by $\tilde{P}_{\Delta(m)}(\mathbf{u})$. Its formula:

Let
$$\tilde{D}(\Delta(m), \mathbf{u}) = (\tilde{d}_{\alpha\beta}(\mathbf{u}))_{\alpha,\beta\in C_{\Gamma_1,\mathrm{per}}(m)}$$

 $\tilde{d}_{\alpha\beta}(\mathbf{u}) = d_{\alpha\beta}e^{\frac{1}{2}(\mathbf{c}(\alpha) + \mathbf{c}(\beta))^\top \mathbf{u}}$
Then $\tilde{P}_{\Delta}(\mathbf{u}) := \frac{\theta(\mathbf{u},m)}{m}$,
 $\theta(\mathbf{u},m) := \log \rho(\tilde{D}(\Delta(m),\mathbf{u}))$
(We divide $\log \rho(\tilde{D}(\Delta,\mathbf{u}))$ by m , to have
 $\tilde{P}_{\Delta}(\mathbf{u} + t\mathbf{1}) = \tilde{P}_{\Delta}(\mathbf{u}) + t$ for any $t \in \mathbb{R}$

Main inequalities

$$egin{aligned} &rac{1}{p}(heta(\mathrm{u},p+2q)- heta(\mathrm{u},2q))\leq P_{\Gamma}(\mathrm{u})\ &\leq rac{1}{2m}(heta(\mathrm{u},2m))\ & ext{for any }m,p\geq 1\ & ext{and }q\geq 0. \end{aligned}$$

24 Automorphism Subgroups

$$\begin{split} A &= (a_{ij})_1^N \text{ nonnegative matrix } \mathcal{A}(A) := \\ \{\pi \in S_N : a_{\pi(i)\pi(j)} = a_{ij}, i, j \in < N > \} \\ \text{Let } G &\leq \mathcal{A}(A), \\ \mathcal{O}(G) := < N > /G, \\ M &= \#\mathcal{O}(G) \\ \hat{A} &= (\hat{a}_{\alpha\beta})_{\alpha,\beta\in\mathcal{O}(G)}, \hat{a}_{\alpha\beta} =: \sum_{j\in\beta} a_{ij}, i \in \alpha, \\ \rho(A) &= \rho(\hat{A}), \\ \text{If } A &= A^T \text{ then } \hat{A} \text{ symmetric for} \\ < x, y > = \sum_{\alpha\in\mathcal{O}(G)} (\#\alpha) x_{\alpha} y_{\alpha}. \\ M &\geq N/\#G, \end{split}$$

In our computations $M \sim N/\#G$

Using these tools we confirmed Baxter's computations with nine digits of precision of $P_2(v)$ and of $h_2(p)$.

We also computed the non-isotropic $P_2((v_1,v_2))$.

References

- [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Spinger, New York, 1978.
- [2] R. J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968), 650–654.
- [3] S. Friedland, On the entropy of Z-d subshifts of finite type, *Linear Algebra Appl.* 252 (1997), 199–220.
- [4] S. Friedland, Multi-dimensional capacity, pressure and Hausdorff dimension, in *Mathematical System Theory in Biology, Communication, Computation and Finance*, edited by J. Rosenthal and D. Gilliam, IMA Vol. Ser. 134, Springer, New York, 2003, 183–222.
- [5] S. Friedland, E. Krop, P. H. Lundow and K. Markström, Computational validations of the asymptotic matching conjectures, submitted.
- S. Friedland and U. N. Peled, Theory of
 Computation of Multidimensional Entropy with an
 Application to the Monomer-Dimer Problem,
 Advances of Applied Math. 34(2005), 486-522.

- [7] F. R. Gantmacher, *The Theory of Matrices*, Vol. II, Chelsea Publ. Co., New York 1959.
- [8] J. M. Hammersley, Existence theorems and Monte Carlo methods for the monomer-dimer problem, in *Reseach papers in statistics: Festschrift for J. Neyman*, edited by F.N. David, Wiley, London, 1966, 125–146.
- [9] O. J. Heilman and E. H. Lieb, Theory of monomer-dimer systems, *Comm. Math. Phys.* 25 (1972), 190–232; Errata 27 (1972), 166.
- [10] E. Ising, Beitrag zur Theory des Ferromagnetismus, *Z. Physik* 31 (1925), 253–?.
- [11] P.W. Kasteleyn, The statistics of dimers on a lattice, *Physica* 27 (1961), 1209–1225.
- [12] J. F. C. Kingman, A convexity property of positive matrices. Quart. J. Math. Oxford Ser. (2) 12 (1961), 283–284.
- [13] L. Onsager, Cristal statistics, I. A two-dimensional model with an order-disorder transition, *Phys. Review* 65 (1944), 117–?

- [14] R.B. Potts, ?, Proc. Cambridge Phil. Soc. 48 (1952), 106–?
- [15] R. T. Rockafeller, *Convex Analysis*, Princeton Univ. Press 1970.
- [16] H. N. V. Temperley and M. E. Fisher, Dimer probelm in statistical mechanics—an exact result, *Phil. Mag.* (8) 6 (1961), 1061–1063.
- [17] C. J. Thompson, *Mathematical Statisitical Mechanics*, Princeton Univ. Press, 1972.